1
|
Huerta de la Cruz S, Santiago-Castañeda C, Rodríguez-Palma EJ, Rocha L, Sancho M. Lateral fluid percussion injury: A rat model of experimental traumatic brain injury. Methods Cell Biol 2024; 185:197-224. [PMID: 38556449 DOI: 10.1016/bs.mcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of disability and death worldwide. The annual economic impact of TBI-including direct and indirect costs-is high, particularly impacting low- and middle-income countries. Despite extensive research, a comprehensive understanding of the primary and secondary TBI pathophysiology, followed by the development of promising therapeutic approaches, remains limited. These fundamental caveats in knowledge have motivated the development of various experimental models to explore the molecular mechanisms underpinning the pathogenesis of TBI. In this context, the Lateral Fluid Percussion Injury (LFPI) model produces a brain injury that mimics most of the neurological and systemic aspects observed in human TBI. Moreover, its high reproducibility makes the LFPI model one of the most widely used rodent-based TBI models. In this chapter, we provide a detailed surgical protocol of the LFPI model used to induce TBI in adult Wistar rats. We further highlight the neuroscore test as a valuable tool for the evaluation of TBI-induced sensorimotor consequences and their severity in rats. Lastly, we briefly summarize the current knowledge on the pathological aspects and functional outcomes observed in the LFPI-induced TBI model in rodents.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
3
|
From the North Sea to Drug Repurposing, the Antiseizure Activity of Halimide and Plinabulin. Pharmaceuticals (Basel) 2022; 15:ph15020247. [PMID: 35215359 PMCID: PMC8878679 DOI: 10.3390/ph15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin’s antiseizure action.
Collapse
|
4
|
Kaneko H, Namihira M, Yamamoto S, Numata N, Hyodo K. Oral administration of cyclic glycyl-proline facilitates task learning in a rat stroke model. Behav Brain Res 2022; 417:113561. [PMID: 34509530 DOI: 10.1016/j.bbr.2021.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Cyclic glycyl-proline (cGP) exerts neuroprotective effects against ischemic stroke and may promote neural plasticity or network remodeling. We sought to determine to what extent oral administration of cGP could facilitate task learning in rats with ischemic lesions. We trained rats to perform a choice reaction time task using their forepaws. One week after changing the food to pellets containing cGP (no cGP: 0 mg/kg; low cGP: 25 mg/kg; and high cGP: 75 mg/kg), we made a focal ischemic lesion on the left or right forepaw area of the sensorimotor cortex. After recovery of task performance, we altered the correct-response side of the task, and then analyzed the number of training days required for the rat to reach a learning criterion (error rate < 15%) and the regulation of adult neurogenesis in the subventricular zones (SVZs), taking lesion size into account. The low-cGP group required fewer training days for task learning than the no-cGP group. Unexpectedly, rats with larger lesions required fewer training days in the no-cGP and low-cGP groups, but more training days in the high-cGP group. The number of Ki67-immunopositive cells (indicating proliferative cells) in ipsilesional SVZ increased more rapidly in the low-cGP and high-cGP groups than in the no-cGP group. However, lesion size had only a small effect on required training days and the number of Ki67-immunopositive cells. We conclude that oral administration of cGP can facilitate task learning in rats with focal ischemic infarction through neural plasticity and network remodeling, even with minimal neuroprotective effects.
Collapse
Affiliation(s)
- Hidekazu Kaneko
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| | - Masakazu Namihira
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | - Koji Hyodo
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
5
|
Faltracco M, Cotogno S, Vande Velde CML, Ruijter E. Catalytic Asymmetric Synthesis of Diketopiperazines by Intramolecular Tsuji-Trost Allylation. J Org Chem 2019; 84:12058-12070. [PMID: 31446758 PMCID: PMC6760471 DOI: 10.1021/acs.joc.9b01994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
report the intramolecular Tsuji–Trost reaction of Ugi
adducts to give spiro-diketopiperazines in high yield and with high
enantioselectivity. This approach allows the catalytic asymmetric
construction of a broad range of these medicinally important heterocycles
under mild conditions, in two steps from cheap, commercially available
starting materials.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Silvia Cotogno
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Christophe M L Vande Velde
- Advanced Reactor Technology, Faculty of Applied Engineering , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerpen , Belgium
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
6
|
Scrimgeour AG, Carrigan CT, Condlin ML, Urso ML, van den Berg RM, van Helden HP, Montain SJ, Joosen MJ. Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury. J Neurotrauma 2018; 35:2495-2506. [DOI: 10.1089/neu.2017.5614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Angus G. Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Christopher T. Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Michelle L. Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Maria L. Urso
- Military Performance Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | | | | | - Scott J. Montain
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | | |
Collapse
|
7
|
Fisher CL, Resnick RJ, De S, Acevedo LA, Lu KP, Schroeder FC, Nicholson LK. Cyclic cis-Locked Phospho-Dipeptides Reduce Entry of AβPP into Amyloidogenic Processing Pathway. J Alzheimers Dis 2018; 55:391-410. [PMID: 27662285 DOI: 10.3233/jad-160051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cis/trans isomerization of X-Pro peptide bonds in proteins in some instances acts as a molecular switch in biological pathways. Our prior work suggests that the cis isomer of the phospho-Thr668-Pro669 motif, located in the cytoplasmic domain of the amyloid-β protein precursor (AβPP), is correlated with an increase in amyloidogenic processing of AβPP and production of amyloid-beta (Aβ), the neurotoxic peptide fragment in Alzheimer's disease (AD). We designed a 100% cis-locked cyclic dipeptide composed of cyclized phospho-Thr-Pro (pCDP) as a mimic for this putative pathological conformation, and three phosphate-blocked derivatives (pCDP-diBzl, pCDP-Bzl, and pCDP-diPOM). Two H4 neuroglioma cell lines were established as AD cell models for use in testing these compounds: H4-AβPP695 for stable overexpression of wild-type AβPP695, and H4-BACE1 for stable overexpression of β-site AβPP cleaving enzyme-1 (BACE1). The level of the secreted AβPP fragment resulting from BACE1 activity, sAβPPβ, served as a key proxy for amyloidogenic processing, since cleavage of AβPP by BACE1 is a requisite first step in Aβ production. Of the compounds tested, pCDP-diBzl decreased sAβPPβ levels in both cell lines, while pCDP-diPOM decreased sAβPPβ levels in only H4-BACE1 cells, all with similar dose-dependences and patterns of proteolytic AβPP fragments. Enzymatic assays showed that none of the pCDP derivatives directly inhibit BACE1 catalytic activity. These results suggest a model in which pCDP-diBzl and pCDP-diPOM act at a common point to inhibit entry of AβPP into the amyloidogenic AβPP processing pathway but through different targets, and provide important insights for the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Carolyn L Fisher
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Ross J Resnick
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Soumya De
- School of Bio Science, Indian Institute of Technology, Kharagpur, WB, India
| | - Lucila A Acevedo
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Kun Ping Lu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Linda K Nicholson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Grottelli S, Ferrari I, Pietrini G, Peirce MJ, Minelli A, Bellezza I. The Role of Cyclo(His-Pro) in Neurodegeneration. Int J Mol Sci 2016; 17:E1332. [PMID: 27529240 PMCID: PMC5000729 DOI: 10.3390/ijms17081332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.
Collapse
Affiliation(s)
- Silvia Grottelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Grazia Pietrini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Alba Minelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Bellezza
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| |
Collapse
|
9
|
Ferro JNDS, de Aquino FLT, de Brito RG, dos Santos PL, Quintans JDSS, de Souza LC, de Araújo AF, Diaz BL, Lucca-Júnior W, Quintans-Júnior LJ, Barreto E. Cyclo-Gly-Pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice. Clin Exp Pharmacol Physiol 2015; 42:1287-95. [DOI: 10.1111/1440-1681.12480] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/08/2015] [Accepted: 08/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Lucas Costa de Souza
- Laboratory of Inflammation; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | - Bruno Lourenço Diaz
- Laboratory of Inflammation; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | | | - Emiliano Barreto
- Laboratory of Cell Biology; Federal University of Alagoas; Maceió Brazil
| |
Collapse
|
10
|
Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 2014; 15:1216-36. [PMID: 24445258 PMCID: PMC3907865 DOI: 10.3390/ijms15011216] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Propofol Limits Microglial Activation after Experimental Brain Trauma through Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Anesthesiology 2013; 119:1370-88. [DOI: 10.1097/aln.0000000000000020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Background:
Microglial activation is implicated in delayed tissue damage after traumatic brain injury (TBI). Activation of microglia causes up-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, with the release of reactive oxygen species and cytotoxicity. Propofol appears to have antiinflammatory actions. The authors evaluated the neuroprotective effects of propofol after TBI and examined in vivo and in vitro whether such actions reflected modulation of NADPH oxidase.
Methods:
Adult male rats were subjected to moderate lateral fluid percussion TBI. Effect of propofol on brain microglial activation and functional recovery was assessed up to 28 days postinjury. By using primary microglial and BV2 cell cultures, the authors examined propofol modulation of lipopolysaccharide and interferon-γ–induced microglial reactivity and neurotoxicity.
Results:
Propofol improved cognitive recovery after TBI in novel object recognition test (48 ± 6% for propofol [n = 15] vs. 30 ± 4% for isoflurane [n = 14]; P = 0.005). The functional improvement with propofol was associated with limited microglial activation and decreased cortical lesion volume and neuronal loss. Propofol also attenuated lipopolysaccharide- and interferon-γ–induced microglial activation in vitro, with reduced expression of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β, reactive oxygen species, and NADPH oxidase. Microglial-induced neurotoxicity in vitro was also markedly reduced by propofol. The protective effect of propofol was attenuated when the NADPH oxidase subunit p22phox was knocked down by small interfering RNA. Moreover, propofol reduced the expression of p22phox and gp91phox, two key components of NADPH oxidase, after TBI.
Conclusion:
The neuroprotective effects of propofol after TBI appear to be mediated, in part, through the inhibition of NADPH oxidase.
Collapse
|
12
|
Zhao Z, Loane DJ, Murray MG, Stoica BA, Faden AI. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J Neurotrauma 2012; 29:2475-89. [PMID: 22924665 DOI: 10.1089/neu.2012.2511] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening new neuroprotective agents or for addressing injury mechanisms.
Collapse
Affiliation(s)
- Zaorui Zhao
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
13
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 643] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
15
|
Kabadi SV, Stoica BA, Loane DJ, Byrnes KR, Hanscom M, Cabatbat RM, Tan MT, Faden AI. Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury. J Neurotrauma 2012; 29:813-27. [PMID: 21895533 DOI: 10.1089/neu.2011.1980] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell cycle activation (CCA) is one of the principal secondary injury mechanisms following brain trauma, and it leads to neuronal cell death, microglial activation, and neurological dysfunction. Cyclin D1 (CD1) is a key modulator of CCA and is upregulated in neurons and microglia following traumatic brain injury (TBI). In this study we subjected CD1-wild-type (CD1(+/+)) and knockout (CD1(-/-)) mice to controlled cortical impact (CCI) injury to evaluate the role of CD1 in post-traumatic neurodegeneration and neuroinflammation. As early as 24 h post-injury, CD1(+/+) mice showed markers of CCA in the injured hemisphere, including increased CD1, E2F1, and proliferating cell nuclear antigen (PCNA), as well as increased Fluoro-Jade B staining, indicating neuronal degeneration. Progressive neuronal loss in the hippocampus was observed through 21 days post-injury in these mice, which correlated with a decline in cognitive function. Microglial activation in the injured hemisphere peaked at 7 days post-injury, with sustained increases at 21 days. In contrast, CD1(-/-) mice showed reduced CCA and neurodegeneration at 24 h, as well as improved cognitive function, attenuated hippocampal neuronal cell loss, decreased lesion volume, and cortical microglial activation at 21 days post-injury. These findings indicate that CD1-dependent CCA plays a significant role in the neuroinflammation, progressive neurodegeneration, and related neurological dysfunction resulting from TBI. Our results further substantiate the proposed role of CCA in post-traumatic secondary injury, and suggest that inhibition of CD1 may be a key therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR), Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wheaton P, Mathias JL, Vink R. Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: a meta-analysis. J Psychopharmacol 2011; 25:1581-99. [PMID: 21300634 DOI: 10.1177/0269881110388331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmacological treatments have been widely investigated in pre-clinical animal trials to evaluate their usefulness in reducing cognitive, behavioural and motor problems after traumatic brain injury (TBI). However, the relative efficacy of these agents has yet to be evaluated, making it difficult to assess the strength of evidence for their use in a clinical population. A meta-analytic review of research (1980-2009) was therefore conducted to examine the impact of pharmacological treatments administered to adult male rodents after experimental TBI on cognitive, behavioural, and motor outcome. The PubMed and PsycInfo databases were searched using 35 terms. Weighted Cohen's d effect sizes, percent overlap, Fail-Safe N statistics and confidence intervals were calculated for each treatment. In total, 91 treatments were evaluated in 223 pre-clinical trials, comprising 5988 rodents. Treatments that were investigated by multiple studies and showed large and significant treatment effects were of greatest interest. Of the 16 treatments that were efficacious, six improved cognition, 10 improved motor function and no treatment improved behaviour (depression/anxiety, aggression, zoosocial behaviour). Treatment benefits were found across a range of TBI models. Drug dosage and treatment interval impacted on treatment effects.
Collapse
Affiliation(s)
- P Wheaton
- School of Psychology, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
17
|
Santra S, Andreana PR. A Rapid, One-Pot, Microwave-Influenced Synthesis of Spiro-2,5-diketopiperazines via a Cascade Ugi/6-Exo-Trig Aza-Michael Reaction. J Org Chem 2011; 76:2261-4. [PMID: 21351784 DOI: 10.1021/jo102305q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Soumava Santra
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
18
|
Donkin JJ, Cernak I, Blumbergs PC, Vink R. A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 hours after traumatic brain injury. J Neurotrauma 2011; 28:217-24. [PMID: 21175297 DOI: 10.1089/neu.2010.1632] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have demonstrated that the compound N-acetyl-L-tryptophan (NAT) reduces brain edema and improves functional outcome following traumatic brain injury (TBI). In this study we examined whether this effect was mediated via the neurokinin-1 receptor, and whether there was an effect on axonal injury. We also explored whether the compound was effective, even when administered at delayed time points. Male Sprague-Dawley rats were subject to acceleration-induced, diffuse TBI and administered NAT, its inactive D-enantiomer, or saline vehicle. In contrast to NAT (2.5 mg/kg), the inactive D-enantiomer was ineffective at improving rotarod motor performance after TBI. NAT also improved cognitive outcome as assessed by the Morris water maze and novel object recognition tests, and reduced axonal injury at 5 and 24 h after TBI as assessed by amyloid precursor protein immunohistochemistry. However, efficacy of the membrane-impermeable NAT was limited to administration within 5 h, whereas administration of a form of NAT, L-732,138 (47 mg/kg), in which a trifluoromethyl benzyl ester group has been added, making it highly lipid soluble and able to cross the intact blood-brain barrier, significantly improved motor outcome, even when administration was delayed by as much as 12 h. We conclude that the neuroprotective effects of NAT are receptor-mediated, and that administration of the membrane-permeable form of the compound can be effective even up to 12 h after TBI.
Collapse
Affiliation(s)
- James J Donkin
- Discipline of Anatomy and Pathology, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
19
|
Jaworska-Feil L, Jantas D, Leskiewicz M, Budziszewska B, Kubera M, Basta-Kaim A, Lipkowski AW, Lason W. Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells. Neuropeptides 2010; 44:495-508. [PMID: 20869113 DOI: 10.1016/j.npep.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/19/2010] [Accepted: 08/30/2010] [Indexed: 12/30/2022]
Abstract
TRH (thyroliberin) and its analogues were reported to possess neuroprotective effects in cellular and animal experimental models of acute and chronic neurodegenerative diseases. In the present study we evaluated effects of TRH and its three stable analogues, montirelin (CG-3703), RGH-2202 and Z-TRH (N-(carbobenzyloxy)-pGlutamyl-Histydyl-Proline) on the neuronally differentiated human neuroblastoma SH-SY5Y cell line, which is widely accepted for studying potential neuroprotectants. We found that TRH and all the tested analogues at concentrations 0.1-50 μM attenuated cell damage induced by MPP(+) (2 mM), 3-nitropropionate (10 mM), hydrogen peroxide (0.5 mM), homocysteine (250 μM) and beta-amyloid (20μM) in retinoic acid differentiated SH-SY5Y cells. Furthermore, we demonstrated that TRH and its analogues decreased the staurosporine (0.5 μM)-induced LDH release, caspase-3 activity and DNA fragmentation, which indicate the anti-apoptotic proprieties of these peptides. The neuroprotective effects of TRH (10 μM) and RGH-2202 (10 μM) on St-induced cell death was attenuated by inhibitors of PI3-K pathway (wortmannin and LY294002), but not MAPK/ERK1/2 (PD98059 and U0126). Moreover, TRH and its analogues at neuroprotective concentrations (1 and 10 μM) increased expression of Bcl-2 protein, as confirmed by Western blot analysis. All in all, these results extend data on neuroprotective properties of TRH and its analogues and provide evidence that mechanism of anti-apoptotic effects of these peptides in SH-SY5Y cell line involves induction of PI3K/Akt pathway and Bcl-2. Furthermore, the data obtained on human cell line with a dopaminergic phenotype suggest potential utility of TRH and its analogues in the treatment of some neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- L Jaworska-Feil
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 2010; 31:596-604. [PMID: 21035878 DOI: 10.1016/j.tips.2010.09.005] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) causes secondary biochemical changes that contribute to subsequent tissue damage and associated neuronal cell death. Neuroprotective treatments that limit secondary tissue loss and/or improve behavioral outcome have been well established in multiple animal models of TBI. However, translation of such neuroprotective strategies to human injury have been disappointing, with the failure of more than thirty controlled clinical trials. Both conceptual issues and methodological differences between preclinical and clinical injury have undoubtedly contributed to these translational difficulties. More recently, changes in experimental approach, as well as altered clinical trial methodologies, have raised cautious optimism regarding the outcomes of future clinical trials. Here we critically review developing experimental neuroprotective strategies that show promise, and we propose criteria for improving the probability of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and Emergency Medical Systems, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI. Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc 2010; 5:1552-63. [PMID: 20725070 PMCID: PMC3753081 DOI: 10.1038/nprot.2010.112] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in rodents. Recently, we developed a microprocessor-controlled, pneumatically driven instrument, micro-FP (MFP), to address operational concerns associated with the use of the standard FP device in rodents. We have characterized the MFP model with regard to injury severity according to behavioral and histological outcomes. In this protocol, we review the FP models and detail surgical procedures for LFP. The surgery involves tracheal intubation, craniotomy and fixation of Luer fittings, and induction of injury. The surgical procedure can be performed within 45-50 min.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
22
|
Guan J, Zhang R, Dale-Gandar L, Hodgkinson S, Vickers MH. NNZ-2591, a novel diketopiperazine, prevented scopolamine-induced acute memory impairment in the adult rat. Behav Brain Res 2010; 210:221-8. [DOI: 10.1016/j.bbr.2010.02.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
|
23
|
Jantas D, Jaworska-Feil L, Lipkowski AW, Lason W. Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents. Neuropeptides 2009; 43:371-85. [PMID: 19666192 DOI: 10.1016/j.npep.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/17/2022]
Abstract
The tripeptide thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) has been shown to possess neuroprotective activity in in vitro and in vivo models. Since its potential utility is limited by relatively rapid metabolism, metabolically stabilized analogues have been constructed. In the present study we investigated the influence of TRH and its three stable analogues: Montirelin (MON, CG-3703), RGH-2202 (L-6-keto-piperidine-2carbonyl-l-leucyl-l-prolinamide) and Z-TRH (N-carbobenzyloxy-pGlutamyl-Histydyl-Proline) in various models of mouse cortical neuronal cell injury. Twenty four hour pre-treatment with TRH and its analogues in low micromolar concentrations attenuated the neuronal cell death evoked by excitatory amino acids (EAAs: glutamate, NMDA, kainate, quisqualate) and hydrogen peroxide. All the peptides showed neuroprotective action on staurosporine (St)-evoked apoptotic neuronal cell death, but this effect was caspase-3 independent. Interestingly, in mixed neuronal-glial cell preparations only MON decreased St- and glutamate-evoked neurotoxicity. None of the peptides inhibited the doxorubicin- and lactacystin-induced neuronal cortical cell death, agents acting via activation of death receptor (FAS) or inhibition of proteasome function, respectively. Furthermore, we found that neither inhibitors of PI3-K (wortmannin, LY 294002) nor MAPK/ERK1/2 (PD 098059, U 0126) were able to inhibit neuroprotective properties of TRH and MON in St model of apoptosis. The protection mediated by TRH and MON it that model was also not connected with influence of peptides on the pro-apoptotic GSK-3beta and JNK protein kinase expression and activity. Further studies showed that calpains, calcium-activated proteases were induced by Glu, but not by St in cortical neurons. Moreover, the Glu-evoked increase in spectrin alpha II cleavage product induced by calpains was blocked by TRH. The obtained data showed that the potency of TRH and its analogues in inhibiting EAAs- and H(2)O(2)-induced neuronal cell death from the highest to lowest activity was: MON>TRH>Z-TRH>RHG. Interestingly, all peptides were active against St-induced apoptosis, however, on concentration basis MON was far more potent than the other peptides. None of the peptides inhibited Dox- and LC-evoked apoptotic cell death. Additionally, the data exclude potential role of pro-survival (PI3-K/Akt and MAPK/ERK1/2) and pro-apoptotic (GSK-3beta and JNK) pathways in neuroprotective effects of TRH and its analogues on St-induced neuronal apoptosis. Moreover, the results point to involvement of the inhibition of calpains in the TRH neuroprotective effect in Glu model of neuronal cell death.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
24
|
Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 2009; 29:1388-98. [PMID: 19436311 DOI: 10.1038/jcbfm.2009.63] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain edema and swelling is a critical factor in the high mortality and morbidity associated with traumatic brain injury (TBI). Despite this, the mechanisms associated with its development are poorly understood and interventions have not changed in over 30 years. Although neuropeptides and neurogenic inflammation have been implicated in peripheral edema formation, their role in the development of central nervous system edema after brain trauma has not been investigated. This study examines the role of the neuropeptide, substance P (SP), in the development of edema and functional deficits after brain trauma in rats. After severe diffuse TBI in adult male rats, neuronal and perivascular SP immunoreactivity were increased markedly. Perivascular SP colocalized with exogenously administered Evans blue, supporting a role for SP in vascular permeability. Inhibition of SP action by administration of the neurokinin-1 (NK1) antagonist, N-acetyl-L-tryptophan, at 30 mins after trauma attenuated vascular permeability and edema formation. Administration of the NK1 antagonist also improved both motor and cognitive neurologic outcomes. These findings suggest that SP release is integrally linked to the increased vascular permeability and edema formation after brain trauma, and that treatment with an NK1 receptor antagonist reduces edema and improves neurologic outcome.
Collapse
|
25
|
Abiram A, Kolandaivel P. Structural analysis and the effect of cyclo(His-Pro) dipeptide on neurotoxins--a dynamics and density functional theory study. J Mol Model 2009; 16:193-202. [PMID: 19554355 DOI: 10.1007/s00894-009-0531-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
The switching propensity and maximum probability of occurrence of the side chain imidazole group in the dipeptide cyclo(His-Pro) (CHP) were studied by applying molecular dynamics simulations and density functional theory. The atomistic behaviour of CHP with the neurotoxins glutamate (E) and paraquat (Pq) were also explored; E and Pq engage in hydrogen bond formation with the diketopiperazine (DKP) ring of the dipeptide, with which E shows a profound interaction, as confirmed further by NH and CO stretching vibrational frequencies. The effect of CHP was found to be greater on E than on Pq neurotoxin. A ring puckering study indicated a twist boat conformation for the six-membered DKP ring. Molecular electrostatic potential (MESP) mapping was also used to explore the hydrogen bond interactions prevailing between the neurotoxins and the DKP ring. The results of this study reveal that the DKP ring of the dipeptide CHP can be expected to play a significant role in reducing effects such as oxidative stress and cell death caused by neurotoxins.
Collapse
|
26
|
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157:881-91. [PMID: 19438508 DOI: 10.1111/j.1476-5381.2009.00256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and it is also neuroprotective after ischemic injury, which provided a novel strategy of drug discovery for neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. G-2meth-PE, a GPE analogue designed to be more enzymatic resistant, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may involve modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis and vascular remodelling. Acute administration of GPE also prevents 6-OHDA-induced nigrostrial dopamine depletion. Delayed treatment with GPE does not prevent dopamine loss, but improves long-term function. Cyclo-glycyl-proline (cyclic Gly-Pro) is an endogenous DKP that may be derived from GPE. Cyclic Gly-Pro and its analogue cyclo-L-glycyl-L-2-allylproline (NNZ 2591) are both neuroprotective after ischaemic injury. NNZ2591 is highly enzymatic resistant and centrally accessible. Its peripheral administration improves somatosensory-motor function and long-term histological outcome after brain injury. Our research suggests that small neuropeptides have advantages over growth factors in the treatment of brain injury, and that modified neuropeptides designed to overcome the limitations of their endogenous counterparts represent a novel strategy of pharmaceutical discovery for neurological disorders.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
27
|
Krishnamurthi RVM, Mathai S, Kim AH, Zhang R, Guan J. A novel diketopiperazine improves functional recovery given after the onset of 6-OHDA-induced motor deficit in rats. Br J Pharmacol 2009; 156:662-72. [PMID: 19154439 DOI: 10.1111/j.1476-5381.2008.00064.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclo-L-glycyl-L-2-allylproline (NNZ-2591), a modified diketopiperazine, is neuroprotective and improves long-term function after hypoxic-ischaemic brain injury in rats. The present studies were designed to examine both the neuroprotective and neurotrophic actions of NNZ-2591 on neurochemical and behavioural changes in a rat model of Parkinson's disease. EXPERIMENTAL APPROACH To examine its protective effect, either NNZ-2591 (20 ng.day(-1)) or saline was given intracerebroventricularly for 3 days starting 2 h after 6-hydroxydopamine (6-OHDA) induced unilateral striatal lesion. In a subsequent experiment either NNZ-2591 (0.2, 1 and 5 mg.day(-1), s.c.) or saline was administered daily for 14 days starting 2 weeks after the lesion. Behavioural and neurochemical outcomes were examined using the adjusting step test and immunohistochemical staining. KEY RESULTS Cyclo-L-glycyl-L-2-allylproline given 2 h after the lesion reduced the degree of motor deficit compared with the saline-treated group. Delayed treatment with NNZ-2591, initiated after the onset of motor deficit, significantly improved motor function from week 7 onwards compared with the saline-treated group. Neither treatment regime altered nigrostriatal dopamine depletion. NNZ-2591 significantly enhanced the expression of doublecortin-positive neuroblasts in the sub-ventricular zone. CONCLUSIONS AND IMPLICATIONS These studies reveal that early treatment with NNZ-2591 protects against the motor deficit induced by 6-OHDA and that treatment initiated after the establishment of motor impairment significantly improves long-term motor function. These effects of NNZ-2591 on functional recovery were independent of dopamine depletion and also appeared not to be symptomatic as the improved motor function was long-lasting. NNZ-2591 has potential as a therapeutic agent for neurodegenerative disorders.
Collapse
|
28
|
Abstract
Although the concepts of secondary injury and neuroprotection after neurotrauma are experimentally well supported, clinical trials of neuroprotective agents in traumatic brain injury or spinal cord injury have been disappointing. Most strategies to date have used drugs directed toward a single pathophysiological mechanism that contributes to early necrotic cell death. Given these failures, recent research has increasingly focused on multifunctional (i.e., multipotential, pluripotential) agents that target multiple injury mechanisms, particularly those that occur later after the insult. Here we review two such approaches that show particular promise in experimental neurotrauma: cell cycle inhibitors and small cyclized peptides. Both show extended therapeutic windows for treatment and appear to share at least one important target.
Collapse
Affiliation(s)
- Bogdan Stoica
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | |
Collapse
|
29
|
Cartagena CM, Ahmed F, Burns MP, Pajoohesh-Ganji A, Pak DT, Faden AI, Rebeck GW. Cortical injury increases cholesterol 24S hydroxylase (Cyp46) levels in the rat brain. J Neurotrauma 2008; 25:1087-98. [PMID: 18729719 DOI: 10.1089/neu.2007.0444] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In traumatic brain injury (TBI), cellular loss from initial impact as well as secondary neurodegeneration leads to increased cholesterol and lipid debris at the site of injury. Cholesterol accumulation in the periphery can trigger inflammatory mechanisms while cholesterol clearance may be anti-inflammatory. Here we investigated whether TBI altered the regulation of cholesterol 24S-hydroxylase (Cyp46), an enzyme that converts cholesterol to the more hydrophilic 24S-hydroxycholesterol. We examined by Western blot and immunohistochemistry changes in Cyp46 expression following fluid percussion injury. Under normal conditions, most Cyp46 was present in neurons, with very little measurable in glia. Cyp46 levels were significantly increased at 7 days post-injury, and cell type specific analysis at 3 days post-injury showed a significant increase in levels of Cyp46 (84%) in microglia. Since 24-hydroxycholesterol induces activation of genes through the liver X receptor (LXR), we examined protein levels of ATP-binding cassette transporter A1 and apolipoprotein E, two LXR regulated cholesterol homeostasis proteins. Apolipoprotein E and ATP-binding cassette transporter A1 were increased at 7 days post-injury, indicating that increased LXR activity coincided with increased Cyp46 levels. We found that activation of primary rat microglia by LPS in vitro caused increased Cyp46 levels. These data suggest that increased microglial Cyp46 activity is part of a system for removal of damaged cell membranes post-injury, by conversion of cholesterol to 24-hydroxycholesterol and by activation of LXR-regulated gene transcription.
Collapse
Affiliation(s)
- Casandra M Cartagena
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J Cereb Blood Flow Metab 2008; 28:1845-59. [PMID: 18612315 PMCID: PMC2718694 DOI: 10.1038/jcbfm.2008.75] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) causes both direct and delayed tissue damage. The latter is associated with secondary biochemical changes such as cell cycle activation, which leads to neuronal death, inflammation, and glial scarring. Flavopiridol--a cyclin-dependent kinase (CDK) inhibitor that is neither specific nor selective--is neuroprotective. To examine the role of more specific CDK inhibitors as potential neuroprotective agents, we studied the effects of roscovitine in TBI. Central administration of roscovitine 30 mins after injury resulted in significantly decreased lesion volume, as well as improved motor and cognitive recovery. Roscovitine attenuated neuronal death and inhibited activation of cell cycle pathways in neurons after TBI, as indicated by attenuated cyclin G1 accumulation and phosphorylation of retinoblastoma protein. Treatment also decreased microglial activation after TBI, as reflected by reductions in ED1, galectin-3, p22(PHOX), and Iba-1 levels, and attenuated astrogliosis, as shown by decreased accumulation of glial fibrillary acidic protein. In primary cortical microglia and neuronal cultures, roscovitine and other selective CDK inhibitors attenuated neuronal cell death, as well as decreasing microglial activation and microglial-dependent neurotoxicity. These data support a multifactorial neuroprotective effect of cell cycle inhibition after TBI--likely related to inhibition of neuronal apoptosis, microglial-induced inflammation, and gliosis--and suggest that multiple CDKs are potentially involved in this process.
Collapse
|
31
|
Focus on cyclo(His-Pro): history and perspectives as antioxidant peptide. Amino Acids 2007; 35:283-9. [DOI: 10.1007/s00726-007-0629-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
|
32
|
Faden AI, Movsesyan VA, Fang X, Wang S. Identification of novel neuroprotective agents using pharmacophore modeling. Chem Biodivers 2007; 2:1564-70. [PMID: 17191955 DOI: 10.1002/cbdv.200590127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to its endocrine function, for which it was named, thyrotropin-releasing hormone (TRH) has substantial neuroprotective actions as well as other physiological effects. We have developed a number of modified TRH analogues as well as cyclic dipeptides structurally related to a major metabolic product of TRH, which have enhanced neuroprotective activity but none of the other major physiological effects of TRH. The extensive structure-activity data developed with these compounds were used to develop a pharmacophore model. Subsequently, a web-based pharmacophore searching program was used to query several large three-dimensional databases. Of the 219 compounds identified whose structures met the pharmacophore model, 15 were chosen for study in a classical model of neuronal cell death in vitro; five of these, 2-6, showed neuroprotective activity. Thus, pharmacophore modeling developed from neuroprotective small peptides can be used to identify novel lead compounds as neuroprotective agents.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road. N. W., Research Building, Rm. EP12, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
33
|
Dandapani S, Lan P, Beeler AB, Beischel S, Abbas A, Roth BL, Porco JA, Panek JS. Convergent Synthesis of Complex Diketopiperazines Derived from Pipecolic Acid Scaffolds and Parallel Screening against GPCR Targets. J Org Chem 2006; 71:8934-45. [PMID: 17081025 DOI: 10.1021/jo061758p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convergent approach to highly functionalized diketopiperazines (DKPs) using enantioenriched pipecolic acids is described. Scandium triflate-catalyzed [4 + 2] aza-annulation was employed to produce stereochemically well-defined building blocks. A resin "catch and release" strategy was devised to convert annulation products to pipecolic acid monomers. Complex diketopiperazines were efficiently assembled utilizing one-pot cyclodimerization of pipecolic acids. Massively parallel screening of the complex DKPs against a panel of molecular targets identified novel ligands for a number of G-protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Sivaraman Dandapani
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Movsesyan VA, Faden AI. Neuroprotective effects of selective group II mGluR activation in brain trauma and traumatic neuronal injury. J Neurotrauma 2006; 23:117-27. [PMID: 16503796 DOI: 10.1089/neu.2006.23.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of group II mGluR activation by selective agonist (-)-2-oxa-4-aminobicyclo[3.1. 0]hexane-4,6-dicarboxylate (LY379268) were examined in a mouse model of controlled cortical impact (CCI)-induced brain injury and in primary neuronal/glial and neuronal cultures subjected to mechanical trauma. Systemic administration of LY379268 to mice at 30 min after CCI significantly improved both motor and cognitive recovery as compared with vehicle-treated control animals. LY379268 also significantly reduced cell death induced by mechanical injury in rat neuronal/glial and neuronal cultures, as measured by lactate dehydrogenase (LDH) release assay. The neuroprotective effect of LY379268 in vitro was abolished by co-administration of the mGluR2/3 antagonist (s)-alpha-ethylglutamic acid (EGLU); however, co-application of selective mGluR3 antagonist beta-N-acetyl-aspartyl-glutamate (NAAG) had no significant influence in the same system. Together, these findings demonstrate the neuroprotective activity of group II mGluR activation and underscore the role of the mGluR2 subtype for this effect.
Collapse
Affiliation(s)
- Vilen A Movsesyan
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | |
Collapse
|
35
|
Faden AI, Knoblach SM, Movsesyan VA, Lea PM, Cernak I. Novel neuroprotective tripeptides and dipeptides. Ann N Y Acad Sci 2006; 1053:472-81. [PMID: 16179555 DOI: 10.1111/j.1749-6632.2005.tb00057.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has long been recognized that thyrotropin-releasing hormone (TRH) and certain TRH analogues are neuroprotective in a variety of animal models of CNS trauma. In addition to these neuroprotective actions, TRH and most TRH analogues have other physiological actions that may not be desirable for treatment of acute injury, such as analeptic, autonomic, and endocrine effects. We have developed a series of dual-substituted TRH analogues that have strong neuroprotective actions, but are largely devoid of these other physiological actions. In addition, we have developed a family of cyclized dipeptides (diketopiperazines), structurally somewhat related to a metabolic product of TRH, that appear even more effective as neuroprotective agents in vitro and in vivo, and may have nootropic properties. Here, we review these novel tripeptide and dipeptide compounds.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Research Building, Room EP04, Washington, District of Columbia 20057, USA.
| | | | | | | | | |
Collapse
|
36
|
Maegele M, Lippert-Gruener M, Ester-Bode T, Sauerland S, Schäfer U, Molcanyi M, Molcany M, Lefering R, Bouillon B, Neiss WF, Angelov DN, Klug N, McIntosh TK, Neugebauer EAM. Reversal of neuromotor and cognitive dysfunction in an enriched environment combined with multimodal early onset stimulation after traumatic brain injury in rats. J Neurotrauma 2005; 22:772-82. [PMID: 16004580 DOI: 10.1089/neu.2005.22.772] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study was designed to investigate the additional benefits of a multimodal early onset stimulation (MEOS) paradigm when combined with enriched environment (EE) versus EE only and standard housing (SH) on the recovery after experimental traumatic brain injury (TBI). Male Sprague- Dawley rats were subjected to moderate lateral fluid percussion (LFP) brain injury (n = 40) or sham operation (n = 6). Thereafter, the injured and sham/EE + MEOS and EE only groups were placed into a complex EE consisting of tunnel-connected wide-bodied cages with various beddings, inclining platforms, and toys. Along with group living and environmental complexity, injured and sham/EE + MEOS animals were additionally exposed to a standardized paradigm of multimodal stimulation including auditory, visual, olfactory, and motor stimuli. In contrast, injured and sham/SH groups were housed individually without stimulation. A standardized composite neuroscore (NS) test was used to assess acute post-traumatic neuromotor deficits (24 h after injury) and recovery on days 7 and 15; recovery of cognitive function was assessed on days 11-15 using the Barnes maze. Neuromotor impairment was comparable in all injured animals at 24 h post-injury, but braininjured EE + MEOS rats performed significantly better than both brain-injured SH and EE groups when tested on post-injury days 7 and 15 (p = 0.004). Similarly, latencies to locate the hidden box under the Barnes maze platform were significantly shortened in EE + MEOS animals at day 15 (p = 0.003). These results indicate that the reversal of neuromotor and cognitive dysfunction after TBI can be substantially enhanced when MEOS is added to EE.
Collapse
Affiliation(s)
- Marc Maegele
- Biochemische und Experimentelle Abteilung, Medizinische Fakultät der Universität zu Köln, Chirurgische Klinik der Universität Witten-Herdecke, Klinikum Köln-Merheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 2005; 1:5-16. [PMID: 15717003 PMCID: PMC534908 DOI: 10.1602/neurorx.1.1.5] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been increasingly recognized that cell death phenotypes and their molecular mechanisms are highly diverse. Necrosis is no longer considered a single entity, passively mediated by energy failure. Moreover, caspase-dependent apoptosis is not the only pathway involved in programmed cell death or even the only apoptotic mechanism. Recent experimental work emphasizes the diverse and interrelated nature of cell death mechanisms. Thus, there are both caspase-dependent and caspase-independent forms of apoptosis, which may differ morphologically as well as mechanistically. There are also necrotic-like phenotypes that require de novo protein synthesis and are, therefore, forms of programmed cell death. In addition, forms of cell death showing certain morphological features of both necrosis and apoptosis have been identified, leading to the term aponecrosis. Considerable experimental evidence also shows that modulation of one form of cell death may lead to another. Together, these observations underscore the need to substantially revise our conceptions about neuroprotection strategies. Use of multiple treatments that target different cell death cascades, or single agents that moderate multiple cell death pathways, is likely to lead to more effective neuroprotection for clinical disorders.
Collapse
Affiliation(s)
- Alexander G Yakovlev
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
38
|
Maegele M, Lippert-Gruener M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Lefering R, Neiss WF, Angelov DN. Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur J Neurosci 2005; 21:2406-18. [PMID: 15932599 DOI: 10.1111/j.1460-9568.2005.04070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was designed to determine whether exposure to multimodal early onset stimulation (MEOS) combined with environmental enrichment (EE) after traumatic brain injury (TBI) would improve neurological recovery and to elucidate its morphological correlates. Male Sprague-Dawley rats were subjected to lateral fluid percussion (LFP) brain injury or to sham operation. After LFP, one-third of the animals (injured and sham) were placed under conditions of standard housing (SH), one-third were kept in EE only, and one-third received EE + MEOS. Assessment of neuromotor function 24 h post-injury using a standardized composite neuroscore test revealed an identical pattern of neurological impairment in all animals subjected to LFP. Neuromotor dysfunction in SH animals remained on a similar level throughout the experiment, while improvements were noted in both other groups 7 days post-injury (dpi). On 15 dpi, reversal of neuromotor dysfunction was significantly better in EE + MEOS animals vs. SH- and EE-only groups. In parallel, the comparison of lesion volume in EE + MEOS- vs. EE-only vs. SH rats revealed that animals exposed to EE + MEOS had consistently the lowest values (mm3, mean +/- SD; n = 6 rats in each group) as measured in serial brain sections immunostained for neuron-specific enolase (5.2 +/- 3.4 < or = 5.5 +/- 4.1 < 9.5 +/- 1.9), caspase 3-active/C3A (5.9 +/- 4.0 < or = 6.4 +/- 3.9 < 10.3 +/- 1.8) and glial fibrillary acidic protein (6.0 +/- 3.4 < or = 6.5 +/- 4.3 < 10.7 +/- 1.2). This first report on the effect of EE + MEOS treatment strongly indicates that the combined exposure reduces CNS scar formation and reverses neuromotor deficits after TBI in rats.
Collapse
Affiliation(s)
- Marc Maegele
- Biochemical and Experimental Division, Faculty of Medicine, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA.
| |
Collapse
|
40
|
Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005; 102:8333-8. [PMID: 15923260 PMCID: PMC1149422 DOI: 10.1073/pnas.0500989102] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuronal apoptosis, inflammation, and reactive astrogliosis, which contribute to secondary tissue loss, impaired regeneration, and associated functional disabilities. Here, we show that up-regulation of cell cycle components is associated with caspase-mediated neuronal apoptosis and glial proliferation after TBI in rats. In primary neuronal and astrocyte cultures, cell cycle inhibition (including the cyclin-dependent kinase inhibitors flavopiridol, roscovitine, and olomoucine) reduced up-regulation of cell cycle proteins, limited neuronal cell death after etoposide-induced DNA damage, and attenuated astrocyte proliferation. After TBI in rats, flavopiridol reduced cyclin D1 expression in neurons and glia in ipsilateral cortex and hippocampus. Treatment also decreased neuronal cell death and lesion volume, reduced astroglial scar formation and microglial activation, and improved motor and cognitive recovery. The ability of cell cycle inhibition to decrease both neuronal cell death and reactive gliosis after experimental TBI suggests that this treatment approach may be useful clinically.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Department of Neuroscience, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 396] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 2004; 17:29-43. [PMID: 15350963 DOI: 10.1016/j.nbd.2004.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/11/2004] [Accepted: 05/28/2004] [Indexed: 11/18/2022] Open
Abstract
Experimental models of traumatic brain injury have been developed to replicate selected aspects of human head injury, such as contusion, concussion, and/or diffuse axonal injury. Although diffuse axonal injury is a major feature of clinical head injury, relatively few experimental models of diffuse traumatic brain injury (TBI) have been developed, particularly in smaller animals such as rodents. Here, we describe the pathophysiological consequences of moderate diffuse TBI in rats generated by a newly developed, highly controlled, and reproducible model. This model of TBI caused brain edema beginning 20 min after injury and peaking at 24 h post-trauma, as shown by wet weight/dry weight ratios and diffusion-weighted magnetic resonance imaging. Increased permeability of the blood-brain barrier was present up to 4 h post-injury as evaluated using Evans blue dye. Phosphorus magnetic resonance spectroscopy showed significant declines in brain-free magnesium concentration and reduced cytosolic phosphorylation potential at 4 h post-injury. Diffuse axonal damage was demonstrated using manganese-enhanced magnetic resonance imaging, and intracerebral injection of a fluorescent vital dye (Fluoro-Ruby) at 24-h and 7-day post-injury. Morphological evidence of apoptosis and caspase-3 activation were also found in the cerebral hemisphere and brainstem at 24 h after trauma. These results show that this model is capable of reproducing major biochemical and neurological changes of diffuse clinical TBI.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University, Washington, DC 20057-1464, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Stoffel M, Blau C, Reinl H, Breidt J, Gersonde K, Baethmann A, Plesnila N. Identification of brain tissue necrosis by MRI: validation by histomorphometry. J Neurotrauma 2004; 21:733-40. [PMID: 15253801 DOI: 10.1089/0897715041269678] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The volume of an experimental necrotic lesion of the cortex expands up to 400% of its initial size within the first 24 h after the insult. Lesion expansion, a clinically well known phenomenon, is often accompanied by perifocal brain edema and consequently difficult to image and to analyze by magnetic resonance imaging (MRI). Therefore we aimed to validate a T(2)-weighted spin echo sequence upon its ability to distinguish necrotic from edematous brain tissue. Male Sprague-Dawley rats (n = 5 per group) were subjected to a cortical freezing lesion leading to immediate tissue necrosis with subsequent perifocal vasogenic brain edema. Immediately and 4, 12, and 24 h after the lesion the maximal area of necrosis was quantified longitudinally by coronal T(2)-weighted spin echo MRI-scans. After the last scan, animals were sacrificed for direct comparison of the lesion area obtained by MRI and histomorphometry. In parallel groups of animals, lesion expansion was quantified by histology. The acquired T(2)-maps clearly distinguish the cortical necrosis from perifocal edema and healthy brain. Focal freezing led to a cortical lesion of 5.24 +/- 0.36 mm(2) immediately after trauma (0 h; 100%) which expanded progressively to a maximum of 6.82 +/- 0.34 mm(2) after 24 h (131%; *p < 0.01 vs. 0 h). Lesion expansion quantified by histology was almost identical (132% within 24 h). Histological assessment resulted in smaller absolute lesion areas compared to MRI, most likely due to shrinking during tissue processing (4.72 +/- 0.26 mm(2) vs. 6.82 +/- 0.34 mm(2), p < 0.01). The current study shows that necrotic brain tissue can be distinguished from surrounding brain edema by T(2)-mapping. The technique is sensitive enough to detect small changes in necrosis expansion in vivo as validated by histology. The presented technique may be a useful future tool for the non-invasive identification of necrotic brain tissue following brain injury (e. g., from trauma or ischemia).
Collapse
Affiliation(s)
- Michael Stoffel
- Department of Neurosurgery, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Faden AI, Fox GB, Di X, Knoblach SM, Cernak I, Mullins P, Nikolaeva M, Kozikowski AP. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J Cereb Blood Flow Metab 2003; 23:355-63. [PMID: 12621310 DOI: 10.1097/01.wcb.0000046144.31247.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1-ARA-35b (35b) is a cyclized dipeptide that shows considerable neuroprotective activity in vitro and improves neurologic recovery after fluid percussion-induced traumatic brain injury in rats. The authors evaluated the effects of treatment with 35b in mice subjected to controlled cortical impact brain injury. Animals treated with intravenous 35b after traumatic injury showed significantly enhanced recovery of beam walking and place learning functions compared with vehicle-treated controls, in addition to reduced lesion volumes. Beneficial effects were dose related and showed an inverted U-shaped dose-response curve between 0.1 and 10 mg/kg. Protective actions were found when the drug was administered initially at 30 minutes or 1, 4, or 8 hours, but not at 24 hours, after trauma. In separate experiments, rats treated with 35b on days 7 through 10 after injury showed remarkably improved place learning in comparison with injured controls. These studies confirm and extend the neuroprotective effects of this diketopiperazine in traumatic brain injury. In addition, they show that 35b has a relatively wide therapeutic window and improves cognitive function after both acute and chronic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Room EP-12, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|