1
|
Ishii K, Komine H. Regional heterogeneity of cerebral blood flow immediately after the onset of ventricular pacing in anesthetized rats. J Appl Physiol (1985) 2024; 137:1580-1591. [PMID: 39480271 DOI: 10.1152/japplphysiol.00436.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/10/2024] Open
Abstract
Selective distribution of cerebral blood flow (CBF) to vital brain regions likely occurs during rapid severe hypotension caused by tachyarrhythmia but has not yet been demonstrated. In this study, we aimed to test the hypothesis that CBF is differentially preserved between brain regions depending on the degree of hypotension. In anesthetized rats, CBF was measured in the motor cortex (MC), medial prefrontal cortex, amygdala, thalamus, dorsal hypothalamus, hippocampus, ventral tegmental area, dorsolateral periaqueductal gray (dlPAG), and parabrachial nucleus (PB) by using laser-Doppler flowmetry. Ventricular pacing was performed for 30 s at 550-800 beats/min. The cerebrovascular CO2 response time and reactivity were evaluated during 5% CO2 exposure. During 1-4 s of ventricular pacing, mean arterial pressure (MAP) rapidly decreased, with minor changes in central venous and intracranial pressures. CBF was relatively well maintained in brain regions other than the MC (Ps ≤ 0.012) when moderate hypotension occurred (-34 mmHg ≤ ΔMAP ≤ -15 mmHg), whereas severe hypotension (-54 mmHg ≤ ΔMAP ≤ -35 mmHg) induced selective CBF distribution to regions other than the MC, thalamus, and dlPAG. The cerebrovascular CO2 response time/reactivity was rapid or high in the thalamus, dlPAG, and PB, which almost completely differed from the brain regions in which CBF was relatively maintained during pacing-induced severe hypotension. These results suggest that regional heterogeneity of CBF arises depending on the degree of tachyarrhythmia-induced hypotension. Clarifying the mechanisms and functions of CBF maintenance would be beneficial to syncope and cerebral ischemia management in patients with arrhythmia.NEW & NOTEWORTHY When lethal tachyarrhythmia occurs, survival is prioritized by counterregulating the cardiovascular system, which is driven by vital brain regions. However, whether limited cerebral blood flow is selectively distributed to vital brain regions is unknown. We demonstrated the preferential maintenance of cerebral blood flow in vital brain regions, depending on the degree of hypotension caused by ventricular pacing, in anesthetized rats. Our data may have clinical implications for syncope and cerebral ischemia management in patients with arrhythmia.
Collapse
Affiliation(s)
- Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hidehiko Komine
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Bens N, Kulkarni P, Ferris CF. Changes in cerebral vascular reactivity following mild repetitive head injury in awake rats: modeling the human experience. Exp Brain Res 2024; 242:2433-2442. [PMID: 39162729 PMCID: PMC11422282 DOI: 10.1007/s00221-024-06907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The changes in brain function in response to mild head injury are usually subtle and go undetected. Physiological biomarkers would aid in the early diagnosis of mild head injury. In this study we used hypercapnia to follow changes in cerebral vascular reactivity after repetitive mild head injury. We hypothesized head injury would reduce vascular reactivity. Rats were maintained on a reverse light-dark cycle and head impacted daily at 24 h intervals over three days. All head impacts were delivered while rats were fully awake under red light illumination. There was no neuroradiological evidence of brain damage. After the 3rd impact rats were exposed to 5% CO2 and imaged for changes in BOLD signal. All imaging was done while rats were awake without the confound of anesthesia. The data were registered to a 3D MRI rat atlas with 171 segmented brain areas providing site specific information on vascular reactivity. The changes in vascular reactivity were not uniform across the brain. The prefrontal cortex, somatosensory cortex and basal ganglia showed the hypothesized decrease in vascular reactivity while the cerebellum, thalamus, brainstem, and olfactory system showed an increase in BOLD signal to hypercapnia.
Collapse
Affiliation(s)
- Nicole Bens
- Center for Translational Neuroimaging, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Le TT, Im GH, Lee CH, Choi SH, Kim SG. Mapping cerebral perfusion in mice under various anesthesia levels using highly sensitive BOLD MRI with transient hypoxia. SCIENCE ADVANCES 2024; 10:eadm7605. [PMID: 38416820 PMCID: PMC10901365 DOI: 10.1126/sciadv.adm7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Cerebral perfusion is critical for the early detection of neurological diseases and for effectively monitoring disease progression and treatment responses. Mouse models are widely used in brain research, often under anesthesia, which can affect vascular physiology. However, the impact of anesthesia on regional cerebral blood volume and flow in mice has not been thoroughly investigated. In this study, we have developed a whole-brain perfusion MRI approach by using a 5-second nitrogen gas stimulus under inhalational anesthetics to induce transient BOLD dynamic susceptibility contrast (DSC). This method proved to be highly sensitive, repeatable within each imaging session, and across four weekly sessions. Relative cerebral blood volumes measured by BOLD DSC agree well with those by contrast agents. Quantitative cerebral blood volume and flow metrics were successfully measured in mice under dexmedetomidine and various isoflurane doses using both total vasculature-sensitive gradient-echo and microvasculature-sensitive spin-echo BOLD MRI. Dexmedetomidine reduces cerebral perfusion, while isoflurane increases cerebral perfusion in a dose-dependent manner.
Collapse
Affiliation(s)
- Thuy Thi Le
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Chan Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Sang Han Choi
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
6
|
Johnson BJ, Lipford ME, Barcus RA, Olson JD, Schaaf GW, Andrews RN, Kim J, Dugan GO, Deycmar S, Reed CA, Whitlow CT, Cline JM. Assessing cerebrovascular reactivity (CVR) in rhesus macaques (Macaca mulatta) using a hypercapnic challenge and pseudo-continuous arterial spin labeling (pCASL). Neuroimage 2024; 285:120491. [PMID: 38070839 PMCID: PMC10842457 DOI: 10.1016/j.neuroimage.2023.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Brendan J Johnson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States.
| | - Megan E Lipford
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - George W Schaaf
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Simon Deycmar
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Colin A Reed
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Christopher T Whitlow
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Anumba N, Maltbie E, Pan WJ, LaGrow TJ, Xu N, Keilholz S. Spatial and Spectral Components of the BOLD Global Signal in Rat Resting-State Functional MRI. Magn Reson Med 2023; 90:2486-2499. [PMID: 37582301 PMCID: PMC10543609 DOI: 10.1002/mrm.29824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE In resting-state fMRI (rs-fMRI), the global signal average captures widespread fluctuations related to unwanted sources of variance such as motion and respiration, as well as widespread neural activity; however, relative contributions of neural and non-neural sources to the global signal remain poorly understood. This study sought to tackle this problem through the comparison of the BOLD global signal to an adjacent non-brain tissue signal, where neural activity was absent, from the same rs-fMRI scan obtained from anesthetized rats. In this dataset, motion was minimal and ventilation was phase-locked to image acquisition to minimize respiratory fluctuations. Data were acquired using three different anesthetics: isoflurane, dexmedetomidine, and a combination of dexmedetomidine and light isoflurane. METHODS A power spectral density estimate, a voxel-wise spatial correlation via Pearson's correlation, and a co-activation pattern analysis were performed using the global signal and the non-brain tissue signal. Functional connectivity was calculated using Pearson's linear correlation on default mode network (DMN) regions. RESULTS We report differences in the spectral composition of the two signals and show spatial selectivity within DMN structures that show an increased correlation to the global signal and decreased intra-network connectivity after global signal regression. All of the observed differences between the global signal and the non-brain tissue signal were maintained across anesthetics. CONCLUSION These results show that the global signal is distinct from the noise contained in the tissue signal, as support for a neural contribution. This study provides a unique perspective to the contents of the global signal and their origins.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Eric Maltbie
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Wen-Ju Pan
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Theodore J. LaGrow
- School of Electrical and Computer Engineering at Georgia Institute of Technology
| | - Nan Xu
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Shella Keilholz
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| |
Collapse
|
8
|
Liu X, Irwin DA, Huang C, Gu Y, Chen L, Donohue KD, Chen L, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Freely Behaving Mice. IEEE Trans Biomed Eng 2023; 70:1838-1848. [PMID: 37015409 PMCID: PMC10542964 DOI: 10.1109/tbme.2022.3229513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Wearable technologies for functional brain monitoring in freely behaving subjects can advance our understanding of cognitive processing and adaptive behavior. Existing technologies are lacking in this capability or need procedures that are invasive and/or otherwise impede brain assessments during social behavioral conditions, exercise, and sleep. METHODS In response a complete system was developed to combine relative cerebral blood flow (rCBF) measurement, O2 and CO2 supplies, and behavior recording for use on conscious, freely behaving mice. An innovative diffuse speckle contrast flowmetry (DSCF) device and associated hardware were miniaturized and optimized for rCBF measurements in small subject applications. The use of this wearable, fiber-free, near-infrared DSCF head-stage/probe allowed no craniotomy, minimally invasive probe implantation, and minimal restraint of the awake animal. RESULTS AND CONCLUSIONS Significant correlations were found between measurements with the new DSCF design and an optical standard. The system successfully detected rCBF responses to CO2-induced hypercapnia in both anesthetized and freely behaving mice. SIGNIFICANCE Collecting rCBF and activity information together during natural behaviors provides realistic physiological results and opens the path to exploring their correlations with pathophysiological conditions.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Daniel A. Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Yutong Gu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Kevin D. Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Lamanna-Rama N, MacDowell KS, López G, Leza JC, Desco M, Ambrosio E, Soto-Montenegro ML. Neuroimaging revealed long-lasting glucose metabolism changes to morphine withdrawal in rats pretreated with the cannabinoid agonist CP-55,940 during periadolescence. Eur Neuropsychopharmacol 2023; 69:60-76. [PMID: 36780817 DOI: 10.1016/j.euroneuro.2023.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 02/13/2023]
Abstract
This study evaluates the long-term effects of a six and 14-week morphine withdrawal in rats pretreated with a cannabinoid agonist (CP-55,940, CP) during periadolescence. Wistar rats (33 males; 32 females) were treated with CP or its vehicle (VH) from postnatal day (PND) 28-38. At PND100, rats performed morphine self-administration (MSA, 15d/12 h/session). Eight groups were defined according to pretreatment (CP), treatment (morphine), and sex. Three [18F]FDG-PET brain images were acquired: after MSA, and after six and 14 weeks of withdrawal. PET data were analyzed with SPM12. Endocannabinoid (EC) markers were evaluated in frozen brain tissue at endpoint. Females showed a higher mean number of self-injections than males. A main Sex effect on global brain metabolism was found. FDG uptake in males was discrete, whereas females showed greater brain metabolism changes mainly in areas of the limbic system after morphine treatment. Moreover, the morphine-induced metabolic pattern in females was exacerbated when CP was previously present. In addition, the CP-Saline male group showed reduced CB1R, MAGL expression, and NAPE/FAAH ratio compared to the control group, and morphine was able to reverse CB1R and MAGL expression almost to control levels. In conclusion, females showed greater and longer-lasting metabolic changes after morphine withdrawal than males, indicating a higher vulnerability and a different sensitivity to morphine in subjects pre-exposed to CP. In contrast, males primarily showed changes in EC markers. Together, our results suggest that CP pre-exposure contributes to the modulation of brain metabolism and EC systems in a sex-dependent manner.
Collapse
Affiliation(s)
- N Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - K S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Farmacología & Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Imas12, IUIN, Spain
| | - G López
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, National University for Distance Learning (UNED), Madrid, Spain; Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), Spain
| | - J C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Farmacología & Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Imas12, IUIN, Spain
| | - M Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - E Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, National University for Distance Learning (UNED), Madrid, Spain.
| | - M L Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NEUGUT), Madrid, España.
| |
Collapse
|
10
|
Mikkelsen SH, Wied B, Dashkovskyi V, Lindhardt TB, Hirschler L, Warnking JM, Barbier EL, Postnov D, Hansen B, Gutiérrez-Jiménez E. Head holder and cranial window design for sequential magnetic resonance imaging and optical imaging in awake mice. Front Neurosci 2022; 16:926828. [PMID: 36051645 PMCID: PMC9425635 DOI: 10.3389/fnins.2022.926828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Medical imaging techniques are widely used in preclinical research as diagnostic tools to detect physiological abnormalities and assess the progression of neurovascular disease in animal models. Despite the wealth of imaging options in magnetic resonance imaging (MRI), interpretation of imaging-derived parameters regarding underlying tissue properties is difficult due to technical limitations or lack of parameter specificity. To address the challenge of interpretation, we present an animal preparation protocol to achieve quantitative measures from both MRI and advanced optical techniques, including laser speckle contrast imaging and two-photon microscopy, in murine models. In this manner, non-translatable methods support and improve interpretation of less specific, translatable methods, i.e., MRI. Combining modalities for improved clinical interpretation involves satisfying the requirements of various methods. Furthermore, physiology unperturbed by anesthetics is a prerequisite for the strategy to succeed. Awake animal imaging with restraint provides an alternative to anesthesia and facilitates translatability of cerebral measurements. The method outlines design requirements for the setup and a corresponding reproducible surgical procedure for implanting a 3D printed head holder and cranial window to enable repeated multimodal imaging. We document the development, application, and validation of the method and provide examples confirming the usefulness of the design in acquiring high quality data from multiple modalities for quantification of a wide range of metrics of cerebral physiology in the same animal. The method contributes to preclinical small animal imaging, enabling sequential imaging of previously mutually exclusive techniques.
Collapse
Affiliation(s)
- Signe H. Mikkelsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Boris Wied
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Vitalii Dashkovskyi
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | | - Jan M. Warnking
- Univ. Grenoble Alpes, Inserm, U1216, GIN, Grenoble Institut des Neurosciences, La Tronche, France
| | - Emmanuel L. Barbier
- Univ. Grenoble Alpes, Inserm, U1216, GIN, Grenoble Institut des Neurosciences, La Tronche, France
| | - Dmitry Postnov
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- *Correspondence: Brian Hansen,
| | - Eugenio Gutiérrez-Jiménez
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Eugenio Gutiérrez-Jiménez,
| |
Collapse
|
11
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
Xu N, LaGrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-Baese L, Nezafati M, Pan WJ, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022; 16:816331. [PMID: 35350561 PMCID: PMC8957796 DOI: 10.3389/fnins.2022.816331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Collapse
Affiliation(s)
- Nan Xu
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Theodore J. LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Nmachi Anumba
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
- Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaodi Zhang
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Behnaz Yousefi
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Yasmine Bassil
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Gloria P. Clavijo
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | | | - Eric Maltbie
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Lisa Meyer-Baese
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Maysam Nezafati
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Shella Keilholz
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Lemmerman LR, Harris HN, Balch MHH, Rincon-Benavides MA, Higuita-Castro N, Arnold DW, Gallego-Perez D. Transient Middle Cerebral Artery Occlusion with an Intraluminal Suture Enables Reproducible Induction of Ischemic Stroke in Mice. Bio Protoc 2022; 12:e4305. [PMID: 35284595 PMCID: PMC8857907 DOI: 10.21769/bioprotoc.4305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/03/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability worldwide, underscoring the need for reliable and accurate animal models to study this disease's pathology, molecular mechanisms of injury, and treatment approaches. As most clinical strokes occur in regions supplied by the middle cerebral artery (MCA), several experimental models have been developed to simulate an MCA occlusion (MCAO), including transcranial MCAO, micro- or macro-sphere embolism, thromboembolisation, photothrombosis, Endothelin-1 injection, and - the most common method for ischemic stroke induction in murine models - intraluminal MCAO. In the intraluminal MCAO model, the external carotid artery (ECA) is permanently ligated, after which a partially-coated monofilament is inserted and advanced proximally to the common carotid artery (CCA) bifurcation, before being introduced into the internal carotid artery (ICA). The coated tip of the monofilament is then advanced to the origin of the MCA and secured for the duration of occlusion. With respect to other MCAO models, this model offers enhanced reproducibility regarding infarct volume and cognitive/functional deficits, and does not require a craniotomy. Here, we provide a detailed protocol for the surgical induction of unilateral transient ischemic stroke in mice, using the intraluminal MCAO model. Graphic abstract: Overview of the intraluminal monofilament method for transient middle cerebral artery occlusion (MCAO) in mouse.
Collapse
Affiliation(s)
- Luke R. Lemmerman
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Hallie N. Harris
- Department of Neurology, The Ohio State University, Columbus, USA
| | | | - Maria A. Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
,Biophysics Graduate Program, The Ohio State University, Columbus, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
,Department of Surgery, The Ohio State University, Columbus, USA
| | - David W. Arnold
- Department of Neurology, The Ohio State University, Columbus, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
,Department of Surgery, The Ohio State University, Columbus, USA
,*For correspondence:
| |
Collapse
|
14
|
Hyppönen V, Stenroos P, Nivajärvi R, Ardenkjaer-Larsen JH, Gröhn O, Paasonen J, Kettunen MI. Metabolism of hyperpolarised [1- 13 C]pyruvate in awake and anaesthetised rat brains. NMR IN BIOMEDICINE 2022; 35:e4635. [PMID: 34672399 DOI: 10.1002/nbm.4635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The use of hyperpolarised 13 C pyruvate for nononcological neurological applications has not been widespread so far, possibly due to delivery issues limiting the visibility of metabolites. First proof-of-concept results have indicated that metabolism can be detected in human brain, and this may supersede the results obtained in preclinical settings. One major difference between the experimental setups is that preclinical MRI/MRS routinely uses anaesthesia, which alters both haemodynamics and metabolism. Here, we used hyperpolarised [1-13 C]pyruvate to compare brain metabolism in awake rats and under isoflurane, urethane or medetomidine anaesthesia. Spectroscopic [1-13 C]pyruvate time courses measured sequentially showed that pyruvate-to-bicarbonate and pyruvate-to-lactate labelling rates were lower in isoflurane animals than awake animals. An increased bicarbonate-to-lactate ratio was observed in the medetomidine group compared with other groups. The study shows that hyperpolarised [1-13 C]pyruvate experiments can be performed in awake rats, thus avoiding anaesthesia-related issues. The results suggest that haemodynamics probably dominate the observed pyruvate-to-metabolite labelling rates and area-under-time course ratios of referenced to pyruvate. On the other hand, the results obtained with medetomidine suggest that the ratios are also modulated by the underlying cerebral metabolism. However, the ratios between intracellular metabolites were unchanged in awake compared with isoflurane-anaesthetised rats.
Collapse
Affiliation(s)
- Viivi Hyppönen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Nivajärvi
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Sullender CT, Richards LM, He F, Luan L, Dunn AK. Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging. J Neurosci Methods 2022; 366:109434. [PMID: 34863840 PMCID: PMC9258779 DOI: 10.1016/j.jneumeth.2021.109434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physiology. The majority of work examining the impact of anesthesia on cerebral blood flow (CBF) has been restricted to before and after measurements with limited spatial resolution. NEW METHOD We used multi-exposure speckle imaging (MESI), an advanced form of laser speckle contrast imaging (LSCI), to characterize the dynamics of isoflurane anesthesia induction on cerebral vasculature and blood flow in the mouse brain. RESULTS The large anatomical changes caused by isoflurane are depicted with wide-field imagery and video highlighting the induction of general anesthesia. Within minutes of exposure, both vessel diameter and blood flow increased drastically compared to the awake state and remained elevated for the duration of imaging. An examination of the dynamics of anesthesia induction reveals that blood flow increased faster in arteries than in veins or parenchyma regions. COMPARISON WITH EXISTING METHODS MESI offers robust hemodynamic measurements across large fields-of-view and high temporal resolutions sufficient for continuous visualization of cerebrovascular events featuring major changes in blood flow. CONCLUSION The large alterations caused by isoflurane anesthesia to the cortical vasculature and CBF are readily characterized using MESI. These changes are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.
Collapse
Affiliation(s)
- Colin T Sullender
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Lisa M Richards
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States.
| |
Collapse
|
16
|
Russo G, Helluy X, Behroozi M, Manahan-Vaughan D. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents. Front Neurosci 2022; 15:805679. [PMID: 34992520 PMCID: PMC8724036 DOI: 10.3389/fnins.2021.805679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.
Collapse
Affiliation(s)
- Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
17
|
Bibic A, Sordia T, Henningsson E, Knutsson L, Ståhlberg F, Wirestam R. Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T. Eur Radiol Exp 2021; 5:53. [PMID: 34935093 PMCID: PMC8692551 DOI: 10.1186/s41747-021-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00243-z.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tea Sordia
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
18
|
Huang S, Shen Q, Watts LT, Long JA, O'Boyle M, Nguyen T, Muir E, Duong TQ. Resting-State Functional Magnetic Resonance Imaging of Interhemispheric Functional Connectivity in Experimental Traumatic Brain Injury. Neurotrauma Rep 2021; 2:526-540. [PMID: 34901946 PMCID: PMC8655818 DOI: 10.1089/neur.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although resting-state functional magnetic resonance imaging (rsfMRI) has the potential to offer insights into changes in functional connectivity networks after traumatic brain injury (TBI), there are few studies that examine the effects of moderate TBI for monitoring functional recovery in experimental TBI, and thus the neural correlates of brain recovery from moderate TBI remain incompletely understood. Non-invasive rsfMRI was used to longitudinally investigate changes in interhemispheric functional connectivity (IFC) after a moderate TBI to the unilateral sensorimotor cortex in rats (n = 9) up to 14 days. Independent component analysis of the rsfMRI data was performed. Correlations of rsfMRI sensorimotor networks were made with changes in behavioral scores, lesion volume, and T2- and diffusion-weighted images across time. TBI animals showed less localized rsfMRI patterns in the sensorimotor network compared to sham (n = 6) and normal (n = 5) animals. rsfMRI clusters in the sensorimotor network showed less bilateral symmetry compared to sham and normal animals, indicative of IFC disruption. With time after injury, many of the rsfMRI patterns in the sensorimotor network showed more bilateral symmetry, indicative of IFC recovery. The disrupted IFC in the sensorimotor and subsequent partial recovery showed a positive correlation with changes in behavioral scores. Overall, rsfMRI detected widespread disruption and subsequent recovery of IFC within the sensorimotor networks post-TBI, which correlated with behavioral changes. Therefore, rsfMRI offers the means to probe functional brain reorganization and thus has the potential to serve as an imaging marker to longitudinally stage TBI and monitor for novel treatments.
Collapse
Affiliation(s)
- Shiliang Huang
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA.,Department of Radiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Lora Talley Watts
- Department of Clinical and Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Justin A Long
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Michael O'Boyle
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Tony Nguyen
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eric Muir
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| |
Collapse
|
19
|
Diabetic mice have retinal and choroidal blood flow deficits and electroretinogram deficits with impaired responses to hypercapnia. PLoS One 2021; 16:e0259505. [PMID: 34882677 PMCID: PMC8659412 DOI: 10.1371/journal.pone.0259505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to investigate neuronal and vascular functional deficits in the retina and their association in a diabetic mouse model. We measured electroretinography (ERG) responses and choroidal and retinal blood flow (ChBF, RBF) with magnetic resonance imaging (MRI) in healthy and diabetic mice under basal conditions and under hypercapnic challenge. Methods Ins2Akita diabetic (Diab, n = 8) and age-matched, wild-type C57BL/6J mice (Ctrl, n = 8) were studied under room air and moderate hypercapnia (5% CO2). Dark-adapted ERG a-wave, b-wave, and oscillatory potentials (OPs) were measured for a series of flashes. Regional ChBF and RBF under air and hypercapnia were measured using MRI in the same mice. Results Under room air, Diab mice had compromised ERG b-wave and OPs (e.g., b-wave amplitude was 422.2±10.7 μV in Diab vs. 600.1±13.9 μV in Ctrl, p < 0.001). Under hypercapnia, OPs and b-wave amplitudes were significantly reduced in Diab (OPs by 30.3±3.0% in Diab vs. -3.0±3.6% in Ctrl, b-wave by 17.9±1.4% in Diab vs. 1.3±0.5% in Ctrl). Both ChBF and RBF had significant differences in regional blood flow, with Diab mice having substantially lower blood flow in the nasal region (ChBF was 5.4±1.0 ml/g/min in Diab vs. 8.6±1.0 ml/g/min in Ctrl, RBF was 0.91±0.10 ml/g/min in Diab vs. 1.52±0.24 ml/g/min in Ctrl). Under hypercapnia, ChBF increased in both Ctrl and Diab without significant group difference (31±7% in Diab vs. 17±7% in Ctrl, p > 0.05), but an increase in RBF was not detected for either group. Conclusions Inner retinal neuronal function and both retinal and choroidal blood flow were impaired in Diab mice. Hypercapnia further compromised inner retinal neuronal function in diabetes, while the blood flow response was not affected, suggesting that the diabetic retina has difficulty adapting to metabolic challenges due to factors other than impaired blood flow regulation.
Collapse
|
20
|
Friedlander Y, Zanette B, Lindenmaier A, Li D, Kadlecek S, Santyr G, Kassner A. Hyperpolarized 129 Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med 2021; 87:1971-1979. [PMID: 34841605 DOI: 10.1002/mrm.29105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe chemical shift saturation recovery (CSSR) combined with spiral-IDEAL imaging for simultaneous measurement of the time-course of red blood cell (RBC) and brain tissue signals in the rat brain. METHODS Images of both the RBC and brain tissue 129 Xe signals from the brains of five rats were obtained using interleaved spiral-IDEAL imaging following chemical shift saturation pulses applied at multiple CSSR delay times, τ. A linear fit of the signals to τ was used to calculate the slope of the signal for both RBC and brain tissue compartments on a voxel-by-voxel basis. Gas transfer was evaluated by measuring the ratio of the whole brain tissue-to-RBC signal intensities as a function of τ. To investigate the relationship between the CSSR images and gas transfer in the brain, the experiments were repeated during hypercapnic ventilation. RESULTS Hypercapnia, affected the ratio of the tissue-to-RBC signal intensity (p = 0.026), consistent with an increase in gas transfer. CONCLUSION CSSR with spiral-IDEAL imaging is feasible for acquisition of 129 Xe RBC and brain tissue time-course images in the rat brain. Differences in the time-course of the signal intensity ratios are consistent with gas transfer changes expected under hypercapnic conditions.
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Dhaya I, Griton M, Konsman JP. Magnetic resonance imaging under isoflurane anesthesia alters cortical cyclooxygenase-2 expression and glial cell morphology during sepsis-associated neurological dysfunction in rats. Animal Model Exp Med 2021; 4:249-260. [PMID: 34557651 PMCID: PMC8446714 DOI: 10.1002/ame2.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) of rodents combined with histology allows to determine what mechanisms underlie functional and structural brain changes during sepsis-associated encephalopathy. However, the effects of MRI performed in isoflurane-anesthetized rodents on modifications of the blood-brain barrier and the production of vasoactive prostaglandins and glia cells, which have been proposed to mediate sepsis-associated brain dysfunction, are unknown. Methods This study addressed the effect of MRI under isoflurane anesthesia on blood-brain barrier integrity, cyclooxygenase-2 expression, and glial cell activation during cecal ligature and puncture-induced sepsis-associated brain dysfunction in rats. Results Cecal ligature and puncture reduced food intake and the righting reflex. MRI under isoflurane anesthesia reduced blood-brain barrier breakdown, decreased circularity of white matter astrocytes, and increased neuronal cyclooxygenase-2 immunoreactivity in the cortex 24 hours after laparotomy. In addition, it annihilated cecal ligature and puncture-induced increased circularity of white matter microglia. MRI under isoflurane anesthesia, however, did not alter sepsis-associated perivascular cyclooxygenase-2 induction. Conclusion These findings indicate that MRI under isoflurane anesthesia of rodents can modify neurovascular and glial responses and should, therefore, be interpreted with caution.
Collapse
Affiliation(s)
- Ibtihel Dhaya
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Laboratoire de Neurophysiologie Fonctionnelle et PathologiesUR/11ES09Faculté des Sciences MathématiquesPhysiques et NaturellesUniversité de Tunis El ManarTunisTunisie
| | - Marion Griton
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Service de Réanimation Anesthésie NeurochirurgicaleCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | - Jan Pieter Konsman
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
| |
Collapse
|
22
|
Meyer BP, Hirschler L, Lee S, Kurpad SN, Warnking JM, Barbier EL, Budde MD. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab 2021; 41:2010-2025. [PMID: 33509036 PMCID: PMC8327111 DOI: 10.1177/0271678x20982396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/11/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022]
Abstract
Despite the potential to guide clinical management of spinal cord injury and disease, noninvasive methods of monitoring perfusion status of the spinal cord clinically remain an unmet need. In this study, we optimized pseudo-continuous arterial spin labeling (pCASL) for the rodent cervical spinal cord and demonstrate its utility in identifying perfusion deficits in an acute contusion injury model. High-resolution perfusion sagittal images with reduced imaging artifacts were obtained with optimized background suppression and imaging readout. Following moderate contusion injury, perfusion was clearly and reliably decreased at the site of injury. Implementation of time-encoded pCASL confirmed injury site perfusion deficits with blood flow measurements corrected for variability in arterial transit times. The noninvasive protocol of pCASL in the spinal cord can be utilized in future applications to examine perfusion changes after therapeutic interventions in the rat and translation to patients may offer critical implications for patient management.
Collapse
Affiliation(s)
- Briana P Meyer
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biophysics Graduate Program, Medical College of Wisconsin,
Milwaukee, WI, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Lydiane Hirschler
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
- Department of Radiology, C.J. Gorter Center for High Field MRI,
Leiden University Medical Center, Leiden, the Netherlands
| | - Seongtaek Lee
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biomedical Engineering Graduate Program, Marquette University
& Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Jan M Warnking
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Clement J Zablocki Veteran's Affairs Medical Center, Milwaukee,
WI, USA
| |
Collapse
|
23
|
Yang F, Li J, Song Y, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Ma H, Schwartz TH. Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Front Neurosci 2021; 15:704834. [PMID: 34366781 PMCID: PMC8343016 DOI: 10.3389/fnins.2021.704834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the “epileptic dip” in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Yan Song
- School of Nursing, Beihua University, Jilin City, China
| | - Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - James E Niemeyer
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| |
Collapse
|
24
|
Huber LR, Poser BA, Kaas AL, Fear EJ, Dresbach S, Berwick J, Goebel R, Turner R, Kennerley AJ. Validating layer-specific VASO across species. Neuroimage 2021; 237:118195. [PMID: 34038769 DOI: 10.1016/j.neuroimage.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
Collapse
Affiliation(s)
- Laurentius Renzo Huber
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Benedikt A Poser
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Amanda L Kaas
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Elizabeth J Fear
- Hull-York-Medical-School (HYMS), University of York, York, United Kingdom
| | - Sebastian Dresbach
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Rainer Goebel
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Robert Turner
- Neurophysics Department Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
25
|
Rakymzhan A, Li Y, Tang P, Wang RK. Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography. J Neurosci Methods 2021; 353:109094. [PMID: 33549637 DOI: 10.1016/j.jneumeth.2021.109094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most of the in vivo neurovascular imaging studies are performed in anesthetized animals. However, anesthesia significantly affects cerebral hemodynamics. NEW METHOD We applied optical coherence tomography (OCT) methods such as optical microangiography (OMAG) and Doppler optical microangiography (DOMAG) to quantitatively evaluate the effect of anesthesia in cerebral vasculature and blood flow in mouse brain. RESULTS The OMAG results indicated the increase of large vessel diameter and capillary density induced by ketamine-xylazine and isoflurane, meaning that both anesthetics caused vasodilation. In addition, the preliminary results from DOMAG showed that isoflurane increased the baseline cerebral blood flow. COMPARISON WITH EXISTING METHODS In comparison with other in vivo imaging modalities, OCT can provide label-free assessment of cortical tissue including tissue morphology, cerebral blood vessel network and flow information down to capillary level, with a large field of view and high imaging speed. CONCLUSIONS OCT angiography methods demonstrated the ability to measure the differences in the baseline morphological and flow parameters of both large and capillary cerebrovascular networks between awake and anesthetized mice.
Collapse
Affiliation(s)
- Adiya Rakymzhan
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Peijun Tang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
26
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
27
|
Li Y, Li R, Liu M, Nie Z, Muir ER, Duong TQ. MRI study of cerebral blood flow, vascular reactivity, and vascular coupling in systemic hypertension. Brain Res 2020; 1753:147224. [PMID: 33358732 DOI: 10.1016/j.brainres.2020.147224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
Chronic hypertension alters cerebrovascular function, which can lead to neurovascular pathologies and increased susceptibility to neurological disorders. The purpose of this study was to utilize in vivo MRI methods with corroborating immunohistology to evaluate neurovascular dysfunction due to progressive chronic hypertension. The spontaneously hypertensive rat (SHR) model at different stages of hypertension was studied to evaluate: i) basal cerebral blood flow (CBF), ii) cerebrovascular reactivity (CVR) assessed by CBF and blood-oxygenation level dependent (BOLD) signal changes to hypercapnia, iii) neurovascular coupling from CBF and BOLD changes to forepaw stimulation, and iv) damage of neurovascular unit (NVU) components (microvascular, astrocyte and neuron densities). Comparisons were made with age-matched normotensive Wistar Kyoto (WKY) rats. In 10-week SHR (mild hypertension), basal CBF was higher (p < 0.05), CVR trended higher, and neurovascular coupling response was higher (p < 0.05), compared to normotensive rats. In 40-week SHR (severe hypertension), basal CBF, CVR, and neurovascular coupling response were reversed to similar or below normotensive rats, and were significantly different from 10-week SHR (p < 0.05). Immunohistological analysis found significantly reduced microvascular density, increased astrocytes, and reduced neuronal density in SHR at 40 weeks (p < 0.05) but not at 10 weeks (p > 0.05) in comparison to age-matched controls. In conclusion, we observed a bi-phasic basal CBF, CVR and neurovascular coupling response from early to late hypertension using in vivo MRI, with significant changes prior to changes in the NVU components from histology. MRI provides clinically relevant data that might be useful to characterize neurovascular pathogenesis on the brain in hypertension.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyu Nie
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Eric R Muir
- Department of Radiology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Sarmiento Soto M, Larkin JR, Martin C, Khrapitchev AA, Maczka M, Economopoulos V, Scott H, Escartin C, Bonvento G, Serres S, Sibson NR. STAT3-Mediated Astrocyte Reactivity Associated with Brain Metastasis Contributes to Neurovascular Dysfunction. Cancer Res 2020; 80:5642-5655. [PMID: 33106335 DOI: 10.1158/0008-5472.can-20-2251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Astrocytes are thought to play a pivotal role in coupling neural activity and cerebral blood flow. However, it has been shown that astrocytes undergo morphologic changes in response to brain metastasis, switching to a reactive phenotype, which has the potential to significantly compromise cerebrovascular function and contribute to the neurological sequelae associated with brain metastasis. Given that STAT3 is a key regulator of astrocyte reactivity, we aimed here to determine the impact of STAT3-mediated astrocyte reactivity on neurovascular function in brain metastasis. Rat models of brain metastasis and ciliary neurotrophic factor were used to induce astrocyte reactivity. Multimodal imaging, electrophysiology, and IHC were performed to determine the relationship between reactive astrocytes and changes in the cerebrovascular response to electrical and physiological stimuli. Subsequently, the STAT3 pathway in astrocytes was inhibited with WP1066 to determine the role of STAT3-mediated astrocyte reactivity, specifically, in brain metastasis. Astrocyte reactivity associated with brain metastases impaired cerebrovascular responses to stimuli at both the cellular and functional level and disrupted astrocyte-endothelial interactions in both animal models and human brain metastasis samples. Inhibition of STAT3-mediated astrocyte reactivity in rats with brain metastases restored cerebrovascular function, as shown by in vivo imaging, and limited cerebrovascular changes associated with tumor growth. Together these findings suggest that inhibiting STAT3-mediated astrocyte reactivity may confer significant improvements in neurological outcome for patients with brain metastases and could potentially be tested in other brain tumors. SIGNIFICANCE: These findings demonstrate that selectively targeting STAT3-mediated astrocyte reactivity ameliorates the cerebrovascular dysfunction associated with brain metastasis, providing a potential therapeutic avenue for improved patient outcome.
Collapse
Affiliation(s)
- Manuel Sarmiento Soto
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - James R Larkin
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Chris Martin
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Alexandre A Khrapitchev
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Melissa Maczka
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Vasiliki Economopoulos
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Helen Scott
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Carole Escartin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Sébastien Serres
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nicola R Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
29
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
30
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anaesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part A: Effects of Changes in Physiological Parameters. Front Neurosci 2020; 14:577119. [PMID: 33192261 PMCID: PMC7646331 DOI: 10.3389/fnins.2020.577119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/09/2022] Open
Abstract
Background: To understand brain function in health and disease, functional magnetic resonance imaging (fMRI) is widely used in rodent models. Because animals need to be immobilised for image acquisition, fMRI is commonly performed under anaesthesia. The choice of anaesthetic protocols and may affect fMRI readouts, either directly or via changing physiological balance, and thereby threaten the scientific validity of fMRI in rodents. Methods: The present study systematically reviewed the literature investigating the influence of different anaesthesia regimes and changes in physiological parameters as confounders of blood oxygen level dependent (BOLD) fMRI in rats and mice. Four databases were searched, studies selected according to pre-defined criteria, and risk of bias assessed for each study. Results are reported in two separate articles; this part of the review focuses on effects of changes in physiological parameters. Results: A total of 121 publications was included, of which 49 addressed effects of changes in physiological parameters. Risk of bias was high in all included studies. Blood oxygenation [arterial partial pressure of oxygen (paO2)], ventilation [arterial partial pressure of carbon dioxide (paCO2)] and arterial blood pressure affected BOLD fMRI readouts across various experimental paradigms. Conclusions: Blood oxygenation, ventilation and arterial blood pressure should be monitored and maintained at stable physiological levels throughout experiments. Appropriate anaesthetic management and monitoring are crucial to obtain scientifically valid, reproducible results from fMRI studies in rodent models.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Becq GJPC, Habet T, Collomb N, Faucher M, Delon-Martin C, Coizet V, Achard S, Barbier EL. Functional connectivity is preserved but reorganized across several anesthetic regimes. Neuroimage 2020; 219:116945. [DOI: 10.1016/j.neuroimage.2020.116945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
|
32
|
Schnurr M, Volk I, Nikolenko H, Winkler L, Dathe M, Schröder L. Functionalized Lipopeptide Micelles as Highly Efficient NMR Depolarization Seed Points for Targeted Cell Labelling in Xenon MRI. ACTA ACUST UNITED AC 2020; 4:e1900251. [PMID: 32293139 DOI: 10.1002/adbi.201900251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Indexed: 01/07/2023]
Abstract
Improving diagnostic imaging and therapy by targeted compound delivery to pathological areas and across biological barriers is of urgent need. A lipopeptide, P-CrA-A2, composed of a highly cationic peptide sequence (A2), an N-terminally attached palmitoyl chain (P) and cryptophane molecule (CrA) for preferred uptake into blood-brain barrier (BBB) capillary endothelial cells, was generated. CrA allows reversible binding of Xe for NMR detection with hyperpolarized nuclei. The lipopeptide forms size-optimized micelles with a diameter of about 11 nm at low micromolar concentration. Their high local CrA payload has a strong and switchable impact on the bulk magnetization through Hyper-CEST detection. Covalent fixation of CrA does not impede micelle formation and does not hamper its host functionality but simplifies Xe access to hosts for inducing saturation transfer. Xe Hyper-CEST magnetic resonance imaging (MRI) allows for distinguishing BBB endothelial cells from control aortic endothelial cells, and the small micelle volume with a sevenfold improved CrA-loading density compared to liposomal carriers allows preferred cell labelling with a minimally invasive volume (≈16 000-fold more efficient than 19 F cell labelling). Thus, these nanoscopic particles combine selectivity for human brain capillary endothelial cells with great sensitivity of Xe Hyper-CEST MRI and might be a potential MRI tool in brain diagnostics.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Ines Volk
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Heike Nikolenko
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Margitta Dathe
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
33
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
34
|
Griton M, Dhaya I, Nicolas R, Raffard G, Periot O, Hiba B, Konsman JP. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun 2020; 83:200-213. [PMID: 31622656 DOI: 10.1016/j.bbi.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.
Collapse
Affiliation(s)
- Marion Griton
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Réanimation Anesthésie Neurochirurgicale, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Ibtihel Dhaya
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, UR/11ES09, Faculté des Sciences Mathématiques, Physiques et Naturelles, Université de Tunis El Manar, Tunis, Tunisia
| | - Renaud Nicolas
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Gérard Raffard
- CNRS, Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux, France; Univ. Bordeaux, RMSB, UMR 5536, Bordeaux, France
| | - Olivier Periot
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bassem Hiba
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives Marc Jeannerod, Bron, France
| | - Jan Pieter Konsman
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
35
|
Intracranial pressure in the American Alligator (Alligator mississippiensis): reptilian meninges and orthostatic gradients. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:45-54. [PMID: 31807848 DOI: 10.1007/s00359-019-01386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
The cranial meninges of reptiles differ from the more widely studied mammalian pattern in that the intraventricular and subarachnoid spaces are, at least partially, isolated. This study was undertaken to investigate the bulk flow of cerebrospinal fluid, and the resulting changes in intracranial pressure, in a common reptilian species. Intracranial pressure was measured using ocular ultrasonography and by surgically implanting pressure cannulae into the cranial subarachnoid space. The system was then challenged by: rotating the animal to create orthostatic gradients, perturbation of the vascular system, administration of epinephrine, and cephalic cutaneous heating. Pressure changes determined from the implanted catheters and through quantification of the optic nerve sheath were highly correlated and showed a significant linear relationship with orthostatic gradients. The catheter pressure responses were phasic, with an initial rapid response followed by a much slower response; each phase accounted for roughly half of the total pressure change. No significant relationship was found between intracranial pressure and either heart rate or blood flow. The focal application of heat and the administration of epinephrine both increased intracranial pressure, the latter influence being particularly pronounced.
Collapse
|
36
|
Lee J, Jo HJ, Kim I, Lee J, Min HK, In MH, Knight EJ, Chang SY. Mapping BOLD Activation by Pharmacologically Evoked Tremor in Swine. Front Neurosci 2019; 13:985. [PMID: 31619955 PMCID: PMC6759958 DOI: 10.3389/fnins.2019.00985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022] Open
Abstract
Harmaline-induced tremor is one of the most commonly utilized disease models for essential tremor (ET). However, the underlying neural networks involved in harmaline-induced tremor and the degree to which these are a representative model of the pathophysiologic mechanism of ET are incompletely understood. In this study, we evaluated the functional brain network effects induced by systemic injection of harmaline using pharmacological functional magnetic resonance imaging (ph-fMRI) in the swine model. With harmaline administration, we observed significant activation changes in cerebellum, thalamus, and inferior olivary nucleus (ION). In addition, inter-regional correlations in activity between cerebellum and deep cerebellar nuclei and between cerebellum and thalamus were significantly enhanced. These harmaline-induced effects gradually decreased with repeated administration of drug, replicating the previously demonstrated ‘tolerance’ effect. This study demonstrates that harmaline-induced tremor is associated with activity changes in brain regions previously implicated in humans with ET. Thus, harmaline-induction of tremor in the swine may be a useful model to explore the neurological effects of novel therapeutic agents and/or neuromodulation techniques for ET.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Radiology, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Inyong Kim
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jihyun Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Emily J Knight
- Department of Developmental Behavioral Pediatrics, University of Rochester, Rochester, NY, United States
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
37
|
Huang C, Mazdeyasna S, Chen L, Abu Jawdeh EG, Bada HS, Saatman KE, Chen L, Yu G. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats. Neuroimage 2019; 198:160-169. [DOI: 10.1016/j.neuroimage.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
|
38
|
Yamamoto AK, Magerkurth J, Mancini L, White MJ, Miserocchi A, McEvoy AW, Appleby I, Micallef C, Thornton JS, Price CJ, Weiskopf N, Yousry TA. Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility. NEUROIMAGE-CLINICAL 2019; 23:101923. [PMID: 31491826 PMCID: PMC6699415 DOI: 10.1016/j.nicl.2019.101923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/28/2019] [Accepted: 06/30/2019] [Indexed: 11/17/2022]
Abstract
We evaluated whether task-related fMRI (functional magnetic resonance imaging) BOLD (blood oxygenation level dependent) activation could be acquired under conventional anaesthesia at a depth enabling neurosurgery in five patients with supratentorial gliomas. Within a 1.5 T MRI operating room immediately prior to neurosurgery, a passive finger flexion sensorimotor paradigm was performed on each hand with the patients awake, and then immediately after the induction and maintenance of combined sevoflurane and propofol general anaesthesia. The depth of surgical anaesthesia was measured and confirmed with an EEG-derived technique, the Bispectral Index (BIS). The magnitude of the task-related BOLD response and BOLD sensitivity under anaesthesia were determined. The fMRI data were assessed by three fMRI expert observers who rated each activation map for somatotopy and usefulness for radiological neurosurgical guidance. The mean magnitudes of the task-related BOLD response under a BIS measured depth of surgical general anaesthesia were 25% (tumour affected hemisphere) and 22% (tumour free hemisphere) of the respective awake values. BOLD sensitivity under anaesthesia ranged from 7% to 83% compared to the awake state. Despite these reductions, somatotopic BOLD activation was observed in the sensorimotor cortex in all ten data acquisitions surpassing statistical thresholds of at least p < 0.001uncorr. All ten fMRI activation datasets were scored to be useful for radiological neurosurgical guidance. Passive task-related sensorimotor fMRI acquired in neurosurgical patients under multi-pharmacological general anaesthesia is reproducible and yields clinically useful activation maps. These results demonstrate the feasibility of the technique and its potential value if applied intra-operatively. Additionally these methods may enable fMRI investigations in patients unable to perform or lie still for awake paradigms, such as young children, claustrophobic patients and those with movement disorders.
Collapse
Affiliation(s)
- Adam Kenji Yamamoto
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Joerg Magerkurth
- UCL Psychology and Language Sciences, Birkbeck-UCL Centre for Neuroimaging, London, United Kingdom.
| | - Laura Mancini
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Mark J White
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Medical Physics and Biomedical Engineering, University College London Hospital, London, United Kingdom.
| | - Anna Miserocchi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Andrew W McEvoy
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Ian Appleby
- Department of Neuroanaesthesia, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Caroline Micallef
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - John S Thornton
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tarek A Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
39
|
Buck J, Larkin JR, Simard MA, Khrapitchev AA, Chappell MA, Sibson NR. Sensitivity of Multiphase Pseudocontinuous Arterial Spin Labelling (MP pCASL) Magnetic Resonance Imaging for Measuring Brain and Tumour Blood Flow in Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4580919. [PMID: 30532663 PMCID: PMC6247770 DOI: 10.1155/2018/4580919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
Brain and tumour blood flow can be measured noninvasively using arterial spin labelling (ASL) magnetic resonance imaging (MRI), but reliable quantification in mouse models remains difficult. Pseudocontinuous ASL (pCASL) is recommended as the clinical standard for ASL and can be improved using multiphase labelling (MP pCASL). The aim of this study was to optimise and validate MP pCASL MRI for cerebral blood flow (CBF) measurement in mice and to assess its sensitivity to tumour perfusion. Following optimization of the MP pCASL sequence, CBF data were compared with gold-standard autoradiography, showing close agreement. Subsequently, MP pCASL data were acquired at weekly intervals in models of primary and secondary brain tumours, and tumour microvessel density was determined histologically. MP pCASL measurements in a secondary brain tumour model revealed a significant reduction in blood flow at day 35 after induction, despite a higher density of blood vessels. Tumour core regions also showed reduced blood flow compared with the tumour rim. Similarly, significant reductions in CBF were found in a model of glioma 28 days after tumour induction, together with an increased density of blood vessels. These findings indicate that MP pCASL MRI provides accurate and robust measurements of cerebral blood flow in naïve mice and is sensitive to changes in tumour perfusion.
Collapse
Affiliation(s)
- Jessica Buck
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - James R. Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Manon A. Simard
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Alexandre A. Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Michael A. Chappell
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, Oxford, UK
| | - Nicola R. Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| |
Collapse
|
40
|
Thompson MF, Poirier GL, Dávila-García MI, Huang W, Tam K, Robidoux M, Dubuke ML, Shaffer SA, Colon-Perez L, Febo M, DiFranza JR, King JA. Menthol enhances nicotine-induced locomotor sensitization and in vivo functional connectivity in adolescence. J Psychopharmacol 2018; 32:332-343. [PMID: 28747086 DOI: 10.1177/0269881117719265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mentholated cigarettes capture a quarter of the US market, and are disproportionately smoked by adolescents. Menthol allosterically modulates nicotinic acetylcholine receptor function, but its effects on the brain and nicotine addiction are unclear. To determine if menthol is psychoactive, we assessed locomotor sensitization and brain functional connectivity. Adolescent male Sprague Dawley rats were administered nicotine (0.4 mg/kg) daily with or without menthol (0.05 mg/kg or 5.38 mg/kg) for nine days. Following each injection, distance traveled in an open field was recorded. One day after the sensitization experiment, functional connectivity was assessed in awake animals before and after drug administration using magnetic resonance imaging. Menthol (5.38 mg/kg) augmented nicotine-induced locomotor sensitization. Functional connectivity was compared in animals that had received nicotine with or without the 5.38 mg/kg dosage of menthol. Twenty-four hours into withdrawal after the last drug administration, increased functional connectivity was observed for ventral tegmental area and retrosplenial cortex with nicotine+menthol compared to nicotine-only exposure. Upon drug re-administration, the nicotine-only, but not the menthol groups, exhibited altered functional connectivity of the dorsal striatum with the amygdala. Menthol, when administered with nicotine, showed evidence of psychoactive properties by affecting brain activity and behavior compared to nicotine administration alone.
Collapse
Affiliation(s)
- Matthew F Thompson
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA.,2 Department of Biology, Clark University, Worcester, MA, USA
| | - Guillaume L Poirier
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Martha I Dávila-García
- 3 Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Wei Huang
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kelly Tam
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maxwell Robidoux
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michelle L Dubuke
- 4 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,5 Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott A Shaffer
- 4 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,5 Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luis Colon-Perez
- 6 Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Marcelo Febo
- 6 Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Joseph R DiFranza
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA.,7 Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jean A King
- 1 Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, MA, USA.,8 Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA.,9 Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
41
|
Dhaya I, Griton M, Raffard G, Amri M, Hiba B, Konsman JP. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown? J Neuroimmunol 2018; 314:67-80. [DOI: 10.1016/j.jneuroim.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
42
|
Abstract
Magnetic resonance imaging has been utilized as a quantitative and noninvasive method to image blood flow. Arterial spin labeling (ASL) is an MRI technique that images blood flow using arterial blood water as an endogenous tracer. Herein we describe the use of ASL to measure cerebral blood flow completely noninvasively in rodents, including methods, analysis, and important considerations when utilizing this technique.
Collapse
Affiliation(s)
- Eric R Muir
- Department of Ophthalmology, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
43
|
Havlicek M, Ivanov D, Roebroeck A, Uludağ K. Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model. Front Neurosci 2017; 11:616. [PMID: 29249925 PMCID: PMC5715391 DOI: 10.3389/fnins.2017.00616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transients, such as the early-overshoot and post-stimulus undershoot, that can be linked to transients in neuronal activity, but they can also result from vascular uncoupling between cerebral blood flow (CBF) and venous cerebral blood volume (venous CBV). Recently, we have proposed a novel generative hemodynamic model of the BOLD signal within the dynamic causal modeling framework, inspired by physiological observations, called P-DCM (Havlicek et al., 2015). We demonstrated the generative model's ability to more accurately model commonly observed neuronal and vascular transients in single regions but also effective connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we additionally demonstrate the versatility of the generative model to jointly explain dynamic relationships between neuronal and hemodynamic physiological variables underlying the BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets of experimentally induced responses in the primary visual areas measured in human, cat, and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal experimental data-sets, we showed that the presence or absence of dynamic features in the BOLD signal is not an unambiguous indication of presence or absence of those features on the neuronal level. Nevertheless, the generative model that takes into account the dynamics of the physiological mechanisms underlying the BOLD response allowed dissociating neuronal from vascular transients and deducing excitatory and inhibitory neuronal activity time-courses from BOLD data alone and from multi-modal data.
Collapse
Affiliation(s)
- Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
44
|
Zoratto F, Palombelli G, Ruocco L, Carboni E, Laviola G, Sadile A, Adriani W, Canese R. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model. Behav Brain Res 2017; 333:171-178. [DOI: 10.1016/j.bbr.2017.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/18/2017] [Accepted: 06/15/2017] [Indexed: 12/26/2022]
|
45
|
Abe Y, Tsurugizawa T, Le Bihan D. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol 2017; 15:e2001494. [PMID: 28406906 PMCID: PMC5390968 DOI: 10.1371/journal.pbio.2001494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Diffusion functional MRI (DfMRI) reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level—dependent (BOLD) functional MRI (fMRI). Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs), especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM) exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (−80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF]) led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI. It has been reported that neuronal activation results in a decrease of water diffusion in activated neural tissue. This new approach, known as diffusion functional MRI (DfMRI), has high potential for functional imaging of the brain, as the currently widespread blood oxygenation level—dependent (BOLD)-functional MRI (fMRI) method, which is based on neurovascular coupling, remains an indirect marker of neuronal activation. Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity, especially in regions involved in wakefulness. Electrical stimulation of the central medial (CM) thalamic nucleus exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion of the CM with furosemide—a specific blocker of neuronal swelling—led the ADC to increase further locally and increased the current threshold for waking the animals. Conversely, induction of cell swelling in the CM through infusion of a hypotonic solution led to a local ADC decrease and a lower current threshold to wake the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.
Collapse
Affiliation(s)
- Yoshifumi Abe
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Tomokazu Tsurugizawa
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
46
|
Villéga F, Delpech JC, Griton M, André C, Franconi JM, Miraux S, Konsman JP. Circulating bacterial lipopolysaccharide-induced inflammation reduces flow in brain-irrigating arteries independently from cerebrovascular prostaglandin production. Neuroscience 2017; 346:160-172. [DOI: 10.1016/j.neuroscience.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
|
47
|
Dorr A, Thomason LA, Koletar MM, Joo IL, Steinman J, Cahill LS, Sled JG, Stefanovic B. Effects of voluntary exercise on structure and function of cortical microvasculature. J Cereb Blood Flow Metab 2017; 37:1046-1059. [PMID: 27683451 PMCID: PMC5363487 DOI: 10.1177/0271678x16669514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aerobic activity has been shown highly beneficial to brain health, yet much uncertainty still surrounds the effects of exercise on the functioning of cerebral microvasculature. This study used two-photon fluorescence microscopy to examine cerebral hemodynamic alterations as well as accompanying geometric changes in the cortical microvascular network following five weeks of voluntary exercise in transgenic mice endogenously expressing tdTomato in vascular endothelial cells to allow visualization of microvessels irrespective of their perfusion levels. We found a diminished microvascular response to a hypercapnic challenge (10% FiCO2) in running mice when compared to that in nonrunning controls despite commensurate increases in transcutaneous CO2 tension. The flow increase to hypercapnia in runners was 70% lower than that in nonrunners (p = 0.0070) and the runners' arteriolar red blood cell speed changed by only half the amount seen in nonrunners (p = 0.0085). No changes were seen in resting hemodynamics or in the systemic physiological parameters measured. Although a few unperfused new vessels were observed on visual inspection, running did not produce significant morphological differences in the microvascular morphometric parameters, quantified following semiautomated tracking of the microvascular networks. We propose that voluntary running led to increased cortical microvascular efficiency and desensitization to CO2 elevation.
Collapse
Affiliation(s)
| | | | | | - Illsung L Joo
- 1 Sunnybrook Research Institute, Toronto, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Joe Steinman
- 2 Department of Medical Biophysics, University of Toronto, Toronto, Canada.,3 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Lindsay S Cahill
- 3 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - John G Sled
- 2 Department of Medical Biophysics, University of Toronto, Toronto, Canada.,3 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Bojana Stefanovic
- 1 Sunnybrook Research Institute, Toronto, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Lu H, Li Y, Bo B, Yuan L, Lu X, Li H, Tong S. Hemodynamic effects of intraoperative anesthetics administration in photothrombotic stroke model: a study using laser speckle imaging. BMC Neurosci 2017; 18:10. [PMID: 28056813 PMCID: PMC5217600 DOI: 10.1186/s12868-016-0327-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/24/2016] [Indexed: 12/19/2022] Open
Abstract
Background
Previous neuroimaging studies have shown the hemodynamic effect of either preconditioning or postconditioning anesthesia in ischemic stroke model. However, the anesthetic effect in hemodynamics during and immediately after the stroke modeling surgery remains unknown due to the lack of appropriate anesthesia-free stroke model and intraoperative imaging technology. In the present study, we utilized our recently developed photothrombotic model of focal cerebral ischemia in conscious and freely moving rats, and investigated transient hemodynamic changes with or without isoflurane administration. Laser speckle imaging was applied to acquire real-time two-dimensional full-field cerebral blood flow (CBF) information throughout the surgical operations and early after. Results Significantly larger CBF reduction area was observed in conscious rats from 8 min immediately after the onset of stroke modeling, compared with anesthetized rats. Stroke rats without isoflurane administration also showed larger lesion volume identified by magnetic resonance imaging 3 h post occlusion (58.9%), higher neurological severity score 24 h post occlusion (28.3%), and larger infarct volume from 2,3,5-triphenyltetrazolium chloride staining 24 h post occlusion (46.9%). Conclusions Our results demonstrated that the hemodynamic features were affected by anesthetics at as early as during the stroke induction. Also, our findings about the neuroprotection of intraoperative anesthetics administration bring additional insights into understanding the translational difficulty in stroke research.
Collapse
Affiliation(s)
- Hongyang Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Bin Bo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lu Yuan
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xiaodan Lu
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Hangdao Li
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
49
|
Moult EM, Choi W, Boas DA, Baumann B, Clermont AC, Feener EP, Fujimoto JG. Evaluating anesthetic protocols for functional blood flow imaging in the rat eye. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:16005. [PMID: 28056146 PMCID: PMC5217081 DOI: 10.1117/1.jbo.22.1.016005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/15/2016] [Indexed: 05/27/2023]
Abstract
The purpose of this study is to evaluate the suitability of five different anesthetic protocols (isoflurane, isoflurane–xylazine, pentobarbital, ketamine–xylazine, and ketamine–xylazine–vecuronium) for functional blood flow imaging in the rat eye. Total retinal blood flow was measured at a series of time points using an ultrahigh-speed Doppler OCT system. Additionally, each anesthetic protocol was qualitatively evaluated according to the following criteria: (1) time-stability of blood flow, (2) overall rate of blood flow, (3) ocular immobilization, and (4) simplicity. We observed that different anesthetic protocols produced markedly different blood flows. Different anesthetic protocols also varied with respect to the four evaluated criteria. These findings suggest that the choice of anesthetic protocol should be carefully considered when designing and interpreting functional blood flow studies in the rat eye.
Collapse
Affiliation(s)
- Eric M. Moult
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, 50 Vassar Street, Cambridge 02139, United States
| | - WooJhon Choi
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, 50 Vassar Street, Cambridge 02139, United States
| | - David A. Boas
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 13th Street, Charlestown 02129, United States
| | - Bernhard Baumann
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, 50 Vassar Street, Cambridge 02139, United States
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Waehringer Guertel 18, Vienna 1090, Austria
| | - Allen C. Clermont
- Joslin Diabetes Center, Research Division, One Joslin Place, Boston 02215, United States
| | - Edward P. Feener
- Joslin Diabetes Center, Research Division, One Joslin Place, Boston 02215, United States
| | - James G. Fujimoto
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, 50 Vassar Street, Cambridge 02139, United States
| |
Collapse
|
50
|
Paasonen J, Salo RA, Huttunen JK, Gröhn O. Resting-state functional MRI as a tool for evaluating brain hemodynamic responsiveness to external stimuli in rats. Magn Reson Med 2016; 78:1136-1146. [PMID: 27774631 DOI: 10.1002/mrm.26496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/06/2016] [Accepted: 09/14/2016] [Indexed: 11/11/2022]
Abstract
PURPOSE Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. METHODS A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. RESULTS Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. CONCLUSION Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A.I.V. Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A.I.V. Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Joanna K Huttunen
- A.I.V. Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A.I.V. Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|