1
|
Zhao J, Zhu R, He F, Wu M, Wu Y, Meng X, Liu X. Neuroprotective effects of galectin‑1 on cerebral ischemia/reperfusion injury by regulating oxidative stress. Exp Ther Med 2024; 27:154. [PMID: 38476925 PMCID: PMC10928996 DOI: 10.3892/etm.2024.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress contributes to the pathology of cerebral ischemia/reperfusion (I/R) injury. Galectin-1 has shown an anti-oxidative stress effect. The present study investigated whether this anti-oxidative stress effect can account for the neuroprotective actions of galectin-1 induced by cerebral I/R injury. A cerebral I/R injury model was created in C57Bl/6 mice by transient occlusion of the middle cerebral artery, after which the mice were treated with galectin-1 for 3 days. Infarct volumes were measured. A rotarod test and neurological deficit score assessment was performed to evaluate the neurological deficits. Oxidative stress was evaluated by measuring the levels of reactive oxygen species (ROS) and lipid peroxidation malondialdehyde (MDA), while the anti-oxidative stress status was assessed by measuring molecules such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidation enzyme (GSH-Px) in the ischemic cerebral hemisphere of mice. The inflammatory cytokines, including Interleukin 1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α) were measured, and the expression of microglia was evaluated by immunohistochemistry in the ischemic cerebral hemisphere of mice. Galectin-1 treatment ameliorated neurological deficits and reduced infarct volumes in the mice model with cerebral I/R injury. Moreover, it was demonstrated that galectin-1 can significantly alleviate cerebral I/R injury in the ischemic cerebral hemisphere by decreasing the production of ROS and MDA, but increasing the production of CAT, SOD and GSH-Px. Galectin-1 treatment decreased microglia expression, and IL-1, IL-6 and TNF-α levels in the ischemic cerebral hemisphere of mice. Galectin-1 could improve the outcome of cerebral I/R injury by alleviating oxidative stress. Moreover, the neuroprotective effect of galectin-1 in cerebral ischemia could be related to its anti-oxidative stress effect.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Rui Zhu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Feifei He
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Miao Wu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yufu Wu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Xiangjun Meng
- Department of Neurology, Liaoyuan City Central Hospital, Liaoyuan, Jilin 136200, P.R. China
| | - Xiaohong Liu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| |
Collapse
|
2
|
Purrahman D, Shojaeian A, Poniatowski ŁA, Piechowski-Jóźwiak B, Mahmoudian-Sani MR. The Role of Progranulin (PGRN) in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3435-3447. [PMID: 37561339 PMCID: PMC11410000 DOI: 10.1007/s10571-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Stroke is a life-threatening medical condition and is a leading cause of disability. Cerebral ischemia is characterized by a distinct inflammatory response starting with the production of various cytokines and other inflammation-related agents. Progranulin (PGRN), a multifunctional protein, is critical in diverse physiological reactions, such as cell proliferation, inflammation, wound healing, and nervous system development. A mature PGRN is anti-inflammatory, while granulin, its derivative, conversely induces pro-inflammatory cytokine expression. PGRN is significantly involved in the brain tissue and its damage, for example, improving mood and cognitive disorders caused by cerebral ischemia. It may also have protective effects against nerve and spinal cord injuries by inhibiting neuroinflammatory response and apoptosis or it may be related to the proliferation, accumulation, differentiation, and activation of microglia. PGRN is a neurotrophic factor in the central nervous system. It may increase post-stroke neurogenesis of the subventricular zone (SVZ), which is particularly important in improving long-term brain function following cerebral ischemia. The neurogenesis enhanced via PGRN in the ischemic brain SVZ may be attributed to the induction of PI3K/AKT and MAPK/ERK signaling routes. PGRN can also promote the proliferation of neural stem/progenitor cells through PI3K/AKT signaling pathway. PGRN increases hippocampal neurogenesis, reducing anxiety and impaired spatial learning post-cerebral ischemia. PGRN alleviates cerebral ischemia/reperfusion injury by reducing endoplasmic reticulum stress and suppressing the NF-κB signaling pathway. PGRN can be introduced as a potent neuroprotective agent capable of improving post-ischemia neuronal actions, mainly by reducing and elevating the inflammatory and anti-inflammatory cytokines. Expression, storage, cleavage, and function of progranulin (PGRN) in the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Bartłomiej Piechowski-Jóźwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri Street, Jazeerat Al Maryah, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
4
|
Stoll G, Schuhmann MK, Nieswandt B, Kollikowski AM, Pham M. An intravascular perspective on hyper-acute neutrophil, T-cell and platelet responses: Similarities between human and experimental stroke. J Cereb Blood Flow Metab 2022; 42:1561-1567. [PMID: 35676801 PMCID: PMC9441733 DOI: 10.1177/0271678x221105764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In stroke patients, local sampling of pial blood within the occluded vasculature before recanalization by mechanical thrombectomy emerged as powerful tool enabling insights into ultra-early stroke pathophysiology. Thereby, a strong intravascular inflammatory response hallmarked by hyper-acute neutrophil recruitment, altered lymphocyte composition and platelet activation could be observed. These human findings mirror experimental stroke. Here, neutrophil and T-cell activation are driven by platelets involving engagement of platelet glycoprotein receptor (GP)Ib, GPVI and CD84 as well as α-granule release orchestrating infarct progression. Thus, targeting of early intravascular inflammation may evolve as a new therapeutic strategy to augment the effects of recanalization.
Collapse
Affiliation(s)
- Guido Stoll
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | - Bernhard Nieswandt
- Institute for Experimental Biomedicine and Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | | | - Mirko Pham
- Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
6
|
Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol 2022; 12:807658. [PMID: 35140676 PMCID: PMC8818753 DOI: 10.3389/fneur.2021.807658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. Methods Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII−/−)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. Results In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. Conclusions Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Rebecca Isabella Sienel
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Hiroharu Kataoka
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seong-Woong Kim
- Department of Neurosurgery, University of Giessen, Giessen, Germany
| | - Fatma Burcu Seker
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- *Correspondence: Nikolaus Plesnila
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW In this review, we will describe how the combined ability of platelets and neutrophils to interact with each other drives ischemic stroke brain injury. RECENT FINDINGS Neutrophils are one of the first cells to respond during ischemic stroke. Although animals stroke models have indicated targeting neutrophils improves outcomes, clinical trials have failed to yield successful strategies. Platelets play a critical role in recruiting neutrophils to sites of injury by acting as a bridge to the injured endothelium. After initial platelet adhesion, neutrophils can rapidly bind platelets through P-selectin and glycoprotein Ibα. In addition, recent data implicated platelet phosphatidylserine as a novel key regulator of platelet-neutrophil interactions in the setting of ischemic stroke. Inhibition of procoagulant platelets decreases circulating platelet-neutrophil aggregates and thereby reduces infarct size. Platelet binding alters neutrophil function, which contributes to the injury associated with ischemic stroke. This includes inducing the release of neutrophil extracellular traps, which are neurotoxic and pro-thrombotic, leading to impaired stroke outcomes. SUMMARY Platelet-neutrophil interactions significantly contribute to the pathophysiology of ischemic stroke brain injury. Better understanding the mechanisms behind their formation and the downstream consequences of their interactions will lead to improved therapies for stroke patients.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - John L Rustad
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
8
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
9
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Grigolashvili MA, Mustafina RM. [The role of the inflammatory process in the development of post-stroke cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:16-21. [PMID: 33908227 DOI: 10.17116/jnevro202112103216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Post-stroke cognitive impairment (PCI) is a common complication of stroke. PCI in most cases is associated with an increased risk of progression to dementia, with a progression rate of 8-15% per year. When post-stroke cognitive impairment reaches dementia, patients lose independence, professional and social maladjustment occurs, which, in turn, significantly worsen the quality of life and reduce the rehabilitation potential. According to many experimental and clinical studies, the inflammatory process has an important role in the development of PCI. Several previous studies have looked at the association between inflammatory markers and PCI, with some results conflicting with specific biomarkers. Based on the results of studies, inflammatory markers such as IL-8, IL-12 and ESR were closely associated with PCI, high ESR values are associated with worse cognitive impairment, especially memory. The relationship was not confirmed between the markers IFN-gamma, TNF-α and PCI. With regard to IL-1β, IL-6, IL-10, CRP, the results obtained are not unambiguous. Thus, the inflammatory process in the development of PCI has an important role, including a series of complex reactions, the combined effect of which induces neuronal damage and loss of synapses that ultimately leads to cognitive impairment.
Collapse
Affiliation(s)
| | - R M Mustafina
- Medical University of Karaganda, Karaganda, Kazakhstan
| |
Collapse
|
11
|
Hou D, Wang C, Ye X, Zhong P, Wu D. Persistent inflammation worsens short-term outcomes in massive stroke patients. BMC Neurol 2021; 21:62. [PMID: 33568099 PMCID: PMC7874622 DOI: 10.1186/s12883-021-02097-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Persistent inflammation is an important driver of disease progression and affects prognosis. Some indicators of inflammation predict short-term outcomes. The relationship between prognosis, especially mortality, and persistent inflammation in massive stroke has not been studied, and this has been the subject of our research. Methods From April 1, 2017 to February 1, 2020, consecutive patients were prospectively enrolled. Clinical data, laboratory data, imaging data and follow-up infections morbidity were compared between 2 groups according to modified Rankin scale (mRS) scores (mRS < 3 and ≥ 3) at 1 month. The binomial logistic analysis was used to determine independent factors of 1-month prognosis. Short-term functional outcome, mortality and infection rates in massive stroke with and without persistent inflammation were compared. Results One hundred thirty-nine patients with massive stroke were included from 800 patients. We found that admission blood glucose levels (p = 0.005), proportions of cerebral hemispheric (p = 0.001), posterior circulatory (p = 0.035), and lacunar (p = 0.022) ischemia were higher in poor outcome patients; neutrophil-to-lymphocyte ratio (odd ratio = 1.87, 95%CI 1.14–3.07, p = 0.013) and blood glucose concentrations (odd ratio = 1.34, 95%CI 1.01–1.79, p = 0.043) can independently predict the short-term prognosis in massive stroke patients. We also found that the incidence of pulmonary infection (p = 0.009), one-month mortality (p = 0.003) and adverse outcomes (p = 0.0005) were higher in patients with persistent inflammation. Conclusions This study suggested that persistent inflammation is associated with poor prognosis, 1-month mortality and the occurrence of in-hospital pulmonary infection and that higher baseline inflammation level predicts short-term poor outcomes in massive stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02097-9.
Collapse
Affiliation(s)
- Duanlu Hou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China
| | - Chunjie Wang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China.,Jiangchuan Community Health Service Center of Minhang District, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai, No.999, Shiguang Road, Shanghai, 200438, China.
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China.
| |
Collapse
|
12
|
Mai N, Knowlden SA, Miller-Rhodes K, Prifti V, Sims M, Grier M, Nelson M, Halterman MW. Effects of 9-t-butyl doxycycline on the innate immune response to CNS ischemia-reperfusion injury. Exp Mol Pathol 2020; 118:104601. [PMID: 33385413 DOI: 10.1016/j.yexmp.2020.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia triggers a cascade of neuroinflammatory and peripheral immune responses that contribute to post-ischemic reperfusion injury. Prior work conducted in CNS ischemia models underscore the potential to harness non-antibiotic properties of tetracycline antibiotics for therapeutic benefit. In the present study, we explored the immunomodulatory effects of the tetracycline derivative 9-tert-butyl doxycycline (9-TB) in a mouse model of transient global ischemia that mimics immunologic aspects of the post-cardiac arrest syndrome. Pharmacokinetic studies performed in C57BL/6 mice demonstrate that within four hours after delivery, levels of 9-TB in the brain were 1.6 and 9.5-fold higher than those obtained using minocycline and doxycycline, respectively. Minocycline and 9-TB also dampened inflammation, measured by reduced TNFα-inducible, NF-κβ-dependent luciferase activity in a microglial reporter line. Notably, daily 9-TB treatment following ischemia-reperfusion injury in vivo induced the retention of polymorphonuclear neutrophils (PMNs) within the spleen while simultaneously biasing CNS PMNs towards an anti-inflammatory (CD11bLowYm1+) phenotype. These studies indicate that aside from exhibiting enhanced CNS delivery, 9-TB alters both the trafficking and polarization of PMNs in the context of CNS ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nguyen Mai
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara A Knowlden
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kathleen Miller-Rhodes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Viollandi Prifti
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Max Sims
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mark Grier
- Echelon Biosciences, Salt Lake City, UT 84108, USA
| | - Mark Nelson
- Echelon Biosciences, Salt Lake City, UT 84108, USA
| | - Marc W Halterman
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Lan SH, Lai WT, Zheng SY, Yang L, Fang LC, Zhou L, Tang B, Duan J, Hong T. Upregulation of Connexin 40 Mediated by Nitric Oxide Attenuates Cerebral Vasospasm After Subarachnoid Hemorrhage via the Nitric Oxide-Cyclic Guanosine Monophosphate-Protein Kinase G Pathway. World Neurosurg 2020; 136:e476-e486. [PMID: 31953101 DOI: 10.1016/j.wneu.2020.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The present study was performed to elucidate the role of nitric oxide (NO) and connexin 40 (Cx40) in the induction of cerebral vasospasm after subarachnoid hemorrhage (SAH) in vivo. METHODS A SAH rat model was established using the double-bleed method. A total of 108 Sprague-Dawley rats weighing 250-300 g were randomly divided into 6 groups: SAH; SAH plus diethylenetriamine (DETA)/NO (exogenous NO donor); SAH plus 8-bromoadenosine (8-Br)-cyclic guanosine monophosphate (cGMP; protein kinase G [PKG] activator); SAH plus DETA/NO plus KT5823 (PKG inhibitor); SAH plus DETA/NO plus 40Gap27 (Cx40 inhibitor); and sham. The changes in the diameter of the branch microvessels in the middle cerebral artery were recorded. The neurological score was evaluated using the Garcia scoring system. Basilar artery (BA) tension was measured using the Danish Myo Technology myograph system. Cx40 protein expression was analyzed using immunofluorescence and Western blotting. Endothelial NO synthase, soluble guanylate cyclase, and PKG protein expression were measured by Western blotting. RESULTS A considerable narrowing of the cerebral vessels was detected in the SAH group compared with that in the sham group. Moreover, compared with the sham group, the SAH group showed a marked decrease in Cx40, endothelial NO synthase, soluble guanylate cyclase, and PKG expression. The expression of Cx40 and PKG were obviously higher in the SAH plus DETA/NO and SAH plus 8-Br-cGMP groups than in the SAH group. However, Cx40 was lower in the SAH plus DETA/NO plus KT5823 and SAH plus DETA/NO plus 40Gap27 groups than in the SAH plus ETA/NO group. The BAs showed significant vasodilation in the SAH plus DETA/NO and SAH plus 8-Br-cGMP groups. However, the vasodilation response of BAs was inhibited in the SAH plus DETA/NO plus KT5823 and SAH plus DETA-NO plus 40Gap27 groups. CONCLUSIONS The NO-cGMP-PKG pathway alleviated cerebral vasospasm via Cx40 upregulation.
Collapse
Affiliation(s)
- Shi Hai Lan
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Tao Lai
- Department of Neurosurgery, Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Su Yue Zheng
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Chun Fang
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Kollikowski AM, Schuhmann MK, Nieswandt B, Müllges W, Stoll G, Pham M. Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke. Ann Neurol 2020; 87:466-479. [PMID: 31899551 DOI: 10.1002/ana.25665] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. METHODS We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. RESULTS Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T-cell chemoattractant CXCL-11. Finally, we found evidence that short-term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. INTERPRETATION We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466-479.
Collapse
Affiliation(s)
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Wolfgang Müllges
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Yang L, Yan J, Zhang JA, Zhou XH, Fang C, Zeng EM, Tang B, Duan J, Lu GH, Hong T. The important role of connexin 43 in subarachnoid hemorrhage-induced cerebral vasospasm. J Transl Med 2019; 17:433. [PMID: 31888653 PMCID: PMC6936071 DOI: 10.1186/s12967-019-02190-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gap junctions are involved in the development of cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). However, the specific roles and regulatory functions of related connexin isoforms remain unknown. The aim of this study was to investigate the importance of connexin 43 (Cx43) in CVS and determine whether Cx43 alterations are modulated via the protein kinase C (PKC) signaling transduction pathway. Methods Oxyhemoglobin (OxyHb)-induced smooth muscle cells of basilar arterial and second-injection model in rat were used as CVS models in vitro and in vivo. In addition, dye transfer assays were used for gap junction-mediated intercellular communication (GJIC) observation in vitro and delayed cerebral ischemia (DCI) was observed in vivo by perfusion-weighted imaging (PWI) and intravital fluorescence microscopy. Results Increase in Cx43 mediated the development of SAH-induced CVS was found in both in vitro and in vivo CVS models. Enhanced GJIC was observed in vitro CVS model, this effect and increased Cx43 were reversed by preincubation with specific PKC inhibitors (chelerythrine or GF 109203X). DCI was observed in vivo on day 7 after SAH. However, DCI was attenuated by pretreatment with Cx43 siRNA or PKC inhibitors, and the increased Cx43 expression in vivo was also reversed by Cx43 siRNA or PKC inhibitors. Conclusions These data provide strong evidence that Cx43 plays an important role in CVS and indicate that changes in Cx43 expression may be mediated by the PKC pathway. The current findings suggest that Cx43 and the PKC pathway are novel targets for developing treatments for SAH-induced CVS.
Collapse
Affiliation(s)
- Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jian Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jin-An Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Xin-Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Chao Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Guo-Hui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China.
| |
Collapse
|
16
|
Panahpour H, Terpolilli NA, Schaffert D, Culmsee C, Plesnila N. Central Application of Aliskiren, a Renin Inhibitor, Improves Outcome After Experimental Stroke Independent of Its Blood Pressure Lowering Effect. Front Neurol 2019; 10:942. [PMID: 31551909 PMCID: PMC6737892 DOI: 10.3389/fneur.2019.00942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies suggest that pharmacological reduction of systemic hypertension lowers incidence and severity of stroke. However, whether the reduction of blood pressure per se or the compounds used to reduce hypertension are responsible for this effect received little attention. In the current study we therefore aimed to investigate whether Aliskiren, a renin-inhibitor used to treat arterial hypertension, may improve outcome in a mouse model of ischemic stroke when applied centrally and in a dose not affecting blood pressure. Male C57BL/6 mice received 0.6, 2.0, or 6.0 μg Aliskiren or vehicle by intracerebroventricular injection as a pre-treatment and were then subjected to 60 min of middle cerebral artery occlusion (MCAo). Infarct volume, brain edema formation, mortality, antioxidant effects, and functional outcome were assessed up to seven days after MCAo. Central administration of Aliskiren (0.6 or 2.0 μg) had no effect on systemic blood pressure but significantly reduced infarct volume and brain edema formation, blunted mortality, and improved neurological outcome up to 1 week after MCAo. Due to the central and prophylactic administration of the compound, we cannot make any conclusions about the potency of Aliskiren for acute stroke treatment, however, our study clearly demonstrates, that in addition to lowering blood pressure Aliskiren seems to have a direct neuroprotective effect. Hence, renin-inhibitors may be an effective addition to prophylactic treatment regimens in stroke patients.
Collapse
Affiliation(s)
- Hamdollah Panahpour
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany.,Department of Physiology, Medical School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nicole A Terpolilli
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - David Schaffert
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
17
|
Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019; 10:889. [PMID: 31474933 PMCID: PMC6707104 DOI: 10.3389/fneur.2019.00889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Yang L, Lai WT, Wu YS, Zhang JA, Zhou XH, Yan J, Fang C, Zeng EM, Tang B, Peng CL, Zhao Y, Hong T. Simple and efficient rat model for studying delayed cerebral ischemia after subarachnoid hemorrhage. J Neurosci Methods 2018; 304:146-153. [DOI: 10.1016/j.jneumeth.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
|
20
|
Siew JJ, Chern Y. Microglial Lectins in Health and Neurological Diseases. Front Mol Neurosci 2018; 11:158. [PMID: 29867350 PMCID: PMC5960708 DOI: 10.3389/fnmol.2018.00158] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Jian Jing Siew
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Desilles JP, Syvannarath V, Di Meglio L, Ducroux C, Boisseau W, Louedec L, Jandrot-Perrus M, Michel JB, Mazighi M, Ho-Tin-Noé B. Downstream Microvascular Thrombosis in Cortical Venules Is an Early Response to Proximal Cerebral Arterial Occlusion. J Am Heart Assoc 2018; 7:JAHA.117.007804. [PMID: 29496683 PMCID: PMC5866327 DOI: 10.1161/jaha.117.007804] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Previous experimental studies have shown that downstream microvascular thromboinflammation is involved in brain damage from acute ischemic stroke. Using intravital microscopy, we investigated and characterized the sequence of downstream microvascular thromboinflammation in an ischemia/reperfusion acute ischemic stroke model. Methods and Results Rats underwent transient monofilament middle cerebral artery (MCA) occlusion. Cerebral microcirculation in the MCA territory was exposed through a craniotomy and analyzed using real‐time intravital imaging coupled with laser Doppler interferometry. Leukocytes, platelets, fibrinogen, and blood–brain barrier permeability were analyzed by intravenous injection of fluorescent antibodies and bovine serum albumin. MCA occlusion induced a sudden and profound drop in downstream microvascular blood flow associated with leukocyte margination in the venous compartment. Leukocyte margination fostered fibrinogen deposition and thrombosis in postcapillary venules. Either in venules or arterioles, blood flow was not fully restored after MCA recanalization. Furthermore, venular thrombi persisted despite MCA recanalization, and leukocyte extravasation continued to develop in venules in association with blood–brain barrier disruption. Finally, microhemorrhages were occasionally observed, colocalizing with thrombosed venules characterized by marked leukocyte margination. Conclusions We showed that microvascular thrombosis in transient monofilament MCA occlusion and blood–brain barrier disruption are initiated immediately after occlusion and are propagated through the venous compartment in close association with marginating leukocytes. MCA occlusion–induced downstream microvascular thromboinflammation response was responsible for incomplete reperfusion after MCA recanalization and delayed microhemorrhages.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France.,Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Varouna Syvannarath
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - Lucas Di Meglio
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - Célina Ducroux
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - William Boisseau
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France.,Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Liliane Louedec
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - Martine Jandrot-Perrus
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - Jean-Baptiste Michel
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| | - Mikael Mazighi
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France.,Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France.,DHU NeuroVasc, Paris, France
| | - Benoît Ho-Tin-Noé
- Laboratory for Vascular Translational Science, Inserm Unit 1148, Sorbonne Paris Cite University Paris Diderot, Paris, France
| |
Collapse
|
22
|
Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol 2016; 25:241-251. [PMID: 27790058 PMCID: PMC5081470 DOI: 10.5607/en.2016.25.5.241] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
|
24
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
25
|
Li Q, Chen Y, Li B, Luo C, Zuo S, Liu X, Zhang JH, Ruan H, Feng H. Hemoglobin induced NO/cGMP suppression Deteriorate Microcirculation via Pericyte Phenotype Transformation after Subarachnoid Hemorrhage in Rats. Sci Rep 2016; 6:22070. [PMID: 26911739 PMCID: PMC4766506 DOI: 10.1038/srep22070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/05/2016] [Indexed: 02/02/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) usually results from ruptured aneurysm, but how leaked hemoglobin regulates the microcirculation in the pathophysiology of early brain injury after SAH is still unclear. In the present study, we sought to investigate the role and possible mechanism of hemoglobin induced pericyte phenotype transformation in the regulation of microcirculation after SAH. Endovascular perforation SAH rat model, brain slices and cultured pericytes were used, and intervened with endothelial nitric oxide synthase (eNOS) antagonist L-NNA and its agonist scutellarin, hemoglobin, DETA/NO (nitric oxide(NO) donor), PITO (NO scavenger), 8-Br-cGMP (cGMP analog). We found modulating eNOS regulated pericyte α-SMA phenotype transformation, microcirculation, and neurological function in SAH rats. Modulating eNOS also affected eNOS expression, eNOS activity and NO availability after SAH. In addition, we showed hemoglobins penetrated into brain parenchyma after SAH. And hemoglobins significantly reduced the microvessel diameters at pericyte sites, due to the effects of hemoglobin inducing α-SMA expressions in cultured pericytes and brain slices via inhibiting NO/cGMP pathway. In conclusion, pericyte α-SMA phenotype mediates acute microvessel constriction after SAH possibly by hemoglobin suppressing NO/cGMP signaling pathway. Therefore, by targeting the eNOS and pericyte α-SMA phenotype, our present data may shed new light on the management of SAH patients.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bo Li
- Department of Neurosurgery, Jinan Military General Hospital, Jinan, Shandong, China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Balbi M, Ghosh M, Longden TA, Jativa Vega M, Gesierich B, Hellal F, Lourbopoulos A, Nelson MT, Plesnila N. Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 2015; 35:1445-53. [PMID: 26058694 PMCID: PMC4640303 DOI: 10.1038/jcbfm.2015.107] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/09/2022]
Abstract
Aging leads to a gradual decline in the fidelity of cerebral blood flow (CBF) responses to neuronal activation, resulting in an increased risk for stroke and dementia. However, it is currently unknown when age-related cerebrovascular dysfunction starts or which vascular components and functions are first affected. The aim of this study was to examine the function of microcirculation throughout aging in mice. Microcirculation was challenged by inhalation of 5% and 10% CO2 or by forepaw stimulation in 6-week, 8-month, and 12-month-old FVB/N mice. The resulting dilation of pial vessels and increase in CBF was measured by intravital fluorescence microscopy and laser Doppler fluxmetry, respectively. Neurovascular coupling and astrocytic endfoot Ca(2+) were measured in acute brain slices from 18-month-old mice. We did not reveal any changes in CBF after CO2 reactivity up to an age of 12 months. However, direct visualization of pial vessels by in vivo microscopy showed a significant, age-dependent loss of CO2 reactivity starting at 8 months of age. At the same age neurovascular coupling was also significantly affected. These results suggest that aging does not affect cerebral vessel function simultaneously, but starts in pial microvessels months before global changes in CBF are detectable.
Collapse
Affiliation(s)
- Matilde Balbi
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Munich, Germany
| | - Mitrajit Ghosh
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Max Jativa Vega
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Athanasios Lourbopoulos
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Munich, Germany.,Cluster of Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
27
|
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35:888-901. [PMID: 25806703 PMCID: PMC4640255 DOI: 10.1038/jcbfm.2015.45] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood-brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
28
|
Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 2015; 129:239-57. [PMID: 25548073 DOI: 10.1007/s00401-014-1381-0] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 12/15/2022]
Abstract
Neutrophils are rapidly recruited in response to local tissue infection or inflammation. Stroke triggers a strong inflammatory reaction but the relevance of neutrophils in the ischemic brain is not fully understood, particularly in the absence of reperfusion. We investigated brain neutrophil recruitment in two murine models of permanent ischemia induced by either cauterization of the distal portion of the middle cerebral artery (c-MCAo) or intraluminal MCA occlusion (il-MCAo), and three fatal cases of human ischemic stroke. Flow cytometry analyses revealed progressive neutrophil recruitment after c-MCAo, lesser neutrophil recruitment following il-MCAo, and absence of neutrophils after sham operation. Confocal microscopy identified neutrophils in the leptomeninges from 6 h after the occlusion, in the cortical basal lamina and cortical Virchow-Robin spaces from 15 h, and also in the cortical brain parenchyma at 24 h. Neutrophils showed signs of activation including histone-3 citrullination, chromatin decondensation, and extracellular projection of DNA and histones suggestive of extracellular trap formation. Perivascular neutrophils were identified within the entire cortical infarction following c-MCAo. After il-MCAo, neutrophils prevailed in the margins but not the center of the cortical infarct, and were intraluminal and less abundant in the striatum. The lack of collaterals to the striatum and a collapsed pial anastomotic network due to brain edema in large hemispheric infarctions could impair neutrophil trafficking in this model. Neutrophil extravasation at the leptomeninges was also detected in the human tissue. We concluded that neutrophils extravasate from the leptomeningeal vessels and can eventually reach the brain in experimental animal models and humans with prolonged arterial occlusion.
Collapse
|
29
|
Yata K, Nishimura Y, Unekawa M, Tomita Y, Suzuki N, Tanaka T, Mizoguchi A, Tomimoto H. In Vivo Imaging of the Mouse Neurovascular Unit Under Chronic Cerebral Hypoperfusion. Stroke 2014; 45:3698-703. [DOI: 10.1161/strokeaha.114.005891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background and Purpose—
Proper brain function is maintained by an integrated system called the neurovascular unit (NVU) comprised cellular and acellular elements. Although the individual features of specific neurovascular components are understood, it is unknown how they respond to ischemic stress as a functional unit. Therefore, we established an in vivo imaging method and clarified the NVU response to chronic cerebral hypoperfusion.
Methods—
Green mice (b-act-EGFP) with SR101 plasma labeling were used in this experiment. A closed cranial window was made over the left somatosensory cortex. To mimic chronic cerebral hypoperfusion, mice were subjected to bilateral common carotid artery stenosis operations using microcoils. In vivo real-time imaging was performed using 2-photon laser-scanning microscopy during the preoperative period, and after 1 day and 1 and 2 weeks of bilateral common carotid artery stenosis or sham operations.
Results—
Our method allowed 3-dimensional observation of most of the components of the NVU, as well as dynamic capillary microcirculation. Under chronic cerebral hypoperfusion, we did not detect any structural changes of each cellular component in the NVU; however, impairment of microcirculation was detected over a prolonged period. In the pial small arteries and veins, rolling and adhesion of leukocyte were detected, more prominently in the latter. In the deep cortical capillaries, flow stagnation because of leukocyte plugging was frequently observed.
Conclusions—
We established an in vivo imaging method for real-time visualization of the NVU. It seems that under chronic cerebral hypoperfusion, leukocyte activation has a critical role in microcirculation disturbance.
Collapse
Affiliation(s)
- Kenichiro Yata
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Yuhei Nishimura
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Miyuki Unekawa
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Yutaka Tomita
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Norihiro Suzuki
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Toshio Tanaka
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Akira Mizoguchi
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Hidekazu Tomimoto
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| |
Collapse
|
30
|
Schwarzmaier SM, Plesnila N. Contributions of the immune system to the pathophysiology of traumatic brain injury - evidence by intravital microscopy. Front Cell Neurosci 2014; 8:358. [PMID: 25408636 PMCID: PMC4219391 DOI: 10.3389/fncel.2014.00358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) results in immediate brain damage that is caused by the mechanical impact and is non-reversible. This initiates a cascade of delayed processes which cause additional—secondary—brain damage. Among these secondary mechanisms, the inflammatory response is believed to play an important role, mediating actions that can have both protective and detrimental effects on the progression of secondary brain damage. Histological data generated extensive information; however, this is only a snapshot of processes that are, in fact, very dynamic. In contrast, in vivo microscopy provides detailed insight into the temporal and spatial patterns of cellular dynamics. In this review, we aim to summarize data which was generated by in vivo microscopy, specifically investigating the immune response following brain trauma, and its potential effects on secondary brain damage.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Department of Anesthesiology, University of Munich Medical Center Munich, Germany ; Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center Munich, Germany ; Munich Cluster of Systems Neurology Munich, Germany
| |
Collapse
|
31
|
Sumagin R, Sarelius IH. Emerging understanding of roles for arterioles in inflammation. Microcirculation 2014; 20:679-92. [PMID: 23701383 DOI: 10.1111/micc.12068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
Arterioles, capillaries, and venules all actively change their cellular functions and phenotypes during inflammation in ways that are essential for maintenance of homeostasis and self-defense, and are also associated with many inflammatory disorders. ECs, together with pericytes and ECM proteins, can regulate blood flow, the coagulation cascade, fluid and solute exchange, and leukocyte trafficking. While capillary and venular functions in inflammation are well characterized, the arteriolar contribution to inflammation has only recently come into focus. Arterioles differ from venules in structure, EC morphology, shear environment, expression, and distribution of surface ligands; hence, regulation and function of arteriolar wall cells during inflammation may also be distinct from venules. Recent work indicates that in response to proinflammatory stimuli, arterioles alter barrier function, and support leukocyte and platelet interactions through upregulation of adhesion molecules. This suggests that in addition to their role in blood flow regulation, arterioles may also participate in inflammatory responses. In this review, we will discuss mechanisms that characterize arteriolar responses to proinflammatory stimuli. We will detail how distinct arteriolar features contribute to regulation of barrier function and leukocyte-EC interactions in inflammation, and further highlight the potential priming effects of arteriolar responses on venular function and progression of inflammatory responses.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
32
|
Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S, Tsuruma K, Shimazawa M, Yoshimura S, Kashimata M, Iwama T, Hara H. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation 2013; 10:105. [PMID: 23972823 PMCID: PMC3765381 DOI: 10.1186/1742-2094-10-105] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Background To improve the clinical outcome of patients who suffered ischemic stroke, cerebral ischemia-reperfusion (I/R) injury is one of the major concerns that should be conquered. Inflammatory reactions are considered a major contributor to brain injury following cerebral ischemia, and I/R exacerbates these reactions. The aim of this study was to investigate the possible ameliorative effects of progranulin (PGRN) against I/R injury in mice. Methods In vivo I/R was induced in four-week-old male ddY mice by 2 h of MCAO (middle cerebral artery occlusion) followed by 22 h of reperfusion. We evaluate expression of PGRN in I/R brain, efficacy of recombinant-PGRN (r-PGRN) treatment and its therapeutic time-window on I/R injury. Two hours after MCAO, 1.0 ng of r-PRGN or PBS was administered via intracerebroventricular. We assess neutrophil infiltration, expression of tumor necrosis factor (TNF)-α, matrix metalloproteinase-9 (MMP-9) and phosphorylation of nuclear factor-κB (NF-κB) by immunofluorescense staining and Western blotting. We also investigate neutrophil chemotaxis and intercellular adhesion molecule-1 (ICAM-1) expression in vitro inflammation models using isolated neutrophils and endothelial cells. Results We found that expression of PGRN was decreased in the I/R mouse brain. r-PGRN treatment at 2 h after MCAO resulted in a reduction in the infarct volume and decreased brain swelling; this led to an improvement in neurological scores and to a reduction of mortality rate at 24 h and 7 d after MCAO, respectively. Immunohistochemistry, Western blotting, and gelatin zymography also confirmed that r-PGRN treatment suppressed neutrophil recruitment into the I/R brain, and this led to a reduction of NF-κB and MMP-9 activation. In the in vitro inflammation models, PGRN suppressed both the neutrophil chemotaxis and ICAM-1 expression caused by TNF-α in endothelial cells. Conclusions PGRN exerted ameliorative effects against I/R-induced inflammation, and these effects may be due to the inhibition of neutrophil recruitment into the I/R brain.
Collapse
Affiliation(s)
- Yusuke Egashira
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N. In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation 2013; 10:32. [PMID: 23448240 PMCID: PMC3610295 DOI: 10.1186/1742-2094-10-32] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/05/2013] [Indexed: 01/18/2023] Open
Abstract
Background Leukocytes are believed to be involved in delayed cell death following traumatic brain injury (TBI). However, data demonstrating that blood-borne inflammatory cells are present in the injured brain prior to the onset of secondary brain damage have been inconclusive. We therefore investigated both the interaction between leukocytes and the cerebrovascular endothelium using in vivo imaging and the accumulation of leukocytes in the penumbra following experimentally induced TBI. Methods Experimental TBI was induced in C57/Bl6 mice (n = 42) using the controlled cortical impact (CCI) injury model, and leukocyte-endothelium interactions (LEI) were quantified using both intravital fluorescence microscopy (IVM) of superficial vessels and 2-photon microscopy of cortical vessels for up to 14 h post-CCI. In a separate experimental group, leukocyte accumulation and secondary lesion expansion were analyzed in mice that were sacrificed 15 min, 2, 6, 12, 24, or 48 h after CCI (n = 48). Finally, leukocyte adhesion was blocked with anti-CD18 antibodies, and the effects on LEI and secondary lesion expansion were determined 16 (n = 12) and 24 h (n = 21), respectively, following TBI. Results One hour after TBI leukocytes and leukocyte-platelet aggregates started to roll on the endothelium of pial venules, whereas no significant LEI were observed in pial arterioles or in sham-operated mice. With a delay of >4 h, leukocytes and aggregates did also firmly adhere to the venular endothelium. In deep cortical vessels (250 μm) LEIs were much less pronounced. Transmigration of leukocytes into the brain parenchyma only became significant after the tissue became necrotic. Treatment with anti-CD18 antibodies reduced adhesion by 65%; however, this treatment had no effect on secondary lesion expansion. Conclusions LEI occurred primarily in pial venules, whereas little or no LEI occurred in arterioles or deep cortical vessels. Inhibiting LEI did not affect secondary lesion expansion. Importantly, the majority of migrating leukocytes entered the injured brain parenchyma only after the tissue became necrotic. Our results therefore suggest that neither intravascular leukocyte adhesion nor the migration of leukocytes into cerebral tissue play a significant role in the development of secondary lesion expansion following TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Institute for Surgical Research in the Walter-Brendel-Centre of Experimental Medicine, University of Munich Medical Center, Marchioninistr, 15, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 2012; 367:73-84. [PMID: 22669728 DOI: 10.1007/s11010-012-1321-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/18/2012] [Indexed: 01/08/2023]
Abstract
The pathophysiological mechanisms leading to neuronal injury in middle cerebral artery occlusion (MCAO) model of cerebral stroke are complex and multifactorial that form the bases of behavioral deficits and inflammation mediated damage. The present study demonstrates the effect of piperine pretreatment (10 mg/kg b wt, once daily p.o. for 15 days) on cerebral ischemia-induced inflammation in male Wistar rats. The right middle cerebral artery was occluded for 2 h followed by reperfusion for 22 h. A maximum infarct volume (57.80 %) was observed in ischemic MCAO group. However, piperine administration prior to ischemia showed a significant reduction in infarct volume (28.29 %; p < 0.05) and neuronal loss (12.72 %; p < 0.01). As a result of piperine pretreatment, a significant improvement in behavioral outputs of MCAO rats (p < 0.05-0.01) was observed. Piperine successfully reduced the level of proinflammatory cytokines IL-1β, IL-6 and TNF-α, in ischemic group (p < 0.01). Ischemic group brain has shown edematous morphology with vacuolated architecture and pyknotic nuclei in H & E staining which was successfully ameliorated by piperine administration. Moreover, piperine also succeeded in lowering the expression of COX-2, NOS-2, and NF-κB (p < 0.01). Both cytosolic and nuclear NF-κB were down-regulated in ischemic group pre-administered with piperine (p < 0.01). The present study suggests that piperine is able to salvage the ischemic penumbral zone neurons by virtue of its anti-inflammatory property, thereby limiting ischemic cell death.
Collapse
|
35
|
Friedrich B, Müller F, Feiler S, Schöller K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab 2012; 32:447-55. [PMID: 22146194 PMCID: PMC3293113 DOI: 10.1038/jcbfm.2011.154] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is characterized by a severe, cerebral perfusion pressure (CPP)-independent reduction in cerebral blood flow suggesting alterations on the level of cerebral microvessels. Therefore, we aimed to use in-vivo imaging to investigate the cerebral microcirculation after experimental SAH. Subarachnoid hemorrhage was induced in C57/BL6 mice by endovascular perforation. Pial arterioles and venules (10 to 80 μm diameter) were examined using in-vivo fluorescence microscopy, 3, 6, and 72 hours after SAH. Venular diameter or flow was not affected by SAH, while >70% of arterioles constricted by 22% to 33% up to 3 days after hemorrhage (P<0.05 versus sham). The smaller the investigated arterioles, the more pronounced the constriction (r(2)=0.92, P<0.04). Approximately 30% of constricted arterioles were occluded by microthrombi and the frequency of arteriolar microthrombosis correlated with the degree of constriction (r(2)=0.93, P<0.03). The current study demonstrates that SAH induces microarterial constrictions and microthrombosis in vivo. These findings may explain the early CPP-independent decrease in cerebral blood flow after SAH and may therefore serve as novel targets for the treatment of early perfusion deficits after SAH.
Collapse
Affiliation(s)
- Benjamin Friedrich
- Institute for Surgical Research, University of Munich Medical Center-Großhadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
36
|
Terpolilli NA, Kim SW, Thal SC, Kataoka H, Zeisig V, Nitzsche B, Klaesner B, Zhu C, Schwarzmaier S, Meissner L, Mamrak U, Engel DC, Drzezga A, Patel RP, Blomgren K, Barthel H, Boltze J, Kuebler WM, Plesnila N. Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res 2011; 110:727-38. [PMID: 22207711 DOI: 10.1161/circresaha.111.253419] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Stroke is the third most common cause of death in industrialized countries. The main therapeutic target is the ischemic penumbra, potentially salvageable brain tissue that dies within the first few hours after blood flow cessation. Hence, strategies to keep the penumbra alive until reperfusion occurs are needed. OBJECTIVE To study the effect of inhaled nitric oxide on cerebral vessels and cerebral perfusion under physiological conditions and in different models of cerebral ischemia. METHODS AND RESULTS This experimental study demonstrates that inhaled nitric oxide (applied in 30% oxygen/70% air mixture) leads to the formation of nitric oxide carriers in blood that distribute throughout the body. This was ascertained by in vivo microscopy in adult mice. Although under normal conditions inhaled nitric oxide does not affect cerebral blood flow, after experimental cerebral ischemia induced by transient middle cerebral artery occlusion it selectively dilates arterioles in the ischemic penumbra, thereby increasing collateral blood flow and significantly reducing ischemic brain damage. This translates into significantly improved neurological outcome. These findings were validated in independent laboratories using two different mouse models of cerebral ischemia and in a clinically relevant large animal model of stroke. CONCLUSIONS Inhaled nitric oxide thus may provide a completely novel strategy to improve penumbral blood flow and neuronal survival in stroke or other ischemic conditions.
Collapse
Affiliation(s)
- Nicole A Terpolilli
- Laboratory of Experimental Neurosurgery, University of Munich Medical Center-Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 2010; 27:121-30. [PMID: 19803784 DOI: 10.1089/neu.2009.1114] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with an almost immediate reduction in cerebral blood flow (CBF). Because cerebral perfusion pressure is often normal under these circumstances it was hypothesized that the reduction of post-traumatic CBF has to occur at the level of the microcirculation. The aim of the current study was to investigate whether cerebral microvessels are involved in the development of blood flow disturbances following experimental TBI. C57/BL6 mice (n = 12) were intubated and ventilated under control of end-tidal Pco(2) ((ET)P(CO2)). After preparation of a cranial window and baseline recordings, the animals were subjected to experimental TBI by controlled cortical impact (CCI; 6 m/sec, 0.5 mm). Vessel lumina and intravascular cells were visualized by in vivo fluorescence microscopy (IVM) using the fluorescent dyes FITC-dextran and rhodamine 6G, respectively. Vessel diameter, cell-endothelial interactions, and thrombus formation were quantified within the traumatic penumbra by IVM up to 2 h after CCI. Arteriolar diameters increased after CCI by 26.2 +/- 2.5% (mean +/- SEM, p < 0.01 versus baseline), and remained at this level until the end of the observation period. Rolling of leukocytes on the cerebrovascular endothelium was observed both in arterioles and venules, while leukocyte-platelet aggregates were found only in venules. Microthrombi occluded up to 70% of venules and 33% of arterioles. The current data suggest that the immediate post-traumatic decrease in peri-contusional blood flow is not caused by arteriolar vasoconstriction, but by platelet activation and the subsequent formation of thrombi in the cerebral microcirculation.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Institute for Surgical Research in the Walter Brendel Center for Experimental Medicine, Department of Neurosurgery, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
38
|
Kumaria A, Tolias CM. Normobaric hyperoxia therapy for traumatic brain injury and stroke: a review. Br J Neurosurg 2010; 23:576-84. [PMID: 19922270 DOI: 10.3109/02688690903050352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) and acute ischaemic stroke are major causes of mortality and morbidity and there is an urgent demand for new neuroprotective strategies following the translational failure of neuroprotective drug trials. Oxygen therapy--especially normobaric, may offer a simple and effective therapeutic strategy which we review in this paper. Firstly we review mechanisms underlying the therapeutic effects of hyperoxia (both normobaric and hyperbaric) including mitochondrial rescue, stabilisation of intracranial pressure, attenuation of cortical spreading depression and inducing favourable endothelial-leukocyte interactions, all effects of which are postulated to decrease secondary injury. Next we survey studies using hyperbaric oxygen therapy for TBI and stroke, which formed the basis for early studies on normobaric hyperoxia. Thirdly, we present clinical studies of the efficacy of normobaric hyperoxia on TBI and stroke, emphasising their safety, efficacy and practicality. Finally we consider safety concerns and side effects, particularly pulmonary pathology, respiratory failure and theoretical risks in paediatric patients. A neuroprotective role of normobaric hyperoxia is extremely promising and further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, King's College Hospital, London, UK.
| | | |
Collapse
|
39
|
Guo Q, Wang G, Namura S. Fenofibrate improves cerebral blood flow after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2010; 30:70-8. [PMID: 19724288 PMCID: PMC2801771 DOI: 10.1038/jcbfm.2009.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/15/2009] [Accepted: 08/08/2009] [Indexed: 12/16/2022]
Abstract
Fibrates, one group of peroxisome proliferator-activated receptor (PPAR) activators, are lipid lowering drugs. Fibrates have been shown to attenuate brain tissue injury after focal cerebral ischemia. In this study, we investigated the impact of fenofibrate on cerebral blood flow (CBF) in male wild type and PPARalpha-null mice. Animals were treated for 7 days with fenofibrate and subjected to 2 h of filamentous middle cerebral artery occlusion and reperfusion under isoflurane anesthesia. Cortical surface CBF was measured by laser speckle imaging. Regional CBF (rCBF) in nonischemic animals was measured by (14)C-iodoantipyrine autoradiography. Fenofibrate did not affect rCBF and mean arterial blood pressure in nonischemic animals. In ischemic animals, laser speckle imaging showed delayed expansions of ischemic area, which was attenuated by fenofibrate. Fenofibrate also enhanced CBF recovery after reperfusion. However, such effects of fenofibrate on CBF in the ischemic brain were not observed in PPARalpha-null mice. These findings show that fenofibrate improves CBF in the ischemic hemisphere. Moreover, fenofibrate requires PPARalpha expression for the cerebrovascular protective effects in the ischemic brain.
Collapse
Affiliation(s)
- Qingmin Guo
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Guangming Wang
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Shobu Namura
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Murikinati S, Jüttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 2009; 24:788-98. [PMID: 19884325 DOI: 10.1096/fj.09-141275] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of the cannabinoid 2 receptor (CB(2)) reduces ischemic injury in several organs. However, the mechanisms underlying this protective action are unclear. In a mouse model of ischemic stroke, we show that the CB(2) agonist JWH-133 (1 mg . kg(-1) . d(-1)) decreases the infarct size measured 3 d after onset of ischemia. The neuroprotective effect of JWH-133 was lost in CB(2)-deficient mice, confirming the specificity of JWH-133. Analysis of bone marrow chimeric mice revealed that bone marrow-derived cells mediate the CB(2) effect on ischemic brain injury. CB(2) activation reduced the number of neutrophils in the ischemic brain as shown by FACS analysis and by measuring the levels of the neutrophil marker enzyme myeloperoxidase. Indeed, we found in vitro that CB(2) activation inhibits adherence of neutrophils to brain endothelial cells. JWH-133 (1 microM) also interfered with the migration of neutrophils induced by the endogenous chemokine CXCL2 (30 ng/ml) through activation of the MAP kinase p38. This effect on neutrophils is likely responsible for the neuroprotection mediated by JWH-133 because JWH-133 was no longer protective when neutrophils were depleted. In conclusion, our data demonstrate that by activating p38 in neutrophils, CB(2) agonists inhibit neutrophil recruitment to the brain and protect against ischemic brain injury.-Murikinati, S., Jüttler, E., Keinert, T., Ridder, D. A., Muhammad, S., Waibler, Z., Ledent, C., Zimmer, A., Kalinke, U., Schwaninger, M. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment.
Collapse
Affiliation(s)
- Sasidhar Murikinati
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang M, Adler MW, Abood ME, Ganea D, Jallo J, Tuma RF. CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc Res 2009; 78:86-94. [PMID: 19332079 PMCID: PMC3319431 DOI: 10.1016/j.mvr.2009.03.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
Previous studies from our laboratory indicated that selective cannabinoid CB(2) agonists were able to attenuate cerebral ischemia/reperfusion (I/R) injury. The goal of current study is to further test whether this attenuation involves cerebral microcirculatory function during I/R injury. Middle cerebral artery occlusion with reperfusion (MCAO/R) was performed in male mice. A selective CB(2) agonist was administered at different dosages and different times. Cerebral infarction volume, neurological function and cerebral microcirculatory function (leukocyte/endothelial interactions, cell adhesion molecule expression and blood-brain barrier disruption) were examined in vivo and in vitro. CB(2) knockout mice were subjected to MCAO/R following same procedures. Administration of the CB(2) agonist at middle dosage exerted optimal effects in reducing cerebral infarction and improving neurological function compared with other dosage groups and control group. Treatment with the CB(2) agonist at the optimal dose was still effective when given 3 h after MCAO. Transient ischemia significantly increased leukocyte/endothelial interactions, adhesion molecules expression and blood-brain barrier disruption which were all attenuated by pre-treatment with a CB(2) agonist. CB(2) knockout mice showed larger cerebral infarction and worse neurological function compared to wide type. In conclusion, CB(2) activation contributed to protecting the brain through the attenuation of cerebral microcirculatory dysfunction during cerebral I/R injury.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/physiopathology
- Brain Ischemia/immunology
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cell Adhesion/immunology
- Cerebral Infarction/immunology
- Cerebral Infarction/metabolism
- Cerebral Infarction/physiopathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Infarction, Middle Cerebral Artery/physiopathology
- Leukocyte Rolling/immunology
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microcirculation/immunology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/physiopathology
Collapse
Affiliation(s)
- Ming Zhang
- Department of Physiology, Temple University School of Medicine, 208 MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, 208 MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, 305 OMS, 3400 N Broad Street, Philadelphia, PA 19140, USA
| | - Mary E. Abood
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 615 MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, 615 MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, Temple University School of Medicine, 525A MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, 525A MRB, 3420 N Broad Street, Philadelphia, PA 19140, USA
| | - Jack Jallo
- Department of Neurosurgery, Temple University Hospital, 3401 N Broad Street, Philadelphia, PA 19140, USA
| | - Ronald F. Tuma
- Department of Physiology, Temple University School of Medicine, 231 OMS, 3400 N Broad Street, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, 231 OMS, 3400 N Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
42
|
Lee EJ, Chen HY, Hung YC, Chen TY, Lee MY, Yu SC, Chen YH, Chuang IC, Wu TS. Therapeutic window for cinnamophilin following oxygen-glucose deprivation and transient focal cerebral ischemia. Exp Neurol 2009; 217:74-83. [PMID: 19416670 DOI: 10.1016/j.expneurol.2009.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Cinnamophilin (CINN, (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan) protects against ischemic stroke in mice. While some anti-oxidative effects of CINN have been characterized, its therapeutic window and molecular basis for neuroprotection remain unclear. We evaluated antioxidant and anti-inflammatory properties and therapeutic window of CINN against brain ischemia using a panel of in vitro and in vivo assays. Data from lipid peroxidation and radical scavenging assays showed that CINN was a robust antioxidant and radical scavenger. CINN effectively inhibited the production of tumor necrosis factor alpha (TNF-alpha), nitrite/nitrate, interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 and BV2 cells (P<0.05, respectively). Relative to controls, CINN, administrated at 80 mg/kg, 2, 4, or 6 h postinsult, but not 12 h, significantly reduced brain infarction by 34-43% (P<0.05) and improved neurobehavioral outcome (P<0.05) following transient focal cerebral ischemia in rats. CINN (10-30 microM) also significantly reduced oxygen-glucose deprivation-induced neuronal damage (P<0.05) in rat organotypic hippocampal slices, even when it was administrated 2, 4, or 6 h postinsult. Together, CINN protects against ischemic brain damage with a therapeutic window up to 6 h in vivo and in vitro, which may, at least in part, be attributed by its direct antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- E-Jian Lee
- Department of Surgery, Neurophysiology Laboratory, Neurosurgical Service, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Arterially perfused neurosphere-derived cells distribute outside the ischemic core in a model of transient focal ischemia and reperfusion in vitro. PLoS One 2008; 3:e2754. [PMID: 18648648 PMCID: PMC2453234 DOI: 10.1371/journal.pone.0002754] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/25/2008] [Indexed: 01/19/2023] Open
Abstract
Background Treatment with neural stem cells represents a potential strategy to improve functional recovery of post-ischemic cerebral injury. The potential benefit of such treatment in acute phases of human ischemic stroke depends on the therapeutic viability of a systemic vascular delivery route. In spite of the large number of reports on the beneficial effects of intracerebral stem cells injection in experimental stroke, very few studies demonstrated the effectiveness of the systemic intravenous delivery approach. Metodology/Principal Findings We utilized a novel in vitro model of transient focal ischemia to analyze the brain distribution of neurosphere-derived cells (NCs) in the early 3 hours that follow transient occlusion of the medial cerebral artery (MCA). NCs obtained from newborn C57/BL6 mice are immature cells with self-renewal properties that could differentiate into neurons, astrocytes and oligodendrocytes. MCA occlusion for 30 minutes in the in vitro isolated guinea pig brain preparation was followed by arterial perfusion with 1×106 NCs charged with a green fluorescent dye, either immediately or 60 minutes after reperfusion onset. Changes in extracellular pH and K+ concentration during and after MCAO were measured through ion-sensitive electrodes. Conclusion/Significance It is demonstrated that NCs injected through the vascular system do not accumulate in the ischemic core and preferentially distribute in non-ischemic areas, identified by combined electrophysiological and morphological techniques. Direct measurements of extracellular brain ions during and after MCA occlusion suggest that anoxia-induced tissue changes, such as extracellular acidosis, may prevent NCs from entering the ischemic area in our in vitro model of transitory focal ischemia and reperfusion suggesting a role played by the surrounding microenviroment in driving NCs outside the ischemic core. These findings strongly suggest that the potential beneficial effect of NCs in experimental focal brain ischemia is not strictly dependent on their homing into the ischemic region, but rather through a bystander mechanism possibly mediated by the release of neuroprotective factors in the peri-infarct region.
Collapse
|
44
|
Tabuchi A, Mertens M, Kuppe H, Pries AR, Kuebler WM. Intravital microscopy of the murine pulmonary microcirculation. J Appl Physiol (1985) 2008; 104:338-46. [DOI: 10.1152/japplphysiol.00348.2007] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intravital microscopy (IVM) is considered as the gold standard for in vivo investigations of dynamic microvascular regulation. The availability of transgenic and knockout animals has propelled the development of murine IVM models for various organs, but technical approaches to the pulmonary microcirculation are still scarce. In anesthetized and ventilated BALB/c mice, we established a microscopic access to the surface of the right upper lung lobe by surgical excision of a window of 7- to 10-mm diameter from the right thoracic wall. The window was covered by a transparent polyvinylidene membrane and sealed with α-cyanoacrylate. Removal of intrathoracic air via a transdiaphragmal intrapleural catheter coupled the lung surface to the window membrane. IVM preparations were hemodynamically stable for at least 120 min, with mean arterial blood pressure above 70 mmHg, and mean arterial Po2 and arterial Pco2 in the range of 90–100 Torr and 30–40 Torr, respectively. Imaged lungs did not show any signs of acute lung injury or edema. Following infusion of FITC dextran, subpleural pulmonary arterioles and venules of up to 50-μm diameter and alveolar capillary networks could be visualized during successive expiratory plateau phases over a period of at least 2 h. Vasoconstrictive responses to hypoxia (11% O2) or infusion of the thromboxane analog U-46619 were prominent in medium-sized arterioles (30- to 50-μm diameter), minor in small arterioles <30 μm, and absent in venules. The presented IVM model may constitute a powerful new tool for investigations of pulmonary microvascular responses in mice.
Collapse
|
45
|
Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF. Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 2007; 27:1387-96. [PMID: 17245417 PMCID: PMC2637559 DOI: 10.1038/sj.jcbfm.9600447] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cannabinoid CB(2) Receptor (CB(2)) activation has been shown to have immunomodulatory properties without psychotropic effects. The hypothesis of this study is that selective CB(2) agonist treatment can attenuate cerebral ischemia/reperfusion injury. Selective CB(2) agonists (O-3853, O-1966) were administered intravenously 1 h before transient middle cerebral artery occlusion (MCAO) or 10 mins after reperfusion in male mice. Leukocyte/endothelial interactions were evaluated before MCAO, 1 h after MCAO, and 24 h after MCAO via a closed cranial window. Cerebral infarct volume and motor function were determined 24 h after MCAO. Administration of the selective CB(2) agonists significantly decreased cerebral infarction (30%) and improved motor function (P<0.05) after 1 h MCAO followed by 23 h reperfusion in mice. Transient ischemia in untreated animals was associated with a significant increase in leukocyte rolling and adhesion on both venules and arterioles (P<0.05), whereas the enhanced rolling and adhesion were attenuated by both selective CB(2) agonists administered either at 1 h before or after MCAO (P<0.05). CB(2) activation is associated with a reduction in white blood cell rolling and adhesion along cerebral vascular endothelial cells, a reduction in infarct size, and improved motor function after transient focal ischemia.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
46
|
Morkos AA, Hopper AO, Deming DD, Yellon SM, Wycliffe N, Ashwal S, Sowers LC, Peverini RL, Angeles DM. Elevated total peripheral leukocyte count may identify risk for neurological disability in asphyxiated term neonates. J Perinatol 2007; 27:365-70. [PMID: 17443199 DOI: 10.1038/sj.jp.7211750] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The present study investigated the relationship between neurologic outcome and total circulating white blood cell (WBC) and absolute neutrophil counts (ANCs) in the first week of life in term infants with hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN Long-term neurologic outcome at 18 months was measured retrospectively in 30 term neonates with HIE using the Pediatric Cerebral Performance Category Scale (PCPCS) score with outcomes dichotomized as either good or poor. We then compared white blood cell and ANC levels during the first 4 days of life and magnetic resonance imaging (MRI) obtained within the first month life between the two PCPCS groups. MRI was quantified using a validated scoring system. RESULTS Neonates with good long-term outcomes had significantly lower MRI scores (indicating lesser injury) than neonates with poor outcomes. More importantly, neonates with poor outcomes had significantly higher WBC and ANC levels as early as12 h after birth and up to 96 h after birth compared to those with good outcomes. These data suggest that elevated peripheral neutrophil counts in the first 96 h of life may signal or predict adverse long-term outcome. CONCLUSIONS Our findings suggest that elevated peripheral neutrophil counts in the first 96 h of life in term infants with HIE may contribute to abnormal neurodevelopmental outcome.
Collapse
Affiliation(s)
- A A Morkos
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Helms AK, Whelan HT, Torbey MT. Hyperbaric oxygen therapy of cerebral ischemia. Cerebrovasc Dis 2005; 20:417-26. [PMID: 16230845 DOI: 10.1159/000088979] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 06/17/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperbaric oxygen (HBO) therapy of cerebral ischemia has been evaluated in a number of human and animal studies; however, there is presently no consensus on its efficacy. METHODS We present a review of animal and human studies on HBO therapy of cerebral ischemia as well as present potential mechanisms of action of HBO. RESULTS Animal studies of HBO have shown promise by reducing infarct size and improving neurologic outcome. HBO has also been shown to inhibit inflammation and apoptosis after cerebral ischemia. Early reports in humans also suggested benefit in stroke patients treated with HBO. Recent randomized, controlled human studies, however, have not shown benefit, although all were limited by small sample size. Important differences between animal and human studies suggest HBO might be more effective in stroke within the first few hours and at a pressure of 2-3 ATA. CONCLUSIONS The clinical usefulness of HBO in the treatment of cerebral ischemia is not yet certain. Attention to emerging pathophysiologic data should be taken into consideration in design of any future clinical trials of HBO in acute ischemic stroke.
Collapse
Affiliation(s)
- Ann K Helms
- Medical College of Wisconsin, Milwaukee, Wisc. 53226, USA
| | | | | |
Collapse
|
48
|
Lee EJ, Chen HY, Lee MY, Chen TY, Hsu YS, Hu YL, Chang GL, Wu TS. Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic Biol Med 2005; 39:495-510. [PMID: 16043021 DOI: 10.1016/j.freeradbiomed.2005.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 03/25/2005] [Accepted: 04/04/2005] [Indexed: 11/18/2022]
Abstract
Acute neuroprotective effects of cinnamophilin (CINN; (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan), a novel antioxidant and free radical scavenger, were studied in a mouse model of transient middle cerebral artery (MCA) occlusion. CINN was administered intraperitoneally either 15 min before (pretreatment) or 2 h after the onset of MCA occlusion (postischemic treatment). Relative to vehicle-treated controls, animals pretreated with CINN, at 20-80 mg/kg, had significant reductions in brain infarction by 33-46% and improvements in neurobehavioral outcome. Postischemic administration with CINN (80 mg/kg) also significantly reduced brain infarction by 43% and ameliorated neurobehavioral deficits. Additionally, CINN administration significantly attenuated in situ accumulation of superoxide anions (O2-) in the boundary zones of infarct at 4 h after reperfusion. Consequently, CINN-treated animals exhibited significantly decreased levels of oxidative damage, as assessed by immunopositive reactions for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE), and the resultant inflammatory reactions at 24 h post-insult. It is concluded that CINN effectively reduced brain infarction and improved neurobehavioral outcome following a short-term recovery period after severe transient focal cerebral ischemia in mice. The finding of a decreased extent of reactive oxygen species and oxidative damage observed with CINN treatment highlights that its antioxidant and radical scavenging ability is contributory.
Collapse
Affiliation(s)
- E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery & Institute of Biomedical Engineering, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005; 25:1012-9. [PMID: 15744246 DOI: 10.1038/sj.jcbfm.9600097] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain edema formation is one of the most important mechanisms responsible for brain damage after ischemic stroke. Despite considerable efforts, no specific therapy is available yet. Arginine vasopressin (AVP) regulates cerebral water homeostasis and has been involved in brain edema formation. In the current study, we investigated the role of AVP V1 and V2 receptors on brain damage, brain edema formation, and functional outcome after transient focal cerebral ischemia, a condition comparable with that of stroke patients undergoing thrombolysis. C57/BL6 mice were subjected to 60-min middle cerebral artery occlusion (MCAO) followed by 23 h of reperfusion. Five minutes after MCAO, 100 or 500 ng of [deamino-Pen(1), O-Me-Tyr(2), Arg(8)]-vasopressin (AVP V1 receptor antagonist) or [adamantaneacetyl(1), O-Et-D-Tyr(2), Val(4), Abu(6), Arg(8,9)]-vasopressin (AVP V2 receptor antagonist) were injected into the left ventricle. Inhibition of AVP V1 receptors reduced infarct volume in a dose-dependent manner by 54% and 70% (to 29+/-13 and 19+/-10 mm3 versus 63+/-17 mm3 in controls; P<0.001), brain edema formation by 67% (to 80.4%+/-1.0% versus 82.7%+/-1.2% in controls; P<0.001), blood-brain barrier disruption by 75% (P<0.001), and functional deficits 24 h after ischemia, while V2 receptor inhibition had no effect. The current findings indicate that AVP V1 but not V2 receptors are involved in the pathophysiology of secondary brain damage after focal cerebral ischemia. Although further studies are needed to clarify the mechanisms of neuroprotection, AVP V1 receptors seem to be promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Abedin Vakili
- Department of Physiology, Shiraz Medical School, University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | | | | |
Collapse
|