1
|
Qualls KA, Kadakia FK, Serafin EK, Lückemeyer DDN, Davidson S, Strong JA, Zhang JM. mRNA Expression of Mineralocorticoid and Glucocorticoid Receptors in Human and Mouse Sensory Neurons of the Dorsal Root Ganglia. Anesth Analg 2025; 140:1216-1226. [PMID: 39808573 PMCID: PMC11919799 DOI: 10.1213/ane.0000000000007133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
BACKGROUND Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain. METHODS Corticosteroid receptor expression in human and mouse DRGs was characterized. RNAscope was used to perform high-resolution in situ hybridization for GR and MR mRNAs and to examine their colocalization with markers for nociceptors ( SCN10A , Na V 1.8 mRNA) and Aβ mechanoreceptors ( KCNS1 , Kv9.1 mRNA) in human DRG and C57BL/6J mouse DRG samples. RESULTS GR and MR mRNAs are expressed in almost all DRG neurons across species. The 2 receptors colocalize in 99.2% of human DRG neurons and 95.9% of mouse DRG neurons ( P = .0004, Fisher exact test). In both human and mouse DRGs, the large-diameter KCNS1+ Aβ mechanoreceptors showed a significantly higher MR/GR ratio (MR-leaning) compared to KCNS1- neurons (human: 0.23 vs 0.04, P = .0002; mouse: 0.35 vs -0.24, P < .0001; log ratios, unpaired t test), whereas small-diameter SCN10A+ nociceptive neurons showed a significantly lower MR/GR ratio (GR-leaning) compared to SCN10A- neurons (human: -0.02 vs 0.18, P = .0001; mouse: -0.16 vs 0.08, P < .0001; log ratios, unpaired t test). CONCLUSIONS These findings indicate that mouse corticosteroid receptor mRNA expression reflects human expression in the DRG, and that mice could be a suitable model for studying corticosteroid receptor involvement in pain. Additionally, this study supports the translatability of rodent data to humans for the use of more selective corticosteroids at the DRG in pain treatments.
Collapse
MESH Headings
- Ganglia, Spinal/metabolism
- Animals
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/biosynthesis
- Receptors, Mineralocorticoid/metabolism
- Humans
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/metabolism
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/biosynthesis
- Sensory Receptor Cells/metabolism
- Male
- Mice
- Female
- Middle Aged
- Species Specificity
- Nociceptors/metabolism
- Adult
- NAV1.8 Voltage-Gated Sodium Channel/genetics
- NAV1.8 Voltage-Gated Sodium Channel/metabolism
Collapse
Affiliation(s)
- Katherine A Qualls
- From the Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
2
|
Harbour K, Eid F, Serafin E, Hayes M, Baccei ML. Early life stress modulates neonatal somatosensation and the transcriptional profile of immature sensory neurons. Pain 2025; 166:888-901. [PMID: 40106369 PMCID: PMC11926333 DOI: 10.1097/j.pain.0000000000003416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 12/13/2024]
Abstract
ABSTRACT Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat. Bulk RNA-seq analysis of L3-L5 DRGs at P9 revealed significant alterations in the transcription of pain- and itch-related genes following ELS, highlighted by a marked downregulation in Sst , Nppb , Chrna6 , Trpa1 , and Il31ra . Nonetheless, ex vivo whole-cell patch-clamp recordings from putative A- and C-fiber sensory neurons in the neonatal DRG found no significant changes in their intrinsic membrane excitability following NLB. Overall, these findings suggest that ELS triggers hyperalgesia in neonates across multiple pain modalities that is accompanied by transcriptional plasticity within developing sensory neurons. A better understanding of the mechanisms governing the interactions between chronic stress and pain during the neonatal period could inform the future development of novel interventional strategies to relieve pain in infants and children who have experienced trauma.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fady Eid
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Madailein Hayes
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
3
|
Soni A, Singh BP, Srivastava VK, Prakash R, Gautam S, Singh GP. Comparison of Lignocaine-Dexamethasone vs. Lignocaine-Triamcinolone for Preventing Post Spinal-Epidural Backache: A Randomized Study. Cureus 2024; 16:e75877. [PMID: 39822438 PMCID: PMC11738074 DOI: 10.7759/cureus.75877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The primary objective of this study was to compare the efficacy of lignocaine-dexamethasone and lignocaine-triamcinolone infiltration, along the spinal-epidural needle insertion pathway, to prevent backache after lower abdominal surgeries. METHODS This prospective, double-blind randomized controlled study included a total of 150 patients, scheduled for elective lower abdominal surgery under combined spinal-epidural (CSE) anaesthesia. The patients were randomised into three groups Group L (Lignocaine, n=50), Group DL (Dexamethasone, Lignocaine, n=50), and Group TL (Triamcinolone, Lignocaine, n=50). RESULTS The Visual Analogue Score (VAS) was used to assess the postoperative pain. The anthropometric and demographic findings were comparable among the three groups. The mean VAS score at the time points of needle placement and at postoperative time periods of 24 hours, 48 hours, 72 hours, one month, two months and three months were significantly lower (p<0.001) in groups DL and TL compared to group L. CONCLUSION This study demonstrated that the addition of a steroid like triamcinolone or dexamethasone with lignocaine for local infiltration along the spinal-epidural tract significantly lowers the severity of post-needle puncture backache in comparison to lignocaine alone in lower abdominal surgeries.
Collapse
Affiliation(s)
- Ankit Soni
- Anaesthesiology, King George's Medical University, Lucknow, IND
| | - Brijesh P Singh
- Anaesthesiology, King George's Medical University, Lucknow, IND
| | | | - Ravi Prakash
- Anaesthesiology, King George's Medical University, Lucknow, IND
| | - Shefali Gautam
- Anaesthesiology, King George's Medical University, Lucknow, IND
| | | |
Collapse
|
4
|
Sidwell AB, Girard BM, Campbell SE, Vizzard MA. TRPV1 and mast cell involvement in repeated variate stress-induced urinary bladder dysfunction in adult female mice. Am J Physiol Renal Physiol 2024; 327:F476-F488. [PMID: 38991005 PMCID: PMC11460343 DOI: 10.1152/ajprenal.00125.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
The etiology of interstitial cystitis/bladder pain syndrome (IC/BPS) is unknown but likely multifactorial. IC/BPS symptoms can be exacerbated by psychological stress, but underlying mechanisms remain to be defined. Transient receptor potential vanilloid 1 (TRPV1) channels, expressed on nerve fibers, have been implicated in bladder dysfunction and colonic hypersensitivity with stress in rodents. Histamine/H1R activation of TRPV1+ nerves increases bladder afferent fiber sensitivity to distension. TRPV1 channels are also expressed on mast cells, previously implicated in contributing to IC/BPS etiology and symptoms. We have examined the contribution of TRPV1 and mast cells to bladder dysfunction after repeated variate stress (RVS). RVS increased (P ≤ 0.05) serum and fecal corticosterone expression and induced anxiety-like behavior in wild-type (WT) mice. Intravesical instillation of the selective TRPV1 antagonist capsazepine (CPZ) rescued RVS-induced bladder dysfunction in WT mice. Trpv1 knockout (KO) mice did not increase voiding frequency with RVS and did not exhibit increased serum corticosterone expression despite exhibiting anxiety-like behavior. Mast cell-deficient mice (B6.Cg-Kitw-sh) failed to demonstrate RVS-induced increased voiding frequency or serum corticosterone expression, whereas control (no stress) mast cell-deficient mice had similar functional bladder capacity to WT mice. TRPV1 protein expression was significantly increased in the rostral lumbar (L1-L2) spinal cord and dorsal root ganglia (DRG) in WT mice exposed to RVS, but no changes were observed in lumbosacral (L6-S1) spinal segments or DRG. These studies demonstrated TRPV1 and mast cell involvement in RVS-induced increased voiding frequency and suggest that TRPV1 and mast cells may be useful targets to mitigate stress-induced urinary bladder dysfunction.NEW & NOTEWORTHY Using pharmacological tools and transgenic mice in a repeated variate stress (RVS) model in female mice, we demonstrate that transient receptor potential vanilloid 1 (TRPV1) and mast cells contribute to the increased voiding frequency observed following RVS. TRPV1 and mast cells should continue to be considered as targets to improve bladder function in stress-induced bladder dysfunction.
Collapse
MESH Headings
- Animals
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/genetics
- Mast Cells/metabolism
- Female
- Urinary Bladder/metabolism
- Urinary Bladder/innervation
- Mice, Knockout
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Mice, Inbred C57BL
- Corticosterone/blood
- Disease Models, Animal
- Cystitis, Interstitial/metabolism
- Cystitis, Interstitial/physiopathology
- Cystitis, Interstitial/pathology
- Cystitis, Interstitial/genetics
- Mice
- Urination
- Capsaicin/pharmacology
- Capsaicin/analogs & derivatives
- Behavior, Animal
- Anxiety/metabolism
Collapse
Affiliation(s)
- Amanda B Sidwell
- Department of Neurological SciencesThe Larner College of Medicine, University of VermontBurlingtonVermontUnited States
| | - Beatrice M Girard
- Department of Neurological SciencesThe Larner College of Medicine, University of VermontBurlingtonVermontUnited States
| | - Susan E Campbell
- Department of Neurological SciencesThe Larner College of Medicine, University of VermontBurlingtonVermontUnited States
| | - Margaret A Vizzard
- Department of Neurological SciencesThe Larner College of Medicine, University of VermontBurlingtonVermontUnited States
| |
Collapse
|
5
|
Qualls KA, Xie W, Zhang J, Lückemeyer DD, Lackey SV, Strong JA, Zhang JM. Mineralocorticoid Receptor Antagonism Reduces Inflammatory Pain Measures in Mice Independent of the Receptors on Sensory Neurons. Neuroscience 2024; 541:64-76. [PMID: 38307407 PMCID: PMC11959365 DOI: 10.1016/j.neuroscience.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Corticosteroids are commonly used in the treatment of inflammatory low back pain, and their nominal target is the glucocorticoid receptor (GR) to relieve inflammation. They can also have similar potency at the mineralocorticoid receptor (MR). The MR has been shown to be widespread in rodent and human dorsal root ganglia (DRG) neurons and non-neuronal cells, and when MR antagonists are administered during a variety of inflammatory pain models in rats, pain measures are reduced. In this study we selectively knockout (KO) the MR in sensory neurons to determine the role of MR in sensory neurons of the mouse DRG in pain measures as MR antagonism during the local inflammation of the DRG (LID) pain model. We found that MR antagonism using eplerenone reduced evoked mechanical hypersensitivity during LID, but MR KO in paw-innervating sensory neurons only did not. This could be a result of differences between prolonged (MR KO) versus acute (drug) MR block or an indicator that non-neuronal cells in the DRG are driving the effect of MR antagonists. MR KO unmyelinated C neurons are more excitable under normal and inflamed conditions, while MR KO does not affect excitability of myelinated A cells. MR KO in sensory neurons causes a reduction in overall GR mRNA but is protective against reduction of the anti-inflammatory GRα isoform during LID. These effects of MR KO in sensory neurons expanded our understanding of MR's functional role in different neuronal subtypes (A and C neurons), and its interactions with the GR.
Collapse
Affiliation(s)
- Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jietong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sierra V Lackey
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
8
|
Feng X, Chen L, Zhou R, Bao X, Mou H, Ye L, Yang P. Blocking the Mineralocorticoid Receptor Improves Cognitive Impairment after Anesthesia/Splenectomy in Rats. Int J Med Sci 2021; 18:387-397. [PMID: 33390808 PMCID: PMC7757129 DOI: 10.7150/ijms.48767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Recent mounting studies showed that neuroinflammation caused by surgery or anesthesia is closely related to postoperative cognitive dysfunction (POCD). This study investigated the effect of mineralocorticoid receptor (MR) on neuroinflammation and POCD. To detect the MR effect in an animal model, we randomly divided rats into control, anesthesia, and surgery groups. To determine whether the MR-specific blocker eplerenone (EPL) could improve cognitive dysfunction, we assigned other animals into the control, surgery and EPL treatment, and surgery groups. Cognitive function was detected using the Morris water maze. Serum cytokine levels were measured by ELISA, and the histopathological changes of hippocampal neurons were identified by hematoxylin/eosin and Nissl staining. Our research confirmed that anesthesia and surgical stimulation could lead to IL-1β, IL-6, and TNF-α activation and hippocampal neuronal degeneration and pathological damage. MR was upregulated in the hippocampus under cognitive impairment condition. Additionally, EPL could alleviate inflammatory activation and neuronal damage by exerting neuroprotective effects. The preclinical model of sevoflurane anesthesia/splenectomy implied that MR expression is upregulated by regulating the neuroinflammation in the brain under POCD condition. Manipulating the MR expression by EPL could improve the inflammation activation and neuronal damage.
Collapse
Affiliation(s)
- Xixia Feng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Lu Chen
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Ruihao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xiuqun Bao
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| | - Hongxia Mou
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| |
Collapse
|
9
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
10
|
Ibrahim SIA, Strong JA, Qualls KA, Ulrich-Lai YM, Zhang JM. Differential Regulation of the Glucocorticoid Receptor in a Rat Model of Inflammatory Pain. Anesth Analg 2020; 131:298-306. [PMID: 31990732 DOI: 10.1213/ane.0000000000004652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Anti-inflammatory corticosteroids are a common treatment for different conditions involving chronic pain and inflammation. Clinically used steroids target the glucocorticoid receptor (GR) for its anti-inflammatory effects. We previously reported that GR in sensory neurons may play central roles in some pain models and that GR immunoreactivity signal in dorsal root ganglia (DRG) decreased after local inflammation of the DRG (a model of low back pain). In the current study, we aimed to determine if similar changes in GR signal also exist in a skin inflammation model, the complete Freund's adjuvant (CFA) model (a model of peripheral inflammatory pain), in which the terminals of the sensory neurons rather than the somata are inflamed. METHODS A low dose of CFA was injected into the hind paw to establish the peripheral inflammation model in Sprague-Dawley rats of both sexes, as confirmed by measurements of behavior and paw swelling. Immunohistochemical and western blotting techniques were used to determine the expression pattern of the GR in the inflamed hind paw and the DRGs. Plasma corticosterone levels were measured with radioimmunoassay. RESULTS The immunohistochemical staining revealed that GR is widely expressed in the normal DRG and skin tissues. Paw injection with CFA caused upregulation of the GR in the skin tissue on postinjection day 1, mostly detected in the dermis area. However, paw inflammation significantly reduced the GR signal in the L5 DRG 1 day after the injection. The GR downregulation was still evident 14 days after CFA inflammation. On day 1, western blotting confirmed this downregulation and showed that it could also be observed in the contralateral L5 DRG, as well as in the L2 DRG (a level which does not innervate the paw). Plasma corticosterone levels were elevated in both sexes on day 14 after CFA compared to day 1, suggesting autologous downregulation of the GR by corticosterone may have contributed to the downregulation observed on day 14 but not day 1. CONCLUSIONS There are distinctive patterns of GR activation under different pain conditions, depending on the anatomical location. The observed downregulation of the GR in sensory neurons may have a significant impact on the use of steroids as treatment in these conditions and on the regulatory effects of endogenous glucocorticoids.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | | | - Katherine A Qualls
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | - Yvonne M Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jun-Ming Zhang
- From the Department of Anesthesiology, Pain Research Center
| |
Collapse
|
11
|
Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats. Anesthesiology 2020; 132:867-880. [DOI: 10.1097/aln.0000000000003127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Background
Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons.
Methods
In male Wistar rats (n = 5 to 8 per group) with Freund’s complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase–polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application.
Results
In rats with Freund’s complete adjuvant–induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2).
Conclusions
Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
12
|
Chen FQ, Ge JF, Leng YF, Li C, Chen B, Sun ZL. Efficacy and safety of moxibustion for chronic low back pain: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract 2020; 39:101130. [PMID: 32379643 DOI: 10.1016/j.ctcp.2020.101130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To systematically review and meta-analyze the efficacy of moxibustion in treating patients with chronic low back pain (CLBP). METHODS A systematic search of the Cochrane Library, Web of Science, PubMed, Embase, EBSCO, CBM, Wanfang, CNKI and VIP (until November, 2019) was used to identify studies reporting pain intensity (VAS or NRS), disability (ODI or RMDQ), JOA score, and quality of life (SF-36) in patients with CLBP. Study selection, data extraction was performed critically and independently by two reviewers. Cochrane criteria for risk of bias was used to assess the methodological quality of the trials. The Grading of Recommendations Assessment, Development, and Evaluation Methodology (GRADE) was applied to test the quality of evidence from the quantitative analysis. RESULTS Ten RCTs, including 987 patients, met the inclusion criteria. Moxibustion had a superior effect on VAS score when compared with western medicine [RR = -1.69, 95%CI(-2.40, -0.98), p < 0.00001] and acupuncture [RR = -0.47, 95%CI(-0.92, -0.02), p=0.04], but it failed to do so when compared with core stability training [RR = -0.41, 95%CI(-0.87, 0.05), p=0.08]. The result showed that moxibustion plus other active treatments (including western medicine, massage, acupuncture and core stability training) had better effects on low back pain relief compared with active treatments alone. Moxibustion showed favourable effects on disability [SMD = -3.80, 95%CI (-5.49, -2.11), p < 0.0001], JOA score [MD = 4.10, 95%CI(2.30, 5.90), p < 0.00001], and SF-36 score [MD = 13.41, 95%CI(9.68, 17.14), p < 0.00001]. The evidence level of the results from the ten studies was determined to be very low to low. CONCLUSIONS It is difficult to draw firm conclusions that moxibustion is an effective intervention for treating CLBP due to the small sample size of eligible trails and the high risk of bias among the available articles. Rigorously designed large-scale RCTs are required to further confirm the results in this review.
Collapse
Affiliation(s)
- Feng-Qin Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Jian-Feng Ge
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Yu-Fei Leng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Cheng Li
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Bin Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Zhi-Ling Sun
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
13
|
Ibrahim SIA, Xie W, Strong JA, Tonello R, Berta T, Zhang JM. Mineralocorticoid Antagonist Improves Glucocorticoid Receptor Signaling and Dexamethasone Analgesia in an Animal Model of Low Back Pain. Front Cell Neurosci 2018; 12:453. [PMID: 30524245 PMCID: PMC6262081 DOI: 10.3389/fncel.2018.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Low back pain, a leading cause of disability, is commonly treated by epidural steroid injections that target the anti-inflammatory glucocorticoid receptor (GR). However, their efficacy has been controversial. All currently used epidural steroids also activate the pro-inflammatory mineralocorticoid receptor (MR) with significant potency. Local inflammation of the dorsal root ganglia (DRG), a rat model of low back pain, was used. This model causes static and dynamic mechanical allodynia, cold allodynia and guarding behavior (a measure of spontaneous pain), and activates the MR, with pro-nociceptive effects. In this study, effects of local Dexamethasone (DEX; a glucocorticoid used in epidural injections), and eplerenone (EPL; a second generation, more selective MR antagonist) applied to the DRG at the time of inflammation were examined. Mechanical and spontaneous pain behaviors were more effectively reduced by the combination of DEX and EPL than by either alone. The combination of steroids was particularly more effective than DEX alone or the model alone (3-fold improvement for mechanical allodynia) at later times (day 14). Immunohistochemical analysis of the GR in the DRG showed that the receptor was expressed in neurons of all size classes, and in non-neuronal cells including satellite glia. The GR immunoreactivity was downregulated by DRG inflammation (48%) starting on day 1, consistent with the reduction of GR (57%) observed by Western blot, when compared to control animals. On day 14, the combination of DEX and EPL resulted in rescue of GR immunoreactivity that was not seen with DEX alone, and was more effective in reducing a marker for satellite glia activation/neuroinflammation. The results suggest that EPL may enhance the effectiveness of clinically used epidural steroid injections, in part by enhancing the availability of the GR. Thus, the glucocorticoid-mineralocorticoid interactions may limit the effectiveness of epidural steroids through the regulation of the GR in the DRG.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
14
|
Park TSW, Kuo A, Smith MT. Chronic low back pain: a mini-review on pharmacological management and pathophysiological insights from clinical and pre-clinical data. Inflammopharmacology 2018; 26:10.1007/s10787-018-0493-x. [PMID: 29754321 DOI: 10.1007/s10787-018-0493-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Globally, low back pain (LBP) is one of the most common health problems affecting humans. The lifetime prevalence of non-specific LBP is approximately 84%, with the chronic prevalence at about 23%. Chronic LBP in humans is defined as LBP that persists for more than 12 weeks without a significant pain improvement. Although there are numerous evidence-based guidelines on the management of acute LBP, this is not the case for chronic LBP, which is regarded as particularly difficult to treat. Research aimed at discovering new drug treatments for alleviation of chronic mechanical LBP is lacking due to the paucity of knowledge on the pathobiology of this condition, despite its high morbidity in the affected adult population. For a debilitating condition such as chronic LBP, it is necessary to assess the sustained effects of pharmacotherapy of various agents spanning months to years. Although many rodent models of mechanical LBP have been developed to mimic the human condition, some of the major shortcomings of many of these models are (1) the presence of a concurrent neuropathic component that develops secondary to posterior intervertebral disc puncture, (2) severe model phenotype, and/or (3) use of behavioural endpoints that have yet to be validated for pain. Hence, there is a great, unmet need for research aimed at discovering new biological targets in rodent models of chronic mechanical LBP for use in drug discovery programs as a means to potentially produce new highly effective and well-tolerated analgesic agents to improve relief of chronic LBP. On a cautionary note, it must be borne in mind that because humans and rats display orthograde and pronograde postures, respectively, the different mechanical forces on their spines add to the difficulty in translation of promising rodent data to humans.
Collapse
Affiliation(s)
- Thomas S W Park
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, Steele Building, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Pharmacy, Pharmacy Australia Centre of Excellence, Faculty of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
15
|
Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation. Pain 2017; 157:879-891. [PMID: 26785322 DOI: 10.1097/j.pain.0000000000000453] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.
Collapse
|
16
|
Macrì S. Neonatal corticosterone administration in rodents as a tool to investigate the maternal programming of emotional and immune domains. Neurobiol Stress 2016; 6:22-30. [PMID: 28229106 PMCID: PMC5314439 DOI: 10.1016/j.ynstr.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Collapse
|
17
|
Ibrahim SIA, Strong JA, Zhang JM. Mineralocorticoid Receptor, A Promising Target for Improving Management of Low Back Pain by Epidural Steroid Injections. ACTA ACUST UNITED AC 2016; 3:177-184. [PMID: 28956026 PMCID: PMC5611848 DOI: 10.24015/japm.2016.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM OF REVIEW Low back pain is a major health problem in United States and worldwide. In this review, we aim to show that mineralocorticoid receptor (MR) activation has a critical role in the initiation of immune and inflammatory responses, which in turn can impact the effectiveness of the currently used steroids for epidural injections in low back pain management since most steroids activate MR in addition to the primary target, glucocorticoid receptor (GR). Moreover, we would like to determine some of the benefits of blocking the MR-induced negative effects. Overall, we propose a novel therapeutic approach for low back pain management by using a combination of a MR antagonist and a GR agonist in the epidural injections. METHOD We will first introduce the societal cost of low back pain and discuss how epidural steroid injections became a popular treatment for this condition. We will then describe several preclinical models used for the study of low back pain conditions and the findings with respect to the role of MR in the development of inflammatory low back pain. RECENT FINDINGS MR has pro-inflammatory effects in many tissues which can counteract the anti-inflammatory effects induced by GR activation. Blocking MR using the selective MR antagonist eplerenone can reduce pain and sensory neuron excitability in experimental models of low back pain. Moreover, combining the MR antagonist with clinically used steroids is more effective in reducing pain behaviors than using the steroids alone. SUMMARY MR antagonists are promising candidates to increase the effectiveness of currently used steroids. Since the activation of the MR is evident in preclinical models of low back pain, blocking its deleterious effects can be beneficial in managing inflammatory pain conditions.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
18
|
Jokinen V, Lilius T, Laitila J, Niemi M, Kambur O, Kalso E, Rauhala P. Do Diuretics have Antinociceptive Actions: Studies of Spironolactone, Eplerenone, Furosemide and Chlorothiazide, Individually and with Oxycodone and Morphine. Basic Clin Pharmacol Toxicol 2016; 120:38-45. [PMID: 27312359 DOI: 10.1111/bcpt.12634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
Spironolactone, eplerenone, chlorothiazide and furosemide are diuretics that have been suggested to have antinociceptive properties, for example via mineralocorticoid receptor antagonism. In co-administration, diuretics might enhance the antinociceptive effect of opioids via pharmacodynamic and pharmacokinetic mechanisms. Effects of spironolactone (100 mg/kg, i.p.), eplerenone (100 mg/kg, i.p.), chlorothiazide (50 mg/kg, i.p.) and furosemide (100 mg/kg, i.p.) were studied on acute oxycodone (0.75 mg/kg, s.c.)- and morphine (3 mg/kg, s.c.)-induced antinociception using tail-flick and hot plate tests in male Sprague Dawley rats. The diuretics were administered 30 min. before the opioids, and behavioural tests were performed 30 and 90 min. after the opioids. Concentrations of oxycodone, morphine and their major metabolites in plasma and brain were quantified by mass spectrometry. In the hot plate test at 30 and 90 min., spironolactone significantly enhanced the antinociceptive effect (% of maximum possible effect) of oxycodone from 10% to 78% and from 0% to 50%, respectively, and that of morphine from 12% to 73% and from 4% to 83%, respectively. The brain oxycodone and morphine concentrations were significantly increased at 30 min. (oxycodone, 46%) and at 90 min. (morphine, 190%). We did not detect any independent antinociceptive effects with the diuretics. Eplerenone and chlorothiazide did not enhance the antinociceptive effect of either opioid. The results suggest that spironolactone enhances the antinociceptive effect of both oxycodone and morphine by increasing their concentrations in the central nervous system.
Collapse
Affiliation(s)
- Viljami Jokinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouko Laitila
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Oleg Kambur
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Iacob E, Light AR, Donaldson GW, Okifuji A, Hughen RW, White AT, Light KC. Gene Expression Factor Analysis to Differentiate Pathways Linked to Fibromyalgia, Chronic Fatigue Syndrome, and Depression in a Diverse Patient Sample. Arthritis Care Res (Hoboken) 2016; 68:132-40. [PMID: 26097208 DOI: 10.1002/acr.22639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To determine if independent candidate genes can be grouped into meaningful biologic factors, and whether these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS), while controlling for comorbid depression, sex, and age. METHODS We included leukocyte messenger RNA gene expression from a total of 261 individuals, including healthy controls (n = 61), patients with FMS only (n = 15), with CFS only (n = 33), with comorbid CFS and FMS (n = 79), and with medication-resistant (n = 42) or medication-responsive (n = 31) depression. We used exploratory factor analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine whether these factors were associated with specific diagnoses. RESULTS EFA resulted in 4 independent factors with minimal overlap of genes between factors, explaining 51% of the variance. We labeled these factors by function as 1) purinergic and cellular modulators, 2) neuronal growth and immune function, 3) nociception and stress mediators, and 4) energy and mitochondrial function. Regression analysis predicting these biologic factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (Quick Inventory for Depression Symptomatology score), but not associated with FMS. CONCLUSION Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters, but in opposite directions, when controlling for comorbid FMS. Given high comorbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression.
Collapse
|
20
|
Shaqura M, Li X, Al-Madol MA, Tafelski S, Beyer-Koczorek A, Mousa SA, Schäfer M. Acute mechanical sensitization of peripheral nociceptors by aldosterone through non-genomic activation of membrane bound mineralocorticoid receptors in naive rats. Neuropharmacology 2016; 107:251-261. [PMID: 27016023 DOI: 10.1016/j.neuropharm.2016.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/24/2022]
Abstract
Recently, there is increasing interest in the role of peripheral mineralocorticoid receptors (MR) to modulate pain, but their localization in neurons and glia of the periphery and their distinct involvement in pain control remains elusive. In naive Wistar rats our double immunofluorescence confocal microscopy of the spinal cord, dorsal root ganglia, sciatic nerve and innervated skin revealed that MR predominantly colocalized with calcitonin-gene-related peptide (CGRP)- and trkA-immunoreactive (IR) nociceptive neurons and only marginally with myelinated trkB-IR mechanoreceptive and trkC-IR proprioreceptive neurons underscoring a pivotal role for MR in the modulation of pain. MR could not be detected in Schwann cells, satellite cells, and astrocytes and only scarcely in spinal microglia cells excluding a relevant functional role of glia-derived MR at least in naïve rats. Intrathecal (i.t.) and intraplantar (i.pl.) application of increasing doses of the MR selective agonist aldosterone acutely increased nociceptive behavior which was reversible by a MR selective antagonist and most likely due to non-genomic effects. This was further substantiated by the first identification of membrane bound MR specific binding sites in sensory neurons of dorsal root ganglia and spinal cord. Therefore, a crucial role of MR on nociceptive neurons but not on glia cells and their impact on nociceptive behavior most likely due to immediate non-genomic effects has to be considered under normal but more so under pathological conditions in future studies.
Collapse
Affiliation(s)
- Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Xiongjuan Li
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mohammed A Al-Madol
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Sascha Tafelski
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Antje Beyer-Koczorek
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
21
|
Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC. Neuroactive steroids and the peripheral nervous system: An update. Steroids 2015; 103:23-30. [PMID: 25824325 PMCID: PMC6314841 DOI: 10.1016/j.steroids.2015.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 02/09/2023]
Abstract
In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Romano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marzia Pesaresi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gaia Cermenati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
22
|
Gao W, Ren Y, Cui GX. Dexamethasone added to local lidocaine for infiltration along the spinal-epidural needle pathway decreases incidence and severity of backache after gynecological surgery. Med Sci Monit 2015; 21:821-7. [PMID: 25785683 PMCID: PMC4374485 DOI: 10.12659/msm.892620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the effect of dexamethasone added to local lidocaine infiltration on incidence and severity of backache after combined spinal-epidural anesthesia for gynecological surgery. MATERIAL AND METHODS We randomly allocated 160 patients to receive either local lidocaine infiltration along the pathway of the spinal-epidural needle (Group L) or local dexamethasone and lidocaine infiltration (Group DL). The incidence and scores for back pain were evaluated on the first, second, and third day (acute lumbago) and first, second, and sixth month (chronic lumbago) after surgery. Fentanyl consumption for management of back pain was recorded. RESULTS The incidence of acute, subacute, and chronic back pain was significantly lower in the DL group than the L group (P<0.05 for all comparisons). The VAS score for back pain on the first and second day and first and second month, were significantly lower in the DL group than the L group (P=0.0028, P=0.017; P<0.001, both), but there were no significant differences on the third day and sixth month. Fentanyl consumption in the first 3 postoperative days was significantly lower in the DL group than in the L group (P<0.001). The incidence of back pain during the first, second, and sixth month in patients who did not have preoperative lumbago were significantly lower in the DL group than in the L group (P<0.001, both). CONCLUSIONS Addition of dexamethasone to local lidocaine infiltration effectively decreases the incidence and severity of back pain after combined spinal-epidural anesthesia implemented for gynecological surgery.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yi Ren
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guang Xiao Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
23
|
Drummond PD, Finch PM. Sympathetic blockade for complex regional pain syndrome. Pain 2014; 155:2218-2219. [PMID: 25218599 DOI: 10.1016/j.pain.2014.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Peter D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, and the School of Psychology and Exercise Science, Murdoch University, Perth 6150, Australia
| | | |
Collapse
|