1
|
Kobzeva K, Ivenkov M, Gromov R, Bushueva O. HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis. Front Biosci (Schol Ed) 2024; 16:19. [PMID: 39736019 DOI: 10.31083/j.fbs1604019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies. AIM Our objective was to examine the potential correlation between single nucleotide polymorphisms (SNPs) in genes that encode members of the Heat shock protein 90 (HSP90), small heat shock proteins (HSPB), and heat shock factors (HSF) families, and the risk and clinical characteristics of IS. METHODS 953 IS patients and 1265 controls from Central Russia were genotyped for nine SNPs in genes encoding HSP90AA1, HSFs, and HSPBs using the MassArray-4 system and probe-based polymerase chain reaction (PCR). RESULTS In smokers, SNP rs1133026 HSPB8 increased the risk of IS (risk allele A, odds ratio (OR) = 1.43, 95% Confidence Interval (CI) 1.02-2.02, p = 0.035), and rs556439 HSF2 increased the brain infarct size (risk allele A, p = 0.02). In non-smokers, SNPs rs4279640 HSF1 (protective allele T, OR = 0.58, 95% CI 0.37-0.92, p = 0.02) and rs4264324 HSP90AA1 (protective allele C, OR = 0.11, 95% CI 0.01-0.78, p = 0.001) lowered the risk of recurrent stroke; SNP rs7303637 HSPB8 increased the age of onset of IS (protective allele T, p = 0.04). In patients with body mass index (BMI) ≥25, SNPs rs556439 HSF2 (risk allele A, OR = 1.33, 95% CI 1.04-1.69, p = 0.02) and rs549302 HSF2 (risk allele G, OR = 1.34, 95% CI 1.02-1.75, p = 0.03) were linked to a higher risk of IS. CONCLUSIONS The primary molecular mechanisms through which the studied SNPs contribute to IS pathogenesis were found to be the regulation of cell death, inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Ivenkov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Rostislav Gromov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
2
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
3
|
Zhang W, Zhao M, Xin L, Qi X, Cao P, Wang J, Li X. Bioinformatics-based identification and validation of hub genes associated with aging in patients with coronary artery disease. Aging (Albany NY) 2023; 15:14830-14844. [PMID: 38097358 PMCID: PMC10781473 DOI: 10.18632/aging.205309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/02/2023] [Indexed: 01/07/2024]
Abstract
Coronary artery disease (CAD) is the most common aging-related disease in adults. We used bioinformatics analysis to study genes associated with aging in patients with CAD. The microarray data of the GSE12288 dataset were downloaded from the Gene Expression Omnibus database to obtain 934 CAD-associated differentially expressed genes. By overlaying them with aging-related genes in the Aging Atlas database, 33 differentially expressed aging-related genes (DEARGs) were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the 33 DEARGs were mainly enriched in cell adhesion and activation, Th17 and Th1/Th2 cell differentiation, and longevity regulation pathways. Hub genes were further screened using multiple algorithms of Cytoscape software and validation set GSE71226. Clinical samples were then collected, and the expression of hub genes in whole blood was detected by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot at the transcription and translation levels. Finally, HSP90AA1 and CEBPA were identified as hub genes. The results of this study suggest that HSP90AA1 and CEBPA are closely related to CAD. These findings provide a theoretical basis for the association between aging effectors and CAD, and indicate that these genes may be promising biomarkers for the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Wangmeng Zhang
- Department of Obstetrics, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an 271000, Shandong, China
| | - Minmin Zhao
- Department of Obstetrics, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an 271000, Shandong, China
| | - Li Xin
- Department of Cardiology, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an 271000, Shandong, China
| | - Ximei Qi
- Department of Cardiology, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an 271000, Shandong, China
| | - Ping Cao
- Department of Geriatrics, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an 271000, Shandong, China
| | - Jiyan Wang
- Department of Internal Medicine, The Fourth People's Hospital of Tai’an City, Tai’an 271000, Shandong, China
| | - Xin Li
- Department of Obstetrics, Tai’an Maternal and Child Health Care Hospital, Tai’an 271000, Shandong, China
| |
Collapse
|
4
|
Rodrigues SD, da Silva MLS, Martins LZ, Gomes SEB, Mariani NAP, Silva EJR, Kushima H, Mattos BR, Rizzi E, Dias-Junior CA. Pregnancy hypertension-associated endothelial dysfunction is attenuated by isoflurane anesthesia: Evidence of protective effect related to increases in nitric oxide. Life Sci 2023; 331:122039. [PMID: 37648198 DOI: 10.1016/j.lfs.2023.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
AIMS Pregnancy hypertension-induced endothelial dysfunction associated with impairment of nitric oxide (NO) bioavailability and hemodynamic derangements is a challenging for urgent procedures requiring maternal anesthesia. The volatile anesthetic isoflurane has demonstrated NO-associated protective effects. However, this isoflurane-induced effect is still unclear in pregnancy hypertension. Therefore, the present study examined the potential protective effects of isoflurane anesthesia on endothelial dysfunction and hemodynamic changes induced by hypertensive pregnancy associated with fetal and placental growth restrictions. MATERIALS AND METHODS Animals were distributed into four groups: normotensive pregnant rats (Preg), anesthetized pregnant rats (Preg+Iso), hypertensive pregnant rats (HTN-Preg), and anesthetized hypertensive pregnant rats (HTN-Preg+Iso). Systolic and diastolic pressures, mean arterial pressure (MAP), heart rate, fetal and placental weights, vascular contraction, endothelium-derived NO-dependent vasodilation, and NO levels were assessed. The vascular endothelial growth factor (VEGF) levels and endothelial NO synthase (eNOS) Serine (1177) phosphorylation (p-eNOS) expression were also examined. KEY FINDINGS Isoflurane produced more expressive hypotensive effects in the HTN-Preg+Iso versus Preg+Iso group, with respective reductions in MAP by 50 ± 13 versus 25 ± 4 mmHg (P < 0.05). Also, HTN-Preg+Iso compared to the HTN-Preg group showed (respectively) preventions against the weight loss of the fetuses (4.0 ± 0.6 versus 2.8 ± 0.6 g, P < 0.05) and placentas (0.37 ± 0.06 versus 0.30 ± 0.06 mg, P < 0.05), hyper-reactive vasocontraction response (1.8 ± 0.4 versus 2.8 ± 0.6 g, P < 0.05), impaired endothelium-derived NO-dependent vasodilation (84 ± 8 versus 50 ± 17 %, P < 0.05), reduced VEGF levels (147 ± 46 versus 25 ± 13 pg/mL, P < 0.05), and decreased p-eNOS expression (0.24 ± 0.07 versus 0.09 ± 0.05 arbitrary units, P < 0.05). SIGNIFICANCE Isoflurane anesthesia protects maternal endothelial function in pregnancy hypertension, and possibly endothelium-derived NO is involved.
Collapse
Affiliation(s)
- Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Sáskia Estela Biasotti Gomes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Hélio Kushima
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil.
| |
Collapse
|
5
|
Johnson-Schlitz D, Fischer JA, Schiffman HJ, Scharenbrock AR, Olufs ZPG, Wassarman DA, Perouansky M. Anesthetic Preconditioning of Traumatic Brain Injury Is Ineffective in a Drosophila Model of Obesity. J Pharmacol Exp Ther 2022; 381:229-235. [PMID: 35347062 PMCID: PMC9190232 DOI: 10.1124/jpet.121.000997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2022] [Indexed: 07/09/2024] Open
Abstract
We tested the hypothesis that obesity influences the pharmacodynamics of volatile general anesthetics (VGAs) by comparing effects of anesthetic exposure on mortality from traumatic brain injury (TBI) in lean and obese Drosophila melanogaster We induced TBI with a high-impact trauma device. Starvation-selection over multiple generations resulted in an obese phenotype (SS flies). Fed flies served as lean controls (FC flies). Adult (1-8-day-old) SS and FC flies were exposed to equianesthetic doses of isoflurane or sevoflurane either before or after TBI. The principal outcome was percent mortality 24 hours after injury, expressed as the Mortality Index at 24 hours (MI24). TBI resulted in a lower MI24 in FC than in SS flies [21 (2.35) and 57.8 (2.14), respectively n = 12, P = 0.0001]. Pre-exposure to isoflurane or sevoflurane preconditioned FC flies to TBI, reducing the risk of death to 0.53 (0.25 to 1.13) and 0.82 (0.43 to 1.58), respectively, but had no preconditioning effect in SS flies. Postexposure to isoflurane or sevoflurane increased the risk of death in SS flies, but only postexposure to isoflurane increased the risk in FC flies [1.39 (0.81 to 2.38)]. Thus, obesity affects the pharmacodynamics of VGAs, thwarting the preconditioning effect of isoflurane and sevoflurane in TBI. SIGNIFICANCE STATEMENT: Inadvertent preconditioning in models of traumatic brain injury (TBI) is a recognized confounder. The findings in a fruit fly (Drosophila melanogaster) model of closed-head TBI indicate that anesthetic pharmacodynamics are profoundly affected by obesity. Specifically, obesity thwarts the brain-protective effect of anesthetic preconditioning. This finding is important for experimental studies of TBI and supports the versatility of the fruit fly as a model for the exploration of anesthetic pharmacodynamics in a wide parameter space.
Collapse
Affiliation(s)
- Dena Johnson-Schlitz
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Julie A Fischer
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Hannah J Schiffman
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Amanda R Scharenbrock
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Zachariah P G Olufs
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - David A Wassarman
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Misha Perouansky
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Zisimopoulos DN, Kalaitzopoulou E, Skipitari M, Papadea P, Panagopoulos NT, Salahas G, Georgiou CD. Detection of superoxide radical in all biological systems by Thin Layer Chromatography. Arch Biochem Biophys 2021; 716:109110. [PMID: 34958749 DOI: 10.1016/j.abb.2021.109110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The study presents a new method that detects O2•-, via quantification of 2-hydroxyethidium (2-ΟΗ-Ε+) as low as ∼30 fmoles by High-Performance Thin Layer Chromatography (HPTLC). The method isolates 2-ΟΗ-Ε+ after its extraction by the anionic detergent SDS (at 18-fold higher than its CMC) together with certain organic/inorganic reagents, and its HPTLC-separation from di-ethidium (di-Ε+) and ethidium (Ε+). Quantification of 2-OH-E+ is based on its ex/em maxima at 290/540 nm, and of di-E+ and E+ at 295/545 nm. The major innovations of the present method are the development of protocols for (i) efficient extraction (by SDS) and (ii) sensitive quantification (by HPTLC) for 2-OH-E+ (as well as di-E+ and E+) from most biological systems (animals, plants, cells, subcellular compartments, fluids). The method extracts 2-ΟΗ-Ε+ (by neutralizing the strong binding between its quaternary N+ and negatively charged sites on phospholipids, DNA etc) together with free HE, while protects both from biological oxidases, and also extracts/quantifies total proteins (hydrophilic and hydrophobic) for expressing O2•- levels per protein quantity. The method also uses SDS (at 80-fold lower than its CMC) to extract/remove/wash 2-ΟΗ-Ε+ from cell/organelle exterior membrane sites, for more accurate internal content quantification. The new method is applied on indicative biological systems: (1) artificially stressed (mouse organs and liver mitochondria and nuclei, ±exposed to paraquat, a known O2•- generator), and (2) physiologically stressed (cauliflower plant, exposed to light/dark).
Collapse
Affiliation(s)
- Dimitrios N Zisimopoulos
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece.
| | - Electra Kalaitzopoulou
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece.
| | - Marianna Skipitari
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece.
| | - Polyxeni Papadea
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece.
| | | | | | - Christos D Georgiou
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece.
| |
Collapse
|
7
|
He ST, Wang DX, Meng JJ, Cheng XF, Bi Q, Zhong GQ, Tu RH. HSP90-Mediates Liraglutide Preconditioning-Induced Cardioprotection by Inhibiting C5a and NF-κB. J INVEST SURG 2021; 35:1012-1020. [PMID: 34670452 DOI: 10.1080/08941939.2021.1989729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We previously showed that HSP90 is involved in postconditioning cardioprotection by inhibiting complement C5a. Here, we investigated whether HSP90-mediated C5a/NF-κB inhibition is responsible for the cardioprotection conferred by liraglutide. METHODS Rat hearts underwent a 30 min occlusion of the anterior descending coronary artery, after which reperfusion was performed for 2 h. A total of 100 rats were randomly assigned to the following groups: ischemia/reperfusion (I/R), sham, liraglutide preconditioning (LP, liraglutide, 0.18 mg/kg, intravenously, 12 h before ischemia), HSP90 inhibitor geldanamycin (GA, 1 mg/kg, intraperitoneally, 30 min before ischemia) plus LP, and C5a receptor antagonist PMX53 (1 mg/kg, intravenously, 30 min before ischemia) plus LP. Cardiac injury, C5a/NF-κB activation, and inflammation were investigated. RESULTS LP significantly attenuated I/R-induced cardiomyocyte apoptosis, infarct size, and secretion of creatine kinase-MB, lactate dehydrogenase and cardiac troponin I. These effects were complemented by decreased C5a levels, nuclear factor (NF)-κB signaling, inflammatory cytokine expression, and increased HSP90 levels. GA, an HSP90 inhibitor, promotes C5a activation, NF-κB signaling, and inflammation and suppresses cardioprotection by LP. By contrast, PMX53, a C5a inhibitor, suppressed C5a activation, NF-κB signaling, and inflammation, and enhanced cardioprotection by LP. CONCLUSION HSP90 markedly contributes to LP cardioprotection by inhibiting inflammatory responsesand C5a/NF-κB signaling , ultimately attenuating I/R-induced cardiomyocyte apoptosis by suppressing the proapoptotic factor Bax, and inducing the anti-apoptotic factor Bcl2.
Collapse
Affiliation(s)
- Shi-Tao He
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jian-Jun Meng
- Geriatric Healthcare Center, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Fang Cheng
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Qi Bi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China.,Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.,Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci 2021; 11:77. [PMID: 33902691 PMCID: PMC8073961 DOI: 10.1186/s13578-021-00587-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization, metabolic syndrome (MetS) can be defined as a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. The incidence of MetS keeps rising, as at least 35% of the USA population suffers from MetS. One of the worst comorbidities of metabolic syndrome are cardiovascular diseases that significantly amplifies the mortality associated with this syndrome. There is an urgent need to understand the pathophysiology of MetS to find novel diagnosis, treatment and management to mitigate the MetS and associated complications. Altered circulatory adiponectin levels have been implicated in MetS. Adiponectin has numerous biologic functions including antioxidative, anti-nitrative, anti-inflammatory, and cardioprotective effects. Being a pleiotropic hormone of multiple tissues, tissue-specific key signaling pathways of adiponectin will help finding specific target/s to blunt the pathophysiology of metabolic syndrome and associated disorders. The purpose of this review is to elucidate tissue-specific signaling pathways of adiponectin and possibly identify potential therapeutic targets for MetS as well as to evaluate the potential of adiponectin as a biomarker/therapeutic option in MetS.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| |
Collapse
|
9
|
Luethy A, Kindler CH, Cotten JF. Anesthetic pretreatment confers thermotolerance on Saccharomyces cerevisiae yeast. Biochem Biophys Res Commun 2019; 522:479-484. [PMID: 31780265 DOI: 10.1016/j.bbrc.2019.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae yeast, when pretreated with elevated temperatures, undergo adaptive changes that promote survival after an otherwise lethal heat stress. The heat shock response, a cellular stress response variant, mediates these adaptive changes. Ethanol, a low-potency anesthetic, promotes thermotolerance possibly through heat shock response activation. Therefore, we hypothesized other anesthetic compounds, like ethanol, may invoke the heat shock response to promote thermotolerance. To test this hypothesis, we pretreated yeast with a series of non-volatile anesthetic and anesthetic-related compounds and quantified survival following lethal heat shock (52 °C for 5 min). Most compounds invoked thermoprotection and promoted survival with a potency proportional to hydrophobicity: tribromoethanol (5.6 mM, peak survival response), trichloroethanol (17.8 mM), dichloroethanol (100 mM), monochloroethanol (316 mM), trifluoroethanol (177.8 mM), ethanol (1 M), isopropanol (1 M), propofol (316 μM), and carbon tetrabromide (32 μM). Thermoprotection conferred by pretreatment with elevated temperatures was "left shifted" by anesthetic co-treatment from (in °C) 35.3 ± 0.1 to 32.2 ± 0.1 with trifluoroethanol (177.8 mM), to 31.2 ± 0.1 with trichloroethanol (17.8 mM), and to 29.1 ± 0.3 with tribromoethanol (5.6 mM). Yeast in postdiauxic shift growth phase, relative to mid-log, responded with greater heat shock survival; and media supplementation with tryptophan and leucine blocked thermoprotection, perhaps by reversing the amino acid starvation response. Our results suggest S. cerevisase may serve as a model organism for understanding anesthetic toxicity and anesthetic preconditioning, a process by which anesthetics promote tissue survival after hypoxic insult.
Collapse
Affiliation(s)
- Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA; Department of Anesthesia, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| | - Christoph H Kindler
- Department of Anesthesia, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J 2019; 39:1028-1037. [PMID: 28329231 PMCID: PMC6018784 DOI: 10.1093/eurheartj/ehx030] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Remote ischaemic preconditioning (RIPC) by inducing brief ischaemia in distant tissues protects the heart against myocardial ischaemia-reperfusion injury (IRI) in children undergoing open-heart surgery, although its effectiveness in adults with comorbidities is controversial. The effectiveness and mechanism of RIPC with respect to myocardial IRI in children with tetralogy of Fallot (ToF), a severe cyanotic congenital cardiac disease, undergoing open heart surgery are unclear. We hypothesized that RIPC can confer cardioprotection in children undergoing ToF repair surgery. Methods and results Overall, 112 ToF children undergoing radical open cardiac surgery using cardiopulmonary bypass (CPB) were randomized to either a RIPC group (n = 55) or a control group (n = 57). The RIPC protocol consisted of three cycles of 5-min lower limb occlusion and 5-min reperfusion using a cuff-inflator. Serum inflammatory cytokines and cardiac injury markers were measured before surgery and after CPB. Right ventricle outflow tract (RVOT) tissues were collected during the surgery to assess hypoxia-inducible factor (Hif)-1α and other signalling proteins. Cardiac mitochondrial injury was assessed by electron microscopy. The primary results showed that the length of stay in the intensive care unit (ICU) was longer in the control group than in the RIPC group (52.30 ± 13.43 h vs. 47.55 ± 10.34 h, respectively, P = 0.039). Patients in the control group needed longer post-operative ventilation time compared to the RIPC group (35.02 ± 6.56 h vs. 31.96 ± 6.60 h, respectively, P = 0.016). The levels of post-operative serum troponin-T at 12 and 18 h, CK-MB at 24 h, as well as the serum h-FABP levels at 6 h, after CPB were significantly lower, which was coincident with significantly higher protein expression of cardiac Hif-1α, p-Akt, p-STAT3, p-STAT5, and p-eNOS and less vacuolization of mitochondria in the RIPC group compared to the control group. Conclusion In ToF children undergoing open heart surgery, RIPC attenuates myocardial IRI and improves the short-term prognosis.
Collapse
Affiliation(s)
- Qingping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tingting Wang
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Quanjun Zhou
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haobo Li
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Na Hu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yinglu Feng
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
11
|
Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res 2019; 1726:146510. [PMID: 31628932 DOI: 10.1016/j.brainres.2019.146510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Concussion, also referred to as mild traumatic brain injury (mTBI) is the most common type of traumatic brain injury. Currently concussion is an area ofintensescientific interest to better understand the biological mechanisms and for biomarker development. We evaluated whole genome-wide blood DNA cytosine ('CpG') methylation in 17 pediatric concussion isolated cases and 18 unaffected controls using Illumina Infinium MethylationEPIC assay. Pathway analysis was performed using Ingenuity Pathway Analysis to help elucidate the epigenetic and molecular mechanisms of the disorder. Area under the receiver operating characteristics (AUC) curves and FDR p-values were calculated for mTBI detection based on CpG methylation levels. Multiple Artificial Intelligence (AI) platforms including Deep Learning (DL), the newest form of AI, were used to predict concussion based on i) CpG methylation markers alone, and ii) combined epigenetic, clinical and demographic predictors. We found 449 CpG sites (473 genes), those were statistically significantly methylated in mTBI compared to controls. There were four CpGs with excellent individual accuracy (AUC ≥ 0.90-1.00) while 119 displayed good accuracy (AUC ≥ 0.80-0.89) for the prediction of mTBI. The CpG methylation changes ≥10% were observed in many CpG loci after concussion suggesting biological significance. Pathway analysis identified several biologically important neurological pathways that were perturbed including those associated with: impaired brain function, cognition, memory, neurotransmission, intellectual disability and behavioral change and associated disorders. The combination of epigenomic and clinical predictors were highly accurate for the detection of concusion using AI techniques. Using DL/AI, a combination of epigenomic and clinical markers had sensitivity and specificity ≧95% for prediction of mTBI. In this novel study, we identified significant methylation changes in multiple genes in response to mTBI. Gene pathways that were epigenetically dysregulated included several known to be involved in neurological function, thus giving biological plausibility to our findings.
Collapse
|
12
|
Sharma RK, Parameswaran S. Calmodulin-binding proteins: A journey of 40 years. Cell Calcium 2018; 75:89-100. [PMID: 30205293 DOI: 10.1016/j.ceca.2018.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
Abstract
The proteins which bind to calmodulin in a Ca2+-dependent and reversible manner are known as calmodulin-binding proteins. These proteins are involved in a multitude of processes in which Ca2+ and calmodulin play crucial roles. Our group elucidated the mechanism and importance of these proteins in normal and diseased conditions. Various calmodulin-binding proteins were discovered and purified from bovine tissue including a heat stable calmodulin-binding protein 70, calmodulin-dependent protein kinase VI and a high molecular weight calmodulin-binding protein (HMWCaMBP). We observed a complex interplay occurs between these and other Ca2+ and calmodulin-binding proteins during cardiac ischemia and reperfusion. Purified cardiac HMWCaMBP is a homolog form of calpastatin and an inhibitor of the Ca2+-activated cysteine proteases, calpains and therefore can have cardioprotective role in ischemic conditions. Calcineurin is a Ca2+ and calmodulin-dependent serine/threonine protein phosphatase showed increased phosphatase activity in ischemic heart through its direct interaction with Hsp70 and expression of calcineurin following ischemia suggests self-repair and favorable survival outcomes. Calcineurin was also found to be present in other tissues including the eye; where its expression and calcineurin phosphatase activity varied. In neurons, calcineurin may play a key role in initiating apoptosis-related pathways especially in epilepsy. In colorectal cancer we demonstrated high calcineurin phosphatase activity and simultaneous overexpression of calcineurin. The impact of calcineurin signaling on neuronal apoptosis in epilepsy and its use as a diagnostic marker for colorectal cancer requires in-depth study.
Collapse
Affiliation(s)
- Rajendra K Sharma
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon S7N 5E5, Canada.
| | - Sreejit Parameswaran
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon S7N 5E5, Canada
| |
Collapse
|
13
|
Panisello-Roselló A, Lopez A, Folch-Puy E, Carbonell T, Rolo A, Palmeira C, Adam R, Net M, Roselló-Catafau J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol 2018; 24:2984-2994. [PMID: 30038465 PMCID: PMC6054945 DOI: 10.3748/wjg.v24.i27.2984] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury (IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| | - Alexandre Lopez
- Centre Hepatobiliare, AP-HP Hôpital Paul Brousse, Villejuif 75008, France
| | - Emma Folch-Puy
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, Barcelona 08036, Spain
| | - Anabela Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - René Adam
- Centre Hepatobiliare, AP-HP Hôpital Paul Brousse, Villejuif 75008, France
| | - Marc Net
- Institute Georges Lopez, Lissieu 69380, France
| | - Joan Roselló-Catafau
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona 08036, Spain
| |
Collapse
|
14
|
Du Y, Wang M, Liu X, Zhang J, Xu X, Xu H, Sun G, Sun X. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes. Front Pharmacol 2018; 9:180. [PMID: 29719506 PMCID: PMC5914297 DOI: 10.3389/fphar.2018.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023] Open
Abstract
Araloside C (AsC) is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R)-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM) for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6), and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12). Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.
Collapse
Affiliation(s)
- Yuyang Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xuesong Liu
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, China
| | - Jingyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Huibo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| |
Collapse
|
15
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
16
|
Wang M, Sun GB, Du YY, Tian Y, Liao P, Liu XS, Ye JX, Sun XB. Myricitrin Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury: Involvement of Heat Shock Protein 90. Front Pharmacol 2017. [PMID: 28642708 PMCID: PMC5462924 DOI: 10.3389/fphar.2017.00353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Modulation of oxidative stress is therapeutically effective in ischemia/reperfusion (I/R) injury. Myricitrin, a naturally occurring phenolic compound, is a potent antioxidant. However, little is known about its effect on I/R injury to cardiac myocytes. The present study was performed to investigate the potential protective effect of myricitrin against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. Myricitrin pretreatment improved cardiomyocyte viability, inhibited ROS generation, maintained the mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased the caspase-3 activity, upregulated antiapoptotic proteins and downregulated proapoptotic proteins during H/R injury. Moreover, the potential targets of myricitrin was predicted using Discovery Studio software, and heat shock protein 90 (Hsp90) was identified as the main disease-related target. Further mechanistic investigation revealed that 17-AAG, a pharmacologic inhibitor of Hsp90, significantly blocked the myricitrin-induced cardioprotective effect demonstrated by increased apoptosis and ROS generation. These results suggested that myricitrin provides protection to H9c2 cardiomyocytes against H/R-induced oxidative stress and apoptosis, most likely via increased expression of Hsp90.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Ping Liao
- College of Pharmacy, Guilin Medical UniversityGuilin, China
| | - Xue-Song Liu
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of CommerceHarbin, China
| | - Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| |
Collapse
|
17
|
Wang M, Tian Y, Du YY, Sun GB, Xu XD, Jiang H, Xu HB, Meng XB, Zhang JY, Ding SL, Zhang MD, Yang MH, Sun XB. Protective effects of Araloside C against myocardial ischaemia/reperfusion injury: potential involvement of heat shock protein 90. J Cell Mol Med 2017; 21:1870-1880. [PMID: 28225183 PMCID: PMC5571541 DOI: 10.1111/jcmm.13107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/28/2016] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate whether Araloside C, one of the major triterpenoid compounds isolated from Aralia elata known to be cardioprotective, can improve heart function following ischaemia/reperfusion (I/R) injury and elucidate its underlying mechanisms. We observed that Araloside C concentration‐dependently improved cardiac function and depressed oxidative stress induced by I/R. Similar protection was confirmed in isolated cardiomyocytes characterized by maintaining Ca2+ transients and cell shortening against I/R. Moreover, the potential targets of Araloside C were predicted using the DDI‐CPI server and Discovery Studio software. Molecular docking analysis revealed that Araloside C could be stably docked into the ATP/ADP‐binding domain of the heat shock protein 90 (Hsp90) protein via the formation of hydrogen bonds. The binding affinity of Hsp90 to Araloside C was detected using nanopore optical interferometry and yielded KD values of 29 μM. Araloside C also up‐regulated the expression levels of Hsp90 and improved cell viability in hypoxia/reoxygenation‐treated H9c2 cardiomyocytes, whereas the addition of 17‐AAG, a pharmacologic inhibitor of Hsp90, attenuated Araloside C‐induced cardioprotective effect. These findings reveal that Araloside C can efficiently attenuate myocardial I/R injury by reducing I/R‐induced oxidative stress and [Ca2+]i overload, which was possibly related to its binding to the Hsp90 protein.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai Jiang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjang, China
| | - Hui-Bo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Xiang-Bao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing-Yi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi-Lan Ding
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Miao-di Zhang
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Ming-Hua Yang
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Remifentanil Preconditioning Reduces Postischemic Myocardial Infarction and Improves Left Ventricular Performance via Activation of the Janus Activated Kinase-2/Signal Transducers and Activators of Transcription-3 Signal Pathway and Subsequent Inhibition of Glycogen Synthase Kinase-3β in Rats. Crit Care Med 2016; 44:e131-45. [PMID: 26468894 DOI: 10.1097/ccm.0000000000001350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Remifentanil preconditioning attenuates myocardial ischemia reperfusion injury, but the underlying mechanism is incompletely understood. The Janus activated kinase-2 (JAK2)/signal transducers and activators of transcription-3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways are critical in both ischemic and pharmacologic preconditioning cardioprotection, which involve the inactivation of glycogen synthase kinase-3β. We hypothesized that remifentanil preconditioning confers cardioprotection via the JAK2/STAT3 and/or PI3K/Akt activation-mediated glycogen synthase kinase-3β inhibition. DESIGN Pharmacologic intervention. SETTING Research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS In vivo and in vitro treatments. MEASUREMENTS AND MAIN RESULTS Male Sprague-Dawley rats (n = 6 per group) were sham operated or subjected to myocardial ischemia reperfusion injury. The JAK2 inhibitor AG490 (3 mg/kg), the PI3K inhibitor wortmannin (15 μg/kg), or the glycogen synthase kinase-3β inhibitor SB216763 (600 μg/kg) were given before inducing in vivo myocardial ischemia reperfusion injury achieved by occluding coronary artery for 30 minutes followed by 120 minutes of reperfusion in the absence or presence of remifentanil preconditioning (6 μg/kg/min). Also, isolated rat hearts were Langendorff perfused and subjected to 30 minutes of global ischemia and 120 minutes of reperfusion without or with remifentanil preconditioning (100 ng/mL) in the presence or absence of AG490 and/or SB216763. Isolated rat cardiomyocytes and H9C2 cells were subjected to hypoxia/reoxygenation alone or in combination with AG490 (100 μM), wortmannin (100 nM), or SB216763 (3 μM) without or with remifentanil preconditioning (2.5 μM). Remifentanil preconditioning reduced postischemic myocardial infarction and hemodynamic dysfunction induced by myocardial ischemia reperfusion injury concomitant with increased phosphorylation of STAT3 at tyr-705 (p-STAT3) and glycogen synthase kinase-3β but not Akt. AG490 but not wortmannin cancelled remifentanil preconditioning cardioprotection, and SB216763 restored it despite the presence of AG490. In Langendorff-perfused hearts, AG490-mediated cancellation of remifentanil preconditioning cardioprotection in attenuating postischemic myocardial infarction and creatinine kinase-MB release was reverted by concomitant administration of SB216763. Remifentanil preconditioning also attenuated posthypoxic cardiomyocyte injury and increased p-STAT3 and glycogen synthase kinase-3β in isolated primary cardiomyocytes and H9C2 cells. STAT3 gene knockdown with specific synthetic RNA cancelled remifentanil preconditioning cardioprotection, whereas glycogen synthase kinase-3β gene knockdown, which per se did not affect STAT3 under hypoxia/reoxygenation condition, preserved remifentanil preconditioning cardioprotection regardless of STAT3 abrogation. CONCLUSIONS Remifentanil preconditioning confers cardioprotection primarily via activation of JAK2/STAT3 signaling that can function independent of PI3K/Akt activation. Glycogen synthase kinase-3β is a critical downstream effector of remifentanil preconditioning cardioprotection.
Collapse
|
19
|
Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci Rep 2016; 6:24498. [PMID: 27076094 PMCID: PMC4830926 DOI: 10.1038/srep24498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/30/2016] [Indexed: 11/08/2022] Open
Abstract
The role of microRNA-1 (miR-1) in ischemia/reperfusion (I/R)-induced injury is not well illustrated. The present study aimed to investigate the expression and potential target of miR-1 in the myocardium of a rat model of I/R. The apoptosis of cardiomyocytes in the ischemic rat myocardium increased on day 1, then attenuated on day 3 and day 7 post-I/R. Heat shot protein 90 (Hsp90) aa1 mRNA expression was decreased post-I/R, and Hsp90aa1 protein level was decreased on day1 post-I/R, but was reversed on day 3 and day 7 post-I/R. MiR-1 was downregulated post-I/R, and repression of miR-1 in cultured neonatal rat ventricular cells (NRVCs) led to an increase of Bcl-2 and decreases of Bax and active caspase-3. Dual luciferase reporter assays revealed that miR-1 interacted with the 310-315 nt site at the 3'UTR of Hsp90aa1, and miR-1 was verified to inhibit Hsp90aa1 expression at the posttranscriptional level. Over-expression of Hsp90aa1 could attenuate oxygen-glucose deprivation (OGD)-induced apoptosis of NRVCs. Additionally, miR-1 mimic, in parallel to Hsp90aa1 siRNA, could enhance OGD-induced apoptosis of NRVCs. Taken together, our results reveal that Hsp90aa1 is a novel target of miR-1, and repression of miR-1 may contribute to the recovery of Hsp90aa1 during myocardial I/R.
Collapse
|
20
|
Isoflurane favorably modulates guanosine triphosphate cyclohydrolase-1 and endothelial nitric oxide synthase during myocardial ischemia and reperfusion injury in rats. Anesthesiology 2015; 123:582-9. [PMID: 26192027 DOI: 10.1097/aln.0000000000000778] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The authors investigated the hypothesis that isoflurane modulates nitric oxide (NO) synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH)-1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS). METHODS Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1, and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting) were measured in male Wistar rats with or without anesthetic preconditioning (APC; 1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine. RESULTS NO2 production (158 ± 16 and 150 ± 13 pmol/mg protein at baseline in control and APC groups, respectively) was significantly (P < 0.05) increased 1.5 ± 0.1 and 1.4 ± 0.1 fold by APC (n = 4) at 60 and 90 min of reperfusion, respectively, concomitantly, with increased expression of GTPCH-1 (1.3 ± 0.3 fold; n = 5) and eNOS (1.3 ± 0.2 fold; n = 5). In contrast, total NO (NO2 and NO3) was decreased after reperfusion in control experiments. Myocardial infarct size was decreased (43 ± 2% of the area at risk for infarction; n = 6) by APC compared with control experiments (57 ± 1%; n = 6). 2, 4-Diamino-6-hydroxypyrimidine decreased total NO production at baseline (221 ± 25 and 175 ± 31 pmol/mg protein at baseline in control and APC groups, respectively), abolished isoflurane-induced increases in NO at reperfusion, and prevented reductions of myocardial infarct size by APC (60 ± 2%; n = 6). CONCLUSION APC favorably modulated a NO biosynthetic pathway by up-regulating GTPCH-1 and eNOS, and this action contributed to protection of myocardium against ischemia and reperfusion injury.
Collapse
|
21
|
Parameswaran S, Sharma RK. Expression of calcineurin, calpastatin and heat shock proteins during ischemia and reperfusion. Biochem Biophys Rep 2015; 4:207-214. [PMID: 30338302 PMCID: PMC6189699 DOI: 10.1016/j.bbrep.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022] Open
Abstract
Objective Calcineurin (CaN) interacts with calpains (Calpn) and causes cellular damage eventually leading to cell death. Calpastatin (Calp) is a specific Calpn inhibitor, along with CaN stimulation has been implicated in reduced cell death and self-repair. Molecular chaperones, heat shock proteins (Hsp70 and Hsp90) acts as regulators in Calpn signaling. This study aims to elucidate the role of CaN, Calp and Hsps during induced ischemia and reperfusion in primary cardiomyocyte cultures (murine). Methods and results Protein expression was analyzed concurrently with viability using flow cytometry (FACS) in ischemia- and reperfusion-induced murine cardiomyocyte cultures. The expression of Hsp70 and Hsp90, both being molecular chaperones, increased during ischemia with a concurrent increase in death of cells expressing these proteins. The relative expression of Hsp70 and Hsp90 during ischemia with respect to CaN was enhanced in comparison to Calp. Reperfusion slightly decreased the number of cells expressing these chaperones. There was no increase in death of cells co-expressing Hsp70 and Hsp90 along with CaN and Calp. CaN expression peaked during ischemia and subsequent reperfusion reduced its expression and cell death. Calp expression increased both during ischemia and subsequent reperfusion but cell death decreased during reperfusion. Conclusion The present study adds to the existing knowledge that Hsp70, Hsp90, CaN and Calp interact with each other and play significant role in cardio protection. Differential expression of calcineurin and calpastatin during ischemia and reperfusion. Enhanced ischemia induced cell death in cells expressing Hsp70 and Hsp90. Cardio protective role of calcineurin, calpastatin, Hsp70 and Hsp90.
Collapse
Key Words
- CaN, calcineurin
- Calcineurin
- Calp, Calpastatin
- Calpastatin
- Calpn, calpain
- FACS, flow cytometry
- FITC, fluorescein isothiocyanate
- HMWCaMBP, high molecular weight calmodulin-binding protein
- Heat shock proteins
- I/R, Ischemia and Reperfusion
- Ischemia
- NDB, nutrient deficient buffer
- NMCC, primary neonatal mouse cardiomyocyte culture
- PE, R-phycoerythrin
- Primary cardiomyocyte culture
- Reperfusion
Collapse
|
22
|
Abstract
BACKGROUND Anesthetic cardioprotection reduces myocardial infarct size after ischemia-reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. METHODS MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. RESULTS Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). CONCLUSIONS The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.
Collapse
|
23
|
Li S, Xu J, Yao W, Li H, Liu Q, Xiao F, Irwin MG, Xia Z, Ruan W. Sevoflurane pretreatment attenuates TNF-α-induced human endothelial cell dysfunction through activating eNOS/NO pathway. Biochem Biophys Res Commun 2015; 460:879-86. [PMID: 25838201 DOI: 10.1016/j.bbrc.2015.03.126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Endothelial dysfunction induced by oxidative stress and inflammation plays a critical role in the pathogenesis of cardiovascular diseases. The anesthetic sevoflurane confers cytoprotective effects through its anti-inflammatory properties in various pathologies such as systemic inflammatory response syndrome and ischemic-reperfusion injury but mechanism is unclear. We hypothesized that sevoflurane can protect against tumor necrosis factor (TNF)-α-induced endothelial dysfunction through promoting the production of endothelium-dependent nitric oxide (NO). Primary cultured human umbilical vein endothelial cells (HUVECs) were pretreated with different concentrations (0.5, 1.5 and 2.5 minimum alveolar concentration, MAC) of sevoflurane for 30 min before TNF-α (10 ng/mL) stimulation for 4 h. Sevoflurane pretreatment significantly reduced TNF-α-induced VCAM-1, ICAM-1, IκBα, and NF-κB activation, and blocked leukocytes adhesion to HUVECs. Meanwhile, sevoflurane (1.5 and 2.5 MAC) significantly induced endothelial nitric oxide synthase (eNOS) phosphorylation and enhanced NO levels both intracellularly and in the cell culture medium. All these cytoprotective effects of sevoflurane were abrogated by NG-nitro-l-arginine methyl ester (l-NAME), a non-specific nitric oxide synthase inhibitor. Collectively, these data indicate that sevoflurane protects against TNF-α -induced vascular endothelium dysfunction through activation of eNOS/NO pathway and inhibition of NF-κB.
Collapse
Affiliation(s)
- Suobei Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Anesthesia Research Institute, Central South University, Changsha, Hunan, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Anesthesia Research Institute, Central South University, Changsha, Hunan, China.
| | - Weifeng Yao
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Qing Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Anesthesia Research Institute, Central South University, Changsha, Hunan, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Anesthesia Research Institute, Central South University, Changsha, Hunan, China
| | - Michael G Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China; Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Wei Ruan
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Anesthesia Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol 2015; 172:2051-61. [PMID: 25322898 DOI: 10.1111/bph.12981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The pharmacological conditioning of the heart with anaesthetics, such as volatile anaesthetics or opioids, is a phenomenon whereby a transient exposure to an anaesthetic agent protects the heart from the harmful consequences of myocardial ischaemia and reperfusion injury. The cellular and molecular mechanisms of anaesthetic conditioning appear largely to mimic those of ischaemic pre- and post-conditioning. Progress has been made on the understanding of the underlying mechanisms although the order of events and the specific targets of anaesthetics that trigger protection are not always clear. In the laboratory, the protection afforded by certain anaesthetics against cardiac ischaemia and reperfusion injury is powerful and reproducible but this has not necessarily translated into similarly robust clinical benefits. Indeed, clinical studies and meta-analyses delivered variable results when comparing in the laboratory setting protective and non-protective anaesthetics. Reasons for this include underlying conditions such as age, obesity and diabetes. Animal models for disease or ageing, human cardiomyocytes derived from stem cells of patients and further clinical studies are employed to better understand the underlying causes that prevent a more robust protection in patients.
Collapse
Affiliation(s)
- C Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
25
|
Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol 2015. [PMID: 25322898 DOI: 10.1111/bph.2015.172.issue-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pharmacological conditioning of the heart with anaesthetics, such as volatile anaesthetics or opioids, is a phenomenon whereby a transient exposure to an anaesthetic agent protects the heart from the harmful consequences of myocardial ischaemia and reperfusion injury. The cellular and molecular mechanisms of anaesthetic conditioning appear largely to mimic those of ischaemic pre- and post-conditioning. Progress has been made on the understanding of the underlying mechanisms although the order of events and the specific targets of anaesthetics that trigger protection are not always clear. In the laboratory, the protection afforded by certain anaesthetics against cardiac ischaemia and reperfusion injury is powerful and reproducible but this has not necessarily translated into similarly robust clinical benefits. Indeed, clinical studies and meta-analyses delivered variable results when comparing in the laboratory setting protective and non-protective anaesthetics. Reasons for this include underlying conditions such as age, obesity and diabetes. Animal models for disease or ageing, human cardiomyocytes derived from stem cells of patients and further clinical studies are employed to better understand the underlying causes that prevent a more robust protection in patients.
Collapse
Affiliation(s)
- C Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
26
|
Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth 2014; 28:740-58. [PMID: 24610035 DOI: 10.1007/s00540-014-1805-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/04/2014] [Indexed: 01/12/2023]
Abstract
Inhalational anesthetics-induced organoprotection has received much research interest and has been consistently demonstrated in different models of organ damage, in particular, ischemia-reperfusion injury, which features prominently in the perioperative period and in cardiovascular events. The cellular mechanisms accountable for effective organoprotection over heart, brain, kidneys, and other vital organs have been elucidated in turn in the past two decades, including receptor stimulations, second-messenger signal relay and amplification, end-effector activation, and transcriptional modification. This review summarizes the signaling pathways and the molecular participants in inhalational anesthetics-mediated organ protection published in the current literature, comparing and contrasting the 'preconditioning' and 'postconditioning' phenomena, and the similarities and differences in mechanisms between organs. The salubrious effects of inhalational anesthetics on vital organs, if reproducible in human subjects in clinical settings, would be of exceptional clinical importance, but clinical studies with better design and execution are prerequisites for valid conclusions to be made. Xenon as the emerging inhalational anesthetic, and its organoprotective efficacy, mechanism, and relative advantages over other anesthetics, are also discussed.
Collapse
|
27
|
Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KFJ, Wong GT, Vanhoutte PM, Irwin MG, Xia Z. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med 2013; 63:291-303. [PMID: 23747931 DOI: 10.1016/j.freeradbiomed.2013.05.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/07/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023]
Abstract
N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leucker TM, Ge ZD, Procknow J, Liu Y, Shi Y, Bienengraeber M, Warltier DC, Kersten JR. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury. PLoS One 2013; 8:e70088. [PMID: 23894596 PMCID: PMC3718730 DOI: 10.1371/journal.pone.0070088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022] Open
Abstract
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Thorsten M. Leucker
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jesse Procknow
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yanan Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yang Shi
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin Bienengraeber
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Deparment of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David C. Warltier
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Deparment of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Judy R. Kersten
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Deparment of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
29
|
Wang T, Yao S, Xia Z, Irwin MG. Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning. Front Med 2013; 7:301-5. [PMID: 23904036 DOI: 10.1007/s11684-013-0283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
Systemic inflammatory response following myocardial ischemia-reperfusion injury (IRI) to a specific organ may cause injuries. Ischemic post-conditioning (IPostC) has emerged as a promising method for myocardial protection against IRI both in experimental and in clinical settings. Enhancement of endogenous nitric oxide (NO) is one of the major mechanisms by which IPostC confers cardioprotection. However, the sensitivity of the diabetic heart to IPostC is impaired and the underlying mechanism is unknown. Adiponectin (APN) is an adipocytederived plasma protein with anti-diabetic and anti-inflammatory properties. Plasma levels of APN are decreased in obese subjects and in patients with type 2 diabetes. APN supplementation has been shown to increase NO production and attenuate myocardial IRI in normal (non-diabetic) animals. However, the effect of APN on myocardial injury in diabetic subjects, especially its potential in restoring the sensitivity of the diabetic heart to IPostC has not been investigated. In the current paper, we discussed the possible reasons why the myocardium of diabetic subjects loses sensitivity to IPostC and also highlighted the potential effectiveness and mechanism of APN in restoring IPostC cardioprotection in diabetes. This review proposes to conduct studies that may facilitate the development of novel and optimal therapies to enhance cardioprotection in patients with severe diseases such as diabetes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
30
|
Fuchs K, Kukuk D, Mahling M, Quintanilla-Martinez L, Reischl G, Reutershan J, Lang F, Röcken M, Pichler BJ, Kneilling M. Impact of Anesthetics on 3′-[18F]Fluoro-3′-Deoxythymidine ([18F]FLT) Uptake in Animal Models of Cancer and Inflammation. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kerstin Fuchs
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Damaris Kukuk
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Mahling
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Gerald Reischl
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jörg Reutershan
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Lang
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Röcken
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernd J. Pichler
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Desflurane preconditioning induces oscillation of NF-κB in human umbilical vein endothelial cells. PLoS One 2013; 8:e66576. [PMID: 23799118 PMCID: PMC3684570 DOI: 10.1371/journal.pone.0066576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background Nuclear factor kappa B (NF-κB) has been implicated in anesthetic preconditioning (APC) induced protection against anoxia and reoxygenation (A/R) injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis. Methods A human umbilical vein endothelial cells (HUVECs) A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V–fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT) assay. The cellular superoxide dismutases (SOD) activitiy were tested by water-soluble tetrazolium salt (WST-1) assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα), NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1), B-cell leukemia/lymphoma 2 (Bcl-2), cysteine containing aspartate specific protease 3 (caspases-3) and second mitochondrial-derived activator of caspase (SMAC/DIABLO) were determined by western blot. Results Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane. Conclusions The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and protected endothelial cells against A/R.
Collapse
|
32
|
Baotic I, Ge ZD, Sedlic F, Coon A, Weihrauch D, Warltier DC, Kersten JR. Apolipoprotein A-1 mimetic D-4F enhances isoflurane-induced eNOS signaling and cardioprotection during acute hyperglycemia. Am J Physiol Heart Circ Physiol 2013; 305:H219-27. [PMID: 23666677 DOI: 10.1152/ajpheart.00850.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute hyperglycemia (AHG) decreases the availability of nitric oxide (NO) and impairs anesthetic preconditioning (APC)-elicited protection against myocardial infarction. We investigated whether D-4F, an apolipoprotein A-1 mimetic, rescues the myocardium by promoting APC-induced endothelial NO signaling during AHG. Myocardial infarct size was measured in mice in the absence or presence of APC [isoflurane (1.4%)] with or without AHG [dextrose (2 g/kg ip)] and D-4F (0.12 or 0.6 mg/kg ip). NO production, superoxide generation, protein compartmentalization, and posttranslational endothelial NO synthase (eNOS) modifications were assessed in human coronary artery endothelial cells cultured in 5.5 or 20 mM glucose with or without isoflurane (0.5 mM) in the presence or absence of D-4F (0.5 μg/ml). Myocardial infarct size was significantly decreased by APC (36 ± 3% of risk area) compared with control (54 ± 3%) in the absence, but not presence, of AHG (49 ± 4%). D-4F restored the cardioprotective effect of APC during AHG (36 ± 3% and 30 ± 3%, 0.12 and 0.6 mg/kg, respectively), although D-4F alone had no effect on infarct size (53 ± 3%). Isoflurane promoted caveolin-1 and eNOS compartmentalization within endothelial cell caveolae and eNOS dimerization, concomitant with increased NO production (411 ± 28 vs. 68 ± 10 pmol/mg protein in control). These actions were attenuated by AHG (NO production: 264 ± 18 pmol/mg protein). D-4F reduced superoxide generation and enhanced caveolin-1 and eNOS caveolar compartmentalization and posttranslational eNOS modifications, thus restoring NO production during isoflurane and AHG (418 ± 36 pmol/mg protein). In conclusion, D-4F restored the cardioprotective effect of APC during AHG, possibly by decreasing superoxide generation, which promoted isoflurane-induced eNOS signaling and NO biosynthesis.
Collapse
Affiliation(s)
- Ines Baotic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Xu H, Krolikowski JG, Jones DW, Ge ZD, Pagel PS, Pritchard KA, Weihrauch D. 4F decreases IRF5 expression and activation in hearts of tight skin mice. PLoS One 2012; 7:e52046. [PMID: 23251680 PMCID: PMC3522636 DOI: 10.1371/journal.pone.0052046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022] Open
Abstract
The apoAI mimetic 4F was designed to inhibit atherosclerosis by improving HDL. We reported that treating tight skin (Tsk−/+) mice, a model of systemic sclerosis (SSc), with 4F decreases inflammation and restores angiogenic potential in Tsk−/+ hearts. Interferon regulating factor 5 (IRF5) is important in autoimmunity and apoptosis in immune cells. However, no studies were performed investigating IRF5 in myocardium. We hypothesize that 4F differentially modulates IRF5 expression and activation in Tsk−/+ hearts. Posterior wall thickness was significantly increased in Tsk−/+ compared to C57Bl/6J (control) and Tsk−/+ mice with 4F treatment assessed by echoradiography highlighting reduction of fibrosis in 4F treated Tsk−/+ mice. IRF5 in heart lysates from control and Tsk/+ with and without 4F treatment (sc, 1 mg/kg/d, 6–8 weeks) was determined. Phosphoserine, ubiquitin, ubiquitin K63 on IRF5 were determined on immunoprecipitates of IRF5. Immunofluorescence and TUNEL assays in heart sections were used to determine positive nuclei for IRF5 and apoptosis, respectively. Fluorescence-labeled streptavidin (SA) was used to determine endothelial cell uptake of biotinylated 4F. SA-agarose pulldown and immunoblotting for IRF5 were used to determine 4F binding IRF5 in endothelial cell cytosolic fractions and to confirm biolayer interferometry studies. IRF5 levels in Tsk−/+ hearts were similar to control. 4F treatments decrease IRF5 in Tsk−/+ hearts and decrease phosphoserine and ubiquitin K63 but increase total ubiquitin on IRF5 in Tsk−/+ compared with levels on IRF5 in control hearts. 4F binds IRF5 by mechanisms favoring association over dissociation strong enough to pull down IRF5 from a mixture of endothelial cell cytosolic proteins. IRF5 positive nuclei and apoptotic cells in Tsk−/+ hearts were increased compared with controls. 4F treatments decreased both measurements in Tsk−/+ hearts. IRF5 activation in Tsk−/+ hearts is increased. 4F treatments decrease IRF5 expression and activation in Tsk−/+ hearts by a mechanism related to 4F’s ability to bind IRF5.
Collapse
Affiliation(s)
- Hao Xu
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - John G. Krolikowski
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Deron W. Jones
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Zhi-Dong Ge
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Paul S. Pagel
- The Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Dorothée Weihrauch
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
34
|
Laskarin G, Persic V, Miškulin R, Ruzic A, Zaputovic L. Can we assess an acute myocardial infarction in patients with acute coronary syndrome according to diagnostic accuracy of heat shock proteins? Med Hypotheses 2012; 79:592-4. [DOI: 10.1016/j.mehy.2012.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022]
|
35
|
Guo Y, Tukaye DN, Wu WJ, Zhu X, Book M, Tan W, Jones SP, Rokosh G, Narumiya S, Li Q, Bolli R. The COX-2/PGI2 receptor axis plays an obligatory role in mediating the cardioprotection conferred by the late phase of ischemic preconditioning. PLoS One 2012; 7:e41178. [PMID: 22844439 PMCID: PMC3402528 DOI: 10.1371/journal.pone.0041178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/18/2012] [Indexed: 01/15/2023] Open
Abstract
Background Pharmacologic studies with cyclooxygenase-2 (COX-2) inhibitors suggest that the late phase of ischemic preconditioning (PC) is mediated by COX-2. However, nonspecific effects of COX-2 inhibitors cannot be ruled out, and the selectivity of these inhibitors for COX-2 vs. COX-1 is only relative. Furthermore, the specific prostaglandin (PG) receptors responsible for the salubrious actions of COX-2-derived prostanoids remain unclear. Objective To determine the role of COX-2 and prostacyclin receptor (IP) in late PC by gene deletion. Methods COX-2 knockout (KO) mice (COX-2−/−), prostacyclin receptor KO (IP−/−) mice, and respective wildtype (WT, COX-2+/+ and IP+/+) mice underwent sham surgery or PC with six 4-min coronary occlusion (O)/4-min R cycles 24 h before a 30-min O/24 h R. Results There were no significant differences in infarct size (IS) between non-preconditioned (non-PC) COX-2+/+, COX-2−/−, IP+/+, and IP−/− mice, indicating that neither COX-2 nor IP modulates IS in the absence of PC. When COX-2−/− or IP−/− mice were preconditioned, IS was not reduced, indicating that the protection of late PC was completely abrogated by deletion of either the COX-2 or the IP gene. Administration of the IP selective antagonist, RO3244794 to C57BL6/J (B6) mice 30 min prior to the 30-min O had no effect on IS. When B6 mice were preconditioned 24 h prior to the 30-min O, IS was markedly reduced; however, the protection of late PC was completely abrogated by pretreatment of RO3244794. Conclusions This is the first study to demonstrate that targeted disruption of the COX-2 gene completely abrogates the infarct-sparing effect of late PC, and that the IP, downstream of the COX-2/prostanoid pathway, is a key mediator of the late PC. These results provide unequivocal molecular genetic evidence for an essential role of the COX-2/PGI2 receptor axis in the cardioprotection afforded by the late PC.
Collapse
Affiliation(s)
- Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Deepali Nivas Tukaye
- Department of Internal Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Xiaoping Zhu
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael Book
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Wei Tan
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Steven P. Jones
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gregg Rokosh
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Qianhong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
36
|
Li PC, Yang CC, Hsu SP, Chien CT. Repetitive progressive thermal preconditioning hinders thrombosis by reinforcing phosphatidylinositol 3-kinase/Akt-dependent heat-shock protein/endothelial nitric oxide synthase signaling. J Vasc Surg 2012; 56:159-70. [DOI: 10.1016/j.jvs.2011.11.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 12/16/2022]
|
37
|
Zhang FJ, Ma LL, Wang WN, Qian LB, Yang MJ, Yu J, Chen G, Yu LN, Yan M. Hypercholesterolemia abrogates sevoflurane-induced delayed preconditioning against myocardial infarct in rats by alteration of nitric oxide synthase signaling. Shock 2012; 37:485-491. [PMID: 22266969 DOI: 10.1097/shk.0b013e318249b7b6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current study was to determine whether hypercholesterolemia affects the delayed sevoflurane preconditioning against myocardial ischemia-reperfusion (IR) injury and, if so, the underlying mechanism. Male Sprague-Dawley rats fed 2% cholesterol-enriched chow for 8 weeks were subjected to sevoflurane preconditioning (2.4% vol/vol, 1 h) 24 h before myocardial ischemia was induced by occluding the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. The hemodynamic parameters left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal rise/fall rate of left ventricular pressure were continuously monitored, and myocardial infarct size was determined at the end of reperfusion. The protein expression of myocardial nitric oxide synthase (NOS), Bcl-2, and Bad was assessed before ischemia. We found that the left ventricular hemodynamic parameters during the whole IR procedure and the myocardial infarct size did not significantly differ between the normocholesterolemic and hypercholesterolemic control groups. The hemodynamic parameters were all markedly improved during the reperfusion period, and the myocardial infarct size was significantly reduced by delayed sevoflurane preconditioning in normocholesterolemic rats, but all of these improvements were reversed by N-(3-(aminomethyl)benzyl) acetamidine (1400W, 1 mg/kg; i.v., 10 min before ischemia), a selective inducible NOS (iNOS) inhibitor, and 5-hydroxy decanoate sodium (5 mg/kg, i.v., 10 min before ischemia), a mitochondrial ATP-dependent K⁺ channel blocker. Such cardiac improvement induced by delayed sevoflurane preconditioning did not occur in hypercholesterolemic rats and was not exacerbated by 1400W or 5-hydroxy decanoate sodium. The expression of myocardial iNOS was markedly enhanced by delayed sevoflurane preconditioning in normocholesterolemic, but not in hypercholesterolemic rats. The expression of endothelial NOS and Bad did not differ among all groups. The expression of myocardial phosphorylated endothelial NOS, Bcl-2, and phosphorylated Bad in normocholesterolemic rats was not affected by delayed sevoflurane preconditioning but was decreased in the hypercholesterolemic control group, and this was not reversed by sevoflurane, compared with the normocholesterolemic control group. Taken together, these results indicate that sevoflurane preconditioning exerts delayed cardioprotection against IR injury in normocholesterolemic rats, which is blocked by hypercholesterolemia potentially via interference with the iNOS/mitochondrial ATP-dependent K⁺ channel pathway.
Collapse
Affiliation(s)
- Feng-Jiang Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Pagel PS, Hudetz JA. Delayed Cardioprotection by Inhaled Anesthetics. J Cardiothorac Vasc Anesth 2011; 25:1125-40. [DOI: 10.1053/j.jvca.2010.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Indexed: 02/07/2023]
|
40
|
Vladic N, Ge ZD, Leucker T, Brzezinska AK, Du JH, Shi Y, Warltier DC, Pratt PF, Kersten JR. Decreased tetrahydrobiopterin and disrupted association of Hsp90 with eNOS by hyperglycemia impair myocardial ischemic preconditioning. Am J Physiol Heart Circ Physiol 2011; 301:H2130-9. [PMID: 21908789 PMCID: PMC3213977 DOI: 10.1152/ajpheart.01078.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 08/19/2011] [Indexed: 02/07/2023]
Abstract
Cardioprotection by ischemic preconditioning (IPC) is impaired during hyperglycemia, but the mechanisms underlying this phenomenon are poorly understood. This study investigated the role of hyperglycemia to adversely modulate tetrahydrobiopterin (BH(4)) and heat shock protein 90 (Hsp90) during cardioprotection by IPC. Rabbits or mice underwent 30 min of coronary occlusion followed by reperfusion with or without IPC in the presence or absence of hyperglycemia. IPC significantly (P < 0.05) decreased myocardial infarct size (46 ± 1 to 19 ± 2% of the area at risk in control and IPC rabbits, respectively) and increased BH(4) concentrations (HPLC; 7.6 ± 0.2 to 10.2 ± 0.3 pmol/mg protein, respectively), Hsp90-endothelial nitric oxide synthase (eNOS) association (coimmunoprecipitation and Western blotting in mice; 4.0 ± 0.3 to 5.4 ± 0.1, respectively), and the ratio of phosphorylated eNOS/total eNOS. These beneficial actions of IPC on infarct size, BH(4), Hsp90/eNOS, and phosphorylated eNOS were eliminated by hyperglycemia. Pretreatment of animals with the Hsp90 inhibitor geldanamycin (0.6 mg/kg) or the BH(4) synthesis inhibitor diamino-6-hydroxypyrimidine (1.0 g/kg) also eliminated cardioprotection produced by IPC. In contrast, the BH(4) precursor sepiapterin (2 mg/kg iv) restored the beneficial effects of IPC on myocardial BH(4) concentrations, eNOS dimerization, and infarct size during hyperglycemia. A-23871 increased Hsp90-eNOS association (0.33 ± 0.06 to 0.59 ± 0.3) and nitric oxide production (184 ± 17%) in human coronary artery endothelial cells cultured in normal (5.5 mM) but not high (20 mM) glucose media. These data indicate that hyperglycemia eliminates protection by IPC via decreases in myocardial BH(4) concentration and disruption of the association of Hsp90 with eNOS. The results suggest that eNOS dysregulation may be a central mechanism of impaired cardioprotection during hyperglycemia.
Collapse
Affiliation(s)
- Nikolina Vladic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG, Eckenhoff MF. Anesthesia in presymptomatic Alzheimer's disease: a study using the triple-transgenic mouse model. Alzheimers Dement 2011; 7:521-531.e1. [PMID: 21745760 PMCID: PMC3167023 DOI: 10.1016/j.jalz.2010.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/04/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Experimental evidence suggests that anesthetics accelerate symptomatic neurodegenerative disorders such as Alzheimer's disease (AD). Because AD pathology precedes symptoms, we asked ourselves whether anesthetic exposure in the presymptomatic interval accelerated neuropathology and appearance of symptoms. METHODS Triple-transgenic AD mice were exposed to general aesthetics, either halothane or isoflurane, at 2, 4, and 6 months of age, they then underwent water maze cognitive testing 2 months later, and subsequently their brains were analyzed using enzyme-linked immunosorbent assay, immunoblots, and immunohistochemistry for amyloid and tau pathology and biomarkers. RESULTS Learning and memory improved after halothane exposure in the 2-month-old group relative to controls, but no changes were noted in the isoflurane group. When gender was examined in all age groups, females exposed to halothane performed better as compared with those exposed to isoflurane or controls. Therefore, improvement in the 2-month exposure group is most likely because of a gender effect. Level of phospho-tau in the hippocampus was significantly increased 2 months after anesthesia, especially in the 6-month exposure group, but changes in amyloid, caspase, microglia, or synaptophysin levels were not detected. CONCLUSIONS These results indicate that exposure to two different inhalation-type anesthetics during the presymptomatic phase of AD does not accelerate cognitive decline, after 2 months, and may cause a stress response, marked by hippocampal phosphorylated tau, resulting in preconditioning against the ongoing neuropathology, primarily in female mice.
Collapse
Affiliation(s)
- Junxia X. Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Feras Mardini
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Breanna M. Caltagarone
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Sean T. Garrity
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Rosie Q. Li
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Shannon L. Bianchi
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Olubusola Gomes
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Frank M. Laferla
- Department of Neurobiology & Behavior, University of California, 1109 Gillespie Neuroscience Facility, Irvine, CA 92697 USA
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Maryellen F. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 305 John Morgan, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
| |
Collapse
|
42
|
Wang T, Qiao S, Lei S, Liu Y, Ng KFJ, Xu A, Lam KSL, Irwin MG, Xia Z. N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats. PLoS One 2011; 6:e23967. [PMID: 21912612 PMCID: PMC3166050 DOI: 10.1371/journal.pone.0023967] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/28/2011] [Indexed: 01/17/2023] Open
Abstract
Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Shigang Qiao
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Shaoqing Lei
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yanan Liu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok F. J. Ng
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen S. L. Lam
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael G. Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (ZX); (MGI)
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (ZX); (MGI)
| |
Collapse
|
43
|
Leucker TM, Bienengraeber M, Muravyeva M, Baotic I, Weihrauch D, Brzezinska AK, Warltier DC, Kersten JR, Pratt PF. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection. J Mol Cell Cardiol 2011; 51:803-11. [PMID: 21791217 DOI: 10.1016/j.yjmcc.2011.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
Abstract
Endothelial cells (EC) serve a paracrine function to enhance signaling in cardiomyocytes (CM), and conversely, CM secrete factors that impact EC function. Understanding how EC interact with CM may be critically important in the context of ischemia-reperfusion injury, where EC might promote CM survival. We used isoflurane as a pharmacological stimulus to enhance EC protection of CM against hypoxia and reoxygenation injury. Triggering of intracellular signal transduction pathways culminating in the enhanced production of nitric oxide (NO) appears to be a central component of pharmacologically induced cardioprotection. Although the endothelium is well recognized as a regulator for vascular tone, little attention has been given to its potential importance in mediating cardioprotection. In the current investigation, EC-CM in co-culture were used to test the hypothesis that EC contribute to isoflurane-enhanced protection of CM against hypoxia and reoxygenation injury and that this protection depends on hypoxia-inducible factor (HIF1α) and NO. CM were protected against cell injury [lactate dehydrogenase (LDH) release] to a greater extent in the presence vs. absence of isoflurane-stimulated EC (1.7 ± 0.2 vs. 4.58 ± 0.8 fold change LDH release), and this protection was NO-dependent. Isoflurane enhanced release of NO in EC (1103 ± 58 vs. 702 ± 92 pmol/mg protein) and EC-CM in co-culture sustained NO release during reoxygenation. In contrast, lentiviral mediated HIF1α knockdown in EC decreased basal and isoflurane stimulated NO release in an eNOS dependent manner (517 ± 32 vs. 493 ± 38 pmol/mg protein) and prevented the sustained increase in NO during reoxygenation when co-cultured. Opening of mitochondrial permeability transition pore (mPTP), an index of mitochondrial integrity, was delayed in the presence vs. absence of EC (141 ± 2 vs. 128 ± 2.5 arbitrary mPTP opening time). Isoflurane stimulated an increase in HIF1α in EC but not in CM under normal oxygen tension (3.5 ± 0.1 vs. 0.79 ± 0.15 fold change density) and this action was blocked by pretreatment with the Mitogen-activated Protein/Extracellular Signal-regulated Kinase inhibitor U0126. Expression and nuclear translocation of HIF1α were confirmed by Western blot and immunofluorescence. Taken together, these data support the concept that EC are stimulated by isoflurane to produce important cardioprotective factors that may contribute to protection of myocardium during ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Thorsten M Leucker
- Department of Anesthesiology Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ge ZD, Ionova IA, Vladic N, Pravdic D, Hirata N, Vásquez-Vivar J, Pratt PF, Warltier DC, Pieper GM, Kersten JR. Cardiac-specific overexpression of GTP cyclohydrolase 1 restores ischaemic preconditioning during hyperglycaemia. Cardiovasc Res 2011; 91:340-9. [PMID: 21422102 PMCID: PMC3125073 DOI: 10.1093/cvr/cvr079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 03/07/2011] [Accepted: 03/16/2011] [Indexed: 02/07/2023] Open
Abstract
AIMS Hyperglycaemia (HG) decreases intracellular tetrahydrobiopterin (BH(4)) concentrations, and this action may contribute to injury during myocardial ischaemia and reperfusion. We investigated whether increased BH(4) by cardiomyocyte-specific overexpression of the GTP cyclohydrolase (GTPCH) 1 gene rescues myocardial and mitochondrial protection by ischaemic preconditioning (IPC) during HG through a nitric oxide (NO)-dependent pathway. METHODS AND RESULTS Mice underwent 30 min of myocardial ischaemia followed by 2 h of reperfusion with or without IPC elicited with four cycles of 5 min ischaemia/5 min of reperfusion in the presence or absence of HG produced by d-glucose. In C57BL/6 wild-type mice, IPC increased myocardial BH(4) and NO concentrations and decreased myocardial infarct size (30 ± 3% of risk area) compared with control (56 ± 5%) experiments. This protective effect was inhibited by HG (48 ± 3%) but not hyperosmolarity. GTPCH-1 overexpression increased myocardial BH(4) and NO concentrations and restored cardioprotection by IPC during HG (32 ± 4%). In contrast, a non-selective NO synthase inhibitor N(G)-nitro-l-arginine methyl ester attenuated the favourable effects of GTPCH-1 overexpression (52 ± 3%) during HG. Mitochondria isolated from myocardium subjected to IPC required significantly higher in vitro Ca(2+) concentrations (184 ± 14 µmol mg(-1) protein) to open the mitochondrial permeability transition pore when compared with mitochondria isolated from control experiments (142 ± 10 µmol mg(-1) protein). This beneficial effect of IPC was reversed by HG and rescued by GTPCH-1 overexpression. CONCLUSION Increased BH(4) by cardiomyocyte-specific overexpression of GTPCH-1 preserves the ability of IPC to elicit myocardial and mitochondrial protection that is impaired by HG, and this action appears to be dependent on NO.
Collapse
Affiliation(s)
- Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin Sci (Lond) 2011; 121:57-69. [PMID: 21291422 DOI: 10.1042/cs20100435] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Either isoflurane preconditioning or high-dose propofol treatment has been shown to attenuate myocardial IRI (ischaemia/reperfusion injury) in patients undergoing CABG (coronary artery bypass graft) surgery. It is unknown whether isoflurane and propofol may synergistically attenuate myocardial injury in patients. The present study investigated the efficacy of IsoPC (isoflurane preconditioning), propofol treatment (postconditioning) and their synergy in attenuating postischaemic myocardial injury in patients undergoing CABG surgery using CPB (cardiopulmonary bypass). Patients (n = 120) selected for CABG surgery were randomly assigned to one of four groups (n = 30 each). After induction, anaesthesia was maintained either with fentanyl and midazolam (control; group C); with propofol at 100 μg x kg(-1) of body weight x min(-1) before and during CPB followed by propofol at 60 μg x kg(-1) of body weight x min(-1) for 15 min after aortic declamping (group P); with isoflurane 1-1.5% end tidal throughout the surgery (group I) or with isoflurane 1-1.5% end tidal before CPB and switching to propofol at 100 μg x kg(-1) of body weight x min(-1) during CPB followed by propofol at 60 μg x kg(-1) of body weight x min(-1) for 15 min after aortic declamping (group IP, i.e. IsoPC plus propofol postconditioning). A joint isoflurane and propofol anaesthesia regimen synergistically reduced plasma levels of cTnI (cardiac troponin I) and CK-MB (creatine kinase MB) and f-FABP (heart-type fatty acid-binding protein) (all P < 0.05 compared with control, group P or group I) and facilitated postoperative myocardial functional recovery. During reperfusion, myocardial tissue eNOS (endothelial NO synthase) protein expression in group IP was significantly higher, whereas nitrotyrosine protein expression was lower than those in the control group. In conclusion, a joint isoflurane preconditioning and propofol anaesthesia regimen synergistically attenuated myocardial reperfusion injury in patients.
Collapse
|
46
|
Wang S, Guo SX, Dai ZG, Dong XW, Liu Y, Jiang S, Wang ZP. Dual Isoflurane-induced Preconditioning Improves Neuroprotection in Rat Brain In Vitro and the Role of Extracellular Signal-regulated Protein Kinase. ACTA ACUST UNITED AC 2011; 26:36-42. [DOI: 10.1016/s1001-9294(11)60017-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Tsutsumi YM, Kawaraguchi Y, Horikawa YT, Niesman IR, Kidd MW, Chin-Lee B, Head BP, Patel PM, Roth DM, Patel HH. Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection. Anesthesiology 2010; 112:1136-45. [PMID: 20418694 PMCID: PMC2860616 DOI: 10.1097/aln.0b013e3181d3d624] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Caveolae are small, flask-like invaginations of the plasma membrane. Caveolins are structural proteins found in caveolae that have scaffolding properties to allow organization of signaling. The authors tested the hypothesis that delayed cardiac protection induced by volatile anesthetics is caveolae or caveolin dependent. METHODS An in vivo mouse model of ischemia-reperfusion injury with delayed anesthetic preconditioning (APC) was tested in wild-type, caveolin-1 knockout, and caveolin-3 knockout mice. Mice were exposed to 30 min of oxygen or isoflurane and allowed to recover for 24 h. After 24 h recovery, mice underwent 30-min coronary artery occlusion followed by 2 h of reperfusion at which time infarct size was determined. Biochemical assays were also performed in excised hearts. RESULTS Infarct size as a percent of the area at risk was reduced by isoflurane in wild-type (24.0 +/- 8.8% vs. 45.1 +/- 10.1%) and caveolin-1 knockout mice (27.2 +/- 12.5%). Caveolin-3 knockout mice did not show delayed APC (41.5 +/- 5.0%). Microscopically distinct caveolae were observed in wild-type and caveolin-1 knockout mice but not in caveolin-3 knockout mice. Delayed APC increased the amount of caveolin-3 protein but not caveolin-1 protein in discontinuous sucrose-gradient buoyant fractions. In addition, glucose transporter-4 was increased in buoyant fractions, and caveolin-3/glucose transporter-4 colocalization was observed in wild-type and caveolin-1 knockout mice after APC. CONCLUSIONS These results show that delayed APC involves translocation of caveolin-3 and glucose transporter-4 to caveolae, resulting in delayed protection in the myocardium.
Collapse
Affiliation(s)
- Yasuo M. Tsutsumi
- Assistant Research Scientist, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Yoshitaka Kawaraguchi
- Postdoctoral Fellow, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Yousuke T. Horikawa
- Graduate Student, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Ingrid R. Niesman
- Research Associate, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Michael W. Kidd
- Technician, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Blake Chin-Lee
- Technician, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Brian P. Head
- Assistant Research Scientist, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Piyush M. Patel
- Professor, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - David M. Roth
- Professor, Department of Anesthesiology, University of California, San Diego and Veterans Administration San Diego Healthcare System, San Diego, California
| | - Hemal H. Patel
- Associate Professor, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
48
|
Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010; 48:983-1001. [PMID: 20116425 PMCID: PMC3587154 DOI: 10.1016/j.freeradbiomed.2010.01.028] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/15/2022]
Abstract
Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
49
|
Amour J, Brzezinska AK, Jager Z, Sullivan C, Weihrauch D, Du J, Vladic N, Shi Y, Warltier DC, Pratt PF, Kersten JR. Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms. Anesthesiology 2010; 112:576-85. [PMID: 20124983 PMCID: PMC2888104 DOI: 10.1097/aln.0b013e3181cded1f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways. METHODS Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells cultured in normal (5.5 mm) or high (20 mm) glucose conditions, with or without sepiapterin (10 or 100 microm). RESULTS APC decreased myocardial infarct size compared with control experiments (26 +/- 6% vs. 46 +/- 3%, respectively; P < 0.05), and this action was blocked by hyperglycemia (43 +/- 4%). Sepiapterin alone had no effect on infarct size (46 +/- 3%) but restored APC during hyperglycemia (21 +/- 3%). The beneficial actions of sepiapterin to restore APC were blocked by the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (47 +/- 2%) and the BH4 synthesis inhibitor N-acetylserotonin (46 +/- 3%). Isoflurane increased nitric oxide production to 177 +/- 13% of baseline, and this action was attenuated by high glucose concentrations (125 +/- 6%). Isoflurane increased, whereas high glucose attenuated intracellular BH4/7,8-dihydrobiopterin (BH2) (high performance liquid chromatography), heat shock protein 90-endothelial nitric oxide synthase colocalization (confocal microscopy) and endothelial nitric oxide synthase activation (immunoblotting). Sepiapterin increased BH4/BH2 and dose-dependently restored nitric oxide production during hyperglycemic conditions (149 +/- 12% and 175 +/- 9%; 10 and 100 microm, respectively). CONCLUSION The results indicate that tetrahydrobiopterin and heat shock protein 90-regulated endothelial nitric oxide synthase activity play a central role in cardioprotection that is favorably modulated by volatile anesthetics and dysregulated by hyperglycemia. Enhancing the production of BH4 may represent a potential therapeutic strategy.
Collapse
|
50
|
Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism. Anesthesiology 2010; 112:73-85. [PMID: 19996950 DOI: 10.1097/aln.0b013e3181c4a607] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of endothelial nitric oxide synthase (eNOS) in isoflurane postconditioning (IsoPC)-elicited cardioprotection is poorly understood. The authors addressed this issue using eNOS mice. METHODS In vivo or Langendorff-perfused mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in the presence and absence of postconditioning produced with isoflurane 5 min before and 3 min after reperfusion. Ca+-induced mitochondrial permeability transition (MPT) pore opening was assessed in isolated mitochondria. Echocardiography was used to evaluate ventricular function. RESULTS Postconditioning with 0.5, 1.0, and 1.5 minimum alveolar concentrations of isoflurane decreased infarct size from 56 +/- 10% (n = 10) in control to 48 +/- 10%, 41 +/- 8% (n = 8, P < 0.05), and 38 +/- 10% (n = 8, P < 0.05), respectively, and improved cardiac function in wild-type mice. Improvement in cardiac function by IsoPC was blocked by N-nitro-L-arginine methyl ester (a nonselective nitric oxide synthase inhibitor) administered either before ischemia or at the onset of reperfusion. Mitochondria isolated from postconditioned hearts required significantly higher in vitro Ca+ loading than did controls (78 +/- 29 microm vs. 40 +/- 25 microm CaCl2 per milligram of protein, n = 10, P < 0.05) to open the MPT pore. Hearts from eNOS mice displayed no marked differences in infarct size, cardiac function, and sensitivity of MPT pore to Ca+, compared with wild-type hearts. However, IsoPC failed to alter infarct size, cardiac function, or the amount of Ca+ necessary to open the MPT pore in mitochondria isolated from the eNOS hearts compared with control hearts. CONCLUSIONS IsoPC protects mouse hearts from reperfusion injury by preventing MPT pore opening in an eNOS-dependent manner. Nitric oxide functions as both a trigger and a mediator of cardioprotection produced by IsoPC.
Collapse
|