1
|
Lu D, Zhang W, Chen K, Feng X. Dual effects of GABA A R agonist anesthetics in neurodevelopment and vulnerable brains: From neurotoxic to therapeutic effects. Neural Regen Res 2026; 21:81-95. [PMID: 39665822 PMCID: PMC12094567 DOI: 10.4103/nrr.nrr-d-24-00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years. A consensus has been reached that prolonged, repeated, high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function, while single exposure has a relatively minor effect on long-term neurological function. In this review, we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists, a representative group of sedatives, on developing brains or central nervous system diseases. Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways. However, recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period. These findings are incomprehensible for the general "dose-effect" principles of pharmacological research, which has attracted researchers' interest and led to the following questions: What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain? To what extent can their protective effects be maximized? What are the underlying mechanisms involved in these effects? Consequently, this issue has essentially become a "mathematical problem." After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases, we believe that all such anesthetics exhibit specific threshold effects unique to each drug. These effects range from neuroprotection to neurotoxicity, depending on different brain functional states. However, the exact values of the specific thresholds for different drugs in various brain states, as well as the underlying mechanisms explaining why these thresholds exist, remain unclear. Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics.
Collapse
Affiliation(s)
- Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Keyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Karageorgos V, Darivianaki P, Spartinou A, Christofaki M, Chatzimichali A, Nyktari V, Simos P, Papaioannou A. A Randomized Clinical Trial of Dexmedetomidine on Delirium, Cognitive Dysfunction, and Sleep After Non-Ambulatory Orthopedic Surgery With Regional Anesthesia. Anesth Analg 2025:00000539-990000000-01303. [PMID: 40403182 DOI: 10.1213/ane.0000000000007548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
BACKGROUND Postoperative delirium (POD), emergence delirium (ED), and postoperative cognitive dysfunction (POCD) are disorders of the neuropsychiatric spectrum affecting the elderly during the postoperative period, potentially sharing a common pathophysiological pathway. Disrupted sleep postoperatively correlates with both POD and POCD, revealing overlapping risk factors. This study investigates the potential of dexmedetomidine anesthesia to reduce the incidence of POD (primary outcome), ED, POCD, impairment of sleep quality, and emergent chronic pain (secondary outcomes) in older adults undergoing major orthopedic surgery under regional anesthesia. METHODS In this double-blind randomized control trial, patients scheduled for major lower limb orthopedic surgery under regional anesthesia were randomized to receive either dexmedetomidine or propofol for sedation at a 1:1 ratio. POD, ED, and POCD were assessed with the Confusion Assessment Method tool, the Riker Sedation-Agitation scale, and the European Battery of psychometric tests, respectively. Sleep quality was assessed using the Pittsburg Sleep Quality Index and chronic pain with the painDETECT tool. Assessments of all outcome variables were performed before surgery, and at 48 hours and 3 months postoperatively. RESULTS A total of 80 patients (dexmedetomidine group n = 41) were enrolled in the study and completed the follow-up. POD, ED, and early POCD incidence were significantly lower in dexmedetomidine compared to propofol group (4.8% vs 38.4%, P = .001; 2.4% vs 38.4%, P < .001; 2.4% vs 56.4%, P < .001, respectively). Patients in the dexmedetomidine group reported improved sleep quality in the immediate postoperative period (lower PSQI score) and lower painDETECT scores at 3 months (4.4 ± 0.7 vs 13.4 ± 0.8, P < .001; 2.4 ± 0.9 vs 5.3 ± 0.9, P = .023, respectively). Intraoperative bradycardia and hemodynamic instability episodes were more common in the dexmedetomidine group while a single patient presented airway obstruction (2.4% vs 30.8%, P = .002) in the dexmedetomidine group. CONCLUSIONS Sedation with dexmedetomidine resulted in a statistically and clinically important reduction in the incidence of POD, ED, and early POCD, while it improved self-reported postoperative sleep quality and reduced chronic pain scores in patients undergoing major elective lower limb surgery under regional anesthesia.
Collapse
Affiliation(s)
- Vlasios Karageorgos
- From the Department of Anesthesiology, School of Medicine, University of Crete, Crete, Greece
| | - Panagiota Darivianaki
- From the Department of Anesthesiology, School of Medicine, University of Crete, Crete, Greece
| | - Anastasia Spartinou
- From the Department of Anesthesiology, School of Medicine, University of Crete, Crete, Greece
| | - Maria Christofaki
- Department of Anesthesiology, University Hospital of Heraklion, Crete, Greece
| | | | - Vasileia Nyktari
- From the Department of Anesthesiology, School of Medicine, University of Crete, Crete, Greece
| | - Panagiotis Simos
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Crete, Greece
| | - Alexandra Papaioannou
- From the Department of Anesthesiology, School of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
3
|
Yu Y, Yu J, Wu B, Wang Y, Li Y, Yang Y, Yu Y, Feng J. Enriched environment mitigates cognitive impairment in pre-adolescent mice following repeated neonatal sevoflurane exposure by reducing TTBK1 expression and Tau phosphorylation. Neuropharmacology 2025; 268:110327. [PMID: 39892471 DOI: 10.1016/j.neuropharm.2025.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Enriched environment (EE) is a living setting that provides visual, olfactory, tactile, and cognitive stimulation and has demonstrated potential treatment results in neurodevelopmental diseases. We aimed to elucidate whether the neurodevelopmental toxicity of sevoflurane is linked to TTBK1 and Tau phosphorylation, as well as to evaluate the neuroprotective mechanism of EE on mice following sevoflurane exposure. Female mice were anesthetized at postnatal day 6 (P6) or P60 with 3% sevoflurane for 2 h daily for three days. P6 mice received intraperitoneal injections of the TTBK1 inhibitor WHI-180 before anesthesia. The EE exposure was 2 h daily from P9 to P29. Cognitive function was assessed using the Morris water maze and novel object recognition tests. Hippocampal and cerebral cortical tissues were collected to measure levels of TTBK1, Tau-PS422, AT8, T22, and total Tau. Co-localization of TTBK1 and Tau-PS422 was identified via immunofluorescence. The dendritic spine count and shape classification were analyzed by Golgi staining. The results indicated elevated levels of TTBK1, phosphorylated Tau-PS422, and AT8 in neonatal mice compared to adults. Sevoflurane increased the levels of TTBK1 and Tau phosphorylation, causing cognitive impairment. Both TTBK1 inhibitor and EE reversed the sevoflurane-induced increase in TTBK1 and phosphorylated Tau levels, decrease in dendritic spine density and maturity, and cognitive impairment. In conclusion, the overexpression of TTBK1 and phosphorylated Tau in neonatal mice brain contributed to cognitive dysfunction after repeated sevoflurane anesthesia. EE played a cerebro-protective role by inhibiting the TTBK1/Tau pathway and promoting the development of dendritic spines after sevoflurane anesthesia.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Jiafeng Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Banglin Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, 444300, PR China
| | - Yuanlin Wang
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yun Li
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yongyan Yang
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Jingyu Feng
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China.
| |
Collapse
|
4
|
Rapido F, Di Franco V, Tabolacci E, Dello Russo C, Aceto P. The role of sevoflurane exposure on systemic inflammation and neuroinflammation: a systematic review and meta-analysis of in vivo and in vitro studies. Eur J Pharmacol 2025; 999:177696. [PMID: 40318819 DOI: 10.1016/j.ejphar.2025.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Neuroinflammation induced by anaesthetics may negatively affect neurocognitive functions after surgery in humans. This systematic review and meta-analysis aimed to evaluate the impact of sevoflurane exposure on systemic inflammation and neuroinflammation and to assess alterations in behavioural/cognitive functions in experimental rodent models not exposed to surgery nor to other inflammatory stimuli. Databases were searched for in vivo and/or in vitro studies examining inflammation after sevoflurane exposure compared to control conditions. Inflammatory biomarkers, including interleukin (IL)-6, IL-1β, and tumor necrosis factor alfa (TNFα), at the peak time of production (primary outcomes) were investigated. The secondary outcome was to evaluate the presence of alterations in behavioural/cognitive tests. Subgroup analyses on young and adult rodents were performed for in vivo studies. Thirty-five in vivo and in vitro studies were selected. Results from meta-analyses demonstrated significant increases in the secretion peak of all inflammatory markers in vivo models. Significantly higher plasma peaks of IL-6 (SMD: 7.97, 95 % CI: 4.76-11.17), IL-1β (SMD: 5.71, 95 % CI: 1.88-9.55) and TNFα (SMD: 6.64, 95 % CI: 3.73-9.56) were found only in adult rodents exposed to sevoflurane. Similar findings were observed in brain tissue homogenates. Rodents exposed to sevoflurane exhibited significant alterations in behavioural/cognitive tests and significance persisted only in adult rodents. Sevoflurane exposure may trigger systemic inflammation and neuroinflammation in experimental rodent models with marked effects in adult rodents. Alterations in behavioural/cognitive tests suggest a potential role of sevoflurane in the development of postoperative cognitive disorders in the elderly, independently of surgery. Further research is needed in humans.
Collapse
Affiliation(s)
- Francesca Rapido
- Department of Anesthesia & Critical Care Medicine, Gui de Chauliac Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS)-Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Valeria Di Franco
- Dipartimento di Scienze dell'emergenza, Anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Tabolacci
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Cinzia Dello Russo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | - Paola Aceto
- Dipartimento di Scienze dell'emergenza, Anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Che J, Wu Y, Dong J, Jiang X, Yang L, Chen Y, Zhang J. Inhibition of histamine receptor 3 alleviates sevoflurane-induced hypomyelination and neurobehavioral deficits. Exp Neurol 2025; 385:115086. [PMID: 39637962 DOI: 10.1016/j.expneurol.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Inhalational anesthetic sevoflurane can cause myelination damage in developing brain. This study examines the effects of histamine receptor 3 (H3) antagonist thioperamide on sevoflurane-induced hypomyelination and neurobehavioral deficits. METHODS Neonatal C57BL/6 mice were exposed to sevoflurane for consecutive three days and treated with H3 receptor antagonist thioperamide. Myelination was assessed in the hippocampus and corpus callosum. The neurobehavioral functions were also examined. Primary oligodendrocyte progenitor cells (OPCs) were used for in vitro experiments and the underlying mechanism. RESULTS Inhibition of H3 receptor with thioperamide significantly alleviated sevoflurane-induced impairments in myelination and neurobehavioral functions. In vitro experiments showed that thioperamide reversed the effects of sevoflurane on OPCs migration, proliferation and differentiation into mature oligodendrocytes. Mechanistically, thioperamide improved sevoflurane-induced hypomyelination may through H3 receptor-mediated GSK-3β/β-catenin pathway. CONCLUSION H3 receptor antogonist thioperamide could protect developing brain against hypomyelination and neurobehavioral deficits after repeated sevoflurane exposure. Therefore H3 receptor is a potential target for preventing anesthetic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Yuanyuan Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
6
|
Wu H, Wang S, Dai FB, Tang CL. Research progress in the clinical application of inhaled anesthetic sevoflurane. Med Gas Res 2025; 15:85-92. [PMID: 39436171 PMCID: PMC11515067 DOI: 10.4103/mgr.medgasres-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 10/23/2024] Open
Abstract
Sevoflurane has been widely used in clinical anesthesia as an inhalation anesthetic. With the development of medicine, there have been several new applications in recent years, such as daytime surgery, labor analgesia, and combined nerve block for some surgeries. Moreover, as research progresses, it has been found that it not only has potential organ protection effects but can also be used to treat severe asthma and relieve the tracheal spasm state. In addition, local administration can effectively treat vascular ulcers. We briefly review the organ protective effect of sevoflurane, its application in dental treatment, asthma treatment, vascular ulcer treatment and some new progress in clinical application.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Fei-Biao Dai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Liang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Chen X, Zhang Y, Hu N, Pan Q, Wang K, Yin Y. Regulatory mechanism of LncRNA GAS5 in cognitive dysfunction induced by sevoflurane anesthesia in neonatal rats. Brain Dev 2025; 47:104295. [PMID: 39550980 DOI: 10.1016/j.braindev.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Sevoflurane (Sev) exposure may provoke deleterious effects on cognitive function. This study explores the mechanism of long non-coding RNA growth arrest specific transcript 5 (LncRNA GAS5) in Sev-induced cognitive dysfunction in neonatal rats. METHODS Cognitive dysfunction was induced by Sev anesthesia in 7-day-old Sprague-Dawley rats, followed by open field test, novel object recognition, radial arm maze, and Morris water maze to evaluate cognitive function of rats. The subcellular localization of LncRNA GAS5 was detected by nucleocytoplasmic isolation assay, and the binding of miR-137 to LncRNA GAS5 and NKCC1 was detected by RNA pull down and dual-luciferase reporter assay, respectively. Adenovirus-packaged sh-LncRNA GAS5 was injected into the hippocampus of Sev rats. qRT-PCR and Western blot were performed to detect the expressions of LncRNA GAS5, miR-137 and NKCC1 in the hippocampus of rats. RESULTS Sev anesthesia led to cognitive dysfunction in neonatal rats. LncRNA GAS5 was highly expressed in Sev rats, and inhibition of LncRNA GAS5 alleviated Sev-induced cognitive dysfunction in rats. LncRNA GAS5 targeted miR-137, and miR-137 inhibited NKCC1 expression. Knockdown of miR-137 or overexpression of NKCC1 reversed the effect of LncRNA GAS5 inhibition on cognitive dysfunction in sev rats. CONCLUSION LncRNA GAS5 promotes Sev-induced cognitive dysfunction in neonatal rats via the miR-137/NKCC1 axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yu Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nan Hu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qian Pan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
8
|
Xin A, Grobler A, Bell G, de Graaff JC, Dorris L, Disma N, McCann ME, Withington DE, Davidson AJ. Neurodevelopmental Outcomes after Multiple General Anesthetic Exposures before 5 Years of Age: A Cohort Study. Anesthesiology 2025; 142:308-319. [PMID: 39808508 DOI: 10.1097/aln.0000000000005293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND The general anaesthesia or awake-regional anaesthesia in infancy (GAS) trial demonstrated evidence that most neurodevelopmental outcomes at 2 and 5 yr of age in infants who received a single general anesthetic for elective inguinal herniorrhaphy were clinically equivalent when compared to infants who did not receive general anesthesia. More than 20% of the children in the trial had at least one subsequent anesthetic exposure after their initial surgery. Using the GAS database, this study aimed to address whether multiple (two or more) general anesthetic exposures compared to one or no general anesthetic exposure in early childhood were associated with worse neurodevelopmental outcomes at 5 yr. METHODS Children with multiple general anesthetic exposures and children with one or no general anesthetic exposure were identified from the GAS database. The primary outcome was the full-scale intelligence quotient on the Wechsler Preschool and Primary Scale of Intelligence (third edition) at 5 yr of age. Secondary outcomes included neurocognitive tests addressing all major developmental domains and caregiver-reported questionnaires assessing emotional and behavioral problems. RESULTS Complete assessment was available from a total of 90 children in the multiple general anesthetic group and 141 children in the no or one general anesthetic group. Compared with children with a single or no general anesthetic exposure, multiply exposed children scored on average almost 6 points lower (mean, -5.8; 95% CI, -10.2 to -1.4; P = 0.011) in the Wechsler Preschool and Primary Scale of Intelligence full-scale intelligence quotient. They also demonstrated lower verbal and performance IQ scores and more emotional, behavioral, and executive function difficulties. However, significant residual confounding cannot be excluded from the results due to the observational nature of this study. CONCLUSIONS Multiple general anesthetic exposures before 5 yr of age were associated with reduced performance in general intelligence score and some domains of neurodevelopmental assessments. The clinical significance of this study's results must be cautiously interpreted in light of several sources of limitations including small sample size and unadjusted residual confounding. This study illustrates the limitations of trial data sets that may not be fit for the purpose for the secondary analysis.
Collapse
Affiliation(s)
- Annie Xin
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Anneke Grobler
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Graham Bell
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Jurgen C de Graaff
- Department of Anesthesiology, Adrz-Erasmus MC, Goes, The Netherlands; Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Liam Dorris
- Royal Hospital for Children, Glasgow, United Kingdom; Mental Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Nicola Disma
- Unit for Research in Anesthesia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Davinia E Withington
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada; Department of Anesthesia, Montreal Children's Hospital, Quebec, Canada
| | - Andrew J Davidson
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Isik OG, Ing C. Maternal exposure to general anesthesia and labor epidural analgesia during pregnancy and delivery, and subsequent neurodevelopmental outcomes in children. Int J Obstet Anesth 2025; 61:104318. [PMID: 39754838 DOI: 10.1016/j.ijoa.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Gestation is a vulnerable developmental period, and exposures during that time may have longterm implications. While evaluating the implications of early exposures on children is an important public health concern, as opposed to other chemical exposures, medications are given for a clinical purpose, and any potential injury must be weighed against the benefits of these medications to the mother and child. This review examines neurodevelopmental outcomes in children following two maternal anesthetic exposures: general anesthesia and labor epidural analgesia. Exposure to general anesthetic agents has been found to interfere with neurodevelopment in animal models, and exposures in children, including prenatal exposures are also associated with worse neurodevelopmental outcomes. While these medications are likely to impact neurodevelopment in animals, it remains unclear if prenatal general anesthetic exposure causes the reported differences in children. As a result, since avoidance or delay of necessary surgery in mothers may result in adverse outcomes in mothers and children, necessary surgery in pregnant mothers should proceed without delay. Concerns about the safety of maternal neuraxial labor analgesia ("epidurals") have also emerged due to a reported association with autism spectrum diagnoses in their children. This may be due to familial factors in pregnant women electing for neuraxial labor analgesia rather than the "epidural" itself. In addition, since clinically significant differences in neurodevelopmental scores in children following exposure have not been found, and a mechanism of injury has not yet been identified in preclinical studies, the benefits of neuraxial labor analgesia appear to outweigh the potential risks.
Collapse
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
10
|
Zhang L, Ke Z, Zhang N, Wang D, Zhou L. Repeated sevoflurane exposure causes hypomyelination in the prefrontal cortex of adult male mice. Sci Rep 2025; 15:1546. [PMID: 39789243 PMCID: PMC11718107 DOI: 10.1038/s41598-025-85834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change. Furthermore, disrupted proliferation of oligodendrocyte precursor cells (OPCs) contributes to repeated sevoflurane exposure-induced myelin defect. This may be owing to an accumulated tuberous sclerosis complex 1 (TSC1) expression and inhibition of mammalian target of rapamycin (mTOR) signaling, leading to the unbalance of TSC1-mTORC1 activity after repeated sevoflurane exposure, which is critical for proper myelination of the central nervous system (CNS). Moreover, repeated sevoflurane exposure aggregates myelination defect in the cuprizone-induced demyelination model. Together, our present work establishes the role of sevoflurane exposure in myelin integrity in the PFC of the adult male mice and provides a new insight to elucidate the mechanism of GAs-induced brain dysfunctions.
Collapse
Affiliation(s)
- Linyong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhidan Ke
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Ning Zhang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Dechuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Liang Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
11
|
Han S, Bian R, Chen Y, Liang J, Zhao P, Gu Y, Zhang D. Dysregulation of the Gut Microbiota Contributes to Sevoflurane-Induced Cognitive Dysfunction in Aged Mice by Activating the NLRP3 Inflammasome. Mol Neurobiol 2024; 61:10500-10516. [PMID: 38740706 DOI: 10.1007/s12035-024-04229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication in elderly patients after surgery, seriously affects patients' quality of life. Long-term or repeated inhalation of sevoflurane can cause neuroinflammation, which is a risk factor for POCD. However, the underlying mechanism needs to be further explored. Recent research had revealed a correlation between neurological disorders and changes in the gut microbiota. Dysfunction of the gut microbiota is involved in the occurrence and development of central nervous system diseases. Here, we found that cognitive dysfunction in aged mice induced by sevoflurane exposure (3%, 2 hours daily, for 3 days) was related to gut microbiota dysbiosis, while probiotics improved cognitive function by alleviating dysbiosis. Sevoflurane caused a significant decrease in the abundance of Akkermansia (P<0.05), while probiotics restored the abundance of Akkermansia. Compared to those in the control group, sevoflurane significantly increased the expression of NLRP3 inflammasome-associated proteins in the gut and brain in the sevoflurane-exposed group, thus causing neuroinflammation and synaptic damage, which probiotics can mitigate (con vs. sev, P < 0.01; p+sev vs. sev, P < 0.05). In conclusion, for the first time, our study revealed that dysbiosis of the gut microbiota caused by sevoflurane anesthesia contributes to the NLRP3 inflammasome-mediated neuroinflammation and cognitive dysfunction from the perspective of the gut-brain axis. Perhaps postoperative cognitive impairment in elderly patients can be alleviated or even prevented by regulating the gut microbiota. This study provides new insights and methods for the prevention and treatment of cognitive impairment induced by sevoflurane.
Collapse
Affiliation(s)
- Shanshan Han
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ruxi Bian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yanfang Gu
- Department of Gynecology, Jiangnan University Affiliated Hospital, Wuxi, 214002, China.
| | - Dengxin Zhang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
12
|
Zhang Y, Liu X, Xie L, Hong J, Zhuang Q, Ren L, Li X, Zhang C. Overexpression of Nfs1 Cysteine Desulphurase Relieves Sevoflurane-Induced Neurotoxicity and Cognitive Dysfunction in Neonatal Mice Via Suppressing Oxidative Stress and Ferroptosis. J Biochem Mol Toxicol 2024; 38:e70051. [PMID: 39488760 DOI: 10.1002/jbt.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Clinical evidence suggests that multiple exposures to sevoflurane in young people may be detrimental to cognitive development. Iron accumulation in the hippocampus is associated with sevoflurane-induced neurotoxicity and cognitive deficits. The cysteine desulphurase, Nfs1, the rate-limiting enzyme for the biosynthesis of iron-sulphur clusters, plays a role in cellular iron homeostasis. However, the impact of Nfs1-mediated ferroptosis on sevoflurane-induced neurotoxicity and cognitive impairments in neonatal mice remains undetermined. Neonatal mice at postnatal Day 6 received 3% sevoflurane daily for 3 consecutive days. Cognitive function was assessed using the Morris water maze test, and neurotoxicity was evaluated through terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence staining. Here, HT22 hippocampal neurons were employed for in-vitro experiments, and Fe2+ accumulation was measured. Ferroptosis-related genes, including glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1) and ferritin, in the hippocampus and HT22 cells were observed, along with oxidative stress-related indicators such as reactive oxygen species (ROS), methionine adenosyltransferase (MAT), glutathione (GSH) and lipid peroxidation (LPO). Transmission electron microscopy was utilized to examine the mitochondrial microstructure. Sevoflurane exposure significantly decreased Nfs1 expression in the hippocampus of mice and HT22 cells. This exposure resulted in cognitive impairments and neuronal damage in the hippocampus, which were alleviated by overexpression of Nfs1. Intracellular and mitochondrial iron accumulation occurred in HT22 cells following sevoflurane treatment. Sevoflurane exposure also significantly reduced GSH levels and increased levels of malondialdehyde, ROS and LPO in the hippocampus or HT22 cells. Additionally, sevoflurane exposure decreased GPX4 expression but increased TFR1 and ferritin expression in the hippocampus or HT22 cells. Overexpression of Nfs1 reversed the sevoflurane-induced alterations in ferroptosis-related genes and oxidative stress-related indicators. Furthermore, overexpression of Nfs1 alleviated sevoflurane-induced mitochondrial dysfunction. However, Nfs1 knockdown alone did not result in cognitive impairments, ferroptosis or oxidative stress. The overexpression of Nfs1 mitigated sevoflurane-induced neurotoxicity and cognitive impairment by modulating oxidative stress and ferroptosis through the regulation of iron metabolism and transport.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xinru Liu
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Lijuan Xie
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Jin Hong
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Qin Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Li Ren
- Department of Clinical Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Congli Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
13
|
Chai D, Jiang H, Liu H. The impact of maternal anti-inflammatory drugs on surgical anesthesia-induced neuroinflammation and cognitive impairment in offspring mice. Front Cell Neurosci 2024; 18:1481630. [PMID: 39440002 PMCID: PMC11493650 DOI: 10.3389/fncel.2024.1481630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background The impact of maternal surgery combined with general anesthesia on neuroinflammation and the development of learning and memory impairment in offspring remains unclear. This study utilized a pathogen-free laparotomy model to investigate these changes during the second trimester, as well as their response to anti-inflammatory therapy. Methods C57BL/6 pregnant mice at the 14.5-day embryo stage (E 14.5) were either exposed to sevoflurane anesthesia alone or underwent laparotomy procedure. The neuroinflammatory response was evaluated at 7, 14, 21, and 28 days postnatal (P7, P14, P21, P28). Tau phosphorylation and cognitive ability were assessed at P28 and P30, respectively. The impact of perioperative administration of ibuprofen (60 mg/kg) on these aforementioned changes was subsequently evaluated. Results In the laparotomy group, levels of inflammatory factors (IL-4, IL-8, IL-17A, TGF-β, M-CSF, CCL2) in the brains of offspring mice, including the cerebral cortex and hippocampus, remained consistently elevated from P7 to P28. At P14, while the majority of inflammatory cytokine has no statistical difference, there was still a significant reactivation of inflammatory cytokines observed in the frontal cortex and hippocampus at P28. Furthermore, abnormal phosphorylation of tau and deficits in learning and memory were observed at P28 and P30. Administration of perioperative ibuprofen led to improvements in cognitive performance, reduction of systemic inflammation, and inhibiting abnormal phosphorylation of tau in the frontal cortex and hippocampus. Conclusion Our findings indicate that cognitive dysfunction is correlated with elevated levels of inflammatory cytokines and tau phosphorylation. Cognitive impairment and tau phosphorylation after laparotomy can persist at least until P28. Anti-inflammatory medications have been shown to enhance cognitive function by rapidly reducing inflammation in the brain, while also impacting neurological changes. This discovery may have implications for the development of treatment strategies aimed at managing cognitive impairment in post-operative patients.
Collapse
|
14
|
Liu F, Li C. SIRT1-driven mechanism: sevoflurane's interference with mESC neural differentiation via PRRX1/DRD2 cascade. Hum Mol Genet 2024; 33:1758-1770. [PMID: 39087769 DOI: 10.1093/hmg/ddae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| | - Chenguang Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| |
Collapse
|
15
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
16
|
Deng L, Song SY, Zhao WM, Meng XW, Liu H, Zheng Q, Peng K, Ji FH. Triggering Receptor Expressed on Myeloid Cells 2 Alleviated Sevoflurane-Induced Developmental Neurotoxicity via Microglial Pruning of Dendritic Spines in the CA1 Region of the Hippocampus. Neurosci Bull 2024; 40:1215-1229. [PMID: 39078595 PMCID: PMC11365924 DOI: 10.1007/s12264-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 07/31/2024] Open
Abstract
Sevoflurane induces developmental neurotoxicity in mice; however, the underlying mechanisms remain unclear. Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for microglia-mediated synaptic refinement during the early stages of brain development. We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice. Mice were anaesthetized with sevoflurane on postnatal days 6, 8, and 10. Behavioral performance was assessed using the open field test and Morris water maze test. Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments. Western blotting, immunofluorescence, electron microscopy, three-dimensional reconstruction, Golgi staining, and whole-cell patch-clamp recordings were performed. Sevoflurane exposures upregulated the protein expression of TREM2, increased microglia-mediated pruning of dendritic spines, and reduced synaptic multiplicity and excitability of CA1 neurons. TREM2 genetic knockdown significantly decreased dendritic spine pruning, and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice. In contrast, TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction. TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons. This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Li Deng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Shao-Yong Song
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Anaesthesiology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Wei-Ming Zhao
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Xiao-Wen Meng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Hong Liu
- Department of Anaesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Suzhou, 215006, China
| | - Ke Peng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China.
| | - Fu-Hai Ji
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
17
|
Hou Q, Yuan J, Li S, Ma J, Li W, Zhang B, Zhao X, Zhang F, Ma Y, Zheng H, Wang H. Autophagic degradation of DHCR7 activates AKT3 and promotes sevoflurane-induced hippocampal neuroinflammation in neonatal mice. Free Radic Biol Med 2024; 222:304-316. [PMID: 38901498 DOI: 10.1016/j.freeradbiomed.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice triggers neuroinflammation with detrimental effects on cognitive function. Yet, the mechanism of the sevoflurane-induced cytokine response is largely unknown. In this study, we reveal that 3-MA, an autophagy inhibitor, attenuated the sevoflurane-induced neuroinflammation and cognitive dysfunction, including the decreased freezing time and fewer platform crossings, in the neonate mice. 3-Methyladenine (3-MA) suppressed sevoflurane-induced expression of interleukin-6 and tumor necrosis factor-alpha in vitro. Moreover, sevoflurane activates IRF3, facilitating cytokine transcription in an AKT3-dependent manner. Mechanistically, sevoflurane-induced autophagic degradation of dehydrocholesterol-reductase-7 (DHCR7) resulted in accumulations of its substrate 7-dehydrocholesterol (7-DHC), mimicking the effect of sevoflurane on AKT3 activation and IRF3-driven cytokine expression. 3-MA significantly reversed sevoflurane-induced DHCR7 degradation, AKT phosphorylation, IRF3 activation, and the accumulation of 7-DHC in the hippocampal CA1 region. These findings pave the way for additional investigations aimed at developing novel strategies to mitigate postoperative cognitive impairment in pediatric patients.
Collapse
Affiliation(s)
- Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weiwei Li
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bo Zhang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Joe YE, Jun JH, Oh JE, Lee JR. Damage-associated molecular patterns as a mechanism of sevoflurane-induced neuroinflammation in neonatal rodents. Korean J Anesthesiol 2024; 77:468-479. [PMID: 38556956 PMCID: PMC11294876 DOI: 10.4097/kja.23796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND General anesthesia is inevitable for pediatric patients undergoing surgery, though volatile anesthetic agents may cause neuroinflammation and neurodevelopmental impairment; however, the underlying pathophysiology remains unclear. We aimed to investigate the neuroinflammation mechanism in developing rat brains associated with sevoflurane exposure time, by identifying the specific damage-associated molecular patterns (DAMPs) pathway and evaluating the effects of non-steroidal anti-inflammatory drugs (NSAIDs) in alleviating neuroinflammation. METHODS A three-step experiment was conducted to investigate neuroinflammation induced by sevoflurane. First, the exposure time required for sevoflurane to cause neuroinflammation was determined. Next, the specific pathways of DAMPs involved in neuroinflammation by sevoflurane were identified. Finally, the effects of NSAIDs on sevoflurane-induced neuroinflammation were investigated. The expression of various molecules in the rat brain were assessed using immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, western blot analysis, and enzyme-linked immunosorbent assay. RESULTS In total, 112 rats (aged 7 days) were used, of which six rats expired during the experiment (mortality rate, 5.3%). Expression of CD68, HMGB-1, galectin-3, TLR4, TLR9, and phosphorylated NF-κB was significantly increased upon 6 h of sevoflurane exposure. Conversely, transcriptional levels of TNF-α and IL-6 significantly increased and IFN-γ significantly decreased after 6 h of sevoflurane exposure. Co-administration of NSAIDs with sevoflurane anesthesia significantly attenuated TNF-α and IL-6 levels and restored IFN-γ levels. CONCLUSIONS In conclusion, 6 h of sevoflurane exposure induces neuroinflammation through the DAMPs pathway, HMGB-1, and galectin-3. Co-administration of ibuprofen reduced sevoflurane-induced neuroinflammation.
Collapse
Affiliation(s)
- Young-Eun Joe
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Rim Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Sun J, Deng X, Zhu L, Lin J, Chen G, Tang Y, Lu S, Lu Z, Meng Z, Li Y, Zhu Y. Zona incerta mediates early life isoflurane-induced fear memory deficits. Sci Rep 2024; 14:15136. [PMID: 38956153 PMCID: PMC11220074 DOI: 10.1038/s41598-024-66106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
The potential long-term effects of anesthesia on cognitive development, especially in neonates and infants, have raised concerns. However, our understanding of its underlying mechanisms and effective treatments is still limited. In this study, we found that early exposure to isoflurane (ISO) impaired fear memory retrieval, which was reversed by dexmedetomidine (DEX) pre-treatment. Measurement of c-fos expression revealed that ISO exposure significantly increased neuronal activation in the zona incerta (ZI). Fiber photometry recording showed that ZI neurons from ISO mice displayed enhanced calcium activity during retrieval of fear memory compared to the control group, while DEX treatment reduced this enhanced calcium activity. Chemogenetic inhibition of ZI neurons effectively rescued the impairments caused by ISO exposure. These findings suggest that the ZI may play a pivotal role in mediating the cognitive effects of anesthetics, offering a potential therapeutic target for preventing anesthesia-related cognitive impairments.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Xiaofei Deng
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhu
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Jianbang Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaowei Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Tang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shanshan Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Meng
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yingjie Zhu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Zhu R, Liu L, Mao T, Wang X, Li Y, Li T, Lv S, Zeng S, Fu N, Li N, Wang Y, Sun M, Zhang J. Mfn2 regulates mitochondria and mitochondria-associated endoplasmic reticulum membrane function in neurodegeneration induced by repeated sevoflurane exposure. Exp Neurol 2024; 377:114807. [PMID: 38704082 DOI: 10.1016/j.expneurol.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.
Collapse
Affiliation(s)
- Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Lu Liu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Tian Mao
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; School of Clinical Medicine, Henan University, Kaifeng, Henan, PR China, 475004
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Yubao Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Ting Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Shuang Lv
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003.
| |
Collapse
|
21
|
Ozdemi̇r C, Isik B, Koca G, Inan MA. Effects of mid‑gestational sevoflurane and magnesium sulfate on maternal oxidative stress, inflammation and fetal brain histopathology. Exp Ther Med 2024; 28:286. [PMID: 38827470 PMCID: PMC11140313 DOI: 10.3892/etm.2024.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Models of inflammation, oxidative stress, hyperoxia and hypoxia have demonstrated that magnesium sulfate (MgSO4), a commonly used drug in obstetrics, has neuroprotective potential. In the present study, the effects of MgSO4 treatment on inflammation, oxidative stress and fetal brain histopathology were evaluated in an experimental rat model following sevoflurane (Sv) exposure during the mid-gestational period. Rats were randomly divided into groups: C (control; no injections or anesthesia), Sv (exposure to 2.5% Sv for 2 h), MgSO4 (administered 270 mg/kg MgSO4 intraperitoneally) and Sv + MgSO4 (Sv administered 30 min after MgSO4 injection). Inflammatory and oxidative stress markers were measured in the serum and neurotoxicity was investigated histopathologically in fetal brain tissue. Short-term mid-gestational exposure to a 1.1 minimum alveolar concentration of Sv did not significantly increase the levels of any of the measured biochemical markers, except for TNF-α. Histopathological evaluations demonstrated no findings suggestive of pathological apoptosis, neuroinflammation or oxidative stress-induced cell damage. MgSO4 injection prior to anesthesia caused no significant differences in biochemical or histopathological marker levels compared to the C and Sv groups. The present study indicated that short-term exposure to Sv could potentially be considered a harmless external stimulus to the fetal brain.
Collapse
Affiliation(s)
- Cagri Ozdemi̇r
- Department of Anesthesiology and Reanimation, Mamak State Hospital, 06270 Ankara, Turkey
| | - Berrin Isik
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Gulce Koca
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Medical Pathology, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
22
|
Li R, Zhang Y, Zhu Q, Wu Y, Song W. The role of anesthesia in peri‑operative neurocognitive disorders: Molecular mechanisms and preventive strategies. FUNDAMENTAL RESEARCH 2024; 4:797-805. [PMID: 39161414 PMCID: PMC11331737 DOI: 10.1016/j.fmre.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Peri-operative neurocognitive disorders (PNDs) include postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). Children and the elderly are the two populations most vulnerable to the development of POD and POCD, which results in both high morbidity and mortality. There are many factors, including neuroinflammation and oxidative stress, that are associated with POD and POCD. General anesthesia is a major risk factor of PNDs. However, the molecular mechanisms of PNDs are poorly understood. Dexmedetomidine (DEX) is a useful sedative agent with analgesic properties, which significantly improves POCD in elderly patients. In this review, the current understanding of anesthesia in PNDs and the protective effects of DEX are summarized, and the underlying mechanisms are further discussed.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinxin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yili Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
23
|
Lv T, Jia F, Wang G, Li S, Wan T, Qiu W, Tang Z, Chen H. Sevoflurane causes neurotoxicity and cognitive impairment by regulating Hippo signaling pathway-mediated ferroptosis via upregulating PRKCD. Exp Neurol 2024; 377:114804. [PMID: 38704083 DOI: 10.1016/j.expneurol.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Sevoflurane (SEV) has been found to induce neurotoxicity and cognitive impairment, leading to the development of degenerative diseases. Protein kinase C delta (PRKCD) is upregulated in the hippocampus of SEV-treated mice and may be related to SEV-related neurotoxicity. However, the underlying molecular mechanisms by which SEV mediates neurotoxicity via PRKCD remain unclear. METHODS Normal mice and PRKCD knockout (KO) mice were exposed to SEV. Hippocampal neurons were isolated from mice hippocampal tissues. H&E staining was used for pathological morphology of hippocampal tissues, and NISSL staining was used to analyze the number of hippocampal neurons. The mRNA and protein levels were determined using quantitative real-time PCR, western blot, immunofluorescence staining and immunohistochemical staining. The mitochondrial microstructure was observed by transmission electron microscopy. Cell viability was detected by cell counting kit 8 assay, and ferroptosis was assessed by detecting related marker levels. The cognitive ability of mice was assessed by morris water maze test. And the protein levels of PRKCD, ferroptosis-related markers and Hippo pathway-related markers were examined by western bolt. RESULTS SEV increased PRKCD expression and ferroptosis in hippocampal tissues of mice. Also, SEV promoted mouse hippocampal neuron injury by inducing ferroptosis via upregulating PRKCD expression. Knockout of PRKCD alleviated SEV-induced neurotoxicity and cognitive impairment in mice, and relieved SEV-induced ferroptosis in hippocampal neurons. PRKCD could inhibit the activity of Hippo pathway, and its knockdown also overturned SEV-mediated ferroptosis by activating Hippo pathway. CONCLUSION SEV could induce neurotoxicity and cognitive impairment by promoting ferroptosis via inactivating Hippo pathway through increasing PRKCD expression.
Collapse
Affiliation(s)
- Tingmin Lv
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Feiyu Jia
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Guanhua Wang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Shujia Li
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Tingting Wan
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Wenrui Qiu
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Zhenyu Tang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Hanwen Chen
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao Street, Shunde District, Foshan City, Guangdong Province 528308, PR China.
| |
Collapse
|
24
|
Zhang J, Deng H, Huang X, Wang L, Zhou P, Zeng J, Yu C. Pre-school children single inhalation anesthetic exposure and neuro-psychological development: a prospective study and Mendelian randomization analysis. Front Neurol 2024; 15:1389203. [PMID: 38933327 PMCID: PMC11199877 DOI: 10.3389/fneur.2024.1389203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background For children who are unable to cooperate due to severe dental anxiety (DA), dental treatment of childhood caries under Dental General Anesthesia (DGA) is a safe and high-quality treatment method. This study aims to evaluate the impact on neurocognitive functions and the growth and development of children 2 years after dental procedure based on previous research, and further establish a causal relationship between general anesthesia (GA) and changes in children's neurocognitive functions by incorporating Mendelian Randomization (MR) analysis. Methods Data were collected and analyzed from 340 cases of S-ECC procedures of preschool children conducted in 2019. This involved comparing the neurocognitive outcomes 2 years post-operation of preschool children receiving dental procedures under general anesthesia or local anesthesia. Physical development indicators such as height, weight, and body mass index (BMI) of children were also compared at baseline, half a year post-operation, and 2 years post-operation. We performed a Mendelian randomization analysis on the causal relationship between children's cognitive development and general anesthesia, drawing on a large-scale meta-analysis of GWAS for anesthesia, including multiple general anesthesia datasets. Results Outcome data were obtained for 111 children in the general anesthesia group and 121 children in the local anesthesia group. The mean FSIQ score for the general anesthesia group was 106.77 (SD 6.96), while the mean score for the local anesthesia group was 106.36 (SD 5.88). FSIQ scores were equivalent between the two groups. The incidence of malnutrition in children in the general anesthesia group was 27.93% (p < 0.001) before surgery and decreased to 15.32% (p > 0.05) after 2 years, which was not different from the general population. The IVW method suggested that the causal estimate (p = 0.99 > 0.05, OR = 1.04, 95% CI = 5.98 × 10-4-1.82 × 103) was not statistically significant for disease prevalence. This indicates no genetic cause-and-effect relationship between anesthesia and childhood intelligence. Conclusion There were no adverse outcomes in neurocognitive development in 2 years after severe early childhood caries (S-ECC) procedure under total sevoflurane-inhalation in preschool children. The malnutrition condition in children can be improved after S-ECC procedure under general anesthesia. Limited MR evidence does not support a correlation between genetic susceptibility to anesthesia and an increased risk for intelligence in children.
Collapse
Affiliation(s)
- Jinghong Zhang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xilu Huang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pinping Zhou
- People’s Hospital of Changshou, Changshou, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
25
|
Hang WX, Yang YC, Hu YH, Fang FQ, Wang L, Qian XH, Mcquillan PM, Xiong H, Leng JH, Hu ZY. General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain. Zool Res 2024; 45:691-703. [PMID: 38766750 PMCID: PMC11188601 DOI: 10.24272/j.issn.2095-8137.2023.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.
Collapse
Affiliation(s)
- Wen-Xin Hang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yan-Chang Yang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Han Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Fu-Quan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, China
| | - Xing-Hua Qian
- Department of Anesthesiology, Jiaxing Maternity and Childcare Health Hospital, Jiaxing, Zhejiang 314009, China
| | - Patrick M Mcquillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hui Xiong
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian-Hang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China. E-mail:
| | - Zhi-Yong Hu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China. E-mail:
| |
Collapse
|
26
|
Neudecker V, Perez-Zoghbi JF, Brambrink AM. Commentary: Early-in-life Isoflurane Exposure Alters Resting-State Functional Connectivity in Juvenile Non-human Primates - a Role for Neuroinflammation? JOURNAL OF IMMUNOLOGICAL SCIENCES 2024; 8:1-5. [PMID: 39221429 PMCID: PMC11364266 DOI: 10.29245/2578-3009/2024/2.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The concern about anesthesia-induced developmental neurotoxicity (AIDN) in infants and young children arises from animal studies indicating potential long-term neurobehavioral impairments following early-in-life anesthesia exposure. While initial clinical studies provided ambiguous results, recent prospective assessments in children indicate associations between early-in-life anesthesia exposure and later behavioral alterations. Ethical constraints and confounding factors in clinical studies pose challenges in establishing a direct causal link and in investigating its mechanisms. This commentary on a recent study in non-human primates (NHPs) focuses on exploring the role of neuroinflammation and alterations in brain functional connectivity in the behavioral impairments following early-in-life anesthesia exposure. In juvenile NHPs, chronic astrogliosis in the amygdala correlates with alterations in functional connectivity between this area with other regions of the brain and with the behavioral impairments, suggesting a potential mechanism for AIDN. Despite acknowledging the study's limitations, these findings emphasize the need for further research with larger cohorts to confirm these associations and to establish a causal link between the neuroinflammation and the behavioral alterations associated with early-in-life anesthesia exposure.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F. Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ansgar M. Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Wang M, Zhang L, Yang H, Lu H. Translatome and transcriptome profiling of neonatal mice hippocampus exposed to sevoflurane anesthesia. Heliyon 2024; 10:e28876. [PMID: 38707353 PMCID: PMC11066607 DOI: 10.1016/j.heliyon.2024.e28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Exposure to anesthesia in early life may cause severe damage to the brain and lead to cognitive impairment. The underlying mechanisms, which have only been investigated in a limited scale, remains largely elusive. We performed translatome and transcriptome sequencing together for the first time in hippocampus of neonatal mice that were exposed to sevoflurane. We treated a group of neonatal mice with 2.5 % sevoflurane for 2 h on day 6, 7, 8, 9 and treated another group on day 6, 7. We performed behavioral study after day 30 for both groups and the control to evaluate the cognitive impairment. On day 36, we collected translatome and transcriptome from the hippocampus in the two groups, compared the gene expression levels between the groups and the control, and validated the results with RT-qPCR. We identified 1750 differentially expressed genes (DEGs) from translatome comparison and 1109 DEGs from transcriptome comparison. As expected, translatome-based DEGs significantly overlapped with transcriptome-based DEGs, and functional enrichment analysis generated similar enriched cognition-related GO terms and KEGG pathways. However, for many genes like Hspa5, their alterations in translatome differed remarkably from those in transcriptome, and Western blot results were largely concordant with the former, suggesting that translational regulation plays a significant role in cellular response to sevoflurane. Our study revealed global alterations in translatome and transcriptome of mice hippocampus after neonatal exposure to sevoflurane anesthesia and highlighted the importance of translatome analysis in understanding the mechanisms responsible for anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hecheng Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
28
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Yang Y, Hang W, Li J, Liu T, Hu Y, Fang F, Yan D, McQuillan PM, Wang M, Hu Z. Effect of General Anesthetic Agents on Microglia. Aging Dis 2024; 15:1308-1328. [PMID: 37962460 PMCID: PMC11081156 DOI: 10.14336/ad.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of general anesthetic agents (GAAs) on microglia and their potential neurotoxicity have attracted the attention of neuroscientists. Microglia play important roles in the inflammatory process and in neuromodulation of the central nervous system. Microglia-mediated neuroinflammation is a key mechanism of neurocognitive dysfunction during the perioperative period. Microglial activation by GAAs induces anti-inflammatory and pro-inflammatory effects in microglia, suggesting that GAAs play a dual role in the mechanism of postoperative cognitive dysfunction. Understanding of the mechanisms by which GAAs regulate microglia may help to reduce the incidence of postoperative adverse effects. Here, we review the actions of GAAs on microglia and the consequent changes in microglial function. We summarize clinical and animal studies associating microglia with general anesthesia and describe how GAAs interact with neurons via microglia to further explore the mechanisms of action of GAAs in the nervous system.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA.
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA.
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
31
|
Zhou S, Cui X, Chen J, Luo M, Ouyang W, Tong J, Xie Z, Le Y. Single exposure to anesthesia/surgery in neonatal mice induces cognitive impairment in young adult mice. Free Radic Biol Med 2024; 214:184-192. [PMID: 38369077 DOI: 10.1016/j.freeradbiomed.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The effects of a solitary neonatal exposure to anesthesia plus surgery (anesthesia/surgery) on cognitive function and the underlying mechanism in developing brains remains largely undetermined. We, therefore, set out to investigate the impact of single exposure to anesthesia/surgery in neonatal mice. METHODS Six-day-old male and female mice received abdominal surgery under 3% sevoflurane plus 50% oxygen for 2 h. The new object recognition (NOR) and Morris water maze (MWM) were used to evaluate cognitive function in young adult mice. Western blot, ELISA and RT-PCR were used to measure levels of NR2B and IL-6 in medial prefrontal cortex and IL-6 in blood of the mice. We employed NR2B siRNA and IL-6 antibody in the interaction studies. RESULTS The anesthesia/surgery decreased the ratio of novel time to novel plus familiar time in NOR and the number of platform crossings, but not escape latency, in MWM compared to sham condition. The mice in anesthesia/surgery group had increased NR2B expression in medial prefrontal cortex, and IL-6 amounts in blood and medial prefrontal cortex. Local injection of NR2B siRNA in medial prefrontal cortex alleviated the anesthesia/surgery-induced cognitive impairment. IL-6 antibody mitigated the anesthesia/surgery-induced upregulation of NR2B and cognitive impairment in young adult mice. CONCLUSIONS These results suggest that a single neonatal exposure to anesthesia/surgery causes impairment of memory, but not learning, in young adult mice through IL-6-regulated increases in NR2B concentrations in medial prefrontal cortex, highlighting the need for further research on the underlying mechanisms of anesthesia/surgery's impact on cognitive function in developing brains.
Collapse
Affiliation(s)
- Songhua Zhou
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Manli Luo
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA, 02129-2060
| | - Yuan Le
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
32
|
Li Z, He M, Dai D, Gao X, Liang H, Xiong L. Middle aged CAMKII-Cre:Cbs fl/fl mice: a new model for studying perioperative neurocognitive disorders. Exp Anim 2024; 73:109-123. [PMID: 37766548 PMCID: PMC10877146 DOI: 10.1538/expanim.23-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Postoperative complications, such as perioperative neurocognitive disorders (PND), have become a major issue affecting surgical outcomes. However, the mechanism of PND remains unclear, and stable animal models of middle-aged PND are lacking. S-adenosylmethionine (SAM), a cystathionine beta-synthase (CBS) allosteric activator, can reduce the level of plasma homocysteine and prevent the occurrence of PND. However, the time and resource-intensive process of constructing models of PND in elderly animals have limited progress in PND research and innovative therapy development. The present study aimed to construct a stable PND model in middle-aged CAMKII-Cre:Cbsfl/fl mice whose Cbs was specifically knocked out in CAMKII positive neurons. Behavioral tests showed that these middle-aged mice displayed cognitive deficits which were aggravated by exploratory laparotomy under isoflurane anesthesia. Compared with typical PND mice which were 18-month-old, these middle-aged mice showed similar cognitive deficits after undergoing exploratory laparotomy under isoflurane anesthesia. Though there was no significant difference in the number of neurons in either the hippocampus or the cortex, a significant increase in numbers of microglia and astrocytes in the hippocampus was observed. These indicate that middle-aged CAMKII-Cre:Cbsfl/fl mice can be used as a new PND model for mechanistic studies and therapy development for PND.
Collapse
Affiliation(s)
- Zhen Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Mengfan He
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Xiaofei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Huazheng Liang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215127, P.R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| |
Collapse
|
33
|
Zhao M, Gu H, Pan W, Liu P, Zhu T, Shang H, Jia M, Yang J. SynCAM1 deficiency in the hippocampal parvalbumin interneurons contributes to sevoflurane-induced cognitive impairment in neonatal rats. CNS Neurosci Ther 2024; 30:e14554. [PMID: 38105652 PMCID: PMC10805405 DOI: 10.1111/cns.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.
Collapse
Affiliation(s)
- Ming‐ming Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Han‐wen Gu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wei‐tong Pan
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pan‐miao Liu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ting‐ting Zhu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Hui‐jie Shang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
34
|
Liu X, Yu J, Tan X, Zhang Q, Niu J, Hou Z, Wang Q. Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium. Neurotoxicology 2024; 100:35-46. [PMID: 38070654 DOI: 10.1016/j.neuro.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Perioperative neurocognitive disorders are a common surgical and postanesthesia complication. Necroptosis contributes to the emergence of various neurological disorders. We conjecture that cognitive impairment is associated with necroptosis of hippocampal neurons, which is mediated by NMDA receptors leading to cytoplasmic calcium imbalance. C57BL/6 J male mice ( 18 months) were randomly divided into the C ( control group), S ( sevoflurane group), S+M ( sevoflurane plus the NMDA receptor antagonist memantine group) and S+N ( sevoflurane plus necrostatin-1) group. We exposed the mice to 3% sevoflurane for 2 h a day for three consecutive days in the S, S+M and S+N groups. Memantine ( 20 mg/kg) or Nec-1 ( 10 mg/kg) was injected intraperitoneally 1 h before sevoflurane anesthesia in the S+M or S+N group. We used the animal behavior tests to evaluate the cognitive function. Pathological damage, the rate of necroptosis, [Ca2+]i, and the expression of necroptosis-related proteins were evaluated. The cognitive function tests, pathological damage, the rate of necroptosis, the expression of necroptosis-related proteins, NMDAR2A and NMDAR2B were significantly different in the S group ( P < 0.05). Alleviated pathological damage, decreased the rate of necroptosis and down-regulated the expression of necroptosis-related proteins occurred in the S+M and S+N group ( P < 0.05). The lower elevated [Ca2+]i, expression of NMDAR2A and NMDAR2B were found in the S+M group. Our findings highlighted sevoflurane-induced cognitive dysfunction is associated with an imbalance in cytoplasmic calcium homeostasis by activating NMDA receptors, which causes hippocampus neurons to undergo necroptosis and ultimately affects cognitive performance in aged mice.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China; Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Jiaxu Yu
- Department of Anesthesiology, Cang Zhou Centrol Hospital, Cangzhou 061017, Hebei, China
| | - Xiaona Tan
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Junfang Niu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Zhiyong Hou
- Center of Emergency and Trauma, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
35
|
Handlogten K. Pediatric regional anesthesiology: a narrative review and update on outcome-based advances. Int Anesthesiol Clin 2024; 62:69-78. [PMID: 38063039 DOI: 10.1097/aia.0000000000000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Kathryn Handlogten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Zhang D, Wu L, Ma L, Wang J, Niu L, He P. Circular RNA DLGAP4 alleviates sevoflurane-induced neurotoxicity by regulating miR-9-5p/Sirt1/BDNF pathway. Exp Cell Res 2023; 433:113861. [PMID: 38000773 DOI: 10.1016/j.yexcr.2023.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Sevoflurane is a widely used anesthetic in infants. However, long and repeated exposure to this drug can cause developmental neurotoxicity. This study aimed to investigate the role and mechanism of circular RNA DLGAP4 (circDLGAP4) in sevoflurane-induced neurotoxicity. METHODS Neonatal mice and mouse hippocampal neuronal cell line HT22 were used to construct sevoflurane-induced nerve injury models. The role of circDLGAP4 in sevoflurane-induced neurotoxicity was evaluated by gain-and/or loss-of-function methods. Pathological alterations in hippocampus were analyzed by hematoxylin-eosin and Tunel staining. Cell injury was assessed by cell viability and apoptosis, which was detected by CCK-8 and flow cytometry. The expression of circDLGAP4 and miR-9-5p was determined by real-time PCR. Sirt1 and BDNF levels were measured by Western blot. Productions of TNF-α and IL-6 were examined by ELISA. Dual-luciferase reporter assay and/or RNA pull-down assay were used to confirm the direct binding among circDLGAP4, miR-9-5p, and Sirt1. Rescue experiments were used to further verify the mechanism of circDLGAP4. RESULTS CircDLGAP4 expression was decreased by sevoflurane both in vivo and in vitro. Overexpression of circDLGAP4 elevated cell viability, reduced apoptosis and levels of TNF-α and IL-6, while circDLGAP4 knockdown showed the opposite effects in sevoflurane-induced HT22 cells. Mechanically, circDLGAP4 functioned via directly binding to and regulating miR-9-5p, followed by targeting the Sirt1/BDNF pathway. Additionally, circDLGAP4 upregulation relieved sevoflurane-induced nerve injury, reduced levels of TNF-α, IL-6 and miR-9-5p, but increased the expression of Sirt1 and BDNF in hippocampus. CONCLUSIONS Our studies found that circDLGAP4 relieved sevoflurane-induced neurotoxicity by sponging miR-9-5p to regulate Sirt1/BDNF pathway.
Collapse
Affiliation(s)
- Dongying Zhang
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Liuping Wu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Long Ma
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Linjie Niu
- Department of Anesthesiology, Fengfeng General Hospital, North China Medical and Health Group, Handan, 056002, Hebei, China
| | - Ping He
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China.
| |
Collapse
|
37
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
38
|
Alfouzan RK, Arun Gopinathan P, Ui Haq I, Iyer K, Nawab AA, Alhumaidan A. Bibliometric Evaluation of the 100 Top-Cited Articles on Anesthesiology. Cureus 2023; 15:e50959. [PMID: 38249230 PMCID: PMC10800154 DOI: 10.7759/cureus.50959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
This review is a bibliometric analysis based on anesthesiology, which is a medical specialty that deals with a patient's complete preoperative, intraoperative, and postoperative care. The objective of the review attempts to analyze the bibliometric characteristics of the 100 most top-cited articles on anesthesiology. The meta-data of the study were collected from the Core Collection of Web of Science database. A title search option was employed, and "Anesthesia" and "Anesthesiology" were typed in two different search boxes separated with the Boolean operator ''OR''. Further, the data were sorted by highest citation order; later, "article" was selected from the filter of document type, and all other types of documents were excluded. Finally, downloaded the bibliographic details of the 100 top-cited articles. VOSviewer Software (version 1.6.10 by van Eck and Waltman) was used for bibliometric network analysis for co-authors and keywords. Pearson chi-square test was used for statistical analysis. The 100 top-cited articles were published between the years of 1971 and 2018. These articles gained a maximum of 1006 to a minimum of 276 citations with an average of 384.57 cites/article. Open accessed articles gained a slightly higher ratio of citations, while more than half of the articles were published in the two leading journals of "Anesthesiology" and "Anesthesia and Analgesia". There was no statistically significant difference in both citation analysis among open and closed access journals and Anesthesia vs Non-Anesthesia journals. Thirty-six articles were published in journals not specifically related to Anesthesia. Most of the top-cited articles were contributed by the United States, whereas Surgery and General Anesthesia were the two most occurred keywords. We conclude that all the top-cited articles in anesthesiology were contributed by authors who belonged to the developed nations and the United States outclassed the rest of the world. This bibliometric analysis would be valuable to practitioners, academics, researchers, and students to understand the dynamics of progress in the field of anesthesiology.
Collapse
Affiliation(s)
- Rakan Khalid Alfouzan
- Department of Anesthesiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, SAU
| | - Pillai Arun Gopinathan
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, SAU
- Department of Maxillofacial Surgery and Diagnostic Sciences, King Abdullah International Medical Research Centre, Riyadh, SAU
| | - Ikram Ui Haq
- College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Kiran Iyer
- Department of Preventive Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | | | - Abdullah Alhumaidan
- Department of Medicine and Surgery, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| |
Collapse
|
39
|
Semyachkina-Glushkovskaya O, Sergeev K, Semenova N, Slepnev A, Karavaev A, Hramkov A, Prokhorov M, Borovkova E, Blokhina I, Fedosov I, Shirokov A, Dubrovsky A, Terskov A, Manzhaeva M, Krupnova V, Dmitrenko A, Zlatogorskaya D, Adushkina V, Evsukova A, Tuzhilkin M, Elizarova I, Ilyukov E, Myagkov D, Tuktarov D, Kurths J. Machine Learning Technology for EEG-Forecast of the Blood-Brain Barrier Leakage and the Activation of the Brain's Drainage System during Isoflurane Anesthesia. Biomolecules 2023; 13:1605. [PMID: 38002287 PMCID: PMC10669477 DOI: 10.3390/biom13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Anesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain. There is growing evidence that anesthesia can disrupt the integrity of the blood-brain barrier (BBB), leading to neuroinflammation and neurotoxicity. However, there are no widely used methods for real-time BBB monitoring during surgery. The development of technologies for an express diagnosis of the opening of the BBB (OBBB) is a challenge for reducing post-surgical/anesthesia consequences. In this study on male rats, we demonstrate a successful application of machine learning technology, such as artificial neural networks (ANNs), to recognize the OBBB induced by isoflurane, which is widely used in surgery. The ANNs were trained on our previously presented data obtained on the sound-induced OBBB with an 85% testing accuracy. Using an optical and nonlinear analysis of the OBBB, we found that 1% isoflurane does not induce any changes in the BBB, while 4% isoflurane caused significant BBB leakage in all tested rats. Both 1% and 4% isoflurane stimulate the brain's drainage system (BDS) in a dose-related manner. We show that ANNs can recognize the OBBB induced by 4% isoflurane in 57% of rats and BDS activation induced by 1% isoflurane in 81% of rats. These results open new perspectives for the development of clinically significant bedside technologies for EEG-monitoring of OBBB and BDS.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Konstantin Sergeev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Nadezhda Semenova
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Andrey Slepnev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Anatoly Karavaev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
- Research Institute of Cardiology, Saratov State Medical University, B. Kazachaya Str. 112, 410012 Saratov, Russia
| | - Alexey Hramkov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
| | - Mikhail Prokhorov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
| | - Ekaterina Borovkova
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
- Research Institute of Cardiology, Saratov State Medical University, B. Kazachaya Str. 112, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Ivan Fedosov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Alexander Dubrovsky
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Inna Elizarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Egor Ilyukov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Dmitry Myagkov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Dmitry Tuktarov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
40
|
Xiao W, Chen S, Chen J, Huang J. Dexmedetomidine alleviates propofol-induced neural injury in developing rats. Int J Dev Neurosci 2023; 83:631-640. [PMID: 37550504 DOI: 10.1002/jdn.10291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
Propofol, a commonly used intravenous anesthetic, has been associated with neurodegeneration in the developing brain upon repeated exposure. Dexmedetomidine is an α2 adrenoceptor agonist that was previously reported to possess neuroprotective properties. Here, we confirmed the impacts of dexmedetomidine on propofol-induced neuroapoptosis and subsequent spatial learning and memory deficits in neonatal rats. We found that dexmedetomidine effectively mitigated propofol-induced spatial learning and memory impairments and improved aversive memory in developing rats. Dexmedetomidine reduced propofol-induced cell apoptosis in the hippocampus and modulated the mRNA expression of Bcl-2 and Bax. Additionally, dexmedetomidine attenuated the propofol-induced increase of inflammatory factors IL-6 and TNF-α. The reduced phosphorylation levels of Akt and CREB levels by propofol were re-activated by dexmedetomidine. In conclusion, our findings demonstrated that dexmedetomidine effectively mitigated propofol-induced cognitive and memory impairments in developing rats by modulating apoptosis and reducing inflammation via activating the Akt/CREB/BDNF signaling pathway. These findings suggest potential strategies to protect the developing brain from the adverse effects of anesthetics and improve patient care in pediatric anesthesia practice.
Collapse
Affiliation(s)
- Weiren Xiao
- Department of Anesthesiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Shouren Chen
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Jinzhuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- Department of Anesthesiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| |
Collapse
|
41
|
Fan S, Wang X, Gao N, Wei S. Electroacupuncture Pretreatment Attenuates Learning Memory Impairment Induced by Repeated Propofol Exposure and Modulates Hippocampal Synaptic Plasticity in Rats. J Inflamm Res 2023; 16:4559-4573. [PMID: 37868829 PMCID: PMC10588748 DOI: 10.2147/jir.s427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Recurrent propofol anesthesia in the peak of neurodevelopment may lead to learning-memory decline. This study aimed to examine the efficacy of electroacupuncture pretreatment in ameliorating the aforementioned learning memory deficits and to explore its underlying mechanisms in a rat model of repeated propofol exposure. Methods 10-day-old Sprague Dawley rats were randomly assigned to five groups: the control, fat emulsion, propofol, electroacupuncture pretreatment and electroacupuncture pretreatment combined with propofol groups. The electroacupuncture pretreatment involved three consecutive daily sessions, while propofol was received intraperitoneally once daily for five days. Following the modeling period, the rats' learning-memory performance was assessed using the New Novel Arm Y-maze, New Object Recognition, and Morris Water Maze. The Nissl staining method was used to observe the development of hippocampal neurons, while Golgi staining was employed to observe hippocampal synaptic development. Results The electroacupuncture pretreatment significantly attenuated the learning and memory impairment induced by recurring propofol exposure in rats. Additionally, it facilitated the development of hippocampal neurons and synaptic plasticity in the hippocampus. Immunofluorescence and Western Blot analyses were conducted to detect the expression of proteins related to apoptosis, learning memory, and synaptic plasticity. In the propofol group, the pro-apoptotic factors Caspase-3 and Bax was up-regulated, while the anti-apoptotic factor Bcl-2 was down-regulated, as compared to the blank group. Additionally, the phosphorylated cAMP-response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), synaptophysin, and growth associated protein-43 (GAP-43) was significantly decreased. In contrast, the electroacupuncture pretreatment combined with propofol group exhibited decreased the Caspase-3 and Bax and increased the Bcl-2, as compared to the propofol group, meanwhile, the pCREB, BDNF, Synaptophysin and GAP-43 was increased. Conclusion Our findings indicate that electroacupuncture pretreatment can alleviate the learning and memory impairment induced by recurring propofol exposure in rats. This is achieved by enhancing hippocampal synaptic plasticity, activating the pCREB/BDNF pathway and inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Shunqin Fan
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Xijun Wang
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Ning Gao
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Songli Wei
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
42
|
Liang F, Li M, Xu M, Zhang Y, Dong Y, Soriano SG, McCann ME, Yang G, Xie Z. Sevoflurane anaesthesia induces cognitive impairment in young mice through sequential tau phosphorylation. Br J Anaesth 2023; 131:726-738. [PMID: 37537117 PMCID: PMC10541551 DOI: 10.1016/j.bja.2023.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The volatile anaesthetic sevoflurane induces time (single or multiple exposures)-dependent effects on tau phosphorylation and cognitive function in young mice. The underlying mechanism for this remains largely undetermined. METHODS Mice received 3% sevoflurane for 0.5 h or 2 h daily for 3 days on postnatal day (P) 6, 9, and 12. Another group of mice received 3% sevoflurane for 0.5 h or 1.5 h (3 × 0.5) on P6. We investigated effects of sevoflurane anaesthesia on tau phosphorylation on P6 or P12 mice, on cognitive function from P31 to P37, and on protein interactions, using in vivo studies, in vitro phosphorylation assays, and nanobeam single-molecule level interactions in vitro. RESULTS An initial sevoflurane exposure induced CaMKIIα phosphorylation (132 [11]% vs 100 [6]%, P<0.01), leading to tau phosphorylation at serine 262 (164 [7]% vs 100 [26]%, P<0.01) and tau detachment from microtubules. Subsequent exposures to the sevoflurane induced GSK3β activation, which phosphorylated detached or free tau (tau phosphorylated at serine 262) at serine 202 and threonine 205, resulting in cognitive impairment in young mice. In vitro phosphorylation assays also demonstrated sequential tau phosphorylation. Nanobeam analysis of molecular interactions showed different interactions between tau or free tau and CaMKIIα or GSK3β, and between tau and tubulin at a single-molecule level. CONCLUSIONS Multiple exposures to sevoflurane can induce sequential tau phosphorylation, leading to cognitive impairment in young mice, highlighting the need to investigate the underlying mechanisms of anaesthesia-induced tau phosphorylation in developing brain.
Collapse
Affiliation(s)
- Feng Liang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mengzhu Li
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Xu
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiying Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Zhongcong Xie
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
43
|
Wang Y, Wu D, Li D, Zhou X, Fan D, Pan J. The role of PERK-eIF2α-ATF4-CHOP pathway in sevoflurane induced neuroapoptosis and cognitive dysfunction in aged mice. Cell Signal 2023; 110:110841. [PMID: 37549858 DOI: 10.1016/j.cellsig.2023.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common surgical complication that causes additional pain in patients and affects their quality of life. To address this problem, emerging studies have focused on the POCD. Recent studies have shown that aging and anesthetic exposure are the two major risk factors for developing POCD. However, few reports described the exact molecular mechanisms underlying POCD in elderly patients. In the previous studies, the endoplasmic reticulum (ER) stress and neuroapoptosis in the hippocampus were associated with inducing POCD; however, no further information on the related signaling pathways could be disclosed. The PERK-eIF2α-ATF4-CHOP pathway is identified as the main regulatory pathway involved in ER stress and cell apoptosis. Therefore, we assume that the occurrence of POCD induced by sevoflurane inhalation may potentially result from ER stress and neuroapoptosis in the hippocampus of aged mice mediated by the PERK-eIF2α-ATF4-CHOP pathway. In our study, we found a relationship between sevoflurane inhalation concentration and memory decline in aged mice, with a 'ceiling effect'. We have confirmed that POCD induced by sevoflurane results from ER stress and neuroapoptosis in the hippocampus of aged mice, which is regulated by the over-expression of PERK-eIF2α-ATF4-CHOP pathway. Furthermore, we also showed that the dephosphorylation inhibitor of eIF2α (salubrinal) could down-regulate PERK-eIF2α-ATF4-CHOP pathway expression to inhibit ER stress and enhance the cognitive function of aged mice. In general, our study has elucidated one of the molecular mechanisms of sevoflurane-related cognitive dysfunction in aged groups and provided new strategies for treating sevoflurane-induced POCD.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Di Wu
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Danni Li
- Department of Anesthesiology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu 610072, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dan Fan
- Department of Anesthesiology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu 610072, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
44
|
Qiu LL, Tan XX, Yang JJ, Ji MH, Zhang H, Zhao C, Xia JY, Sun J. Lactate Improves Long-term Cognitive Impairment Induced By Repeated Neonatal Sevoflurane Exposures Through SIRT1-mediated Regulation of Adult Hippocampal Neurogenesis and Synaptic Plasticity in Male Mice. Mol Neurobiol 2023; 60:5273-5291. [PMID: 37286723 DOI: 10.1007/s12035-023-03413-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Repeated neonatal exposures to sevoflurane induce long-term cognitive impairment that has been reported to have sex-dependent differences. Exercise promotes learning and memory by releasing lactate from the muscle. The study tested the hypothesis that lactate may improve long-term cognitive impairment induced by repeated neonatal exposures to sevoflurane through SIRT1-mediated regulation of adult hippocampal neurogenesis and synaptic plasticity. C57BL/6 mice of both genders were exposed to 3% sevoflurane for 2 h daily from postnatal day 6 (P6) to P8. In the intervention experiments, mice received lactate at 1 g/kg intraperitoneally once daily from P21 to P41. Behavioral tests including open field (OF), object location (OL), novel object recognition (NOR), and fear conditioning (FC) tests were performed to assess cognitive function. The number of 5-Bromo-2'- deoxyuridine positive (BrdU+) cells and BrdU+/DCX+ (doublecortin) co-labeled cells, expressions of brain-derived neurotrophic factor (BDNF), activity-regulated cytoskeletal-associated protein (Arc), early growth response 1 (Egr-1), SIRT1, PGC-1α and FNDC5, and long-term potentiation (LTP) were evaluated in the hippocampus. Repeated exposures to sevoflurane induced deficits in OL, NOR and contextual FC tests in male but not female mice. Similarly, adult hippocampal neurogenesis, synaptic plasticity-related proteins and hippocampal LTP were impaired after repeated exposures to sevoflurane in male but not female mice, which could rescue by lactate treatment. Our study suggests that repeated neonatal exposures to sevoflurane inhibit adult hippocampal neurogenesis and induce defects of synaptic plasticity in male but not female mice, which may contribute to long-term cognitive impairment. Lactate treatment rescues these abnormalities through activation of SIRT1.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Xiao-Xiang Tan
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Mu-Huo Ji
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Jiang-Yan Xia
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Surgery and Pain Management, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
45
|
Liu T, Chen T, Gong J, You C, Zhang B, Luo C, Liu Z, Chen C. The effect of TEMPOL pretreatment on postoperative cognitive function, inflammatory response, and oxidative stress in aged rats under sevoflurane anesthesia. Immun Inflamm Dis 2023; 11:e1023. [PMID: 37773699 PMCID: PMC10538358 DOI: 10.1002/iid3.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The heterocyclic compound 4-hydroxy-(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOL) has a protective effect on neurological function in brain tissues damaged by ischemia and hypoxia. This study explored the effects of TEMPOL pretreatment on postoperative cognitive function in aged rats under sevoflurane anesthesia, focusing on inflammatory response and oxidative stress. METHODS Sixty male rats were divided into normal control (C), sevoflurane anesthesia (S), TEMPOL pretreatment (T), and sevoflurane anesthesia + TEMPOL pretreatment (ST) groups (15 per group). Groups T and ST rats received continuous intraperitoneal TEMPOL (100 mg/kg) for 3 days, while groups C and S rats were injected with 0.9% saline. After pretreatment, groups S and ST received 3% sevoflurane anesthesia. RESULTS Rats in group S exhibited a longer swimming distance, longer escape latency, lower frequency of platform crossing, and shorter dwell time in the targeted quadrant than those in groups C and T. Rats in group ST exhibited a shorter swimming distance, shorter escape latency, higher frequency of platform crossing, and longer dwell time in the targeted quadrant than those in group S. The expressions of interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and Ym1/2 messenger ribonucleic acid were higher in groups S and ST rats than in groups C and T rats and lower in group ST rats than in group S rat (p < .05). Superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) were lower, while malondialdehyde (MDA) was higher in groups S and ST rats than in groups C and T rats (p < .05). Group ST showed higher SOD, T-AOC, and GSH-Px, and lower MDA than group S (p < .05). CONCLUSIONS TEMPOL pretreatment attenuated postoperative cognitive impairment induced by sevoflurane anesthesia in aged rats. This may be attributed to the downregulation of NR2B-CREB-BDNF pathway, reducing the inflammatory response and oxidative stress damage in hippocampal tissue.
Collapse
Affiliation(s)
- Tianpin Liu
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| | - Tianzi Chen
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| | - Jianhua Gong
- Department of Hepatobiliary and Pancreatic Surgery, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of Hepatobiliary and Pancreatic SurgeryYichang Central People's HospitalYichangHubeiChina
| | - Changchang You
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| | - Bo Zhang
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| | - Caiyun Luo
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| | - Zhigui Liu
- Department of AnesthesiologyThe Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
| | - Chun Chen
- Department of Anesthesiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangHubeiChina
- Department of AnesthesiologyYichang Central People's HospitalYichangHubeiChina
| |
Collapse
|
46
|
Fan P, Lu Y, Wei H, Wang K, Jia P, Zhang Y, Zhang Y, Wang T, Yang L, Zhao J, Zhang S, Lu H, Chen X, Liu Y, Zhang P. Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway. Metab Brain Dis 2023; 38:2037-2053. [PMID: 37119382 DOI: 10.1007/s11011-023-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Anesthetics such as sevoflurane are commonly administered to infants and children. However, the possible neurotoxicity caused by prolonged or repetitive exposure to it should be a concern. The neuroprotective effects of metformin are observed in many models of neurological disorders. In this study, we investigated whether metformin could reduce the developmental neurotoxicity induced by sevoflurane exposure in neonatal rats and the potential mechanism. Postnatal day 7 (PND 7) Sprague-Dawley rats and neural stem cells (NSCs) were treated with normal saline or metformin before sevoflurane exposure. The Morris water maze (MWM) was used to observe spatial memory and learning at PND 35-42. Immunofluorescence staining was used to detect neurogenesis in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus at PND 14. MTT assays, immunofluorescence staining, and TUNEL staining were used to assess the viability, proliferation, differentiation, and apoptosis of NSCs. Western blotting and ELISA were used to assess the protein expression of cleaved caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and glucose-6-phosphate dehydrogenase (G6PD) pathway-related molecules. Exposure to sevoflurane resulted in late cognitive defects, impaired neurogenesis in both the SVZ and SGZ, reduced NSC viability and proliferation, increased NSC apoptosis, and decreased protein expression of G6PD in vitro. Metformin pretreatment attenuated sevoflurane-induced cognitive functional decline and neurogenesis inhibition. Metformin pretreatment also increased the protein expression of Nrf2 and G6PD. However, treatment with the Nrf2 inhibitor, ML385 or the G6PD inhibitor, dehydroepiandrosterone (DHEA) reversed the protective effect of metformin on sevoflurane-induced NSC damage in vitro. Our findings suggested that metformin could reduce sevoflurane-induced neurogenesis damage and neurocognitive defects in the developing rat brain by influencing the Nrf2/G6PD signaling pathways.
Collapse
Affiliation(s)
- Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yuying Lu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Tianyue Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Liufei Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Jing Zhao
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Shuyue Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
47
|
Cao K, Qiu L, Lu X, Wu W, Hu Y, Cui Z, Jiang C, Luo Y, Shao Y, Xi W, Zeng LH, Xu H, Ma H, Zhang Z, Peng J, Duan S, Gao Z. Microglia modulate general anesthesia through P2Y 12 receptor. Curr Biol 2023:S0960-9822(23)00529-8. [PMID: 37167975 DOI: 10.1016/j.cub.2023.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
General anesthesia (GA) is an unconscious state produced by anesthetic drugs, which act on neurons to cause overall suppression of neuronal activity in the brain. Recent studies have revealed that GA also substantially enhances the dynamics of microglia, the primary brain immune cells, with increased process motility and territory surveillance. However, whether microglia are actively involved in GA modulation remains unknown. Here, we report a previously unrecognized role for microglia engaging in multiple GA processes. We found that microglial ablation reduced the sensitivity of mice to anesthetics and substantially shortened duration of loss of righting reflex (LORR) or unconsciousness induced by multiple anesthetics, thereby promoting earlier emergence from GA. Microglial repopulation restored the regular anesthetic recovery, and chemogenetic activation of microglia prolonged the duration of LORR. In addition, anesthesia-accompanying analgesia and hypothermia were also attenuated after microglial depletion. Single-cell RNA sequencing analyses showed that anesthesia prominently affected the transcriptional levels of chemotaxis and migration-related genes in microglia. By pharmacologically targeting different microglial motility pathways, we found that blocking P2Y12 receptor (P2Y12R) reduced the duration of LORR of mice. Moreover, genetic ablation of P2Y12R in microglia also promoted quicker recovery in mice from anesthesia, verifying the importance of microglial P2Y12R in anesthetic regulation. Our work presents the first evidence that microglia actively participate in multiple processes of GA through P2Y12R-mediated signaling and expands the non-immune roles of microglia in the brain.
Collapse
Affiliation(s)
- Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Liyao Qiu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xuan Lu
- Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weiying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yaling Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhicheng Cui
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuxiang Luo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yujin Shao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Han Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Huan Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhi Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Zhu Y, Zhang M, Wang J, Wang Q. Knocking down Trim47 ameliorated sevoflurane-induced neuronal cell injury and cognitive impairment in rats. Exp Brain Res 2023; 241:1437-1446. [PMID: 37067562 DOI: 10.1007/s00221-023-06602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023]
Abstract
Sevoflurane (SEV), usually causing neuronal damage and cognitive dysfunction, is one of the most commonly used anesthetics in clinical practice. However, the function of Trim47 in SEV-induced neuronal impairment remains elusive. The aim of this study was to study the effect of knocking down Trim47 on the nerve injury induced by SEV. Nerve injury was induced in rats by 3% SEV, and H19-7 was used to establish a pathological model, and sh-Trim47 was transfected into H19-7 to study the function of Trim47. The effects of SEV on the expression of Trim47 in the hippocampus and cognitive function of rats were studied by neurological function score and Moris water maze (MWM). The mRNA and protein expression of TNF-α, IL-1β and IL-6 in the cells, along with the neuronal apoptosis in the hippocampus of rats in each group were studied by TUNEL or WB. Flow cytometry was used to study the effect of knockdown of Trim47 on cell apoptosis. CCK-8 was used to detect cell viability of H19-7 cells. Finally, the potential signaling pathway affected by knockdown of Trim47 after abrogation of SEV induction was investigated by WB. The results showed that, knockdown of Trim47 ameliorated SEV-induced neurological damage and cognitive deficits, inflammation and neuronal cell apoptosis in rats, and promoted hippocampal neuronal activity. Knockdown of Trim47 can inhibit the NF-κB signaling pathway and improve neuronal cell damage and cognitive impairment induced by SEV in neonatal rats by regulating NF-κB signaling pathway, alleviating inflammatory response, and inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Yingjun Zhu
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6 West Beijing Road, Huaiyin District, Huai'an, Jiangsu, China.
| | - Min Zhang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6 West Beijing Road, Huaiyin District, Huai'an, Jiangsu, China
| | - Jiayu Wang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 6 West Beijing Road, Huaiyin District, Huai'an, Jiangsu, China
| | - Qingxiu Wang
- Department of Anesthesiology, The Affiliated Shanghai East Hospital of Tongji University, Shanghai, 200120, China
| |
Collapse
|
49
|
Lu P, Liang F, Dong Y, Xie Z, Zhang Y. Sevoflurane Induces a Cyclophilin D-Dependent Decrease of Neural Progenitor Cells Migration. Int J Mol Sci 2023; 24:ijms24076746. [PMID: 37047719 PMCID: PMC10095407 DOI: 10.3390/ijms24076746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) levels and mitochondrial function. Neural progenitor cells (NPCs) migration is associated with cognitive function in developing brains. However, it is unclear whether sevoflurane can regulate NPCs migration via changes in CypD. To address this question, we treated NPCs harvested from wild-type (WT) and CypD knockout (KO) mice and young WT and CypD KO mice with sevoflurane. We used immunofluorescence staining, wound healing assay, transwell assay, mass spectrometry, and Western blot to assess the effects of sevoflurane on CypD, reactive oxygen species (ROS), doublecortin levels, and NPCs migration. We showed that sevoflurane increased levels of CypD and ROS, decreased levels of doublecortin, and reduced migration of NPCs harvested from WT mice in vitro and in WT young mice. KO of CypD attenuated these effects, suggesting that a sevoflurane-induced decrease in NPCs migration is dependent on CypD. Our findings have established a system for future studies aimed at exploring the impacts of sevoflurane anesthesia on the impairment of NPCs migration.
Collapse
Affiliation(s)
- Pan Lu
- Department of Anesthesia, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
50
|
Liang J, Han S, Ye C, Zhu H, Wu J, Nie Y, Chai G, Zhao P, Zhang D. Minocycline Attenuates Sevoflurane-Induced Postoperative Cognitive Dysfunction in Aged Mice by Suppressing Hippocampal Apoptosis and the Notch Signaling Pathway-Mediated Neuroinflammation. Brain Sci 2023; 13:brainsci13030512. [PMID: 36979321 PMCID: PMC10046414 DOI: 10.3390/brainsci13030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), an important postoperative neurological complication, is very common and has an elevated incidence in elderly patients. Sevoflurane, an inhaled anesthetic, has been demonstrated to be associated with POCD in both clinical and animal studies. However, how to prevent POCD remains unclear. Minocycline, a commonly used antibiotic can cross the blood-brain barrier and exert an inhibitory effect on inflammation in the central nervous system. The present work aimed to examine the protective effect and mechanism of minocycline on sevoflurane-induced POCD in aged mice. We found that 3% sevoflurane administered 2 h a day for 3 consecutive days led to cognitive impairment in aged animals. Further investigation revealed that sevoflurane impaired synapse plasticity by causing apoptosis and neuroinflammation and thus induced cognitive dysfunction. However, minocycline pretreatment (50 mg/kg, i.p, 1 h prior to sevoflurane exposure) significantly attenuated learning and memory impairments associated with sevoflurane in aged animals by suppressing apoptosis and neuroinflammation. Moreover, a mechanistic analysis showed that minocycline suppressed sevoflurane-triggered neuroinflammation by inhibiting Notch signaling. Similar results were also obtained in vitro. Collectively, these findings suggested minocycline may be an effective drug for the prevention of sevoflurane-induced POCD in elderly patients.
Collapse
Affiliation(s)
- Junjie Liang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shanshan Han
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chao Ye
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haimeng Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Dengxin Zhang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
| |
Collapse
|