1
|
Bayar I, Erzurumlu Y, Akkoc S, Bulut Z, Nizamlioglu M. Investigation of the sensitivity of human A549 cells to paclitaxel and sesquiterpene lactone alantolactone via apoptosis induction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03947-w. [PMID: 40019527 DOI: 10.1007/s00210-025-03947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Alantolactone (ALA), a sesquiterpene lactone compound obtained from Inula helenium root, is known to have anticancer activity in many types of cancer. Paclitaxel (PAX) is an effective first-line chemotherapeutic drug and is widely used in the treatment of lung cancer. The in vitro anticancer efficacy of combined treatment of ALA with PAX was investigated in the A549 human lung cancer cell line. The results show that ALA potentiated the effect of PAX-induced growth restriction and apoptosis in A549 cells. The combined administration more effectively decreased the Bcl-2 expression and increased Bax gene expression in cells compared to ALA or PAX alone. Also, co-treatment of ALA and PAX caused apoptotic nuclear formations. Additionally, coadministration increased the caspase-3 and caspase-9 levels more than PAX or ALA alone. The increase in NF-κB gene expression levels suggests that an NF-κB-independent apoptotic trigger mechanism operates in cells. Together, the present in vitro findings suggest that ALA may contribute as a potential therapeutic strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Irem Bayar
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Yalcin Erzurumlu
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Zafer Bulut
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Nizamlioglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Ginés Rubió J, Delgado O, Callejo A, Domínguez M, Torres C. Healthcare Resource Utilization and Associated Costs among Patients with Advanced Non-Small-Cell Lung Cancer Receiving Chemotherapy or Immunotherapy in Spain: A Single-Center, Real-World, Exploratory Study. Cancers (Basel) 2024; 16:2068. [PMID: 38893187 PMCID: PMC11171292 DOI: 10.3390/cancers16112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The objective of this observational, single-center, retrospective study conducted in a Spanish tertiary hospital was to describe the real-world (RW) healthcare resource utilization (HCRU) among patients with advanced non-small-cell lung cancer (aNSCLC) who received chemotherapy (CT) or immunotherapy (IT) as first and second lines of treatment. A total of 173 patients diagnosed with aNSCLC and treated between January 2016 and August 2020 were included. The standardized average costs per patient/year were EUR 40,973.2 and EUR 22,502.4 for first-line CT and IT and EUR 140,601.3 and EUR 20,175.9 for second-line CT and IT, respectively. The average annual costs per patient associated with adverse-event (AE) onset were EUR 29,939.7 and EUR 460.7 for first-line CT and IT and EUR 35,906.4 and EUR 3206.1 for second-line CT and IT, respectively. The costs associated with disease management were EUR 33,178.0 and EUR 22,448.4 for first-line CT and IT and EUR 127,134.2 and EUR 19,663.9 for second-line CT and IT, respectively. In conclusion, IT use showed a lower average annual cost per patient, which was associated with lower HCRU for both disease and AE management, compared to the use of CT. However, these results should be further confirmed in the context of the currently implemented treatment schemes, including the combination of CT with single or dual IT.
Collapse
Affiliation(s)
| | - Olga Delgado
- Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain;
| | - Angel Callejo
- OBU Medical Department, AstraZeneca Farmacéutica Spain, 28050 Madrid, Spain; (A.C.); (M.D.); (C.T.)
| | - Marta Domínguez
- OBU Medical Department, AstraZeneca Farmacéutica Spain, 28050 Madrid, Spain; (A.C.); (M.D.); (C.T.)
| | - Covadonga Torres
- OBU Medical Department, AstraZeneca Farmacéutica Spain, 28050 Madrid, Spain; (A.C.); (M.D.); (C.T.)
| |
Collapse
|
4
|
Li Z, Li J, Wu Z, Zhu Y, Zhuo T, Nong J, Qian J, Peng H, Dai L, Wang Y, Chen M, Zeng X. Upregulation of POC1A in lung adenocarcinoma promotes tumour progression and predicts poor prognosis. J Cell Mol Med 2024; 28:e18135. [PMID: 38429900 PMCID: PMC10907829 DOI: 10.1111/jcmm.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zi‐Hao Li
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jia‐Yi Li
- Geriatrics Department of Endocrinology and MetabolismThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Zuo‐Tao Wu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Jie Zhu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ting Zhuo
- Department of Respiratory MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ju‐Sen Nong
- Department of Pediatric SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Qian
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Hua‐Jian Peng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Lei Dai
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Yong Wang
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ming‐Wu Chen
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Xiao‐Chun Zeng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
5
|
de Jesus M, Chanda A, Grabauskas T, Kumar M, Kim AS. Cardiovascular disease and lung cancer. Front Oncol 2024; 14:1258991. [PMID: 38410099 PMCID: PMC10896114 DOI: 10.3389/fonc.2024.1258991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of cancer-related death. While survival rates have improved with advancements in cancer therapeutics, additional health challenges have surfaced. Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in patients with lung cancer. CVD and lung cancer share many risk factors, such as smoking, hypertension, diabetes, advanced age, and obesity. Optimal management of this patient population requires a full understanding of the potential cardiovascular (CV) complications of lung cancer treatment. This review outlines the common shared risk factors, the spectrum of cardiotoxicities associated with lung cancer therapeutics, and prevention and management of short- and long-term CVD in patients with non-small cell (NSCLC) and small cell (SCLC) lung cancer. Due to the medical complexity of these patients, multidisciplinary collaborative care among oncologists, cardiologists, primary care physicians, and other providers is essential.
Collapse
Affiliation(s)
- Mikhail de Jesus
- Department of Cardiology, University of Connecticut Hartford Hospital, Hartford, CT, United States
| | - Anindita Chanda
- Department of Internal Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Titas Grabauskas
- University of Connecticut School of Medicine, Farmington, CT, United States
| | - Manish Kumar
- Department of Cardiology, Pat & Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Agnes S Kim
- Department of Cardiology, Pat & Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
6
|
Tseng YW, Yang TJ, Hsu YL, Liu JH, Tseng YC, Hsu TW, Lu Y, Pan SH, Cheng TJR, Fang JM. Dual-targeting compounds possessing enhanced anticancer activity via microtubule disruption and histone deacetylase inhibition. Eur J Med Chem 2024; 265:116042. [PMID: 38141287 DOI: 10.1016/j.ejmech.2023.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Dual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction. The purine-hydroxamate conjugates exhibit enhanced cytotoxicity against MDA-MB231 breast cancer cells, H1975 lung cancer cells, and various clinical isolated non-small-cell lung cancer cells with different epidermal growth factor receptor (EGFR) status. Pyridyl substituents could be used to replace the C2 and N9 phenyl moieties in the purine-type scaffold, which can help to improve the solubility under physiological conditions, thus increasing cytotoxicity. In mice treated with the purine-hydroxamate conjugates, the tumor growth rate was significantly reduced without causing toxic effects. Our study demonstrates the potential of the dual-targeting purine-hydroxamate compounds for cancer monotherapy.
Collapse
Affiliation(s)
- Yu-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Tsung-Jung Yang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yin-Chen Tseng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh Lu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, 100, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 100, Taiwan.
| | | | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Ahmed M, Semreen AM, Giddey AD, Ramadan WS, El-Awady R, Soares NC, El-Huneidi W, Bustanji Y, Alqudah MAY, Alzoubi KH, Semreen MH. Proteomic and metabolomic signatures of U87 glioblastoma cells treated with cisplatin and/or paclitaxel. Ann Med 2024; 55:2305308. [PMID: 38253025 PMCID: PMC10810643 DOI: 10.1080/07853890.2024.2305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a primary malignancy of the central nervous system and is classified as a grade IV astrocytoma by the World Health Organization (WHO). Although GBM rarely metastasizes, its prognosis remains poor. Moreover, the standard treatment for GBM, temozolomide (TMZ), is associated with chemoresistance, which is a major factor behind GBM-related deaths. Investigating drugs with repurposing potential in the context of GBM is worthwhile to bypass lengthy bench-to-bedside research. The field of omics has garnered significant interest in scientific research because of its potential to delineate the intricate regulatory network underlying tumor development. In particular, proteomic and metabolomic analyses are powerful approaches for the investigation of metabolic enzymes and intermediate metabolites since they represent the functional end of the cancer phenotype. METHODS We chose two of the most widely prescribed anticancer drugs, cisplatin and paclitaxel. To our knowledge, the current literature lacks studies examining their effects on metabolic and proteomic alterations in GBM. We employed the mass spectrometry technological platform 'UHPLC-Q-TOF-MS/MS' to examine the changes in the proteome and metabolome profiles of the U87 cell line with defined concentrations of cisplatin and/or paclitaxel via an untargeted approach. RESULTS A total of 1,419 distinct proteins and 90 metabolites were generated, and subsequent analysis was performed. We observed that upon treatment with cisplatin (9.5 μM), U87 cells exhibited apparent efforts to cope with this exogenous stressor, understanding the effect of paclitaxel (5.3 μM) on altering the transport machinery of the cell, and how the combination of cisplatin and/or paclitaxel suggests potential interactions with promising benefits in GBM therapeutics. CONCLUSION Our research provides a detailed map of alterations in response to cisplatin and paclitaxel treatment, provides crucial insights into the molecular basis of their action, and paves the way for further research to identify molecular targets for this elusive malignancy.
Collapse
Affiliation(s)
- Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Alexander D. Giddey
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa S. Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Zhou J, Chen D, Zhang S, Wang C, Zhang L. Identification of two molecular subtypes and a novel prognostic model of lung adenocarcinoma based on a cuproptosis-associated gene signature. Front Genet 2023; 13:1039983. [PMID: 36712848 PMCID: PMC9877306 DOI: 10.3389/fgene.2022.1039983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of lung cancer clinically, with high mortality and poor prognosis. Cuproptosis present a newly discovered mode of cell death characterized by aggregation of fatty acylated proteins, depletion of iron-sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative stress. However, the impact of cuproptosis on lung adenocarcinoma development, prognosis, and treatment has not been elucidated. By systematically analyzing the genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially expressed between lung cancer tissues and adjacent tissues. Based on the expression levels of 10 cuproptosis-related genes, we classified lung adenocarcinoma patients into two molecular subtypes using the Consensus clustering method, of which subtype 2 had a worse prognosis. Differential expression genes associated with prognosis between the two subtypes were obtained by differential analysis and survival analysis, and cox lasso regression was applied to construct a cuproptosis-related prognostic model. Its survival predicting ability was validated in three extrinsic validation cohorts. The results of multivariate cox analysis indicated that cuproptosis risk score was an independent prognostic predictor, and the mixed model formed by cupproptosis prognostic model combined with stage had more robust prognostic prediction accuracy. We found the differences in cell cycle, mitosis, and p53 signaling pathways between high- and low-risk groups according to GO and KEGG enrichment analysis. The results of immune microenvironment analysis showed that the enrichment score of activated dendritic cells, mast cells, and type 2 interferon response were down-regulated in the high-risk group, while the fraction of neutrophils and M0 macrophages were upregulated in the high-risk group. Compared with the high-risk group, subjects in the low-risk group had higher Immunophenoscore and may be more sensitive to immunotherapy. We identified seven chemotherapy agents may improve the curative effect in LUAD samples with higher risk score. Overall, we discovered that cuproptosis is closely related to the occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis prognostic model is a potential prognostic predictor and may provide new strategies for precision therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jinlin Zhou
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Dehe Chen
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Shiguo Zhang
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China,*Correspondence: Li Zhang,
| |
Collapse
|
10
|
Wang F, Yu C, Chen L, Xu S. Landscape of circular RNAs in different types of lung cancer and an emerging role in therapeutic resistance (Review). Int J Oncol 2022; 62:21. [PMID: 36562354 PMCID: PMC9812256 DOI: 10.3892/ijo.2022.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is one of the most common malignant tumor types and the leading cause of cancer‑associated death worldwide. Different types of lung cancer exhibit differences in terms of pathophysiology and pathogenesis, and also treatment and prognosis. Accumulating evidence has indicated that circular RNAs (circRNAs) are abnormally expressed among different types of lung cancer and confer important biological functions in progression and prognosis. However, studies comparing different circRNAs in lung cancer subtypes are scarce. Furthermore, circRNAs have an important role in drug resistance and are related to clinicopathological features in lung cancer. Summaries of the association of circRNAs with drug resistance are also scarce in the literature. The present study outlined the biological functions of circRNAs and focused on discriminating differential circRNA patterns and mechanisms in three different types of lung cancer. The emerging roles of circRNAs in the resistance to chemotherapy, targeted therapy, radiotherapy and immunotherapy were also highlighted. Understanding these aspects of circRNAs sheds light on novel physiological and pathophysiological processes of lung cancer and suggests the application of circRNAs as biomarkers for diagnosis and prognosis, as well as therapeutic resistance.
Collapse
Affiliation(s)
- Fan Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Chuting Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China,Correspondence to: Dr Ling Chen, Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China,Professor Sheng Xu, National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
11
|
Smith ER, Wang JQ, Yang DH, Xu XX. Paclitaxel Resistance Related to Nuclear Envelope Structural SturdinessRunning Title: Lamin A/C Expression and Paclitaxel Resistance. Drug Resist Updat 2022; 65:100881. [DOI: 10.1016/j.drup.2022.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
|
12
|
Miaskowski C, Levine JD, Paul SM, Cooper B, Abrams G, Topp K, Cheung S, Henderson-Sabes J, Conley YP, Snowberg K, Alfaro E, Quinn M, Kober KM. Similarities in the Neuropathy Phenotype of Cancer Survivors Who Received Different Classes of Chemotherapy Drugs. THE JOURNAL OF PAIN 2022; 23:1604-1615. [PMID: 35533976 DOI: 10.1016/j.jpain.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
With the advent of platinum and taxane compounds used as single agents or in combination regimens, survival rates for some of the most common cancers have improved substantially. However, information on differences in the chemotherapy-induced peripheral neuropathy (CIPN) phenotype among single and combination regimens is limited. Study's purposes were to evaluate for differences in demographic and clinical characteristics; subjective and objective measures of CIPN; as well as the severity of common symptoms and quality of life among survivors who received platinum- (n = 95), taxane- (n = 200), or platinum and taxane-containing (n = 131) regimens. Patients completed self-report questionnaires (ie, duration of CIPN, pain intensity, pain qualities, pain interference) and underwent a physical examination that evaluated light touch, pain, and cold sensations and balance. For most of the subjective and objective measures of CIPN, as well as symptom severity and quality of life scores, no differences were found among the 3 chemotherapy groups. In all 3 chemotherapy treatment groups, CIPN was a painful, small fiber, and length dependent neuropathy. These findings support the hypothesis that CIPN induced by different classes of chemotherapy, as single agents or in combination, produce a similar CIPN phenotype which raises the possibility that CIPN induced by diverse chemotherapy protocols has the same underlying mechanism. PERSPECTIVE: In this study, that compared patients who received only platinum, only taxane, or both platinum and taxane containing regimens, no differences were found among the 3 groups in the CIPN phenotype. Findings raise the possibility that CIPN induced by diverse chemotherapy protocols has the same underlying mechanism.
Collapse
Affiliation(s)
- Christine Miaskowski
- School of Medicine, University of California, San Francisco, California; School of Nursing, University of California, San Francisco, California.
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California
| | - Bruce Cooper
- School of Nursing, University of California, San Francisco, California
| | - Gary Abrams
- School of Medicine, University of California, San Francisco, California
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, California
| | - Steven Cheung
- School of Medicine, University of California, San Francisco, California
| | | | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karin Snowberg
- School of Nursing, University of California, San Francisco, California
| | - Emely Alfaro
- Adult Infusion Services, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Marisa Quinn
- Adult Infusion Services, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, California
| |
Collapse
|
13
|
Jiang M, Qi F, Zhang K, Zhang X, Ma J, Xia S, Chen L, Yu Z, Chen J, Chen D. MARCKSL1-2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b. Mol Cancer 2022; 21:150. [PMID: 35864549 PMCID: PMC9306054 DOI: 10.1186/s12943-022-01605-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are implicated in the development of multiple cancers. In our previous study, we demonstrated that HDAC1/4-mediated silencing of microRNA-200b (miR-200b) enhances docetaxel (DTX)-resistance of human lung adenocarcinoma (LAD) cells. Methods and results Herein, we probed the function of LncRNA MARCKSL1–2 (MARCKSL1-transcript variant 2, NR_052852.1) in DTX resistance of LAD cells. It was found that MARCKSL1–2 expression was markedly reduced in DTX-resistant LAD cells. Through gain- or loss- of function assays, colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis, we found that MARCKSL1–2 suppressed the growth and DTX resistance of both parental and DTX-resistant LAD cells. Moreover, we found that MARCKSL1–2 functioned in LAD through increasing miR-200b expression and repressing HDAC1. Mechanistically, MARCKSL1–2 recruited the suppressor of zeste 12 (SUZ12) to the promoter of histone deacetylase 1 (HDAC1) to strengthen histone H3 lysine 27 trimethylation (H3K27me3) of HDAC1 promoter, thereby reducing HDAC1 expression. MARCKSL1–2 up-regulated miR-200b by blocking the suppressive effect of HDAC1 on the histone acetylation modification at miR-200b promoter. Furthermore, in vivo analysis using mouse xenograft tumor model supported that overexpression of MARCKSL1–2 attenuated the DTX resistance in LAD tumors. Conclusions We confirmed that MARCKSL1–2 alleviated DTX resistance in LAD cells by abolishing the inhibitory effect of HDAC1 on miR-200b via the recruitment of SUZ12. MARCKSL1–2 could be a promising target to improve the chemotherapy of LAD. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01605-w.
Collapse
Affiliation(s)
- Min Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Feng Qi
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224005, Jiangsu, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xiaofei Zhang
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Jingjing Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Suhua Xia
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China. .,Department of Medical Oncology, Baoshan Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1058 Huanzhen North Road, Baoshan District, Shanghai, 200444, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42 Baiziting Road, Xuanwu District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
14
|
Veliparib and nivolumab in combination with platinum doublet chemotherapy in patients with metastatic or advanced non-small cell lung cancer: A phase 1 dose escalation study. Lung Cancer 2021; 161:180-188. [PMID: 34607210 DOI: 10.1016/j.lungcan.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Both combinations of the PARP inhibitor veliparib plus platinum doublet chemotherapy (CT), and the programmed death receptor-1 (PD-1) inhibitor nivolumab plus CT have demonstrated encouraging efficacy for treatment of non-small cell lung cancer (NSCLC). This phase 1 dose-escalation study (NCT02944396) evaluated the quadruple combination of veliparib with nivolumab and doublet CT in patients with unresectable advanced/metastatic NSCLC. MATERIALS AND METHODS Patients were enrolled into five dosing cohorts: patients received veliparib 120 mg twice daily (BID) combined with nivolumab 360 mg, carboplatin AUC 6 mg/mL∙min, and paclitaxel 200 mg/m2 (C/PAC) or veliparib 80/120/200/240 mg BID in combination with nivolumab 360 mg, carboplatin AUC 6 mg/mL∙min, and pemetrexed 500 mg/m2 (C/PEM). Primary objective was to identify the recommended phase 2 dose (RP2D) of veliparib + nivolumab + CT. Safety, tolerability, and efficacy of this combination were also assessed. RESULTS Twenty-five patients were enrolled: 6 patients received veliparib 120 mg BID + nivolumab + C/PAC and 19 received veliparib (80-240 mg BID) + nivolumab + C/PEM. No dose-limiting toxicities were reported, and the RP2Ds were veliparib 120 mg BID + nivolumab + C/PAC, and veliparib 240 mg BID + nivolumab + C/PEM. The most common any-grade adverse events (AEs) were fatigue (56%), nausea (52%), and anemia (48%). Grade 3/4 AEs included anemia (32%) and neutropenia (24%), and the most frequent serious AE was malignant neoplasm progression (12%). Veliparib exhibited approximately dose proportional kinetics in the dose range 80-240 mg BID combined with nivolumab and C/PEM, with no effects on pemetrexed pharmacokinetics. Overall, the confirmed objective response rate was 40%, and best overall response was 64%. CONCLUSION Veliparib combined with nivolumab and platinum doublet CT was tolerated in patients with advanced/metastatic NSCLC, and no evidence of drug-drug interaction was observed. Although preliminary, this quadruple therapy may have promising antitumor activity.
Collapse
|
15
|
Sreekanth V, Pal S, Kumar S, Komalla V, Yadav P, Shyam R, Sengupta S, Bajaj A. Self-assembled supramolecular nanomicelles from a bile acid-docetaxel conjugate are highly tolerable with improved therapeutic efficacy. Biomater Sci 2021; 9:5626-5639. [PMID: 34254078 DOI: 10.1039/d1bm00031d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present the engineering of a supramolecular nanomicellar system that is composed of self-assembled units of the PEGylated lithocholic acid (LCA)-docetaxel (DTX) conjugate (LCA-DTX-PEG). We tethered a short polyethylene glycol unit to LCA and used an esterase-sensitive ester linkage between DTX and LCA. The LCA-DTX-PEG conjugate formed nanomicelles (LCA-DTX-PEG NMs) with ∼160 nm hydrodynamic diameter that are sensitive to cellular esterases and maximized the release of DTX under high esterase exposure. LCA-DTX-PEG NMs were found to be effective as the parent drug in breast cancer cells by stabilizing tubulin and arresting the cells in the G2/M phase. We determined the maximum tolerated dose (MTD) and systemic and vital organ toxicity of LCA-DTX-PEG NMs in mice, rats, and rabbits. LCA-DTX-PEG NMs showed a MTD of >160 mg kg-1 and are found to be safe in comparison with their parent FDA-approved drug formulation (Taxotere® or DTX-TS) that is highly toxic. LCA-DTX-PEG NMs effectively reduced the tumor volume and increased the survival of 4T1 tumor-bearing mice with improved blood circulation time of the drug and its higher accumulation in tumor tissues. Therefore, this study highlights the potential of PEGylated bile acid-drug conjugate based nanomicelles for the development of next generation cancer therapeutics.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India. and Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India. and Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India. and Manipal Academy of Higher Education, Manipal, 576104, India
| | - Varsha Komalla
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Radhey Shyam
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
16
|
YAYLA M, ÜN H, BİNNETOĞLU D. Neuroprotective effects of phloretin and phloridzin on paclitaxel-induced neuronal damage in primary neuron cells. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.871862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Du D, Cao X, Duan X, Zhang X. Blocking circ_0014130 suppressed drug resistance and malignant behaviors of docetaxel resistance-acquired NSCLC cells via regulating miR-545-3p-YAP1 axis. Cytotechnology 2021; 73:571-584. [PMID: 34349347 DOI: 10.1007/s10616-021-00478-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Recent evidences have claimed that circular RNAs are deregulated in docetaxel (DTX) resistance in malignant tumors, including non-small-cell lung cancer (NSCLC). Hsa_circ_0014130 (circ_0014130) is a new biomarker in NSCLC. However, its role in DTX-resistant NSCLC remained to be annotated. In this study, real-time PCR was used to measure expression of circ_0014130, and circ_0014130 was upregulated in NSCLC tumors and DTX-resistant NSCLC cells (NCI-H1299/DTX and A549/DTX). MTT assay analyzed the half inhibitory concentration (IC50) of DTX, and it was lowered by circ_0014130 interference in DTX-resistant NSCLC cells. Moreover, colony formation assay, flow cytometry, transwell assays, and xenograft tumor model revealed that silencing circ_0014130 facilitated apoptosis rate of DTX-resistant NSCLC cells, suppressed the colony formation, migration and invasion, and retarded xenograft tumor growth in nude mice. Dual-luciferase reporter assay and RNA immunoprecipitation confirmed that circ_0014130 was one competing endogenous RNA (ceRNA) for miRNA (miR)-545-3p, and circ_0014130 modulated expression of yes-associated protein 1 (YAP1), a target gene for miR-545-3p. YAP1 upregulation and miR-545-3p downregulation were allied with circ_0014130 upregulation in NSCLC tumors and DTX-resistant NSCLC cells. Functionally, downregulating miR-545-3p could abate the effects of circ_0014130 knockdown in DTX-resistant NSCLC cells in vitro, whereas its overexpression exerted similar effects of circ_0014130 knockdown. Either, restoring YAP1 partially reversed miR-545-3p effects in DTX-resistant NSCLC cells. Collectively, there might be a novel circ_0014130-miR-545-3p-YAP1 ceRNA pathway in regulation of chemoresistance and malignant behaviors of DTX-resistant NSCLC cells, suggesting a potential therapeutic approach for DTX resistance.
Collapse
Affiliation(s)
- Dongjie Du
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xiaoci Cao
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xinbo Duan
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xianbo Zhang
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| |
Collapse
|
18
|
Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Hrynyk R, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci 2021; 163:105838. [PMID: 33845119 DOI: 10.1016/j.ejps.2021.105838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The taxanes are commonly used in the treatment of many types of cancer. The disadvantages of using taxanes in therapy are their low solubility in water, the toxicity or relatively poor pharmacokinetics of existing formulations. Using liposomes as carriers would help in overcoming these problems, however, their use is limited by the low incorporation efficiency of taxane molecules within bilayer and by subsequent drug crystallization. Most of published taxanes liposomal formulations use natural soy phosphatidylcholine (PC) as main liposomes lipid. This allows a relatively good drug retention during the liposomes storage, but on the other hand, the use of liposomes with more liquid bilayer facilitates fast drug release after its intravenous administration. In order to decrease the drug release from liposomes in circulation, we used pegylated HSPC (hydrogenated soy PC) liposomes containing a novel synthetic 3-n-pentadecylphenol derivative - KW101, that showed a remarkably stabilizing action for the docetaxel (DTX) dopped HSPC liposomes over 30 days, expressed by the inhibition of DTX crystallization. The resulting liposomes with DTX showed similar cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines and higher toxicity in drug-resistant NCI/ADR-RES cell line in comparison with the free DTX. Moreover, this formulation has good pharmacokinetics in mice, in comparison to control pegylated DTX formulation composed of egg phosphatidylcholine (ePC). This novel liposomal formulation of docetaxel consisting of HSPC with the stabilizing compound KW101, appears to be a promising carrier for DTX cancer therapy.
Collapse
Affiliation(s)
- Patrycja Zawilska
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | | | | | - Rafal Hrynyk
- 3M Poland, Aleja Katowicka 117, 05-830 Nadarzyn, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jerzy Gubernator
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
19
|
Sreekanth V, Kar A, Kumar S, Pal S, Yadav P, Sharma Y, Komalla V, Sharma H, Shyam R, Sharma RD, Mukhopadhyay A, Sengupta S, Dasgupta U, Bajaj A. Bile Acid Tethered Docetaxel-Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes. Angew Chem Int Ed Engl 2021; 60:5394-5399. [PMID: 33258265 DOI: 10.1002/anie.202015173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/18/2022]
Abstract
In this study, we describe the engineering of sub-100 nm nanomicelles (DTX-PC NMs) derived from phosphocholine derivative of docetaxel (DTX)-conjugated lithocholic acid (DTX-PC) and poly(ethylene glycol)-tethered lithocholic acid. Administration of DTX-PC NMs decelerate tumor progression and increase the mice survivability compared to Taxotere (DTX-TS), the FDA-approved formulation of DTX. Unlike DTX-TS, DTX-PC NMs do not cause any systemic toxicity and slow the decay rate of plasma DTX concentration in rodents and non-rodent species including non-human primates. We further demonstrate that DTX-PC NMs target demethylation of CpG islands of Sparcl1 (a tumor suppressor gene) by suppressing DNA methyltransferase activity and increase the expression of Sparcl1 that leads to tumor regression. Therefore, this unique system has the potential to improve the quality of life in cancer patients and can be translated as a next-generation chemotherapeutic.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Current address: Brigham and Women's Hospital, Division of Renal Medicine and Engineering, Boston, MA, 02115, USA
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yamini Sharma
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Varsha Komalla
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Current address: Graduate School of Health, University of Technology, Sydney, Building 20, 100-102 Broadway, Chippendale, NSW, 2008, Australia
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Radhey Shyam
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Arnab Mukhopadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| |
Collapse
|
20
|
Sreekanth V, Kar A, Kumar S, Pal S, Yadav P, Sharma Y, Komalla V, Sharma H, Shyam R, Sharma RD, Mukhopadhyay A, Sengupta S, Dasgupta U, Bajaj A. Bile Acid Tethered Docetaxel‐Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
- Current address: Brigham and Women's Hospital Division of Renal Medicine and Engineering Boston MA 02115 USA
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| | - Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| | - Yamini Sharma
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| | - Varsha Komalla
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
- Current address: Graduate School of Health University of Technology, Sydney, Building 20 100–102 Broadway Chippendale NSW 2008 Australia
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health Amity University Haryana Panchgaon, Manesar Gurgaon 122413 Haryana India
| | - Radhey Shyam
- National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health Amity University Haryana Panchgaon, Manesar Gurgaon 122413 Haryana India
| | - Arnab Mukhopadhyay
- National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Sagar Sengupta
- National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health Amity University Haryana Panchgaon, Manesar Gurgaon 122413 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 Haryana India
| |
Collapse
|
21
|
Lian J, Hua T, Xu J, Ding J, Liu Z, Fan Y. Interleukin-1β weakens paclitaxel sensitivity through regulating autophagy in the non-small cell lung cancer cell line A549. Exp Ther Med 2021; 21:293. [PMID: 33717236 PMCID: PMC7885084 DOI: 10.3892/etm.2021.9724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a threat to human health and paclitaxel chemotherapy has been approved for the treatment of this type of cancer. However, resistance to treatment severely compromises the survival rate and prognosis of patients with NSCLC. The aim of the present study was to investigate the role of IL-1β in paclitaxel sensitivity of NSCLC cells and elucidate the underlying mechanism. The expression of IL-1β was found to be upregulated in NSCLC tissues and cells compared with healthy adjacent tissues and a normal epithelial cell line, respectively, as detected by reverse transcription-quantitative PCR and western blot analyses. Subsequently, Cell Counting Kit-8 assay and flow cytometry revealed that IL-1β weakened the sensitivity of A549 cells to paclitaxel. It was subsequently demonstrated that IL-1β induced A549 cell autophagy, while tunicamycin-induced autophagy increased the IL-1β expression level and weakened paclitaxel sensitivity. Thus, the results revealed that IL-1β reduced the sensitivity to paclitaxel in A549 cells by promoting autophagy and suggested that IL-1β may be of value for improving the therapeutic efficacy of paclitaxel chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
22
|
Smith ER, Xu XX. Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. JOURNAL OF CANCER BIOLOGY 2021; 2:86-93. [PMID: 35048083 PMCID: PMC8765745 DOI: 10.46439/cancerbiology.2.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in a large-scale screening of natural plant chemicals, Taxol/paclitaxel and the taxane family of compounds are surprisingly successful anti-cancer drugs, used in treatment of the majority of solid tumors, and especially suitable for metastatic and recurrent cancer. Paclitaxel is often used in combination with platinum agents and is administrated in a dose dense regimen to treat recurrent cancer. The enthusiasm and clinical development were prompted by the discovery that Taxol binds beta-tubulins specifically found within microtubules and stabilizes the filaments, and consequently inhibits mitosis. However, questions on how paclitaxel suppresses cancer persist, as other specific mitotic inhibitors are impressive in pre-clinical studies but fail to achieve significant clinical activity. Thus, additional mechanisms, such as promoting mitotic catastrophe and impacting non-mitotic targets, have been proposed and studied. A good understanding of how paclitaxel, and additional new microtubule stabilizing agents, kill cancer cells will advance the clinical application of these common chemotherapeutic agents. A recent study provides a potential non-mitotic mechanism of paclitaxel action, that paclitaxel-induced rigid microtubules act to break malleable cancer nuclei into multiple micronuclei. Previous studies have established that cancer cells have a less sturdy, more pliable nuclear envelope due to the loss or reduction of lamin A/C proteins. Such changes in nuclear structure provide a selectivity for paclitaxel to break the nuclear membrane and kill cancer cells over non-neoplastic cells that have a sturdier nuclear envelope. The formation of multiple micronuclei appears to be an important aspect of paclitaxel in the killing of cancer cells, either by a mitotic or non-mitotic mechanism. Additionally, by binding to microtubule, paclitaxel is readily sequestered and concentrated within cells. This unique pharmacokinetic property allows the impact of paclitaxel on cells to persist for several days, even though the circulating drug level is much reduced following drug administration/infusion. The retention of paclitaxel within cells likely is another factor contributing to the efficacy of the drugs. Overall, the new understanding of Taxol/paclitaxel killing mechanism-rigid microtubule-induced multiple micronucleation-will likely provide new strategies to overcome drug resistance and for rational drug combination.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
23
|
Ren J, Wang D, Huang H, Li X, Zhuang X, Li J. miR-1260b Activates Wnt Signaling by Targeting Secreted Frizzled-Related Protein 1 to Regulate Taxane Resistance in Lung Adenocarcinoma. Front Oncol 2020; 10:557327. [PMID: 33224874 PMCID: PMC7674592 DOI: 10.3389/fonc.2020.557327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives: MicroRNAs (miRNAs) have been demonstrated to contribute to carcinogenesis; however, their association with tumor chemoresistance is not fully understood. In this study we aimed to investigate the molecular mechanisms involved in resistance to taxane-based chemotherapy in lung adenocarcinoma (LAD). Methods: We established paclitaxel-resistant A549 cells (A549/PTX) and docetaxel-resistant H1299 cells (H1299/DTX). In order to hit the mark, we employed multiple methods including qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, animal experiment, wound-healing assay, and invasion assay. Results: Bioinformatics analysis and a luciferase reporter assay revealed that secreted frizzled-related protein 1 (SFRP1) is a direct target of miR-1260b. By qRT-PCR analysis, we found that miR-1260b was significantly upregulated in taxane-resistant cells as compared to parental cells. Suppression of miR-1260b reversed the chemoresistance of human LAD cells to taxanes both in vitro and in vivo, whereas ectopic miR-1260b expression decreased the sensitivity of parental LAD cell lines to taxanes. Downregulation of miR-1260b expression inactivated the Wnt signaling pathway and reversed the epithelial-mesenchymal transition (EMT) phenotype of taxane-resistant LAD cells. In clinical tumor tissue samples, high miR-1260b expression was detected in tumors of non-responding patients treated with taxane-based chemotherapy and was associated with low SFRP1 expression and poor prognosis. Conclusions: Our findings reveal that targeting of the miR-1260b/SFRP1/Wnt signaling axis might provide a novel strategy for overcoming chemotherapy resistance in LAD.
Collapse
Affiliation(s)
- Jin Ren
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hanpeng Huang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiufen Zhuang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Baharudin R, Tieng FYF, Lee LH, Ab Mutalib NS. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 2020; 12:E445. [PMID: 32074995 PMCID: PMC7072595 DOI: 10.3390/cancers12020445] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. SFRP1 has been classified as a tumor suppressor gene due to the loss of expression in various human cancers, which is mainly attributed by epigenetic inactivation via DNA methylation or transcriptional silencing by microRNAs. Epigenetic silencing of SFRP1 may cause dysregulation of cell proliferation, migration, and invasion, which lead to cancer cells formation, disease progression, poor prognosis, and treatment resistance. Hence, restoration of SFRP1 expression via demethylating drugs or over-expression experiments opens the possibility for new cancer therapy approach. While the role of SFRP1 as a tumor suppressor gene is well-established, some studies also reported the possible oncogenic properties of SFRP1 in cancers. In this review, we discussed in great detail the dual roles of SFRP1 in cancers-as tumor suppressor and tumor promoter. The epigenetic regulation of SFRP1 expression will also be underscored with additional emphasis on the potentials of SFRP1 in modulating responses toward chemotherapeutic and epigenetic-modifying drugs, which may encourage the development of novel drugs for cancer treatment. We also present findings from clinical trials and patents involving SFRP1 to illustrate its clinical utility, extensiveness of each research area, and progression toward commercialization. Lastly, this review provides directions for future research to advance SFRP1 as a promising cancer biomarker.
Collapse
Affiliation(s)
- Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| |
Collapse
|
25
|
Maackia amurensis agglutinin induces apoptosis in cultured drug resistant human non-small cell lung cancer cells. Glycoconj J 2019; 36:473-485. [DOI: 10.1007/s10719-019-09891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
|
26
|
Specific driving of the suicide E gene by the CEA promoter enhances the effects of paclitaxel in lung cancer. Cancer Gene Ther 2019; 27:657-668. [PMID: 31548657 DOI: 10.1038/s41417-019-0137-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 11/08/2022]
Abstract
Classical chemotherapy for lung cancer needs new strategies to enhance its antitumor effect. The cytotoxicity, nonspecificity, and low bioavailability of paclitaxel (PTX) limits their use in this type of cancer. Suicide gene therapy using tumor-specific promoters may increase treatment effectiveness. We used carcinoembryonic antigen (CEA) as a tumor-specific promoter to drive the bacteriophage E gene (pCEA-E) towards lung cancer cells (A-549 human and LL2 mice cell lines) but not normal lung cells (L132 human embryonic lung cell line), in association with PTX as a combined treatment. The study was carried out using cell cultures, tumor spheroid models (MTS), subcutaneous induced tumors and lung cancer stem cells (CSCs). pCEA-E induced significant inhibition of A-549 and LL2 cell proliferation in comparison to L132 cells, which have lower CEA expression levels. Moreover, pCEA-E induced an important decrease in volume growth of A-549 and LL2 MTS producing intense apoptosis, in comparison to L132 MTS. In addition, pCEA-E enhanced the antitumor effects of PTX when combined, showing a synergistic effect. This effect was also observed in A-549 CSCs, which have been related to the recurrence of cancer. The in vivo study corroborated the effectiveness of the pCEA-E-PTX combined therapy, inducing a greater decrease in tumor volume compared to PTX and pCEA-E alone. Our results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically towards lung cancer cells, and may be used to enhance the effectiveness of PTX against this type of tumor.
Collapse
|
27
|
Chen J, Liu X, Xu Y, Zhang K, Huang J, Pan B, Chen D, Cui S, Song H, Wang R, Chu X, Zhu X, Chen L. TFAP2C-Activated MALAT1 Modulates the Chemoresistance of Docetaxel-Resistant Lung Adenocarcinoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:567-582. [PMID: 30771618 PMCID: PMC6374643 DOI: 10.1016/j.omtn.2019.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Chemoresistance remains a great obstacle in effective lung adenocarcinoma (LUAD) treatment. Previously, we verified the role of microRNA-200b (miR-200b) in the formation of docetaxel (DTX)-resistant LUAD cells. This study aims to investigate the mechanism underlying the low level of miR-200b in DTX-resistant LUAD cells. The real-time reverse transcription (RT2) lncRNA PCR array system was applied to explore lncRNAs that potentially regulated miR-200b in DTX-resistant LUAD cells. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) contributed to the low miR-200b level in DTX-resistant LUAD cells. Functional assays were conducted to determine the role of MALAT1 in regulating the growth and metastasis of parental and DTX-resistant LUAD cells. Investigation revealed the mechanism of the competing endogenous RNA (ceRNA) pathway. MALAT1 regulated miR-200b by acting as a ceRNA. MALAT1 modulated the sensitivity of LUAD cells to DTX. E2F transcription factor 3 (E2F3) and zinc-finger E-box binding homeobox 1 (ZEB1) were two targets of miR-200b and mediated the function of MALAT1 in DTX-resistant LUAD cells. Transcription factor AP-2 gamma (TFAP2C) and ZEB1 activated the MALAT1 transcription. In conclusion, TFAP2C-activated MALAT1 modulated the chemoresistance of LUAD cells by sponging miR-200b to upregulate E2F3 and ZEB1. Our findings may provide novel therapeutic targets and perspectives for LUAD treatment.
Collapse
Affiliation(s)
- Jing Chen
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China; Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jiayuan Huang
- Department of Medical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Institute of Cancer Research, Jiangsu, China
| | - Banzhou Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Institute of Cancer Research, Jiangsu, China
| | - Dongqin Chen
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shiyun Cui
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoli Zhu
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
28
|
Pan Y, Chen J, Tao L, Zhang K, Wang R, Chu X, Chen L. Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway. Oncotarget 2018; 8:33144-33158. [PMID: 28388536 PMCID: PMC5464857 DOI: 10.18632/oncotarget.16562] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence indicates that the dysregulation of long non-coding RNAs (lncRNAs) contributes to the development and progression of lung adenocarcinoma (LAD), however the underlying mechanism of action of lncRNAs remains unclear. It is well known that the effective treatment of cancers has been hindered by drug resistance in the clinical setting. Epithelial-mesenchymal transition (EMT) has been recognized to be involved in acquiring drug resistance, cell migration and invasion properties in several types of cancer. Docetaxel-resistant LAD cells established previously in our lab present chemoresistant and mesenchymal features. Long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR), was first discovered in induced pluripotent stem cells (iPSCs) and was upregulated in docetaxel-resistant LAD cells. In this study, we tried to make clarification of lincRNA-related mechanisms underlying EMT followed by acquired resistance to chemotherapy in LAD. In order to hit the mark, we made use of multiple methods including microarray analysis, qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, wound-healing assay and invasion assay. We found that decreased expression of linc-ROR effectively reversed EMT in docetaxel-resistant LAD cells and sensitized them to chemotherapy. The function of linc-ROR exerted in LAD cells depended on the sponging of miR-145, therefore, releasing the miR-145 target FSCN1, and thus contributing to the acquisition of chemoresistance and EMT phenotypes of docetaxel-resistant LAD cells. Our findings revealed that linc-ROR might act as potential therapeutic target to overcome chemotherapy resistance in LAD.
Collapse
Affiliation(s)
- Yan Pan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Leilei Tao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Xu Q, Lin G, Xu H, Hu L, Wang Y, Du S, Deng W, Hu W, Cheng W, Jiang K. MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Lett 2017; 15:515-521. [PMID: 29387232 DOI: 10.3892/ol.2017.7314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Acquired resistance to first-line chemotherapeutics, including paclitaxel (PTX), is a primary factor contributing to chemotherapy failure in non-small cell lung cancer (NSCLC) patients. Previous studies have identified that targeting NEDD8-activating enzyme (NAE) with MLN4924 effectively overcomes platinum resistance in preclinical models of ovarian cancer. However, the underlying mechanisms are yet to be fully elucidated. The present study demonstrates that the inhibition of the neddylation pathway with MLN4924 an NAE inhibitor inhibited protein neddylation, inactivated cullin-RING E3 ligase and exhibited a potent antiproliferative effect on PTX-resistant A549 and H460 cells (A549/PTX and H460/PTX). The application of MLN4924 promotes apoptosis and DNA damage in A549/PTX and H460/PTX cells. Additionally, MLN4924 abrogated the 3-dimensional growth potential of these cells and inhibited the formation of the A549/PTX and H460/PTX spheroids. Notably, combining MLN4924 with PTX did not exhibit synergy in PTX-resistant NSCLC cells. Taken together, the results of the current study suggest that MLN4924 may be utilized as an effective strategy for the treatment of PTX-resistant NSCLC.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, The Affiliated Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Guibin Lin
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Huizhe Xu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Yupeng Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Wuguo Deng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Wenxian Hu
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
30
|
Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells. J Kidney Cancer VHL 2017; 4:16-24. [PMID: 28405545 PMCID: PMC5364332 DOI: 10.15586/jkcvhl.2017.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.
Collapse
|
31
|
Chen Y, Huang W, Chen F, Hu G, Li F, Li J, Xuan A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med 2016; 5:3564-3571. [PMID: 27878971 PMCID: PMC5224856 DOI: 10.1002/cam4.960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 2C8 (CYP2C8) is one of the enzymes that primarily participate in producing metabolisms of medications and P‐glycoprotein (P‐gp) has been regarded as one of the important molecules in chemotherapeutically induced multidrug resistance (MDR). In addition, the pregnane X receptor (PXR) is involved in regulating both CYP2C8 and P‐gp. We aim to research the effect of PXR on Taxol‐resistant non–small‐cell lung cancer (NSCLC cells) via regulating CYP2C8 and P‐gp. NSCLC cells were treated with SR12813, LY335979, or PXR siRNA. Cell counting kit (CCK‐8) assay was used to detect cell vitality. Colony formation assay was used to observe cell proliferation. Western blotting, real‐time polymerase chain reaction (RT‐PCR), and immunofluorescence staining were conducted to analyze the expressions of PXR, CYP2C8, and P‐gp. Taxol and its metabolic products were detected by high‐performance liquid chromatography (HPLC). The expression of PXR in A549 cell line was higher than that in other cell lines. The accumulation of PXR was observed in the nucleus after cells were treated with SR12813. Besides, SR12813 induced higher expressions of CYP2C8 and P‐gp proteins. We also discovered that pretreatment with SR12813 reversed the inhibition of cell viability and proliferation after the Taxol treatment in comparison to the SR12813 untreated group. Furthermore, the hydroxylation products of Taxol analyzed by HPLC were increased in comparison to the SR12813 untreated group, indicating that high expressions of CYP2C8 and P‐gp enhanced the resistance of A549 cells to Taxol. For cells treated with PXR siRNA, cell viability, cell proliferation, and Taxol metabolites were significantly reduced after the Taxol treatment in comparison to the siRNA‐negative group. The cell viability, cell proliferation, and Taxol metabolites were regulated by the expressions of PXR, P‐gp, and CYP2C8. That is, PXR expression has an important effect on the resistance of NSCLC cells to Taxol via upregulating P‐gp and CYP2C8.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Wandan Huang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Feiyu Chen
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guoping Hu
- Department of Respiratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Fenglei Li
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Jianhua Li
- Department of Physiology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Aiguo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
32
|
Kuo TC, Li LW, Pan SH, Fang JM, Liu JH, Cheng TJ, Wang CJ, Hung PF, Chen HY, Hong TM, Hsu YL, Wong CH, Yang PC. Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. J Med Chem 2016; 59:8521-34. [DOI: 10.1021/acs.jmedchem.6b00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ting-Chun Kuo
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ling-Wei Li
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Szu-Hua Pan
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Genome
and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Jim-Min Fang
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jyung-Hurng Liu
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Institute
of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural
Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong
Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ting-Jen Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Jen Wang
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial HospitalTaipei 105, Taiwan
| | - Pei-Fang Hung
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsuan-Yu Chen
- Institute
of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | - Tse-Ming Hong
- Institute
of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | - Yuan-Ling Hsu
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- NTU
Center for Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
33
|
Saleh T, Cuttino L, Gewirtz DA. Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer. Biochim Biophys Acta Gen Subj 2016; 1860:2130-6. [PMID: 27316314 DOI: 10.1016/j.bbagen.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In addition to surgical resection, which is considered first-line treatment at early stages of the disease, chemotherapy and radiation are widely used when the disease is advanced. Of multiple responses that may occur in the tumor cells in response to cancer therapy, the functional importance of autophagy remains equivocal; this is likely to restrict current efforts to sensitize this malignancy to chemotherapy and/or radiation by pharmacological interference with the autophagic response. SCOPE OF REVIEW In this review, we attempt to summarize the current state of knowledge based on studies that evaluated the function of autophagy in non-small cell lung cancer (NSCLC) cells in response to radiation and the most commonly used chemotherapeutic agents. MAJOR CONCLUSIONS In addition to the expected prosurvival function of autophagy, where autophagy inhibition enhances the response to therapy, autophagy appears also to have a "non-cytoprotective" function, where autophagy blockade does not affect cell viability, clonogenicity or tumor volume in response to therapy. In other cases, autophagy may actually mediate drug action via expression of its cytotoxic function. GENERAL SIGNIFICANCE These observations emphasize the complexity of autophagy function when examined in different tumor cell lines and in response to different chemotherapeutic agents. A more in-depth understanding of the conditions that promote the unique functions of autophagy is required in order to translate preclinical findings of autophagy inhibition to the clinic for the purpose of improving patient response to chemotherapy and radiation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Laurie Cuttino
- Department of Radiation Oncology, Virginia Commonwealth University, Henrico Doctor's Hospital, 1602 Skipwith Rd, Richmond, VA 23229, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States; Department of Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States.
| |
Collapse
|
34
|
Patel K, Doddapaneni R, Chowdhury N, Boakye CH, Behl G, Singh M. Tumor stromal disrupting agent enhances the anticancer efficacy of docetaxel loaded PEGylated liposomes in lung cancer. Nanomedicine (Lond) 2016; 11:1377-92. [PMID: 27171485 DOI: 10.2217/nnm.16.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Therapeutic efficacy of anticancer nanomedicine is compromised by tumor stromal barriers. The present study deals with the development of docetaxel loaded PEGylated liposomes (DTXPL) and to investigate the effect of tumor stroma disrupting agent, telmisartan, on anticancer efficacy of DTXPL. METHODS DTXPL was prepared using proprietary modified hydration method. Effect of oral telmisartan treatment on tumor uptake of coumarin-6 liposomes and anticancer efficacy of DTXPL was evaluated in orthotopic xenograft lung tumor bearing mice. RESULTS DTXPL (105.7 ± 3.8 nm) showed very high physical stability, negligible hemolysis, 428% enhancement in bioavailability with significantly higher intratumoral uptake. Marked reduction in collagen-I, MMP2/9 and lung tumor weight were observed in DTXPL+telmisartan group. CONCLUSION Combination of DTXPL with telmisartan could significantly enhance clinical outcome in lung cancer.
Collapse
Affiliation(s)
- Ketan Patel
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ravi Doddapaneni
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Cedar Ha Boakye
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Gautam Behl
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Mandip Singh
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
35
|
Digesu CS, Hofferberth SC, Grinstaff MW, Colson YL. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery. Thorac Surg Clin 2016; 26:215-28. [PMID: 27112260 PMCID: PMC4851727 DOI: 10.1016/j.thorsurg.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery.
Collapse
Affiliation(s)
- Christopher S Digesu
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA
| | - Sophie C Hofferberth
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Chemistry, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Medicine, Metcalf Science Center, Boston University, SCI 518, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, 15 Francis St, Boston, MA 02115, USA; Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, 15 Francis St, Boston, MA 02155, USA.
| |
Collapse
|
36
|
Wang L, Li H, Ren Y, Zou S, Fang W, Jiang X, Jia L, Li M, Liu X, Yuan X, Chen G, Yang J, Wu C. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis 2016; 7:e2063. [PMID: 26794658 PMCID: PMC4816165 DOI: 10.1038/cddis.2015.328] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
Abstract
Chemotherapy paclitaxel yields significant reductions in tumor burden in the majority of advanced non-small cell lung cancer (NSCLC) patients. However, acquired resistance limits its clinical use. Here we demonstrated that the histone deacetylase (HDAC) was activated in paclitaxel-resistant NSCLC cells, and its activation promoted proliferation and tumorigenesis of paclitaxel-resistant NSCLC cells in vitro and in vivo. By contrast, knockdown of HDAC1, a primary isoform of HDAC, sensitized resistant cells to paclitaxel in vitro. Furthermore, we observed that overexpression of HDAC1 was associated with the downregulation of p21, a known HDAC target, in advanced NSCLC patients with paclitaxel treatment, and predicted chemotherapy resistance and bad outcome. In addition, we also identified a novel HDACs inhibitor, SNOH-3, which inhibited HDAC expression and activity, induced cell apoptosis, and suppressed cell migration, invasion and angiogenesis. Notably, co-treatment with SNOH-3 and paclitaxel overcome paclitaxel resistance through inhibiting HDAC activity, leading to the induction of apoptosis and suppression of angiogenesis in vitro and in preclinical model. In summary, our data demonstrate a role of HDAC in paclitaxel-resistant NSCLC and provide a promising therapeutic strategy to overcome paclitaxel-acquired resistance.
Collapse
Affiliation(s)
- L Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - H Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Y Ren
- Department of Pathology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, PR China
| | - S Zou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, PR China
| | - W Fang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, PR China
| | - X Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - L Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - M Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - X Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - X Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - G Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, PR China
| | - J Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - C Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
37
|
Zhang S, An B, Yan J, Huang L, Li X. The synthesis and evaluation of new benzophenone derivatives as tubulin polymerization inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra16948a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inspired by the potent inhibition activity of phenstatin and millepachine against cancer cell growth, a series of new benzophenone derivatives were synthesized and evaluated as tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Shun Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Baijiao An
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Yan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Ling Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xingshu Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
38
|
Tao L, Huang G, Chen Y, Chen L. DNA methylation of DKK3 modulates docetaxel chemoresistance in human nonsmall cell lung cancer cell. Cancer Biother Radiopharm 2015; 30:100-6. [PMID: 25760729 DOI: 10.1089/cbr.2014.1797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dickkopf-related protein 3 (DKK3) gene, as a tumor suppressor gene, has been discovered in various cancers, but its relationship with tumor chemoresistance is still unclear. In this study, this laboratory detected that DNA methylation contributes to the downregulation of DKK3 in docetaxel resistance of human lung cancer cells and its possible biochemical mechanism. DKK3 has been proved to be downregulated by hypermethylation in docetaxel-resistant lung cancer cells. Upregulation of DKK3 can reverse the chemoresistance of docetaxel-resistant cell lines in vitro by growth inhibition and enhancement of apoptosis. Conversely, downregulation of DKK3 could induce parental human lung cancer cells insensitivity to docetaxel by promoting proliferative capacity and inhibiting apoptosis of cancer cells. In addition, the authors observed that overexpression of DKK3 might decrease the expression of P-glycoprotein. All results suggested that epigenetic downregulation of DKK3 leads to docetaxel resistance in human nonsmall cell lung cancer (NSCLC) cells by increased expression of P-glycoprotein. DKK3 may reveal a novel molecular target for docetaxel resistance for NSCLC patients in the future.
Collapse
Affiliation(s)
- Leilei Tao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University , Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Shor B, Kahler J, Dougher M, Xu J, Mack M, Rosfjord E, Wang F, Melamud E, Sapra P. Enhanced Antitumor Activity of an Anti-5T4 Antibody-Drug Conjugate in Combination with PI3K/mTOR inhibitors or Taxanes. Clin Cancer Res 2015; 22:383-94. [PMID: 26319086 DOI: 10.1158/1078-0432.ccr-15-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeted treatment of solid or liquid tumors with antibody-drug conjugates (ADCs) can lead to promising clinical benefit. The aim of the study is to investigate combination regimens of auristatin-based ADCs in preclinical models of cancer. EXPERIMENTAL DESIGN An auristatin-based anti-5T4 antibody conjugate (5T4-ADC) and auristatin payloads were combined with the dual PI3K/mTOR catalytic site inhibitor PF-05212384 (PF-384) or taxanes in a panel of tumor cell lines. Drug interactions in vitro were evaluated using cell viability assays, apoptosis induction, immunofluorescence, mitotic index, and immunoblotting. Breast cancer cells treated with auristatin analogue or 5T4-ADC were profiled by total- and phospho-proteomics. Antitumor efficacy of selected combinations was evaluated in 5T4-positive human breast or lung tumor xenografts in vivo. RESULTS In vitro, auristatin-based agents displayed strong synergistic or additive activity when combined with PF-384 or taxanes, respectively. Further, treatment of 5T4-ADC plus PF-384 resulted in stronger induction of apoptosis and cell line-specific attenuation of pAKT and pGSK. Interestingly, proteomic analysis revealed unique effects of auristatins on multiple components of mRNA translation. Addition of PF-384 further amplified effects of 5T4-ADC on translational components, providing a potential mechanism of synergy between these drugs. In human tumor xenografts, dual targeting with 5T4-ADC/PF-384 or 5T4-ADC/paclitaxel produced substantially greater antitumor effects with longer average survival as compared with monotherapy treatments. CONCLUSIONS Our results provide a biologic rationale for combining 5T4-ADC with either PI3K/mTOR pathway inhibitors or taxanes and suggest that mechanisms underlying the synergy may be attributed to cellular effects of the auristatin payload.
Collapse
Affiliation(s)
- Boris Shor
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Jennifer Kahler
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Maureen Dougher
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Jane Xu
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Michelle Mack
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Ed Rosfjord
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Fang Wang
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Eugene Melamud
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Puja Sapra
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York.
| |
Collapse
|
40
|
Du J, Zhang L. Integrated analysis of DNA methylation and microRNA regulation of the lung adenocarcinoma transcriptome. Oncol Rep 2015; 34:585-94. [PMID: 26035298 PMCID: PMC4487669 DOI: 10.3892/or.2015.4023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma, as a common type of non-small cell lung cancer (40%), poses a significant threat to public health worldwide. The present study aimed to determine the transcriptional regulatory mechanisms in lung adenocarcinoma. Illumina sequence data GSE 37764 including expression profiling, methylation profiling and non-coding RNA profiling of 6 never-smoker Korean female patients with non-small cell lung adenocarcinoma were obtained from the Gene Expression Omnibus (GEO) database. Differentially methylated genes, differentially expressed genes (DEGs) and differentially expressed microRNAs (miRNAs) between normal and tumor tissues of the same patients were screened with tools in R. Functional enrichment analysis of a variety of differential genes was performed. DEG-specific methylation and transcription factors (TFs) were analyzed with ENCODE ChIP-seq. The integrated regulatory network of DEGs, TFs and miRNAs was constructed. Several overlapping DEGs, such as v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) were screened. DEGs were centrally modified by histones of tri-methylation of lysine 27 on histone H3 (H3K27me3) and di-acetylation of lysine 12 or 20 on histone H2 (H2BK12/20AC). Upstream TFs of DEGs were enriched in different ChIP-seq clusters, such as glucocorticoid receptors (GRs). Two miRNAs (miR-126-3p and miR-30c-2-3p) and three TFs including homeobox A5 (HOXA5), Meis homeobox 1 (MEIS1) and T-box 5 (TBX5), played important roles in the integrated regulatory network conjointly. These DEGs, and DEG-related histone modifications, TFs and miRNAs may be important in the pathogenesis of lung adenocarcinoma. The present results may indicate directions for the next step in the study of the further elucidation and targeted prevention of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jiang Du
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
41
|
Sousa-Herves A, Würfel P, Wegner N, Khandare J, Licha K, Haag R, Welker P, Calderón M. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. NANOSCALE 2015; 7:3923-32. [PMID: 25516353 DOI: 10.1039/c4nr04428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by (1)H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.
Collapse
Affiliation(s)
- Ana Sousa-Herves
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fu H, Shi K, Hu G, Yang Y, Kuang Q, Lu L, Zhang L, Chen W, Dong M, Chen Y, He Q. Tumor-Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT-Decorated Liposomes Comprising Redox-Responsive Poly(Ethylene Glycol). J Pharm Sci 2015; 104:1160-73. [DOI: 10.1002/jps.24291] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/25/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022]
|
43
|
Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M, Cangal A. Investigation of protective role of curcumin against paclitaxel-induced inner ear damage in rats. Laryngoscope 2015; 125:1175-82. [PMID: 25583134 DOI: 10.1002/lary.25031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS The aim of this study was to investigate the potential protective effect of curcumin on paclitaxel-induced ototoxicity in rats by means of immunohistochemical and histopathological analysis and distortion product otoacoustic emissions (DPOAEs). STUDY DESIGN Animal study. METHODS Forty Sprague-Dawley rats were randomized into five groups. Group 1 was administered no paclitaxel and curcumin during the study. Groups 2, 3, 4 and 5 were administered 5 mg/kg paclitaxel; 200 mg/kg curcumin; 5 mg/kg paclitaxel, followed by 200 mg/kg curcumin; 200 mg/kg curcumin and a day later 5 mg/kg paclitaxel followed intraperitoneally by 200 mg/kg curcumin once a week for 4 consecutive weeks, respectively. After the final DPOAEs test, the animals were sacrificed and their cochlea were prepared for hematoxylin and eosin and caspase-3 staining. RESULTS The DPOAEs thresholds and histopathological and immunohistochemical findings were substantially correlated in all groups. The histopathologic findings in the cochlea of the paclitaxel-treated animals showed not only changes in the organ of Corti, but also damage to the stria vascularis and spiral limbus, including nuclear degeneration, cytoplasmic vacuolization, and atrophy of intermediate cells. Additionally, cochlear changes in group 2, such as intense apoptosis, were confirmed by caspase-3 immunohistochemical staining. In group 4, coreceiving curcumin could not sufficiently prevent paclitaxel-induced ototoxicity, and the results in group 5 were similar to the control group. CONCLUSIONS In our study, we have concluded that pre- and coreceiving curcumin can significantly protect the cochlear morphology and functions on paclitaxel-induced ototoxicity in rats. Curcumin might be considered as a potential natural product that, used as a dietary supplement, could be easily given to patients undergoing paclitaxel chemotherapy. LEVEL OF EVIDENCE NA
Collapse
Affiliation(s)
- Abdulkadir Bucak
- Department of Otolaryngology, Afyon Kocatepe University, Faculty of Medicine, Afyonkarahisar, Turkey
| | | | | | | | | | | | | |
Collapse
|