1
|
Masood N, Younes KM, Alshammari RS, Abunayyan NM, Alanazi TYA, Magam S. Phytochemical Screening and Biological Activities of Convolvulus oxyphyllus Extracts. Chem Biodivers 2025; 22:e202402302. [PMID: 39665866 DOI: 10.1002/cbdv.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
As a member of the Convolvulaceae family, Convolvulus oxyphyllus is used in many medicinal contexts. The purpose of this study was to investigate the biological potency of plant methanolic extracts and determine the main bioactive components that give them their potencies. Using in vitro biological tests, the effects of plant extracts on cytotoxicity, antioxidant, and antibacterial activity were investigated. The results showed that C. oxyphyllus methanolic extracts exhibited potent antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Proteus vulgaris, as well as good antioxidant activity comparable to ascorbic acid. Methanolic leaf extract exhibited maximum cytotoxic activity against HepG2 cancer cells, producing cell cycle arrest at the S phase. In addition, gas chromatography-mass spectrometry (GC-MS) was used to further analyze chemical makeup of leaf extract. 3-Hydroxyphenyl acetic acid, quercetin, myricetin, and kaempferol were among the bioactive substances discovered. In conclusion, C. oxyphyllus leaves extract showed encouraging antioxidant, antibacterial, and cytotoxic properties. More research is needed to determine C. oxyphyllus's therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Najat Masood
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Kareem M Younes
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Tahani Y A Alanazi
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sami Magam
- Basic science Department, Preparatory Year, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Zhou X, Xu L, Ma Z, Cui J, Wang B. Mitsunobu reaction: assembling C-N bonds in chiral traditional Chinese medicine. RSC Adv 2025; 15:5167-5189. [PMID: 39963451 PMCID: PMC11831425 DOI: 10.1039/d4ra08573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The synthesis of chiral molecules has long been a central focus and challenge in medicinal chemistry research. The Mitsunobu reaction, developed by Japanese chemist Mitsunobu in 1967, is a widely utilized bimolecular nucleophilic substitution reaction that plays a vital role in synthesizing chiral natural products. In this reaction, alcohols react with nucleophilic reagents in the presence of a phosphine ligand to form an intermediate phosphonium salt. This intermediate enables the formation of various chemical bonds. The purpose of this review is to explore the applications of the Mitsunobu chemistry in constructing pivotal carbon-nitrogen bonds in traditional Chinese medicines (TCMs). Emphasis will be placed on the preparative synthetic applications of the Mitsunobu strategy as a key step in the total synthesis of naturally occurring biologically active products.
Collapse
Affiliation(s)
- Xue Zhou
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Liang Xu
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Zhanhui Ma
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Jin Cui
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
| | - Bin Wang
- College of Chinese Medicine, School of Pharmacy, Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine Hefei 230038 P. R. China +86-551-65169371
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine Hefei 230038 P. R. China
| |
Collapse
|
3
|
Ascer LG, Rozas E, Nascimento CAO, Mendes MA, Custódio MR. Putative signaling pathways for contraction and its recovery from DEHP arrest in Hymeniacidon heliophila. MARINE POLLUTION BULLETIN 2025; 210:117305. [PMID: 39602986 DOI: 10.1016/j.marpolbul.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
With sessile habits, sponges (phylum Porifera) are susceptible to marine pollution impacts and recently microplastics were identified as one source of contamination. Microplastics have a physical impact on filtration rates and plastics additives such as di(2-ethylhexyl)phthalate (DEHP), a ubiquitous marine contaminant, were already identified in their tissues indicating bioaccumulation. However, few studies assessed the impacts of such compounds in its physiology. One verified effect of phthalate exposure is the arrest of the contraction cycles observed in the sponge Hymeniacidon heliophila. In this work, proteomics of DEHP exposed organisms of this species was performed to identify modifications in signaling pathways that could lead to this arrest and recovery. The results indicate that exposed organisms had different expressed 5HT receptors, associated to intracellular calcium signaling, the principal pathway to contraction animals. The Myosin Light-Chain Kinase (MLCK) pathway is detected only in exposed organisms as well as components linked to binding of organic cyclic compounds. Results show that for healing from DEHP exposure, H. heliophila may activate an alternative contraction signaling pathway, the MLCK pathway. These coordinate mechanisms could restore contractions in H. heliophila after acute exposure to DEHP. SYNOPSIS: Research into the impact of microplastics on organisms uses animal models known to science such as mussels. In our work, we tested the effects of a plastic additive, DEHP, on the physiology of a much less studied marine organism: sponges.
Collapse
Affiliation(s)
- Liv G Ascer
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Enrique Rozas
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Claudio A O Nascimento
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Maria A Mendes
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Márcio R Custódio
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
6
|
In Silico Pharmacokinetic Profiling of the Identified Bioactive Metabolites of Pergularia tomentosa L. Latex Extract and In Vitro Cytotoxic Activity via the Induction of Caspase-Dependent Apoptosis with S-Phase Arrest. Pharmaceuticals (Basel) 2022; 15:ph15091132. [PMID: 36145353 PMCID: PMC9501251 DOI: 10.3390/ph15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The in vitro cytotoxic efficacy of plant latex from Pergularia tomentosa L. was studied using five human cancer cell lines: HeLa cells (cervical carcinoma cells), A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma cells), MDA-MB-231 (metastatic mammary adenocarcinoma), and MRC-5 (lung fibroblast cell line) cells. The phytonutrient content of plant latex was identified using the liquid chromatography/mass spectra-quadrupole time of flight (LC/MS-QTOF) technique. In silico studies of polyphenols were carried out to clarify the potential mode of action of the plant latex’s constituents. The treatment of different tumor cell lines with different concentrations of plant latex revealed a potent efficacy on the human lung carcinoma cell line (A-549) (IC50 = 3.89 µg/mL) compared with that with vinblastine as a positive control (IC50 = 7.12 µg/mL). The effect of the potent concentration of plant latex on the A-549 cell line induced cell arrest, upregulated the expression of pre-apoptotic markers, and downregulated the expression of antiapoptotic markers. Seven identified polyphenols were selected for the in silico study. A docking assessment using the epidermal growth factor receptor kinase (EGFRk) and eltronib as a positive control showed a higher affinity for the enzyme receptor of the selected polyphenols, except for methyl orsellinate and ginkgotoxin. The ADMET assessment demonstrated the inhibitory effect of the polyphenols on CYP450, except for ouabagenin and xanthyletine. The selected polyphenols obey Lipinski’s drug-likeness with no significant toxicity effect. In conclusion, the plant latex of P. tomentosa L. showed cytotoxic activity on the A-549 cell line, and the selected polyphenols showed a promising prodrug agent with a low profile of toxicity in the study.
Collapse
|
7
|
Fares Amer N, Luzzatto Knaan T. Natural Products of Marine Origin for the Treatment of Colorectal and Pancreatic Cancers: Mechanisms and Potential. Int J Mol Sci 2022; 23:ijms23148048. [PMID: 35887399 PMCID: PMC9323154 DOI: 10.3390/ijms23148048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers.
Collapse
|
8
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
9
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
10
|
Laureano-Rosario AE, McFarland M, Bradshaw DJ, Metz J, Brewton RA, Pitts T, Perricone C, Schreiber S, Stockley N, Wang G, Guzmán EA, Lapointe BE, Wright AE, Jacoby CA, Twardowski MS. Dynamics of microcystins and saxitoxin in the Indian River Lagoon, Florida. HARMFUL ALGAE 2021; 103:102012. [PMID: 33980451 DOI: 10.1016/j.hal.2021.102012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms that can produce toxins are common in the Indian River Lagoon (IRL), which covers ~250 km of Florida's east coast. The current study assessed the dynamics of microcystins and saxitoxin in six segments of the IRL: Banana River Lagoon (BRL), Mosquito Lagoon (ML), Northern IRL (NIRL), Central IRL (CIRL), Southern IRL (SIRL), and the St. Lucie Estuary (SLE). Surface water samples (n = 40) collected during the 2018 wet and 2019 dry season were analyzed to determine associations between toxins and temperature, salinity, pH, oxygen saturation, concentrations of dissolved nutrients and chlorophyll-a, presence of biosynthetic genes for toxins, relative abundance of planktonic species, and composition of the microbial community. The potential toxicity of samples was assessed using multiple mammalian cell lines. Enzyme-Linked Immunosorbent Assays were used to determine concentrations of microcystins and saxitoxin. Overall, the microcystins concentration ranged between 0.01-85.70 µg/L, and saxitoxin concentrations ranged between 0.01-2.43 µg/L across the IRL. Microcystins concentrations were 65% below the limit of quantification (0.05 µg/L), and saxitoxin concentrations were 85% below the limit of detection (0.02 µg/L). Microcystins concentrations were higher in the SLE, while saxitoxin was elevated in the NIRL and BRL. Cytotoxicity related to the presence of microcystins was seen in the SLE during the wet season. No significant patterns between cytotoxicity and saxitoxin were identified. Dissolved nutrients were identified as the most highly related parameters, explaining 53% of microcystin and 47% of saxitoxin variability. Multivariate models suggested cyanobacteria, flagellates, ciliates, and diatoms as the subset of microorganisms whose abundances were maximally correlated with saxitoxin and microcystins concentrations. Lastly, biosynthetic genes for microcystins were detected in the SLE and for saxitoxin in the BRL and NIRL. These results highlight the synergistic roles environmental and biological parameters play in influencing the dynamics of toxin production by harmful algae in the IRL.
Collapse
Affiliation(s)
- Abdiel E Laureano-Rosario
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA.
| | - Malcolm McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - David J Bradshaw
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Jackie Metz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Tara Pitts
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Carlie Perricone
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Stephanie Schreiber
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Nicole Stockley
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Esther A Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Amy E Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| | - Charles A Jacoby
- St. Johns River Water Management District, PO Box 1429, Palatka, Florida 32178, USA
| | - Michael S Twardowski
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, Florida 34946, USA
| |
Collapse
|
11
|
Elissawy AM, Soleiman Dehkordi E, Mehdinezhad N, Ashour ML, Mohammadi Pour P. Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules 2021; 11:258. [PMID: 33578987 PMCID: PMC7916819 DOI: 10.3390/biom11020258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, is an important strive, due to lack of knowledge on traditional experiential and ethnopharmacology investigations. In this report, a comprehensive survey of demospongian bioactive alkaloids in the range 1987-2020 had been performed with a special emphasis on the potent cytotoxic activity. Different resources and databases had been investigated, including Scifinder (database for the chemical literature) CAS (Chemical Abstract Service) search, web of science, Marin Lit (marine natural products research) database. More than 230 representatives of different classes of alkaloids had been reviewed and classified, different genera belonging to the phylum porifera had been shown to be a prolific source of alkaloidal molecules, including Agelas sp., Suberea sp., Mycale sp., Haliclona sp., Epipolasis sp., Monanchora sp., Crambe sp., Reniera sp., and Xestospongia sp., among others. The sufficient production of alkaloids derived from sponges is a prosperous approach that requires more attention in future studies to consider the constraints regarding the supply of drugs, attained from marine organisms.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Ebrahim Soleiman Dehkordi
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord 88157-13471, Iran;
| | - Negin Mehdinezhad
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| |
Collapse
|
12
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
13
|
Wang X, Hamann MT. Marine natural products in the discovery and development of potential pancreatic cancer therapeutics. Adv Cancer Res 2019; 144:299-314. [PMID: 31349901 PMCID: PMC11218315 DOI: 10.1016/bs.acr.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer one of the most deadly cancers and is an increasingly significant concern for global health. The death rates for pancreatic cancer have changed little over time, even with recent expansions of first-line drugs to treat pancreatic cancer there has been little improvement in patient prognosis. Any improvements in treatment strategies will come as a much-needed reprieve to patients diagnosed with this uniquely-challenging disease. Greater attention is needed regarding the identification and development of novel chemotherapeutic strategies with unique mechanisms of action. The marine environment with its particularity has provided a diverse source of novel structural compounds with interesting activities. The marine natural products reported from 2006 to 2018 with compelling activity and potential for the control of pancreatic cancer based on in vitro and in vivo results will be summarized. A key goal of this review is to draw attention to those molecules that warrant additional preclinical development studies.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Departments of Drug Discovery, Biomedical Sciences, and Public Health Sciences, Hollings Cancer Center, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - Mark T Hamann
- Departments of Drug Discovery, Biomedical Sciences, and Public Health Sciences, Hollings Cancer Center, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
14
|
Lorig-Roach N, Hamkins-Indik F, Johnson TA, Tenney K, Valeriote FA, Crews P. The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells. Tetrahedron 2018; 74:217-223. [PMID: 29576661 PMCID: PMC5863921 DOI: 10.1016/j.tet.2017.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin (1) and the new derivative, 6-Br-8-keto-conicamin A (2), were identified and 2 (IC50 1.5 μM for the natural product vs 4.1 μM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.
Collapse
Affiliation(s)
- Nicholas Lorig-Roach
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, United States
| | - Frances Hamkins-Indik
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, United States
| | - Tyler A. Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, United States
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, United States
| | - Frederick A. Valeriote
- Department of Internal Medicine, Division of Hematology and Oncology, Henry Ford Hospital, Detroit Michigan 48202, United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, United States
| |
Collapse
|
15
|
El-Demerdash A, Atanasov AG, Bishayee A, Abdel-Mogib M, Hooper JNA, Al-Mourabit A. Batzella, Crambe and Monanchora: Highly Prolific Marine Sponge Genera Yielding Compounds with Potential Applications for Cancer and Other Therapeutic Areas. Nutrients 2018; 10:E33. [PMID: 29301302 PMCID: PMC5793261 DOI: 10.3390/nu10010033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Pyrroloquinoline and guanidine-derived alkaloids present distinct groups of marine secondary metabolites with structural diversity that displayed potentialities in biological research. A considerable number of these molecular architectures had been recorded from marine sponges belonging to different marine genera, including Batzella, Crambe, Monanchora, Clathria, Ptilocaulis and New Caledonian starfishes Fromia monilis and Celerina heffernani. In this review, we aim to comprehensively cover the chemodiversity and the bioactivities landmarks centered around the chemical constituents exclusively isolated from these three marine genera including Batzella, Crambe and Monanchora over the period 1981-2017, paying a special attention to the polycyclic guanidinic compounds and their proposed biomimetic landmarks. It is concluded that these marine sponge genera represent a rich source of novel compounds with potential applications for cancer and other therapeutic areas.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Mamdouh Abdel-Mogib
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - John N A Hooper
- Queensland Museum, P.O. Box 3300, South Brisbane, QLD BC 4101, Australia.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| |
Collapse
|
16
|
Inhibition of IL-8 secretion on BxPC-3 and MIA PaCa-2 cells and induction of cytotoxicity in pancreatic cancer cells with marine natural products. Anticancer Drugs 2017; 28:153-160. [PMID: 27749658 DOI: 10.1097/cad.0000000000000443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer presents one of the most negative prognosis of all cancers as it has usually metastasized by the time a patient is diagnosed. The American Cancer Society estimates that 93% of patients will die within 5 years of diagnosis, highlighting the need for new drugs to treat this disease. Interleukin 8 (IL-8) mediates the angiogenesis of tumors arising from Ras mutations, which are present in about 90% of pancreatic adenocarcinomas. Overexpression of IL-8 in pancreatic tumors is believed to promote tumor angiogenesis and to activate survival signaling pathways. A 96-well cell-based enzyme-linked immunosorbent assay was set up to screen the Harbor Branch Oceanographic Institute library of marine natural products to identify those with the ability to inhibit IL-8 production by BxPC-3 pancreatic cancer cells. Over 1000 fractions were screened, resulting in the identification of 10 known marine natural products with this ability. These compounds fall into four classes of compounds including the pyrroloiminoquinone alkaloids secobatzelline A and isobatzelline C; mycalamide A and B, onnamide A, discalamide A, and theopederin K from the mycalamide class of polyketides; the lipopeptide microcolin A; and the cyclic depsipeptides didemnin B and nordidemnin B. In addition, didemnin B, nordidemnin B, and theopederin K induce potent cytotoxicity against four pancreatic cancer cell lines tested. Many of these compounds have been previously reported to inhibit protein synthesis and the decrease in IL-8 production may be nonspecific. Nevertheless, this is a new activity for these compounds and inhibition of IL-8 secretion by pancreatic cancer cells can now be added to the previously reported antiangiogenic activities of the didemnins.
Collapse
|
17
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
18
|
Another Look at Pyrroloiminoquinone Alkaloids-Perspectives on Their Therapeutic Potential from Known Structures and Semisynthetic Analogues. Mar Drugs 2017; 15:md15040098. [PMID: 28353633 PMCID: PMC5408244 DOI: 10.3390/md15040098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS2 runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid carcinoma (PANC-1) cell line IC50 data was obtained for 16 compounds and two therapeutic standards. These results along with data gleaned from the literature provided useful structure activity relationship conclusions. Three structural motifs proved to be important in maximizing potency against PANC-1: (i) conjugation within the core of the ABC-ring; (ii) the presence of a positive charge in the C-ring; and (iii) inclusion of a 4-ethyl phenol or 4-ethyl phenol acetate substituent off the B-ring. Two compounds, makaluvamine J (9) and 15-O-acetyl makaluvamine J (15), contained all three of these frameworks and exhibited the best potency with IC50 values of 54 nM and 81 nM, respectively. These two most potent analogs were then tested against the OVCAR-5 cell line and the presence of the acetyl group increased the potency 14-fold from that of 9 whose IC50 = 120 nM vs. that of 15 having IC50 = 8.6 nM.
Collapse
|
19
|
Guzmán EA, Xu Q, Pitts TP, Mitsuhashi KO, Baker C, Linley PA, Oestreicher J, Tendyke K, Winder PL, Suh EM, Wright AE. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity. Int J Cancer 2016; 139:2116-26. [PMID: 27376928 DOI: 10.1002/ijc.30253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity toward the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The antitumor activities of leiodermatolide, as well as the proven utility of antimitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research.
Collapse
Affiliation(s)
- Esther A Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University Ft. Pierce, FL, 34946
| | - Qunli Xu
- Eisai Research Institute of Boston Inc, Andover, MA, 01810-2441
| | - Tara P Pitts
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University Ft. Pierce, FL, 34946
| | | | - Cheryl Baker
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827
| | - Patricia A Linley
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University Ft. Pierce, FL, 34946
| | | | - Karen Tendyke
- Eisai Research Institute of Boston Inc, Andover, MA, 01810-2441
| | - Priscilla L Winder
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University Ft. Pierce, FL, 34946
| | - Edward M Suh
- Eisai Research Institute of Boston Inc, Andover, MA, 01810-2441
| | - Amy E Wright
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University Ft. Pierce, FL, 34946
| |
Collapse
|
20
|
Kallifatidis G, Hoepfner D, Jaeg T, Guzmán EA, Wright AE. The marine natural product manzamine A targets vacuolar ATPases and inhibits autophagy in pancreatic cancer cells. Mar Drugs 2013; 11:3500-16. [PMID: 24048269 PMCID: PMC3806460 DOI: 10.3390/md11093500] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 01/02/2023] Open
Abstract
Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the mechanism of action of manzamine A, chemogenomic profiling in the yeast S. cerevisiae was performed, suggesting that manzamine A is an uncoupler of vacuolar ATPases. Fluorescence microscopy confirmed this effect on yeast vacuoles, where manzamine A produced a phenotype very similar to that of the established v-ATPase inhibitor bafilomycin A1. In pancreatic cancer cells, 10 µM manzamine A affected vacuolar ATPase activity and significantly increased the level of autophagosome marker LC3-II and p62/SQSTM1 as observed by western blot analysis. Treatment with manzamine A in combination with bafilomycin A1 (inhibitor of autophagosome-lysosome fusion) did not change the levels of LC3-II when compared to cells treated with bafilomycin A1 alone, suggesting that manzamine A is a potential inhibitor of autophagy by preventing autophagosome turnover. As autophagy is essential for pancreatic tumor growth, blocking this pathway with manzamine A suggests a promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Marine Biomedical and Biotechnology Research Program, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; E-Mails: (G.K.); (A.E.W.)
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Developmental & Molecular Pathways, Novartis Pharma AG, WSJ-355.1.051.21, Fabrikstrasse 22, Basel CH-4056, Switzerland; E-Mails: (D.H.); (T.J.)
| | - Tiphaine Jaeg
- Novartis Institutes for BioMedical Research, Developmental & Molecular Pathways, Novartis Pharma AG, WSJ-355.1.051.21, Fabrikstrasse 22, Basel CH-4056, Switzerland; E-Mails: (D.H.); (T.J.)
| | - Esther A. Guzmán
- Marine Biomedical and Biotechnology Research Program, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; E-Mails: (G.K.); (A.E.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-772-242-2452; Fax: +1-772-242-2332
| | - Amy E. Wright
- Marine Biomedical and Biotechnology Research Program, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; E-Mails: (G.K.); (A.E.W.)
| |
Collapse
|
21
|
Juneja M, Vanam U, Paranthaman S, Bharathan A, Keerthi VS, Reena JK, Rajaram R, Rajasekharan KN, Karunagaran D. 4-Amino-2-arylamino-5-indoloyl/cinnamoythiazoles, analogs of topsentin-class of marine alkaloids, induce apoptosis in HeLa cells. Eur J Med Chem 2013; 63:474-83. [DOI: 10.1016/j.ejmech.2013.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
|
22
|
Guzmán E, Maher M, Temkin A, Pitts T, Wright A. Spongiatriol inhibits nuclear factor kappa B activation and induces apoptosis in pancreatic cancer cells. Mar Drugs 2013; 11:1140-51. [PMID: 23549285 PMCID: PMC3705394 DOI: 10.3390/md11041140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/14/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer, the fourth leading cause of cancer death in the US, is highly resistant to all current chemotherapies, and its growth is facilitated by chronic inflammation. The majority of pro-inflammatory cytokines initiate signaling cascades that converge at the activation of the Nuclear Factor Kappa B (NFκB), a signal transduction molecule that promotes cell survival, proliferation and angiogenesis. In an effort to identify novel inhibitors of NFκB, the HBOI library of pure compounds was screened using a reporter cell line that produces luciferin under the transcriptional control of NFκB. Seven compounds were identified through this screen, but in the case of five of them, their reported mechanism of action made them unlikely to be specific NFκB inhibitors. Spongiatriol, a marine furanoditerpenoid that was first isolated in the 1970s, is shown here to inhibit NFκB transcriptional activity in a reporter cell line, to reduce levels of phosphorylated (active) NFκB in the AsPC-1 cell line, to have an IC50 for cytotoxicity in the low micromolar range against the AsPC-1, BxPC-3, MiaPaCa-2 and Panc-1 pancreatic cancer cell lines, and to induce moderate but significant apoptosis in both the AsPC-1 and the Panc-1 cell lines.
Collapse
Affiliation(s)
- Esther Guzmán
- Center for Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL 34946, USA.
| | | | | | | | | |
Collapse
|
23
|
Reed JK, Messing C, Walker BK, Brooke S, Correa TB, Brouwer M, Udouj T, Farrington S. Habitat Characterization, Distribution, and Areal Extent of Deep-sea Coral Ecosystems off Florida, Southeastern U.S.A. CARIBB J SCI 2013. [DOI: 10.18475/cjos.v47i1.a3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Mar Drugs 2012; 10:1138-1155. [PMID: 22822362 PMCID: PMC3397457 DOI: 10.3390/md10051138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/02/2012] [Accepted: 05/16/2012] [Indexed: 12/02/2022] Open
Abstract
We have recently designed and synthesized a novel iminoquinone anticancer agent, 7-(4-fluorobenzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one (FBA-TPQ) and initiated its preclinical development. Herein we investigated its efficacy, safety, and pharmacokinetics in in vitro and in vivo models of human pancreatic cancer. Our results demonstrated that FBA-TPQ inhibited pancreatic cancer cell growth, induced apoptosis, and caused cell cycle arrest in vitro. It inhibited the growth of xenograft tumors with minimal host toxicity. To facilitate future preclinical and clinical development of the agent, we also developed and validated a Rapid Resolution Liquid Chromatography (RRLC) method for quantitative analysis of FBA-TPQ in plasma and tissue samples. The method was found to be precise, accurate, and specific. Using this method, we carried out in vitro and in vivo evaluations of the pharmacological properties of FBA-TPQ, including stability in plasma, plasma protein binding, metabolism by S9 enzymes, plasma pharmacokinetics, and tissue distribution. Our results indicate that FBA-TPQ is a potential therapeutic agent for pancreatic cancer, providing a basis for future preclinical and clinical development.
Collapse
|
25
|
Genta-Jouve G, Francezon N, Puissant A, Auberger P, Vacelet J, Pérez T, Fontana A, Mourabit AA, Thomas OP. Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:533-536. [PMID: 21761452 DOI: 10.1002/mrc.2772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 05/31/2023]
Abstract
Citharoxazole (1), a new batzelline derivative featuring a benzoxazole moiety, was isolated from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae Vacelet, 1969, together with the known batzelline C (2). This is the first chemical study of a Mediterranean Latrunculia species and the benzoxazole moiety is unprecedented for this family of marine natural products. The structure was mainly elucidated by the interpretation of NMR spectra and especially HMBC correlations.
Collapse
Affiliation(s)
- Grégory Genta-Jouve
- Laboratoire de Chimie des Molécules Bioactives et des Arômes UMR 6001 CNRS, Institut de Chimie de Nice, Faculté des Science, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ottinger S, Klöppel A, Rausch V, Liu L, Kallifatidis G, Gross W, Gebhard MM, Brümmer F, Herr I. Targeting of pancreatic and prostate cancer stem cell characteristics by Crambe crambe marine sponge extract. Int J Cancer 2011; 130:1671-81. [PMID: 21544815 DOI: 10.1002/ijc.26168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/27/2011] [Indexed: 01/11/2023]
Abstract
Cancer stem cells (CSCs) are suggested as reason for resistance of tumors toward conventional tumor therapy including pancreatic and advanced prostate cancer. New therapeutic agents are urgently needed for targeting of CSCs. Marine sponges harbor novel and undefined compounds with antineoplastic activity but their potential to eliminate CSC characteristics is not examined so far. We collected 10 marine sponges and one freshwater sponge by diving at the seaside and prepared crude methanolic extracts. The effect to established pancreatic and prostate CSC lines was evaluated by analysis of apoptosis, cell cycle, side population, colony and spheroid formation, migratory potential in vitro and tumorigenicity in vivo. While each sponge extract at a 1:10 dilution efficiently diminished viability, Crambe crambe marine sponge extract (CR) still strongly reduced viability of tumor cells at a dilution of 1:1,000 but was less toxic to normal fibroblasts and endothelial cells. CR inhibited self-renewal capacity, apoptosis resistance, and proliferation even in gemcitabine-selected pancreatic cancer cells with acquired therapy resistance and enhanced CSC characteristics. CR pretreatment of tumor cells diminished tumorigenicity of gemcitabine-resistant tumor cells in mice and totally abolished tumor take upon combination with gemcitabine. Our data suggest that CR contains substances, which render standard cancer therapy more effective by targeting of CSC characteristics. Isolation of bioactive metabolites from CR and evaluation in mice are required for development of new CSC-specific chemotherapeutic drugs from a marine sponge.
Collapse
Affiliation(s)
- Sabine Ottinger
- Molecular OncoSurgery, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Preclinical pharmacology of BA-TPQ, a novel synthetic iminoquinone anticancer agent. Mar Drugs 2010; 8:2129-41. [PMID: 20714427 PMCID: PMC2920546 DOI: 10.3390/md8072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/11/2010] [Accepted: 07/08/2010] [Indexed: 12/12/2022] Open
Abstract
Marine natural products and their synthetic derivatives represent a major source of novel candidate anti-cancer compounds. We have recently tested the anti-cancer activity of more than forty novel compounds based on an iminoquinone makaluvamine scaffold, and have found that many of the compounds exert potent cytotoxic activity against human cancer cell lines. One of the most potent compounds, BA-TPQ [(11,12),7-(benzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one], was active against a variety of human cancer cell lines, and inhibited the growth of breast and prostate xenograft tumors in mice. However, there was some toxicity noted in the mice following administration of the compound. In order to further the development of BA-TPQ, and in a search for potential sites of accumulation that might underlie the observed toxicity of the compound, we accomplished preclinical pharmacological studies of the compound. We herein report the in vitro and in vivo pharmacological properties of BA-TPQ, including its stability in plasma, plasma protein binding, metabolism by S9 enzymes, and plasma and tissue distribution. We believe these studies will be useful for further investigations, and may be useful for other investigators examining the use of similar compounds for cancer therapy.
Collapse
|
28
|
Wright AE, Roth GP, Hoffman JK, Divlianska DB, Pechter D, Sennett SH, Guzmán EA, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. Isolation, synthesis, and biological activity of aphrocallistin, an adenine-substituted bromotyramine metabolite from the Hexactinellida sponge Aphrocallistes beatrix. JOURNAL OF NATURAL PRODUCTS 2009; 72:1178-83. [PMID: 19459694 PMCID: PMC3031448 DOI: 10.1021/np900183v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new adenine-substituted bromotyrosine-derived metabolite designated as aphrocallistin (1) has been isolated from the deep-water Hexactinellida sponge Aphrocallistes beatrix. Its structure was elucidated on the basis of spectral data and confirmed through a convergent, modular total synthetic route that is amenable toward future analogue preparation. Aphrocallistin inhibits the growth of a panel of human tumor cell lines with IC(50) values ranging from 7.5 to >100 microM and has been shown to induce G1 cell cycle arrest in the PANC-1 pancreatic carcinoma cell line. Aphrocallistin has been fully characterized in the NCI cancer cell line panel and has undergone in vitro ADME pharmacological profiling.
Collapse
Affiliation(s)
- Amy E. Wright
- To whom correspondence should be addressed: Isolation, Tumor biology: Wright: Tel: 772-465-2400 x 459; FAX: 772-461-2221; . Synthesis, Pharmacology: Roth Tel: 407-745-2062; FAX: 407-745-2001;
| | - Gregory P. Roth
- To whom correspondence should be addressed: Isolation, Tumor biology: Wright: Tel: 772-465-2400 x 459; FAX: 772-461-2221; . Synthesis, Pharmacology: Roth Tel: 407-745-2062; FAX: 407-745-2001;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|