1
|
Kourgiantaki M, Zografos AL. Decoding Guaianolide Biosynthesis: Synthetic Insights into Pseudoguaianolides and Seco-Guaianolides. Org Lett 2025. [PMID: 40357571 DOI: 10.1021/acs.orglett.5c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The biosynthetic pathways leading to pseudoguaianolides and seco-guaianolides remain unclear. In this work, we demonstrate that highly oxidized 8,12-guaianolides serve as unprecedented precursors, enabling chemoselective, one-step access to pseudoguaianolide, seco-guaianolide, and xanthanolide-type sesquiterpenoids. Key mechanistic insights reveal the pivotal role of peroxide substituents on the guaianolide core and stereoelectronic factors in controlling reaction outcomes. These findings shed light on guaianolide selectivity and may mirror actual biosynthetic pathways, offering transformative potential for oxidative transformations in sesquiterpenoid synthesis.
Collapse
Affiliation(s)
- Maria Kourgiantaki
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Main University Campus, 54124 Thessaloniki, Greece
| | - Alexandros L Zografos
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Main University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Yin Q, Han J, Yang G, Song Z, Zou K, Lv K, Lin Z, Ma L, Liu M, Feng Y, Quinn RJ, Hsiang T, Zhang L, Liu X, Zhu G, Zhang J. New sesquiterpenoids with anti-inflammatory effects from phytopathogenic fungus Bipolaris sorokiniana 11134. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:29. [PMID: 40343621 PMCID: PMC12064533 DOI: 10.1007/s13659-025-00508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/11/2025]
Abstract
Sesquiterpenoids represent a structurally diverse class of natural products widely recognized for their ecological significance and pharmacological potential, including antimicrobial, anti-inflammatory, and anticancer properties. As part of our efforts to explore bioactive secondary metabolites from phytopathogenic fungi, we conducted a molecular networking-based analysis of Bipolaris sorokiniana isolate BS11134, which was fermented on a rice medium. This analysis led to the identification of three new seco-sativene-type sesquiterpenoids (1-3) and seven known analogues (4-10), with the NMR data of compound 4 being reported for the first time. The structures of these compounds were elucidated using HR-ESI-MS and extensive spectroscopic data analysis. Notably, compound 9 significantly inhibited nitrous oxide expression in lipopolysaccharide (LPS)-treated RAW264.7 cells in vitro (inhibition rate: 84.7 ± 1.7% at 10 μM), while compound 1 (10 μM) showed a weak inhibitory effect (inhibition rate = 28.0 ± 2.4%). Additionally, we proposed a biosynthetic pathway for these compounds. This study not only expands the chemical space of the helminthoporene class of molecules but also underscores the untapped potential of phytopathogenic fungi as promising sources of structurally unique and biologically active natural products.
Collapse
Affiliation(s)
- Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianying Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guixiang Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhijun Song
- Chinese Academy of Sciences, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keke Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zexu Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Lu Q, Zhu J, Teng L, Chen C, Bi L, Chen W. Britannin inhibits hepatocellular carcinoma development and metastasis through the GSK-3β/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156126. [PMID: 39427522 DOI: 10.1016/j.phymed.2024.156126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands out as a significant contributor to cancer-related death. Traditional Chinese Medicine (TCM) offers several advantages in the treatment of HCC. Britannin, a pivotal compound in Inulae Flos, has demonstrated pharmacological effects against various cancers, yet research on its specific anti-HCC effects remains limited. PURPOSE This study aims to explore the anti-HCC effects of britannin and its underlying mechanism. METHODS MTT assay, clone formation assay and flow cytometry were utilized to detect the cell activity, proliferation ability and apoptosis of britannin against HCC cell lines. Cell migration and invasion abilities of HCC cell lines treated with britannin were evaluated by wound-healing assay and transwell migration and invasion assay. H22 xenografted tumor mouse model was constructed and britannin treatment was performed to observe the effect of britannin on HCC tumors. The expression levels of liver cancer biomarkers AFP, AFP-L3, APT and TGF-β were detected by Elisa, and the histopathology was observed by HE staining. Network pharmacology and molecular docking were used to predict the possible signaling pathway of anti-HCC effect of britannin. The surface plasmon resonance (SPR) experiment was used to verify the interaction between britannin and proteins. The cell kinase activity function experiment was employed to detect the effect of britannin on enzyme activity. RT-qPCR and Western-Blot were used to verify the effect of britannin on the mRNA expressions of key genes and protein levels related to GSK-3β/β-catenin pathway in HCC cells and tumor tissues in mice. RESULTS In vitro experiments showed that britannin could inhibit the activity, proliferation, migration and invasion abilities of HCC cells, while promoting their apoptosis. In vivo experiments revealed that britannin exerted inhibitory effects on the growth of transplanted liver cancer tumors, reducing the inflammatory infiltration and the expression levels of AFP, AFP-L3, APT and TGF-β of liver cancer markers in transplanted mice. Network pharmacology and molecular docking predicted that cell adhesion factors and GSK-3β/β-catenin pathway might be the related signaling pathway and had potential docking activity with key proteins. The SPR experiments elucidated the molecular interaction between britannin and GSK-3β. Enzyme activity assays indicated that britannin could modulate the functional activity of GSK-3β kinase. RT-qPCR suggested britannin could regulate the mRNA expressions of β-catenin, GSK-3β, E-cadherin and NCadherin. Western-Blot further verified that britannin could significantly up-regulate the expression of GSK-3β and down-regulate the expression of p-GSK-3β and β-catenin. At the same time, the expression of E-cadherin increased and NCadherin decreased, thereby reducing the occurrence of EMT and inhibiting the metastasis of HCC. CONCLUSION In conclusion, britannin could inhibit the growth, development and metastasis of HCC, and its mechanism may be related to the regulation of GSK-3β/β-catenin signaling pathway to inhibit epithelial-mesenchymal transition of HCC.
Collapse
Affiliation(s)
- Qinwei Lu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Junlin Zhu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Linxin Teng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Cuihua Chen
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lei Bi
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Weiping Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, PR China.
| |
Collapse
|
5
|
Williams KB, Larsson AT, Keller BJ, Chaney KE, Williams RL, Bhunia MM, Draper GM, Jubenville TA, Hudson WA, Moertel CL, Ratner N, Largaespada DA. Pharmacogenomic synthetic lethal screens reveal hidden vulnerabilities and new therapeutic approaches for treatment of NF1-associated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585959. [PMID: 38585724 PMCID: PMC10996510 DOI: 10.1101/2024.03.25.585959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor Selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.
Collapse
Affiliation(s)
- Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryant J Keller
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minu M Bhunia
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Garrett M Draper
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Moertel
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
6
|
Shinde SD, Narang G, Mahajan GM, Kumar D. Sustainable C-H Methylation Employing Dimethyl Carbonate. J Org Chem 2024; 89:14679-14694. [PMID: 39365179 DOI: 10.1021/acs.joc.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The use of CO2 and CO2-derived chemicals offers society sustainable and biocompatible chemistry for a variety of applications, ranging from materials to medicines. In this context, dimethyl carbonate (DMC) stands out owing to its low toxicity, high biodegradability, tunable reactivity, and sustainable production. Further, the ability of DMC to act as an ambient electrophile at varied temperatures and reaction conditions in order to produce methoxycarbonylated (via BAC2) and methylated products (via BAL2) is very promising. While the methylation of hetero-H (N-, O-, and S-methylation) with DMC is established and well-reviewed, the C-H methylation reaction with DMC is limited, and there is no specific literature detailing the C-methylation reaction using DMC, creating new opportunities as well as challenges in the same domain. In this context, the present perspective focuses on the new breakthroughs, recent advances, and trends in C-H methylation reactions employing DMC. A critical analysis of the mechanistic course of reactions under each category was undertaken. We believe this timely perspective will offer an in-depth analysis of existing literature with critical remarks, which will certainly inspire fellow researchers across disciplines to understand and pursue cutting-edge research in the area of C-H methylation (alkylation) using DMC and related organic carbonates.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Garvita Narang
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Gargee Mahendra Mahajan
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Dinesh Kumar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| |
Collapse
|
7
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
8
|
Liu J, Zhang W, Jin S, Zhang H, Xu Y, Xiong P, Qin X, Jia B. Plant-derived inducers in tumor differentiation therapy:A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155749. [PMID: 38763009 DOI: 10.1016/j.phymed.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Differentiation therapy, a highly regarded treatment method in tumor research, aims to induce tumor cells to differentiate back to normal cells, deviating from the malignant pathway and returning to a benign state. Its development relies on the continuous discovery of efficient and low-toxic differentiation inducers, including plant-derived active components that offer significant biological utilization and therapeutic potential. For this reason, the exploration of plant-derived inducers, particularly in their application in differentiation therapy, holds great promise in advancing cancer treatment strategies toward more effective and safer alternatives. PURPOSE This paper aims to provide a valuable reference for researchers seeking to identify natural, efficient, and low-toxic differentiation inducers from plants and highlights a promising research direction for the application of differentiation therapy in malignant tumor treatment. METHODS For the collection of pertinent information, an extensive search was conducted across diverse literature and electronic databases, including PubMed, ScienceDirect, Wiley, ACS, CNKI, Springer, Taylor & Francis, Web of Science, Google Scholar, and Baidu Scholar. This comprehensive approach aimed to retrieve and include all relevant literature from 1985 to 2023. Primary keywords such as "Natural medicinal plant," "Differentiation therapy," and "Differentiation inducer" were utilized, supplemented by secondary search terms including "Cancer," "Tumor," "Herbal medicine," "Induced differentiation," and "Cancer treatment." RESULTS This study systematically evaluated the application of plant-derived inducers in tumor-induced differentiation therapy. Through extensive literature review, specific plant components with confirmed differentiation-inducing properties were identified. Furthermore, potential molecular mechanisms underlying this process were outlined, shedding light on the future development of differentiation therapy in cancer treatment. CONCLUSION Plant-derived active components exhibit substantial biological utility and therapeutic potential. Delving deeper into the research on these components as differentiation inducers holds promise for the selection of novel cancer drugs and the unveiling of novel pathways for cancer treatment. These results emphasize the importance of continued exploration and in-depth research into natural, efficient, and low-toxic differentiation inducers from plants, which could significantly advance cancer treatment strategies. Moreover, the highlighted research direction underscores the relevance of differentiation therapy in the context of malignant tumor treatment, indicating its potential as a safer and more effective alternative in cancer therapy.
Collapse
Affiliation(s)
- Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Zhang
- Nanbu Hospital of County Chinese Medicine, Nanchong, Sichuan, 637399, China
| | - Yi Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
9
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Neganova ME, Aleksandrova YR, Sharova EV, Smirnova EV, Artyushin OI, Nikolaeva NS, Semakov AV, Schagina IA, Akylbekov N, Kurmanbayev R, Orynbekov D, Brel VK. Conjugates of 3,5-Bis(arylidene)-4-piperidone and Sesquiterpene Lactones Have an Antitumor Effect via Resetting the Metabolic Phenotype of Cancer Cells. Molecules 2024; 29:2765. [PMID: 38930831 PMCID: PMC11207066 DOI: 10.3390/molecules29122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, researchers have often encountered the significance of the aberrant metabolism of tumor cells in the pathogenesis of malignant neoplasms. This phenomenon, known as the Warburg effect, provides a number of advantages in the survival of neoplastic cells, and its application is considered a potential strategy in the search for antitumor agents. With the aim of developing a promising platform for designing antitumor therapeutics, we synthesized a library of conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones. To gain insight into the determinants of the biological activity of the prepared compounds, we showed that the conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones, which are cytotoxic agents, demonstrate selective activity toward a number of tumor cell lines with glycolysis-inhibiting ability. Moreover, the results of molecular and in silico screening allowed us to identify these compounds as potential inhibitors of the pyruvate kinase M2 oncoprotein, which is the rate-determining enzyme of glycolysis. Thus, the results of our work indicate that the synthesized conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones can be considered a promising platform for designing selective cytotoxic agents against the glycolysis process, which opens new possibilities for researchers involved in the search for antitumor therapeutics among compounds containing piperidone platforms.
Collapse
Affiliation(s)
- M. E. Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - Yu. R. Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - E. V. Sharova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - E. V. Smirnova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - O. I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - N. S. Nikolaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - A. V. Semakov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - I. A. Schagina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - N. Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - R. Kurmanbayev
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - D. Orynbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - V. K. Brel
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| |
Collapse
|
11
|
Demertzidou VP, Kourgiantaki M, Zografos AL. Expanding Natural Diversity: Tailored Enrichment of the 8,12-Sesquiterpenoid Lactone Chemical Space through Divergent Synthesis. Org Lett 2024; 26:4648-4653. [PMID: 38780007 PMCID: PMC11187629 DOI: 10.1021/acs.orglett.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The divergent synthesis of a non-natural 8,12-sesquiterpenoid lactone collection is described. The synthesis relies on a rationally designed guaianolide scaffold bearing a tertiary hydroxyl as the pinpoint for inducing its selective diversification. Key reactions include an unprecedented Suarez-type CH lactonization and a highly diastereoselective oxy-Cope/ene cascade that allows the introduction of three stereocenters in a single operation. Selective oxidative/reductive and redox neutral transformations follow to highlight the synthesis of naturally unpresented highly substituted 8,12-guaianolides.
Collapse
Affiliation(s)
| | | | - Alexandros L. Zografos
- Aristotle University of
Thessaloniki, Department of Chemistry,
Laboratory of Organic Chemistry, Thessaloniki 54124, Greece
| |
Collapse
|
12
|
Nasilli G, de Waal TM, Marchal GA, Bertoli G, Veldkamp MW, Rothenberg E, Casini S, Remme CA. Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes. Cardiovasc Res 2024; 120:723-734. [PMID: 38395031 PMCID: PMC11135645 DOI: 10.1093/cvr/cvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Tanja M de Waal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Giorgia Bertoli
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Marieke W Veldkamp
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU Grossman School of Medicine, 450 E 29TH ST Alexandria Center for Life Science, New York, NY 10016, USA
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Pandey P, Elsori D, Kumar R, Lakhanpal S, Rautela I, Alqahtani TM, Ahmad F, Iqbal D, Khan F. Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents. Front Pharmacol 2024; 15:1399677. [PMID: 38738178 PMCID: PMC11082342 DOI: 10.3389/fphar.2024.1399677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. However, treatment options, including surgical resection, transplantation, and molecular drug therapies, are of limited effectiveness. Recent studies have demonstrated that suppressing ferroptosis might be a pivotal signal for liver cancer initiation, thus providing a new way to combat liver cancer. Ferroptosis is a distinct form of controlled cell death that differs from conventional cell death routes like apoptosis, necrosis, and pyroptosis. It results from intracellular iron overload, which raises iron-dependent reactive oxygen species. This, in turn, leads to the accumulation of lipid peroxides that further result in oxidative damage to cell membranes, disrupt normal functioning, and ultimately speed up the ferroptosis phenomenon. Ferroptosis regulation is intricately linked to cellular physiological processes, encompassing iron metabolism, lipid metabolism, and the equilibrium between oxygen-free radical reactions and lipid peroxidation. This review intends to summarize the natural compounds targeting ferroptosis in liver cancer to offer new therapeutic ideas for liver cancer. Furthermore, it serves as the foundation for identifying and applying chemical medicines and natural chemicals that target ferroptosis to treat liver cancer efficiently.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indra Rautela
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Tariq Mohammed Alqahtani
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Majmaah university, Al Majma’ah, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Zahra M, Abrahamse H, George BP. Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer. Biomed Pharmacother 2024; 173:116426. [PMID: 38471274 DOI: 10.1016/j.biopha.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa.
| |
Collapse
|
15
|
Asraoui F, El Mansouri F, Cacciola F, Brigui J, Louajri A, Simonetti G. Biofilm Inhibition of Inula viscosa (L.) Aiton and Globularia alypum L. Extracts Against Candida Infectious Pathogens and In Vivo Action on Galleria mellonella Model. Adv Biol (Weinh) 2023; 7:e2300081. [PMID: 37612795 DOI: 10.1002/adbi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The increasing importance of fungal infections has fueled the search for new beneficial alternatives substance from plant extracts. The current study investigates the antifungal and antibiofilm activity of Inula viscosa (L.) Aiton and Globularia alypum (L.) leaves extracts against Candida both in vitro and in vivo. The inhibition of planktonic and sessile Candida albicans and Candida glabrata growth using both leaf extracts are evaluated. Moreover; an in vivo infection model using Galleria mellonella larvae; infected and treated with the extracts are performed. All extracts show fungicidal activity; with a minimum fungicidal concentration (MFC) ranging from 128 to 512 µg mL-1 against the two selected strains of Candida. In particular, the best results are obtained with methanolic extract of I. viscosa and G. alypum with an MFC value of 128 µg mL-1 . The extracts are capable to prevent 90% of biofilm development at minor concentrations ranging from 100.71 ± 2.49 µg mL-1 to 380.4 ± 0.92 µg mL-1 . In vivo, tests on Galleria mellonella larvae show that the extracts increase the survival of the larvae infected with Candida. The attained results reveal that I. viscosa and G. alypum extracts may be considered as new antifungal agents and biofilm inhibiting agents for the pharmaceutical and agro-food field.
Collapse
Affiliation(s)
- Fadoua Asraoui
- Laboratory of Applied Biology and Pathologies, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan, 93000, Morocco
| | - Fouad El Mansouri
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, B.P. 416, Tangier, 90000, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, 98125, Italy
| | - Jamal Brigui
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, B.P. 416, Tangier, 90000, Morocco
| | - Adnane Louajri
- Laboratory of Applied Biology and Pathologies, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan, 93000, Morocco
| | - Giovanna Simonetti
- Dipartimento di Biologia Ambientale, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
16
|
Das J, Ali W, Ghosh A, Pal T, Mandal A, Teja C, Dutta S, Pothikumar R, Ge H, Zhang X, Maiti D. Access to unsaturated bicyclic lactones by overriding conventional C(sp 3)-H site selectivity. Nat Chem 2023; 15:1626-1635. [PMID: 37563324 PMCID: PMC10624629 DOI: 10.1038/s41557-023-01295-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Transition metal catalysis plays a pivotal role in transforming unreactive C-H bonds. However, regioselective activation of distal aliphatic C-H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C-H bond in the presence of methyl C-H is underexplored. Here we show activation of a methylene C-H bond in the presence of methyl C-H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C-H bond activation. Computational studies suggest that reversible C-H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C-O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C-H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules.
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Chitrala Teja
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
17
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
18
|
Fernandes RA, Moharana S, Khatun GN. Recent advances in the syntheses of guaianolides. Org Biomol Chem 2023; 21:6652-6670. [PMID: 37551715 DOI: 10.1039/d3ob01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Sesquiterpene lactones, especially guaianolides representing a bigger class of natural products, have served as appealing candidates for total synthesis due to their varied bio- and pharmaceutical activities. This tutorial review delineates the creative efforts of many researchers in the total syntheses of different complex guaianolides recently published in the literature. Many of the syntheses display meticulous interplay between new methods and the ingenuity of strategies achieved through well-planned routes. In some cases, the Chiron approach has come in quite handy, wherein the structural features and stereochemistry of select molecules could map well with naturally available starting materials. A few catalytic methods like diastereoselective aldol reaction, enediyne or dienyne metathesis, or photochemical methods have been efficiently used. This compilation also aims to enhance the diversity space based on these natural products and further interest in the sustainable total synthesis of this class of compounds and related molecules.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Gulenur Nesha Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
19
|
Salin AV, Shabanov AA, Khayarov KR, Nugmanov RI, Islamov DR. Stereoelectronic Effect in the Reaction of α-Methylene Lactones with Tertiary Phosphines and Its Application in Organocatalysis. J Org Chem 2023; 88:11954-11967. [PMID: 37540578 DOI: 10.1021/acs.joc.3c01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The kinetic data indicate that the addition of tertiary phosphines to α-methylene lactones in acetic acid is strongly accelerated in comparison to the reactions of related open-chain esters. Six-membered α-methylene-δ-valerolactone exhibited a more pronounced rate increase than five-membered α-methylene-γ-butyrolactone. The use of α-methylene-γ-butyrolactam as a nitrogen analogue of α-methylene-γ-butyrolactone resulted in a total loss of the reaction acceleration. The observed reactivities were rationalized by DFT calculations at the RwB97XD/6-31+G(d,p) level of theory, showing that the intramolecular interaction between phosphonium and enolate oxygen centers provided by the locked s-cis-geometry of the heterocycles plays an important role in the stabilization of intermediate zwitterions. The reactivity is also controlled by the conformational flexibility of the heterocycle. The geometries of five-membered and, especially, six-membered lactone cycles are slightly changed upon the nucleophilic attack of phosphine, leading to the stabilizing stereoelectronic effect by the Ρ···Ο interaction. The addition of phosphine to α-methylene-γ-butyrolactam significantly distorts the initial geometry of the heterocycle, making the nucleophilic attack unfavorable. The application of the stereoelectronic effect to enhance the efficiency of the phosphine-catalyzed Michael and Pudovik reactions of α-methylene lactones was demonstrated.
Collapse
Affiliation(s)
- Alexey V Salin
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Andrey A Shabanov
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Khasan R Khayarov
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Ramil I Nugmanov
- Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Daut R Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, Kremlevskaya Street 31, Kazan 420008, Russian Federation
| |
Collapse
|
20
|
Donadio G, Bellone ML, Mensitieri F, Parisi V, Santoro V, Vitiello M, Dal Piaz F, De Tommasi N. Characterization of Health Beneficial Components in Discarded Leaves of Three Escarole ( Cichorium endivia L.) Cultivar and Study of Their Antioxidant and Anti-Inflammatory Activities. Antioxidants (Basel) 2023; 12:1402. [PMID: 37507941 PMCID: PMC10376668 DOI: 10.3390/antiox12071402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Plants of genus Cichorium (Asteraceae) can be used as vegetables with higher nutritional value and as medicinal plants. This genus has beneficial properties owing to the presence of a number of specialized metabolites such as alkaloids, sesquiterpene lactones, coumarins, unsaturated fatty acids, flavonoids, saponins, and tannins. Cichorium endivia L., known as escarole, has achieved a common food status due to its nutritionary value, bitter taste, and the presence of healthy components, and is eaten cooked or raw in salads. Presently, wastes derived from the horticultural crops supply chain are generated in very large amounts. Vegetable waste comprises the discarded leaves of food sources produced during collection, handling, transportation, and processing. The external leaves of Cichorium endivia L. are a horticultural crop that is discarded. In this work, the phytochemical profile, antioxidant, and anti-inflammatory activities of hydroalcoholic extract obtained from discarded leaves of three cultivars of escarole (C. endivia var. crispum 'Capriccio', C. endivia var. latifolium 'Performance' and 'Leonida') typical horticultural crop of the Campania region were investigated. In order to describe a metabolite profile of C. endivia cultivars, the extracts were analysed by HR/ESI/Qexactive/MS/MS and NMR. The careful analysis of the accurate masses, the ESI/MS spectra, and the 1H NMR chemical shifts allowed for the identification of small molecules belonging to phenolic, flavonoid, sesquiterpene, amino acids, and unsaturated fatty acid classes. In addition, the antioxidant potential of the extracts was evaluated using cell-free and cell-based assays, as well as their cytotoxic and anti-inflammatory activity. All the extracts showed similar radical-scavenging ability while significant differences between the three investigated cultivars emerged in the cell-based assays. The obtained data were ascribed to the content of polyphenols and sesquiterpenes in the extracts. Accordingly, C. endivia by-products can be deemed an interesting material for healthy product formulations.
Collapse
Affiliation(s)
- Giuliana Donadio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
- Bioactiplant SRL, Via Dell'Ateneo Lucano 10, 85100 Potenza, PZ, Italy
| | - Maria Laura Bellone
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesca Mensitieri
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, Via Salvador Allende 43, 84081 Baronissi, SA, Italy
| | - Valentina Parisi
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Valentina Santoro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
| | - Maria Vitiello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, Via Salvador Allende 43, 84081 Baronissi, SA, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
21
|
Liu J, Cui M, Wang Y, Wang J. Trends in parthenolide research over the past two decades: A bibliometric analysis. Heliyon 2023; 9:e17843. [PMID: 37483705 PMCID: PMC10362189 DOI: 10.1016/j.heliyon.2023.e17843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Parthenolide (PTL) is a new compound extracted from traditional Chinese medicine. In recent years, it has been proven to play an undeniable role in tumors, autoimmune diseases, and inflammatory diseases. Similarly, an increasing number of experiments have also confirmed the biological mechanism of PTL in these diseases. In order to better understand the development trend and potential hot spots of PTL in cancer and other diseases, we conducted a detailed bibliometric analysis. The purpose of presenting this bibliometric analysis was to highlight and inform researchers of the important research directions, co-occurrence relationships and research status in this field. Publications related to PTL research from 2002 to 2022 were extracted on the web of science core collection (WoSCC) platform. CiteSpace, VOSviewers and R package "bibliometrix" were applied to build relevant network diagrams. The bibliometric analysis was presented in terms of performance analysis (including publication statistics, top publishing countries, top publishing institutions, publishing journals and co-cited journals, authors and co-cited authors, co-cited references statistics, citation bursts statistics, keyword statistics and trend topic statistics) and science mapping (including citations by country, citations by institution, citations by journal, citations by author, co-citation analysis, and keyword co-occurrence). The detailed discussion of the results explained the focus and latest trends from the bibliometric analysis. Finally, the current status and shortcomings of the research field on PTLwere clearly pointed out for reference by scholars.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
- Department of Rehabilitation Medicine, Huludao Central Hospital, 125000 Huludao, Liaoning, China
| | - Meng Cui
- Department of Hospice Care, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| |
Collapse
|
22
|
Adekenov S, Spiwok V, Beutler J, Maslova O, Rakhimov K. Cytotoxicity and Antitumor Activity of Arglabin and its Derivatives. Open Access Maced J Med Sci 2023; 11:412-420. [PMID: 38173466 PMCID: PMC10763179 DOI: 10.3889/oamjms.2023.11114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND At present, more than 8000 sesquiterpene lactones have been isolated and described from natural sources, a significant part of which has cytotoxicity and antitumor activity. One of the practically available sesquiterpene lactones is arglabin, which, as a renewable material, is used for the synthesis of new compounds. The article presents data on the study of cytotoxicity and antitumor activity of the arglabin and its derivatives using molecular modeling methods and, in the experiment in vitro and in vivo. AIM The aim of this work is to study the cytotoxicity and antitumor activity of new compounds based on the sesquiterpene lactone arglabin using molecular modeling and experimental pharmacology. METHODS ChemDraw programs and a set of AutoDock programs were used for computer simulation. Molecular docking was carried out using the Maestro graphical interface of the Schrödinger Suite software package (Schrödinger, LLC, New York, NY, 2017). Docking modes standard precision and XP (extra precision) were used. In in vitro experiments, the antitumor activity of compound samples was studied in models of 60 human tumor cell lines, and clonogenic C6 rat glioma cells. The antitumor activity of the samples was studied in experiments in vivo on white outbred rats with transplanted tumors and was evaluated by the inhibition of tumor growth and the magnitude of the increase in average life expectancy. CONCLUSION When studying the antitumor activity on 60 cell lines of tumor cells (NCI60), clonogenic cells of C6 rat glioma, a high antitumor activity of some arglabin derivatives was established. The connection between the structure of arglabin derivatives and their inhibitory effect on farnesyl protein transferase, topoisomerases -I and -II was studied.
Collapse
Affiliation(s)
- Sergazy Adekenov
- JSC, International Research and Production Holding “Phytochemistry”, Karaganda, Republic of Kazakhstan
| | - Vojtech Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - John Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Olga Maslova
- JSC, International Research and Production Holding “Phytochemistry”, Karaganda, Republic of Kazakhstan
| | - Kairolla Rakhimov
- JSC, International Research and Production Holding “Phytochemistry”, Karaganda, Republic of Kazakhstan
| |
Collapse
|
23
|
Kovács B, Szemerédi N, Kúsz N, Kiss T, Csupor-Löffler B, Tsai YC, Rácz B, Spengler G, Csupor D. Antiproliferative and cytotoxic effects of sesquiterpene lactones isolated from Ambrosia artemisiifolia on human adenocarcinoma and normal cell lines. PHARMACEUTICAL BIOLOGY 2022; 60:1511-1519. [PMID: 35952383 PMCID: PMC9377253 DOI: 10.1080/13880209.2022.2103574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Ambrosia artemisiifolia L. (Asteraceae) contains sesquiterpene lactones as characteristic secondary metabolites. Many of these compounds exert antiproliferative and cytotoxic effects. OBJECTIVE To isolate the sesquiterpene lactones from the aerial part of A. artemisiifolia and to elucidate their cytotoxic, antiproliferative and antibacterial effects. MATERIALS AND METHODS The compounds were identified by one-dimensional (1D) and 2D NMR, HR-MS spectroscopy from the methanol extract. Isolated compounds were investigated for their cytotoxic and antiproliferative effects on human colonic adenocarcinoma cell lines and human embryonal lung fibroblast cell line using MTT assay. The selectivity of the sesquiterpenes was calculated towards the normal cell line. To check the effect of drug interactions between compounds and doxorubicin, multidrug-resistant Colo 320 cells were used. RESULTS A new seco-psilostachyinolide derivative, 1,10-dihydro-1'-noraltamisin, and seven known compounds were isolated from the methanol extract. Acetoxydihydrodamsin had the most potent cytotoxic effect on sensitive (Colo205) cell line (IC50 = 7.64 µM), also the strongest antiproliferative effect on Colo205 (IC50 = 5.14 µM) and Colo320 (IC50 = 3.67 µM) cell lines. 1'-Noraltamisin (IC50 = 8.78 µM) and psilostachyin (IC50 = 5.29 µM) showed significant antiproliferative effects on the multidrug-resistant Colo320 cell line and had moderate selectivity against human embryonal lung fibroblast cell line. Psilostachyin C exhibited cytotoxic effects on Colo205 cells (IC50 = 26.60 µM). None of the isolated compounds inhibited ABCB1 efflux pump (EP; P-glycoprotein) or the bacterial EPs. DISCUSSION AND CONCLUSIONS Acetoxydihydrodamsin, 1'-noraltamisin, and psilostachyin showed the most remarkable cytotoxic and antiproliferative activity on tumour cell lines and exerted selectivity towards MRC-5 cell line.
Collapse
Affiliation(s)
- Balázs Kovács
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Tivadar Kiss
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | | | - Yu-Chi Tsai
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- National Museum of Marine Biology and Aquarium, Pingtung, ROC
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Kourgiantaki M, Demertzidou VP, Zografos AL. Short Scalable Route to Apiaceae Sesquiterpene Scaffolds: Total Synthesis of 4- epi-Epiguaidiol A. Org Lett 2022; 24:8476-8480. [PMID: 36264031 DOI: 10.1021/acs.orglett.2c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxy-Cope/ene reaction cascade to form a locked elemane conformer allows the short scalable synthesis of versatile Apiaceae scaffolds. The divergent fate of the obtained macrocyclic germacrane is surveyed under cationic and dioxygen-induced Prins-type reaction conditions to allow the diastereoselective synthesis of oxidized Apiaceae guaiane congeners and the total synthesis of 4-epi-epiguaidiol A. Additionally, the unprecedented reduction of a hydrogen-bond-biased guaiane substrate permits the chemoselective synthesis of desoxo-jungiaguaiane.
Collapse
Affiliation(s)
- Maria Kourgiantaki
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vera P Demertzidou
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L Zografos
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
25
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
26
|
Kovács B, Hohmann J, Csupor-Löffler B, Kiss T, Csupor D. A comprehensive phytochemical and pharmacological review on sesquiterpenes from the genus Ambrosia. Heliyon 2022; 8:e09884. [PMID: 35865986 PMCID: PMC9294060 DOI: 10.1016/j.heliyon.2022.e09884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sesquiterpenes are bitter secondary metabolites characteristic to the genus Ambrosia (Asteraceae) and constitute one of the most diverse classes of terpenoids. These compounds exhibit broad-spectrum bioactivities, such as antiproliferative, cytotoxic, antimicrobial, anti-inflammatory, molluscicidal, schistomicidal, larvicidal, and antiprotozoal activities. This review compiles and discusses the chemistry and pharmacology of sesquiterpenes of the Ambrosia species covering the period between 1950 and 2021. The review identified 158 sesquiterpenes previously isolated from 23 different Ambrosia species collected from across the American, African, and Asian continents. These compounds have guaiane, pseudoguaiane, seco-pseudoguaiane, daucane, germacrane, eudesmane, oplopane, clavane, and aromadendrane carbon skeletons. Most sesquiterpene compounds predominantly harbor the pseudoguaiane skeleton, whereas the eudesmanes have the most varied substituents. Antiproliferative and antiprotozoal activities are the most promising bioactivities of sesquiterpenes in Ambrosia and could lead to new pathways toward drug discovery.
Collapse
Affiliation(s)
- Balázs Kovács
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Boglárka Csupor-Löffler
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Tivadar Kiss
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.,Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, H-7624 Pécs, Hungary.,Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
27
|
Biochemical Characterization of Different Chemical Components of Parthenium hysterophorus and Their Therapeutic Potential against HIV-1 RT and Microbial Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3892352. [PMID: 35528165 PMCID: PMC9071890 DOI: 10.1155/2022/3892352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Parthenium hysterophorus possesses certain allelochemicals responsible for their medicinal effects. The presence of oils, polyphenols, alkaloids, terpenes, pseudoguaianolides, and histamines in P. hysterophorus has been shown to exhibit medicinal properties. However, the systematic biomedical properties of this plant are still unexplored. The extracts of leaves, stem, and flower of P. hysterophorus, both at low and high temperatures (equivalent to boiling points of different solvents) were prepared. The extracts prepared in hexane, ethylacetate, methanol, and water were analyzed spectrophotometrically and colorimetrically and resolved on TLC for the presence of phytochemicals. The analyses of the free radical quenching potential of plant extracts were done by DPPH assay. The total antioxidant capacity was determined by phosphomolybdate assay and the ferric reducing antioxidant power (FRAP) assay was used to determine the reduction potential of the extracts. The spectrophotometric and qualitative analysis of plant extracts demonstrated the presence of alkaloids, terpenoids, carbohydrates, and cardiac glycosides. The occurrence of more than one Rf values for extracts determined by TLC indicated the presence of more than one phytochemical compound. The P. hysterophorus extracts contained strong antioxidant activity. These extracts exhibited strong antimicrobial activity against Staphylococcus epidermis, Salmonela typhi, Neisseria gonococci or gonococci, Citrobacter, and Shigella flexineri. The evaluation of the antimicrobial potential of P. hysterophorus extracts was done by the disc diffusion method. These extracts also showed significant inhibition against HIV-1 RT activity. The anti-HIV-1 RT activity was done using Roche Kit. The P. hysterophorus extracts displayed the presence of many phytochemicals with strong antioxidant, antimicrobial, and anti-HIV-1 RT properties.
Collapse
|
28
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
29
|
Fuentes-Figueroa MÁ, Tlapale-Lara N, Hernández-Carlos B, Joseph-Nathan P, Burgueño-Tapia E. A new germacranolide from Ageratina vernalis. Nat Prod Res 2022; 36:2254-2262. [DOI: 10.1080/14786419.2020.1827400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Miguel Á. Fuentes-Figueroa
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Mexico City, Mexico
| | - Neively Tlapale-Lara
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Mexico City, Mexico
| | | | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eleuterio Burgueño-Tapia
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Mexico City, Mexico
| |
Collapse
|
30
|
Ahn JH, Song EJ, Jung DH, Kim YJ, Seo IS, Park SC, Jung YS, Cho ES, Mo SH, Hong JJ, Cho JY, Park JH. The sesquiterpene lactone estafiatin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153934. [PMID: 35172258 DOI: 10.1016/j.phymed.2022.153934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 μM and 3.1 μM in BMDMs, 3 μM and 3.4 μM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Seong-Chan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You-Seok Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Seo Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Sang Hyun Mo
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk 28116, Republic of Korea.
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
31
|
Kimura Y, Ohashi E, Karanjit S, Taniguchi T, Nakayama A, Imagawa H, Sato R, Namba K. Total Syntheses of Proposed Structures of 4,10-Dihydroxy-8,12-guaianolides. Org Lett 2022; 24:3297-3301. [PMID: 35446586 DOI: 10.1021/acs.orglett.2c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total syntheses of two 4,10-dihydroxy-8,12-guaianolides that were reported to be natural products were achieved. Toward the syntheses of a collection of related guaianolides, the typical 5,7-fused system of 8,12-guaianolides was constructed by a ring expansion reaction of a hydroxylated coronafacic acid analogue that can be practically synthesized and optically resolved. The total syntheses of these compounds revealed that the previously reported structures of both natural products were incorrect.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Takashi Taniguchi
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Ryota Sato
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
32
|
Calzada F, Garcia-Hernandez N, Hidalgo-Figueroa S, Bautista E, Barbosa E, Velázquez C, Hernández-Caballero ME. Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules 2022; 27:1687. [PMID: 35268788 PMCID: PMC8911839 DOI: 10.3390/molecules27051687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Heliangolide-type sesquiterpene lactones (HTSLs) are phytocompounds with several pharmacological activities including cytotoxic and antitumor activity. Both bioactivities are related to an α-methylene-γ-lactone moiety and an ester group on carbon C-8 in the sesquiterpene lactone (SL) structure. Two HTSLs, incomptines A (AI) and B (IB) isolated from Decachaeta incompta, were evaluated for their cytotoxic activity on three leukemia cell lines: HL-60, K-562, and REH cells. Both compounds were subjected to a molecular docking study using target proteins associated with cancer such as topoisomerase IIα, topoisomerase IIβ, dihydrofolate reductase, methylenetetrahydrofolate dehydrogenase, and Bcl-2-related protein A1. Results show that IA and IB exhibit cytotoxic activity against all cell lines used. The CC50 value of IA was 2-4-fold less than etoposide and methotrexate, two anticancer drugs used as positive controls. The cytotoxic activity of IB was close to that of etoposide and methotrexate. The molecular docking analysis showed that IA and IB have important interaction on all targets used. These findings suggest that IA and IB may serve as scaffolds for the development of new treatments for different types of leukemia.
Collapse
Affiliation(s)
- Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades-2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Normand Garcia-Hernandez
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elihú Bautista
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | | |
Collapse
|
33
|
Tuasha N, Escobar Z, Seifu D, Gadisa E, Petros B, Sterner O, Oredsson S. Cytotoxic and other bioactivities of a novel and known sesquiterpene lactones isolated from Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke in breast cancer cell lines. Toxicol Rep 2022; 9:382-392. [PMID: 35299871 PMCID: PMC8920872 DOI: 10.1016/j.toxrep.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke (Asteraceae) is one of the widely used anti-cancer traditional medicinal plants in Ethiopia, despite the lack of data to support its therapeutic efficacy. Here we describe the isolation of compounds from the plant and the investigation of their cytotoxicity and other bioactivities. We identified the novel sesquiterpene lactone (SL) 11ß,13-dihydrovernodalol along with the three other SLs (vernomenin, vernolepin, and 11ß,13-dihydrovernodalin) and three flavonoids (apigenin, eriodyctiol, and luteolin) isolated from this plant for the first time. The structures of all the compounds were established based on extensive analysis of nuclear magnetic resonance spectroscopic data and confirmed by high-resolution electrospray ionization mass spectrometry. We then studied the biological activities of the SLs and found that all were cytotoxic at low μM ranges against MCF-7 and JIMT-1 breast cancer cells as well as against the normal-like MCF-10A breast epithelial cells evaluated in a spectrophotometric assay. All the SLs significantly reduced JIMT-1 cell migration after 72 h of treatment with 2 μM concentrations in a wound healing assay. Treatment with all SLs reduced the aldehyde dehydrogenase expressing cancer stem cell sub-population of the JIMT-1 cells significantly, evaluated by flow cytometry. Only 11ß,13-dihydrovernodalin resulted in a significant inhibition of tumor necrosis factor-α-induced translocation of nuclear factor κB to the cell nucleus. In addition, we show that the reporter fluorophore nitrobenzoxadiazole (NBD) can successfully be conjugated with an SL and that this SL-NBD conjugate is taken up efficiently in JIMT-1 cells. Therefore, the overall bioactivities of the SL compounds and specifically their effects against the stemness of breast cancer cells make them prime candidates for further in-depth investigation. Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke is a traditional anticancer medicinal plant in Ethiopia. Sesquiterpene lactones (SLs) and flavonoids are isolated from V. leopoldi for the first time. A novel SL, named 11ß,13-dihydrovernodalol, was discovered. All the SLs reduce stemness and inhibit cell migration of cancer cells. A novel fluorophore-conjugated SL was synthesized for the study of SL uptake and localization in cells.
Collapse
|
34
|
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114525. [PMID: 34411657 DOI: 10.1016/j.jep.2021.114525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Raymond Cooper
- Dept Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
35
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
36
|
Demertzidou VP, Kourgiantaki M, Zografos AL. A multifunctional divergent scaffold to access the formal syntheses of various sesquiterpenoids. Org Biomol Chem 2021; 19:8687-8690. [PMID: 34553736 DOI: 10.1039/d1ob01716k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a divergent scaffold able to access an array of diverse natural sesquiterpenoids is described. The route unifies the scope of previously reported plans of our group to allow the scalable synthesis of 8,12-furo and lactone sesquiterpenoid carbocyclic cores of elemanes, germacranes, guaianes, cadinanes, lindenanes and myliols. The formal syntheses of furogermenone, methyl-curdionolide, zedoarol, qweicurculactone, lindenene and sarcandralactone A are reported.
Collapse
Affiliation(s)
- Vera P Demertzidou
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, University Campus, Chemistry Old Building, Thessaloniki 54124, Greece.
| | - Maria Kourgiantaki
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, University Campus, Chemistry Old Building, Thessaloniki 54124, Greece.
| | - Alexandros L Zografos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, University Campus, Chemistry Old Building, Thessaloniki 54124, Greece.
| |
Collapse
|
37
|
Van Pamel E, Cnops G, Van Droogenbroeck B, Delezie EC, Van Royen G, Vlaemynck GM, Aper J, Muylle H, Bekaert KM, Cooreman K, Robbens J, Delbare D, Roldan-Ruiz I, Crivits M, De Ruyck H, Herman L. Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet – Part I. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1719504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Gerda Cnops
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Bart Van Droogenbroeck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Evelyne C. Delezie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Melle, Belgium
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Geertrui Mml Vlaemynck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Jonas Aper
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Karen Mm Bekaert
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Kris Cooreman
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Johan Robbens
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Daan Delbare
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Isabel Roldan-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Maarten Crivits
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Social Sciences Unit, Merelbeke, Belgium
| | - Hendrik De Ruyck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Lieve Herman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| |
Collapse
|
38
|
Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae). PLANTS 2021; 10:plants10102084. [PMID: 34685893 PMCID: PMC8541438 DOI: 10.3390/plants10102084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Cyperus articulatus L. (Priprioca) is a plant of the Cyperaceae family traditionally used in traditional medicine in the Amazon region. Studies of the essential oil of this species have identified many terpene compounds. However, little is known about the possible uses of solid waste generated by the extraction of essential oils. This study aimed to investigate the chemical composition of volatile compounds and to evaluate the antiproliferative activity of the ethanolic extract of solid residues generated by the extraction of the essential oil of C. articulatus L. rizhomes in experimental models in vitro using peritoneal macrophages of mice and human tumor cell lines. The analysis of the chemical composition of volatile compounds indicated the presence of sesquiterpenes and particularly sequiterpenic ketones as main constituents. The results showed that the treatment with ethanolic extract of C. articulatus L. reduced the activity of the enzyme arginase and proliferation of cancer cells (p < 0.0001). The extract also showed no cytotoxicity in macrophages in concentrations between 12.5; 25 and 50 mg/mL (p < 0.0001). The results indicated that the extract of C. articulatus L. exerts antiproliferative activity (p < 0.0001) with low toxicity on healthy cells in experimental models in vitro.
Collapse
|
39
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
40
|
Sevgi E, Dag A, Kızılarslan-Hançer Ç, Atasoy S, Kurt BZ, Aksakal Ö. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114211. [PMID: 34015367 DOI: 10.1016/j.jep.2021.114211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dittrichia viscosa (L.) Greuter ("Sarı ot, Yapışkan andız otu" in Turkish) is a medicinal plant that has been traditionally used in the Mediterranean area. This plant is used by the local population for the treatment of cancer. Investigation of their biological activities is therefore very important to be supported by scientific basis for traditional use. AIMS OF THE STUDY In this study, it is aimed to assess the phytochemical composition, in vitro antioxidant, cytotoxic, and antiproliferative activities of the aqueous and ethanolic extracts obtained from the aerial parts (stems, leaves, flowers) of D. viscosa, collected from two sites in Turkey (Istanbul and Marmaris) against breast and prostate tumor cell lines. MATERIALS AND METHODS Validated methods were used to evaluate the in vitro antioxidant capacity (DPPH, ABTS, CUPRAC), cytotoxicity (Cell Viability Assay), antiproliferative (Apoptosis assay), and phytochemical compositions. The nepetin (N), 3-O-methylquercetin (Q), and hispidulin (H) in the extracts of D. viscosa were quantified by HPLC and LC-HRMS. Furthermore, in order to control the standards of benefiting from the plant in a healthy way, the contents of some heavy metals were also assessed by ICP-OES in the plant and soil samples as well as the species soil's physical and chemical characteristics. RESULTS We have found that heavy metal accumulation in the soil does not exceed the allowable limit value except for the nickel. The results showed that ethanol extraction is an efficient strategy to get NQH molecules with a higher content compared with other extraction techniques. However, using the same extraction method revealed that the amount of NQH molecules in the samples of two different regions were variable. The results suggested that all extracts had a high amount of total phenolic content (12.354-22.184 μg GAE/mg) and total flavonoid content (4.442-17.263 μg QE/g). In the antioxidant assay according to the DPPH method, the aqueous ethanol extracts (IC50; 21.00 μg/mL) showed stronger antioxidant activity than BHT. A significant reduction in cell viability was particularly observed in MDA-MB-231 cells, which were sensitive to ethanolic extracts in Istanbul (12-22%) and in Marmaris (14-15%), while PC3 cell lines were also more sensitive to extracts of the aqueous in Istanbul (16%) and the decoction in Marmaris (12%) after 72 h. Especially, it was observed that Marmaris and Istanbul samples induced the toxicity against PC3 cells. CONCLUSION The study supports the medicinal use of D. viscosa as a potential anticancer against breast and prostate cancer cells in vitro and underlines the immense therapeutic potential of the plant.
Collapse
Affiliation(s)
- Ece Sevgi
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, Fatih-Istanbul, Turkey.
| | - Aydan Dag
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Fatih-Istanbul, Turkey; Bezmialem Vakif University, Drug Application and Research Center, 34093, Istanbul, Turkey.
| | - Çağla Kızılarslan-Hançer
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, Fatih-Istanbul, Turkey.
| | - Sezen Atasoy
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Biochemistry, 34093, Fatih-Istanbul, Turkey.
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Fatih-Istanbul, Turkey.
| | - Öznur Aksakal
- Turgut Mahallesi, Merkez 7 sok., 114/1, Marmaris, Muğla, Turkey.
| |
Collapse
|
41
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
42
|
Alwaseem H, Giovani S, Crotti M, Welle K, Jordan CT, Ghaemmaghami S, Fasan R. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization. ACS CENTRAL SCIENCE 2021; 7:841-857. [PMID: 34079900 PMCID: PMC8161485 DOI: 10.1021/acscentsci.0c01624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.
Collapse
Affiliation(s)
- Hanan Alwaseem
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Simone Giovani
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michele Crotti
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Kevin Welle
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
| | - Craig T. Jordan
- Department
of Hematology, School of Medicine, University
of Colorado, Aurora, Colorado 80045, United
States
| | - Sina Ghaemmaghami
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
43
|
Zeng B, Cheng Y, Zheng K, Liu S, Shen L, Hu J, Li Y, Pan X. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg Chem 2021; 111:104973. [PMID: 34004586 DOI: 10.1016/j.bioorg.2021.104973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
Parthenolide and micheliolide have attracted great attention in anticancer research due to their unique activities. In this study, thirteen parthenolide derivatives and twenty-three micheliolide derivatives were synthesized. Most synthesized compounds showed higher cytotoxicity than parthenolide or micheliolide. The in vivo anticancer activity of several representative compounds was evaluated in mice. One micheliolide derivative, 9-oxomicheliolide (43), showed promising in vivo antitumor activity compared with clinical drugs cyclophosphamide or temozolomide. Compound 43 was particularly effective against glioblastoma, with its tumor inhibition rate in mice comparable to the drug temozolomide. The discovery of compound 43 also demonstrates the feasibility of developing anticancer micheliolide derivatives by modification at C-9 position. Anticancer mechanism studies revealed that 9-oxomicheliolide exhibited inhibition effect against NF-κB and STAT3 signaling pathways, as well as induction effects of cell apoptosis. It is postulated that 9-oxomicheliolide is likely to be a modulator of the immune system, which regulates the anticancer immune responses.
Collapse
Affiliation(s)
- Binglin Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kailu Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Shuoxiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Longying Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
44
|
Sesquiterpene Lactone Deoxyelephantopin Isolated from Elephantopus scaber and Its Derivative DETD-35 Suppress BRAF V600E Mutant Melanoma Lung Metastasis in Mice. Int J Mol Sci 2021; 22:ijms22063226. [PMID: 33810045 PMCID: PMC8004649 DOI: 10.3390/ijms22063226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a highly metastatic disease with an increasing rate of incidence worldwide. It is treatment refractory and has poor clinical prognosis; therefore, the development of new therapeutic agents for metastatic melanoma are urgently required. In this study, we created a lung-seeking A375LM5IF4g/Luc BRAFV600E mutant melanoma cell clone and investigated the bioefficacy of a plant sesquiterpene lactone deoxyelephantopin (DET) and its novel semi-synthetic derivative, DETD-35, in suppressing metastatic A375LM5IF4g/Luc melanoma growth in vitro and in a xenograft mouse model. DET and DETD-35 treatment inhibited A375LM5IF4g/Luc cell proliferation, and induced G2/M cell-cycle arrest and apoptosis. Furthermore, A375LM5IF4g/Luc exhibited clonogenic, metastatic and invasive abilities, and several A375LM5IF4g/Luc metastasis markers, N-cadherin, MMP2, vimentin and integrin α4 were significantly suppressed by treatment with either compound. Interestingly, DET- and DETD-35-induced Reactive Oxygen Species (ROS) generation and glutathione (GSH) depletion were found to be upstream events important for the in vitro activities, because exogenous GSH supplementation blunted DET and DETD-35 effects on A375LM5IF4g/Luc cells. DET and DETD-35 also induced mitochondrial DNA mutation, superoxide production, mitochondrial bioenergetics dysfunction, and mitochondrial protein deregulation. Most importantly, DET and DETD-35 inhibited lung metastasis of A375LM5IF4g/Luc in NOD/SCID mice through inhibiting pulmonary vascular permeability and melanoma cell (Mel-A+) proliferation, angiogenesis (VEGF+, CD31+) and EMT (N-cadherin) in the tumor microenvironment in the lungs. These findings indicate that DET and DETD-35 may be useful in the intervention of lung metastatic BRAFV600E mutant melanoma.
Collapse
|
45
|
|
46
|
Hotta T, Haynes SE, Blasius TL, Gebbie M, Eberhardt EL, Sept D, Cianfrocco M, Verhey KJ, Nesvizhskii AI, Ohi R. Parthenolide Destabilizes Microtubules by Covalently Modifying Tubulin. Curr Biol 2021; 31:900-907.e6. [PMID: 33482110 DOI: 10.1016/j.cub.2020.11.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
Detyrosination of the α-tubulin C-terminal tail is a post-translational modification (PTM) of microtubules that is key for many biological processes.1 Although detyrosination is the oldest known microtubule PTM,2-7 the carboxypeptidase responsible for this modification, VASH1/2-SVBP, was identified only 3 years ago,8,9 precluding genetic approaches to prevent detyrosination. Studies examining the cellular functions of detyrosination have therefore relied on a natural product, parthenolide, which is widely believed to block detyrosination of α-tubulin in cells, presumably by inhibiting the activity of the relevant carboxypeptidase(s).10 Parthenolide is a sesquiterpene lactone that forms covalent linkages predominantly with exposed thiol groups; e.g., on cysteine residues.11-13 Using mass spectrometry, we show that parthenolide forms adducts on both cysteine and histidine residues on tubulin itself, in vitro and in cells. Parthenolide causes tubulin protein aggregation and prevents the formation of microtubules. In contrast to epoY, an epoxide inhibitor of VASH1/2-SVBP,9 parthenolide does not block VASH1-SVBP activity in vitro. Lastly, we show that epoY is an efficacious inhibitor of microtubule detyrosination in cells, providing an alternative chemical means to block detyrosination. Collectively, our work supports the notion that parthenolide is a promiscuous inhibitor of many cellular processes and suggests that its ability to block detyrosination may be an indirect consequence of reducing the polymerization-competent pool of tubulin in cells.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Teresa L Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Margo Gebbie
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Emily L Eberhardt
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Yong JY, Li WR, Wang XJ, Su GZ, Li M, Zhang JP, Jia HL, Li YH, Wang RB, Gan M, Ma SG. Illihenin A: An Antiviral Sesquiterpenoid with a Cage-like Tricyclo[6.2.2.01,5]dodecane Skeleton from Illicium henryi. J Org Chem 2021; 86:2017-2022. [DOI: 10.1021/acs.joc.0c02727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Yao Yong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Wen-Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Xiao-jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Mi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Jian-Pei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Hong-Li Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s Republic of China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
48
|
Rotondo R, Oliva MA, Staffieri S, Castaldo S, Giangaspero F, Arcella A. Implication of Lactucopicrin in Autophagy, Cell Cycle Arrest and Oxidative Stress to Inhibit U87Mg Glioblastoma Cell Growth. Molecules 2020; 25:molecules25245843. [PMID: 33322048 PMCID: PMC7764785 DOI: 10.3390/molecules25245843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we propose lactucopicrin (LCTP), a natural sesquiterpene lactone from Lactucavirosa, as a molecule able to control the growth of glioblastoma continuous cell line U87Mg. The IC50 of U87Mg against LCTP revealed a strong cytotoxic effect. Daily administration of LCTP showed a dose and time-dependent reduction of GBM cell growth and viability, also confirmed by inhibition of clonogenic potential and mobility of U87Mg cells. LCTP activated autophagy in U87Mg cells and decreased the phosphorylation of proliferative signals pAKT and pERK. LCTP also induced the cell cycle arrest in G2/M phase, confirmed by decrease of CDK2 protein and increase of p53 and p21. LCTP stimulated apoptosis as evidenced by reduction of procaspase 6 and the increase of the cleaved/full-length PARP ratio. The pre-treatment of U87Mg cells with ROS scavenger N-acetylcysteine (NAC), which reversed its cytotoxic effect, showed the involvement of LCTP in oxidative stress. Finally, LCTP strongly enhanced the sensitivity of U87Mg cells to canonical therapy Temozolomide (TMZ) and synergized with this drug. Altogether, the growth inhibition of U87Mg GBM cells induced by LCTP is the result of several synergic mechanisms, which makes LCTP a promising adjuvant therapy for this complex pathology.
Collapse
Affiliation(s)
- Rossella Rotondo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Maria Antonietta Oliva
- I.R.C.C.S Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.A.O.); (S.S.); (S.C.); (F.G.)
| | - Sabrina Staffieri
- I.R.C.C.S Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.A.O.); (S.S.); (S.C.); (F.G.)
| | - Salvatore Castaldo
- I.R.C.C.S Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.A.O.); (S.S.); (S.C.); (F.G.)
| | - Felice Giangaspero
- I.R.C.C.S Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.A.O.); (S.S.); (S.C.); (F.G.)
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University of Rome La Sapienza, 00185 Rome, Italy
| | - Antonietta Arcella
- I.R.C.C.S Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.A.O.); (S.S.); (S.C.); (F.G.)
- Correspondence: ; Tel.: +39-0865-915220
| |
Collapse
|
49
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
50
|
Ghorbani-Abdi-Saedabad A, Hanafi-Bojd MY, Parsamanesh N, Tayarani-Najaran Z, Mollaei H, Hoshyar R. Anticancer and apoptotic activities of parthenolide in combination with epirubicin in mda-mb-468 breast cancer cells. Mol Biol Rep 2020; 47:5807-5815. [PMID: 32686017 DOI: 10.1007/s11033-020-05649-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide. Unfortunately, current therapeutic methods are not completely efficient. Hence, combination therapy with medicinal plants has attracted several kinds of research. In the current study, we aimed to investigate the apoptotic and anti-cancer effect of Parthenolide in combination with Epirubicin in the MDA-MB-468 breast cancer cell line. In this study, the anti-proliferative and pro-apoptotic effect of Parthenolide in combination with Epirubicin and without it, in the MDA-MB-468 cell line have been assessed by MTT test, Hoescht staining and flow cytometry methods. Our outcomes showed that Parthenolide treatment in the present of Epirubicin led to a decrease in the minimum toxic concentration of Parthenolide and Epirubicin in comparison with individual treatments. Then, to achieve a likely molecular mechanism of mentioned drugs Bax and Bcl2 expression level evaluated by Real-time PCR and subsequently, Western blotting has been estimated the protein level of Caspase 3. Our data indicated that the treatment of cells with Parthenolide led to up-regulation of Bax and downregulation of Bcl2 at mRNA level. Moreover, Parthenolide treatment led to the obvious alternation of Caspase3 protein level. These results indicated that Parthenolide in combination with Epirubicin have significant cytotoxicity due to targeting the main regulators of apoptosis. Hence, according to lack of cytotoxicity of Parthenolide on normal cells that lead to reduction of drug side effects, it could be suggested as an adjuvant therapy with Epirubicin after complementary research on animal model and clinical trial.
Collapse
Affiliation(s)
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Nanomedicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran.
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran. .,Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|