1
|
Cai R, Ren J, Zhou C, Liu Y, Tang J, Cui W, Yan Y, Xue S, Zhou Y. Prognostic role of IL-34 in sepsis and sepsis-induced acute lung injury: preliminary results and future directions. Acta Biochim Pol 2025; 72:13958. [PMID: 40176879 PMCID: PMC11963693 DOI: 10.3389/abp.2025.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Objective This study aimed to evaluate the potential of interleukin-34 (IL-34) as a novel biomarker for predicting mortality in sepsis patients, with a specific focus on those with sepsis-induced acute lung injury (ALI). Methods This prospective cohort study enrolled 115 sepsis patients admitted to the intensive care unit (ICU). The patients were divided into survival and non-survival groups, as well as ALI and non-ALI subgroups. Serum levels of IL-34, in conjunction with other established biomarkers such as interleukin-6 (IL-6), C-reactive protein (CRP), and lactate, were measured and analyzed. Statistical analyses, including receiver operating characteristic (ROC) curves, Kaplan-Meier survival curves and Cox regression models, were used to determine the prognostic significance of IL-34. Results Serum IL-34 levels were significantly elevated in sepsis patients compared to healthy controls, and they were also higher in non-survival group compared to survival group (p < 0.05). Additionally, IL-34 levels exhibited a positive correlation with sepsis severity, as indicated by APACHE II and SOFA scores. Kaplan-Meier survival curves and multivariate COX regression analysis revealed that IL-34 is an independent risk factor for death within 28 days of sepsis. The serum IL-34 level in the ALI group was significantly higher than that in the non-ALI group, particularly in severe cases (p < 0.05). However, the prognostic value of IL-34 in sepsis-induced ALI requires further investigation. Conclusion IL-34 shows promise as an independent prognostic factor in sepsis patients and may enhance risk stratification, especially in those with sepsis-induced ALI.
Collapse
Affiliation(s)
- Run Cai
- Department of Respiratory and Critical Care Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Jianke Ren
- National Health Commission Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Chenwei Zhou
- Department of Respiratory and Critical Care Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Yuxin Liu
- Department of Respiratory and Critical Care, Changzhou No. 7 People’s Hospital, Changzhou, China
| | - Jianlei Tang
- Intensive Care Unit, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Weiyan Cui
- Intensive Care Unit, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Central Laboratory, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Sheliang Xue
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Yanjuan Zhou
- Department of Respiratory and Critical Care Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| |
Collapse
|
2
|
Cai S, Li X, Zhang C, Jiang Y, Liu Y, He Z, Ma S, Yao Y, Wong CK, Wu G, Gao X. Inhibition of Interleukin-40 prevents multi-organ damage during sepsis by blocking NETosis. Crit Care 2025; 29:29. [PMID: 39819454 PMCID: PMC11740647 DOI: 10.1186/s13054-025-05257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Interleukin 40 (IL-40), a novel cytokine with immune regulatory functions in human diseases, was elevated at admission in two independent cohorts of patients with sepsis. High levels of secreted IL-40 in septic patients were positively correlated with PCT, CRP, lactate (LDH), and Sequential Organ Failure Assessment (SOFA) scores, in which IL-40 levels were used to stratify the early death of critically ill patients with sepsis. Moreover, genetic knockout of IL-40 (IL-40-/-) improved outcomes in mice with experimental sepsis, as evidenced by attenuated cytokine storm, multiple-organ failure, and early mortality, compared with those of wild-type (WT) mice. Mechanistically, single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) have revealed that S100A8/9hi neutrophil influx into the peritoneal cavity along with neutrophil extracellular trap (NETs) formation accounts predominantly for the IL-40-mediated worsening of sepsis outcomes. Clinically, the IL-40 level was positively correlated with the NET-related MPO/dsDNA ratio in septic patients. Finally, with antibiotics (gentamycin), genetic knockout of IL-40 prevented polymicrobial sepsis fatalities more efficiently than without gentamycin treatment. In summary, these data reveal a novel prognostic strategy for sepsis and that IL-40 may serve as a novel therapeutic target for sepsis.
Collapse
Affiliation(s)
- Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xiao Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Yuqian Jiang
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yonghui Liu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Jiang X, Li L, Gao M, Li X, Ding Y, Song Y, Zhao Y, Kong X. Two homologous genes encoding interleukin (IL)-34 in the common carp (Cyprinus carpio L.): Roles in inflammatory modulation and anti-bacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109951. [PMID: 39389173 DOI: 10.1016/j.fsi.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
In mammals, interleukin 34 (IL-34) is a ligand for macrophage colony-stimulating factor receptor (M-CSFR), promoting inflammatory responses and inducing the synthesis and secretion of various cytokines. However, studies on its function in lower vertebrates is limited, and its evolutionary relationship with homologous molecules in mammals remains unclear. In this study, two IL-34-encoding genes were cloned and identified in common carp (Cyprinus carpio L.), designated as CcIL-34A and CcIL-34B, with an amino acid sequence similarity of 77.7 %. Gene synteny analysis revealed that the IL-34 gene loci are relatively conserved, and both are located downstream of SF3B3. The expression patterns of CcIL-34s were analyzed using qRT-PCR, and this showed that they are expressed across all tested tissues, with higher levels in the liver, spleen, and head kidney and lower levels in the gills and intestines. Following infection with Aeromonas hydrophila, the mRNA expression levels of CcIL-34s in the gills, head kidney, intestines, and spleen were significantly upregulated. Immunofluorescence was also employed to assess changes in CcIL-34 protein expression, showing a significant increase in carp spleens 24 h after A. hydrophila infection, suggesting that CcIL-34s contribute to host defense against this bacterium. To investigate the immunological function of IL-34 in vivo, pc-CcIL-34A and pc-CcIL-34B eukaryotic expression plasmids were constructed and injected intramuscularly into fish. Five days after injection, the expression levels of inflammation-related cytokines in the head kidney and spleen were significantly altered. Furthermore, 24 h post-A. hydrophila infection, the bacterial loads in the liver, spleen, and kidneys were significantly reduced. Ten days post-infection, the survival rates in the groups with CcIL-34A and CcIL-34B overexpression were 40 % and 36.7 %, respectively, compared to 16.7 % in the control group. These findings suggest that CcIL-34s are involved in modulating inflammatory responses, enhancing the immune response, and improving survival rates in fish following bacterial infection, thus supporting the potential use of IL-34 molecules in aquaculture.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, 310012, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, 450000, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
4
|
Ramoni D, Tirandi A, Montecucco F, Liberale L. Sepsis in elderly patients: the role of neutrophils in pathophysiology and therapy. Intern Emerg Med 2024; 19:901-917. [PMID: 38294676 PMCID: PMC11186952 DOI: 10.1007/s11739-023-03515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Sepsis is among the most important causes of mortality, particularly within the elderly population. Sepsis prevalence is on the rise due to different factors, including increasing average population age and the concomitant rise in the prevalence of frailty and chronic morbidities. Recent investigations have unveiled a "trimodal" trajectory for sepsis-related mortality, with the ultimate zenith occurring from 60 to 90 days until several years after the original insult. This prolonged temporal course ostensibly emanates from the sustained perturbation of immune responses, persevering beyond the phase of clinical convalescence. This phenomenon is particularly associated with the aging immune system, characterized by a broad dysregulation commonly known as "inflammaging." Inflammaging associates with a chronic low-grade activation of the innate immune system preventing an appropriate response to infective agents. Notably, during the initial phases of sepsis, neutrophils-essential in combating pathogens-may exhibit compromised activity. Paradoxically, an overly zealous neutrophilic reaction has been observed to underlie multi-organ dysfunction during the later stages of sepsis. Given this scenario, discovering treatments that can enhance neutrophil activity during the early phases of sepsis while curbing their overactivity in the later phases could prove beneficial in fighting pathogens and reducing the detrimental effects caused by an overactive immune system. This narrative review delves into the potential key role of neutrophils in the pathological process of sepsis, focusing on how the aging process impacts their functions, and highlighting possible targets for developing immune-modulatory therapies. Additionally, the review includes tables that outline the principal potential targets for immunomodulating agents.
Collapse
Affiliation(s)
- Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
5
|
Wang Y, Tang B, Li H, Zheng J, Zhang C, Yang Z, Tan X, Luo P, Ma L, Wang Y, Long L, Chen Z, Xiao Z, Ma L, Zhou J, Wang Y, Shi C. A small-molecule inhibitor of Keap1-Nrf2 interaction attenuates sepsis by selectively augmenting the antibacterial defence of macrophages at infection sites. EBioMedicine 2023; 90:104480. [PMID: 36863256 PMCID: PMC9996215 DOI: 10.1016/j.ebiom.2023.104480] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Macrophages at infection sites are considered as the promising therapeutic targets to prevent sepsis development. The Nrf2/Keap1 system acts as a critical modulator of the antibacterial activity of macrophages. Recently, Keap1-Nrf2 protein-protein interaction (PPI) inhibitors have emerged as safer and stronger Nrf2 activators; however, their therapeutic potential in sepsis remains unclear. Herein, we report a unique heptamethine dye, IR-61, as a Keap1-Nrf2 PPI inhibitor that preferentially accumulates in macrophages at infection sites. METHODS A mouse model of acute lung bacterial infection was used to investigate the biodistribution of IR-61. SPR study and CESTA were used to detect the Keap1 binding behaviour of IR-61 in vitro and in cells. Established models of sepsis in mice were used to determine the therapeutic effect of IR-61. The relationship between Nrf2 levels and sepsis outcomes was preliminarily investigated using monocytes from human patients. FINDINGS Our data showed that IR-61 preferentially accumulated in macrophages at infection sites, enhanced bacterial clearance, and improved outcomes in mice with sepsis. Mechanistic studies indicated that IR-61 potentiated the antibacterial function of macrophages by activating Nrf2 via direct inhibition of the Keap1-Nrf2 interaction. Moreover, we observed that IR-61 enhanced the phagocytic ability of human macrophages, and the expression levels of Nrf2 in monocytes might be associated with the outcomes of sepsis patients. INTERPRETATIONS Our study demonstrates that the specific activation of Nrf2 in macrophages at infection sites is valuable for sepsis management. IR-61 may prove to be a Keap1-Nrf2 PPI inhibitor for the precise treatment of sepsis. FUNDING This work was supported by the National Natural Science Foundation of China (Major program 82192884), the Intramural Research Project (Grants: 2018-JCJQ-ZQ-001 and 20QNPY018), and the Chongqing National Science Foundation (CSTB2022NSCQ-MSX1222).
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Oncology Department, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zhenliang Xiao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lijie Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
7
|
Park HE, Oh H, Baek JH. Interleukin-34-regulated T-cell responses in rheumatoid arthritis. Front Med (Lausanne) 2022; 9:1078350. [PMID: 36530919 PMCID: PMC9747768 DOI: 10.3389/fmed.2022.1078350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a multifaceted etiology, which primarily affects and results in the deterioration of the synovium of patients. While the exact etiology of RA is still largely unknown, there is growing interest in the cytokine interleukin-34 (IL-34) as a driver or modulator of RA pathogenesis on the grounds that IL-34 is drastically increased in the serum and synovium of RA patients. Several studies have so far revealed the relationship between IL-34 levels and RA disease progression. Nevertheless, the significance and role of IL-34 in RA have remained ambiguous, as illustrated by two most recent studies, which reported contrasting effects of genetic IL-34 deletion in RA. Of note, IL-34 is a macrophage growth factor and is increasingly perceived as a master regulator of T-cell responses in RA via macrophage-dependent as well as T cell-intrinsic mechanisms. In this regard, several studies have demonstrated that IL-34 potentiates helper T-cell (Th) responses in RA, whereas studies also suggested that IL-34 alleviates synovial inflammation, potentially by inducing regulatory T-cells (Treg). Herein, we provide an overview of the current understanding of IL-34 involvement in RA and outline IL-34-mediated mechanisms in regulating T-cell responses in RA.
Collapse
Affiliation(s)
| | | | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, South Korea
| |
Collapse
|
8
|
Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog 2022; 18:e1010873. [PMID: 36121866 PMCID: PMC9521894 DOI: 10.1371/journal.ppat.1010873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is the most frequent pathogen of fungal sepsis associated with substantial mortality in critically ill patients and those who are immunocompromised. Identification of novel immune-based therapeutic targets from a better understanding of its molecular pathogenesis is required. Here, we reported that the production of progranulin (PGRN) levels was significantly increased in mice after invasive C.albicans infection. Mice that lacked PGRN exhibited attenuated kidney injury and increased survival upon a lethal systemic infection with C. albicans. In mice, PGRN deficiency protected against systemic candidiasis by decreasing aberrant inflammatory reactions that led to renal immune cell apoptosis and kidney injury, and by enhancing antifungal capacity of macrophages and neutrophils that limited fungal burden in the kidneys. PGRN in hematopoietic cell compartment was important for this effect. Moreover, anti-PGRN antibody treatment limited renal inflammation and fungal burden and prolonged survival after invasive C. albicans infection. In vitro, PGRN loss increased phagocytosis, phagosome formation, reactive oxygen species production, neutrophil extracellular traps release, and killing activity in macrophages or neutrophils. Mechanistic studies demonstrated that PGRN loss up-regulated Dectin-2 expression, and enhanced spleen tyrosine kinase phosphorylation and extracellular signal-regulated kinase activation in macrophages and neutrophils. In summary, we identified PGRN as a critical factor that contributes to the immunopathology of invasive C.albicans infection, suggesting that targeting PGRN might serve as a novel treatment for fungal infection.
Collapse
|
9
|
González-Sánchez HM, Baek JH, Weinmann-Menke J, Ajay AK, Charles JFF, Noda M, Franklin RA, Rodríguez-Morales P, Kelley VR. IL-34 and protein-tyrosine phosphatase receptor type-zeta-dependent mechanisms limit arthritis in mice. J Transl Med 2022; 102:846-858. [PMID: 35288653 DOI: 10.1038/s41374-022-00772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Myeloid cell mediated mechanisms regulate synovial joint inflammation. IL-34, a macrophage (Mø) growth and differentiation molecule, is markedly expressed in neutrophil and Mø-rich arthritic synovium. IL-34 engages a newly identified independent receptor, protein-tyrosine phosphatase, receptor-type, zeta (PTPRZ), that we find is expressed by Mø. As IL-34 is prominent in rheumatoid arthritis, we probed for the IL-34 and PTPRZ-dependent myeloid cell mediated mechanisms central to arthritis using genetic deficient mice in K/BxN serum-transfer arthritis. Unanticipatedly, we now report that IL-34 and PTPRZ limited arthritis as intra-synovial pathology and bone erosion were more severe in IL-34 and PTPRZ KO mice during induced arthritis. We found that IL-34 and PTPRZ: (i) were elevated, bind, and induce downstream signaling within the synovium in arthritic mice and (ii) were upregulated in the serum and track with disease activity in rheumatoid arthritis patients. Mechanistically, IL-34 and PTPRZ skewed Mø toward a reparative phenotype, and enhanced Mø clearance of apoptotic neutrophils, thereby decreasing neutrophil recruitment and intra-synovial neutrophil extracellular traps. With fewer neutrophils and neutrophil extracellular traps in the synovium, destructive inflammation was restricted, and joint pathology and bone erosion diminished. These novel findings suggest that IL-34 and PTPRZ-dependent mechanisms in the inflamed synovium limit, rather than promote, inflammatory arthritis.
Collapse
Affiliation(s)
- Hilda Minerva González-Sánchez
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,CONACyT - Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jea-Hyun Baek
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,School of Life Science, Handong Global University, Pohang, Gyeongbuk, Republic of Korea
| | - Julia Weinmann-Menke
- Department of Nephrology and Rheumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amrendra Kumar Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ruth Anne Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Vicki Rubin Kelley
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
The Impact of Cytokines on Neutrophils' Phagocytosis and NET Formation during Sepsis-A Review. Int J Mol Sci 2022; 23:ijms23095076. [PMID: 35563475 PMCID: PMC9101385 DOI: 10.3390/ijms23095076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is an overwhelming inflammatory response to infection, resulting in multiple-organ injury. Neutrophils are crucial immune cells involved in innate response to pathogens and their migration and effector functions, such as phagocytosis and neutrophil extracellular trap (NET) formation, are dependent on cytokine presence and their concentration. In the course of sepsis, recruitment and migration of neutrophils to infectious foci gradually becomes impaired, thus leading to loss of a crucial arm of the innate immune response to infection. Our review briefly describes the sepsis course, the importance of neutrophils during sepsis, and explains dependence between cytokines and their activation. Moreover, we, for the first time, summarize the impact of cytokines on phagocytosis and NET formation. We highlight and discuss the importance of cytokines in modulation of both processes and emphasize the direction of further investigations.
Collapse
|
11
|
Yu X, Chen J, Tang H, Tu Q, Li Y, Yuan X, Zhang X, Cao J, Molloy DP, Yin Y, Chen D, Song Z, Xu P. Identifying Prokineticin2 as a Novel Immunomodulatory Factor in Diagnosis and Treatment of Sepsis. Crit Care Med 2022; 50:674-684. [PMID: 34582411 PMCID: PMC8923365 DOI: 10.1097/ccm.0000000000005335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis remains a highly lethal disease, whereas the precise reasons for death remain poorly understood. Prokineticin2 is a secreted protein that regulates diverse biological processes. Whether prokineticin2 is beneficial or deleterious to sepsis and the underlying mechanisms remain unknown. DESIGN Prospective randomized animal investigation and in vitro studies. SETTING Research laboratory at a medical university hospital. SUBJECTS Prokineticin2 deficiency and wild-type C57BL/6 mice were used for in vivo studies; sepsis patients by Sepsis-3 definitions, patient controls, and healthy controls were used to obtain blood for in vitro studies. INTERVENTIONS Prokineticin2 concentrations were measured and analyzed in human septic patients, patient controls, and healthy individuals. The effects of prokineticin2 on sepsis-related survival, bacterial burden, organ injury, and inflammation were assessed in an animal model of cecal ligation and puncture-induced polymicrobial sepsis. In vitro cell models were also used to study the role of prokineticin2 on antibacterial response of macrophages. MEASUREMENTS AND MAIN RESULTS Prokineticin2 concentration is dramatically decreased in the patients with sepsis and septic shock compared with those of patient controls and healthy controls. Furthermore, the prokineticin2 concentration in these patients died of sepsis or septic shock is significantly lower than those survival patients with sepsis or septic shock, indicating the potential value of prokineticin2 in the diagnosis of sepsis and septic shock, as well as the potential value in predicting mortality in adult patients with sepsis and septic shock. In animal model, recombinant prokineticin2 administration protected against sepsis-related deaths in both heterozygous prokineticin2 deficient mice and wild-type mice and alleviated sepsis-induced multiple organ damage. In in vitro cell models, prokineticin2 enhanced the phagocytic and bactericidal functions of macrophage through signal transducers and activators of transcription 3 pathway which could be abolished by signal transducers and activators of transcription 3 inhibitors S3I-201. Depletion of macrophages reversed prokineticin2-mediated protection against polymicrobial sepsis. CONCLUSIONS This study elucidated a previously unrecognized role of prokineticin2 in clinical diagnosis and treatment of sepsis. The proof-of-concept study determined a central role of prokineticin2 in alleviating sepsis-induced death by regulation of macrophage function, which presents a new strategy for sepsis immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jingyi Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Hong Tang
- Department of Critical Care Medicine, Department of Surgical Intensive Care Unit, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Tu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xi Yuan
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - David Paul Molloy
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhixin Song
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Pingyong Xu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Pan Y, Li J, Xia X, Wang J, Jiang Q, Yang J, Dou H, Liang H, Li K, Hou Y. β-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Am J Cancer Res 2022; 12:675-688. [PMID: 34976207 PMCID: PMC8692910 DOI: 10.7150/thno.64874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Innate immune memory, also termed “trained immunity”, is thought to protect against experimental models of infection, including sepsis. Trained immunity via reprogramming monocytes/macrophages has been reported to result in enhanced inflammatory status and antimicrobial activity against infection in sepsis. However, a safe and efficient way to induce trained immunity remains unclear. Methods: β-glucan is a prototypical agonist for inducing trained immunity. Ferumoxytol, superparamagnetic iron oxide (SPIO) with low cytotoxicity, has been approved by FDA for clinical use. We synthesized novel nanoparticles BSNPs by coupling β-glucan with SPIO. BSNPs were further conjugated with fluorescein for quantitative analysis and trace detection of β-glucan on BSNPs. Inflammatory cytokine levels were measured by ELISA and qRT-PCR, and the phagocytosis of macrophages was detected by flow cytometry and confocal microscopy. The therapeutic effect of BSNPs was evaluated on the well-established sepsis mouse model induced by both clinical Escherichia coli (E. coli) and cecal ligation and puncture (CLP). Results: BSNPs were synthesized successfully with a 3:20 mass ratio of β-glucan and SPIO on BSNPs, which were mainly internalized by macrophages and accumulated in the lungs and livers of mice. BSNPs effectively reprogrammed macrophages to enhance the production of trained immunity markers and phagocytosis toward bacteria. BSNP-induced trained immunity protected mice against sepsis caused by E. coli and CLP and also against secondary infection. We found that BSNP treatment elevated Akt, S6, and 4EBP phosphorylation, while mTOR inhibitors decreased the trained immunity markers and phagocytosis enhanced by BSNPs. Furthermore, the PCR Array analysis revealed Igf1, Sesn1, Vegfa, and Rps6ka5 as possible key regulators of mTOR signaling during trained immunity. BSNP-induced trained immunity mainly regulated cellular signal transduction, protein modification, and cell cycle by modulating ATP binding and the kinase activity. Our results indicated that BSNPs induced trained immunity in an mTOR-dependent manner. Conclusion: Our data highlight that the trained immunity of macrophages is an effective strategy against sepsis and suggest that BSNPs are a powerful tool for inducing trained immunity to prevent and treat sepsis and secondary infections.
Collapse
|
13
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
14
|
Gong Y, Li J, Huang L, Liu Y, Cao J. Prognostic and pathogenic role of CXC Motif Ligand 16 in sepsis. Microbes Infect 2021; 24:104882. [PMID: 34454064 DOI: 10.1016/j.micinf.2021.104882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023]
Abstract
Chemokine CXC motif ligand 16 (CXCL16) is an important mediator that has been shown to participate in various human diseases. The role of CXCL16 in the immunopathology of sepsis remains unidentified. In this study, we found that human patients with sepsis had significantly higher soluble levels of serum CXCL16 than healthy volunteers on day of intensive care unit (ICU) admission. Soluble CXCL16 remained significantly up-regulated in the patients with sepsis, which correlated with disease severity. Furthermore, nonsurvivors displayed significantly higher admission levels of soluble CXCL16 compared with survivors of septic patients. Soluble CXCL16 levels revealed significant prognostic value for 28-day mortality, and CXCL16 was shown to be an independent predictor of 28-day mortality in the patients with sepsis. In a murine model of cecal ligation and puncture (CLP)-induced nonsevere sepsis, supplementation of recombinant CXCL16 protein could increase sepsis-induced mortality and tissue injury. Conversely, neutralizing CXCL16 by anti-CXCL16 monoclonal antibody could decrease mortality and tissue injury in CLP-induced severe sepsis. However, CXCL16 did not affect the ability of these mice to clear bacteria in CLP. Taken together, CXCL16 could be related to sepsis not only as a novel biomarker of prognosis, but also as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Yi Gong
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxi Li
- The Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Huang
- The Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Department of Intensive care unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- The Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Xu B, Lin X, Gong Y, Lai X, Ren L, Cao J. Interleukin-34: an important modifier in the pathogenesis of influenza pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:274. [PMID: 34348768 PMCID: PMC8335987 DOI: 10.1186/s13054-021-03708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Gong
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Ren
- Medical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
16
|
TLR7 Expression Aggravates Invasive Pulmonary Aspergillosis by Suppressing Anti- Aspergillus Immunity of Macrophages. Infect Immun 2021; 89:IAI.00019-21. [PMID: 33495270 DOI: 10.1128/iai.00019-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in early immune recognition of Aspergillus, which can regulate host defense during invasive pulmonary Aspergillosis (IPA). However, the role of TLR7 in the pathogenesis of IPA remains unknown. In this study, an in vivo model of IPA was established to investigate the contribution of TLR7 to host anti-Aspergillus immunity upon invasive pulmonary Aspergillus fumigatus infection. The effects of TLR7 on phagocytosis and killing capacities of A. fumigatus by macrophages and neutrophils were investigated in vitro We found that TLR7 knockout mice exhibited lower lung inflammatory response and tissue injury, higher fungal clearance, and greater survival in an in vivo model of IPA compared with wild-type mice. TLR7 activation by R837 ligand led to wild-type mice being more susceptible to invasive pulmonary Aspergillus fumigatus infection. Macrophages, but not neutrophils, were required for the protection against IPA observed in TLR7 knockout mice. Mechanistically, TLR7 impaired phagocytosis and killing of A. fumigatus by macrophages but not neutrophils. Together, these data identify TLR7 as an important negative regulator of anti-Aspergillus innate immunity in IPA, and we propose that targeting TLR7 will be beneficial in the treatment of IPA.
Collapse
|
17
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
18
|
Anti-Interleukin-16 Neutralizing Antibody Treatment Alleviates Sepsis-Induced Cardiac Injury and Dysfunction via the Nuclear Factor Erythroid-2 Related Factor 2 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6616422. [PMID: 33628366 PMCID: PMC7896865 DOI: 10.1155/2021/6616422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Several interleukin (IL) members have been reported to participate in sepsis. In this study, the effects of IL-16 on sepsis-induced cardiac injury and dysfunction were examined, and the related mechanisms were detected. IL-16 expression in septic mice was first measured, and the results showed that both cardiac and serum IL-16 expression levels were increased in mice with sepsis induced by LPS or cecal ligation and puncture (CLP) compared with control mice. Then, IL-16 was neutralized, and the effects on lipopolysaccharide- (LPS-) induced cardiac injury were detected. The results showed that an anti-IL-16 neutralizing antibody (nAb) significantly reduced mortality and increased serum lactate dehydrogenase (LDH), creatine kinase myocardial bound (CK-MB), and cardiac troponin T (cTnT) levels while improving cardiac function in mice with LPS-induced sepsis. Neutralization of IL-16 also increased the activation of antioxidant pathways and the expression of antioxidant factors in septic mice while decreasing the activation of prooxidant pathways and the expression of prooxidants. Treatment with the anti-IL-16 nAb increased mitochondrial apoptosis-inducing factor (AIF) expression, decreased nuclear AIF and cleaved poly-ADP-ribose polymerase (PARP) expression, and decreased TUNEL-positive cell percentages in LPS-treated mice. Additionally, treatment with CPUY192018, the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway, significantly increased mortality and reversed the above effects in mice treated with LPS and the anti-IL-16 nAb. Our results showed that the anti-IL-16 nAb regulates oxidative stress through the Nrf2 pathway and participates in the regulation of cardiac injury in septic mice. Neutralization of IL-16 may be a beneficial strategy for the prevention of cardiac injury and dysfunction in sepsis patients.
Collapse
|
19
|
Shah H, Shakir HA, Safi SZ, Ali A. Hippophae rhamnoides mediate gene expression profiles against keratinocytes infection of Staphylococcus aureus. Mol Biol Rep 2021; 48:1409-1422. [PMID: 33608810 DOI: 10.1007/s11033-021-06221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Staphylococcus aureus causes a wide range of skin diseases such as bacterial keratitis, follicles, psoriasis, cellulitis and atopic dermatitis. This study aims to investigate the S. aureus mediated molecular modulation, and the effect of HR in reversing the deleterious impact of S. aureus in keratinocytes. Human keratinocyte (HaCaT) cells were cultured in DMEM, supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Subcultures were divided into three flasks: control with no S. aureus and extract (C), S. aureus infected (SA) and S. aureus infected cells and extract (SE). RNA was isolated and microarray analysis was performed. The data was annotated using GO functional analysis and DAVID functional annotation. For each comparison group, significant probes were filtered out at significant cut off by fold change (P < 0.05 and/or > twofold change). For SA vs control, SE vs control, and SE vs SA, 204, 9369, 9900 probes were filtered respectively. In SA vs control, TNF signaling, NOD-like receptor and chemokine receptor signaling pathways were upregulated with key genes such as CCL2, CCL20 and BIRC3. The SE vs SA, showed significant expression variations of a number of important genes. Molecular pathways associated with ILs, TNFs, TGFs, IFNs, FGFs, MAPKs, MMPs, caspases and Wnts were either up regulated or downregulated. This effect was reversed by the extract, possibly through downregulating various proinflammatory cytokines and apoptotic pathways. Our study reveals that S. aureus inserts a negative impact on the regulation of various key genes which is apparently reversed by the HR extract.
Collapse
Affiliation(s)
- Humaira Shah
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, Pakistan
- Department of Zoology, Punjab University, Lahore, Pakistan
| | | | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Abid Ali
- Department of Zoology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
20
|
Yu C, Zhang P, Zhang TF, Sun L. IL-34 regulates the inflammatory response and anti-bacterial immune defense of Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 104:228-236. [PMID: 32502613 DOI: 10.1016/j.fsi.2020.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL)-34 is a relatively recently discovered cytokine with pleiotropic effects on various cellular activities, including immune response. In fish, the knowledge on the function of IL-34 is limited. In the present work, we investigated the function of Japanese flounder Paralichthys olivaceus IL-34 (PoIL-34) in association with inflammation and immune defense. PoIL-34 possesses the conserved structure of IL-34 superfamily and shares 21.52% sequence identity with murine IL-34. PoIL-34 expression was detected in a wide range of tissues of flounder, in particular intestine, and was regulated to a significant extent by bacterial infection in a time-dependent fashion. In vitro studies showed that recombinant PoIL-34 (rPoIL-34) bound peripheral blood leukocytes (PBLs) and promoted ROS production, acid phosphatase activity, and cellular resistance against bacterial infection. At the molecular level, rPoIL-34 enhanced the expressions of inflammatory cytokines and specific JAK and STAT genes. Similar stimulatory effects of rPoIL-34 were observed in vivo. When PoIL-34 was overexpressed in flounder, the expressions of pro- and anti-inflammatory mediators were significantly affected in a tissue-dependent manner, which correlated with an augmented ability of the fish to eliminate invading pathogens from tissues. Together, these results indicated that PoIL-34 regulated inflammatory response probably via specific JAK/STAT pathways and had a significant influence on the immune defense of flounder against bacterial infection.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Teng-Fei Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
21
|
Zuo T, Tang Q, Zhang X, Shang F. MicroRNA-410-3p Binds to TLR2 and Alleviates Myocardial Mitochondrial Dysfunction and Chemokine Production in LPS-Induced Sepsis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:273-284. [PMID: 33230433 PMCID: PMC7516191 DOI: 10.1016/j.omtn.2020.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction and chemokine production have been reported to be involved in the pathogenesis of sepsis. Our initial bioinformatics analysis identified differentially expressed TLR2 in sepsis and the upstream regulatory microRNA-410-3p (miR-410-3p). Hence, the current study was performed to characterize the potential mechanism by which miR-410-3p modulates mitochondrial dysfunction and chemokine production in lipopolysaccharide (LPS)-induced mice in vivo and cardiomyocytes in vitro. Next, we identified that miR-410-3p was downregulated, while TLR2 was upregulated in LPS-induced mice and cardiomyocytes. In addition, miR-410-3p was confirmed to target and inhibit the TLR2 expression. Thereafter, gain- or loss-of-function experiments were conducted to investigate the effect of miR-410-3p and TLR2 on mitochondrial function and chemokine production. TLR2 knockdown or miR-410-3p overexpression was found to alleviate mitochondrial membrane damage and mitochondrial swelling, in addition to augmenting the levels of adenosine triphosphate, mitochondrial membrane potential, and the expression levels of CCL7, CCL5, CXCL1, and CXCL9 in vivo and in vitro. In conclusion, miR-410-3p-mediated TLR2 inhibition alleviated mitochondrial dysfunction and reduced chemokine production in LPS-induced experimental sepsis. Therefore, the overexpression of miR-410-3p may represent a potential strategy for the treatment of sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Tongkun Zuo
- ICU, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, P.R. China
| | - Qing Tang
- ICU, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, P.R. China
| | - Xiangcheng Zhang
- ICU, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, P.R. China
| | - Futai Shang
- ICU, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, P.R. China
| |
Collapse
|
22
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
23
|
|
24
|
Popovic M, Yaparla A, Paquin‐Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. Colony‐stimulating factor‐1‐ and interleukin‐34‐derived macrophages differ in their susceptibility to
Mycobacterium marinum. J Leukoc Biol 2019; 106:1257-1269. [DOI: 10.1002/jlb.1a0919-147r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Milan Popovic
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Amulya Yaparla
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Dominic Paquin‐Proulx
- Department of Microbiology Immunology and Tropical Medicine George Washington University Washington DC 20037 USA
| | - Daphne V. Koubourli
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Rose Webb
- Pathology Core Laboratory George Washington University Washington DC 20037 USA
| | - Marcia Firmani
- Department of Biomedical Laboratory Sciences George Washington University Washington DC 20037 USA
| | - Leon Grayfer
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| |
Collapse
|
25
|
Interleukin-34: A New Player in the Sepsis Arena. Crit Care Med 2019; 46:1032-1033. [PMID: 29762412 DOI: 10.1097/ccm.0000000000003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Tu H, Lai X, Li J, Huang L, Liu Y, Cao J. Interleukin-26 is overexpressed in human sepsis and contributes to inflammation, organ injury, and mortality in murine sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:290. [PMID: 31464651 PMCID: PMC6716900 DOI: 10.1186/s13054-019-2574-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sepsis is a serious syndrome that is caused by an unbalanced host inflammatory response to an infection. The cytokine network plays a pivotal role in the orchestration of inflammatory response during sepsis. IL-26 is an emerging proinflammatory member of the IL-10 cytokine family with multifaceted actions in inflammatory disorders. However, its role in the pathogenesis of sepsis remains unknown. METHODS Serum IL-26 level was measured and analyzed in 52 septic patients sampled on the day of intensive care unit (ICU) admission, 18 non-septic ICU patient controls, and 30 healthy volunteers. In addition, the effects of recombinant human IL-26 on host inflammatory response in cecal ligation and puncture (CLP)-induced polymicrobial sepsis were determined. RESULTS On the day of ICU admission, the patients with sepsis showed a significant increase in serum IL-26 levels compared with ICU patient controls and healthy volunteers, and the serum IL-26 levels were related to the severity of sepsis. Nonsurvivors of septic patients displayed significantly higher serum IL-26 levels compared with survivors. A high serum IL-26 level on ICU admission was associated with 28-day mortality, and IL-26 was found to be an independent predictor of 28-day mortality in septic patients by logistic regression analysis. Furthermore, administration of recombinant human IL-26 increased lethality in CLP-induced polymicrobial sepsis. Despite a lower bacterial load, septic mice treated with recombinant IL-26 had higher concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, TNF-α, CXCL1, and CCL2 in peritoneal lavage fluid and blood and demonstrated more severe multiple organ injury (including lung, liver and kidney) as indicated by clinical chemistry and histopathology. Furthermore, septic mice treated with recombinant human IL-26 showed an increased neutrophil recruitment to the peritoneal cavity. CONCLUSIONS Septic patients had elevated serum IL-26 levels, which may correlate with disease severity and mortality. In experimental sepsis, we demonstrated a previously unrecognized role of IL-26 in increasing lethality despite promoting antibacterial host responses.
Collapse
Affiliation(s)
- Hongmei Tu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxi Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lili Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Liu
- Department of Intensive care unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
27
|
Ge Y, Huang M, Yao YM. Immunomodulation of Interleukin-34 and its Potential Significance as a Disease Biomarker and Therapeutic Target. Int J Biol Sci 2019; 15:1835-1845. [PMID: 31523186 PMCID: PMC6743287 DOI: 10.7150/ijbs.35070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-34 is a cytokine discovered a few years ago and identified as the second colony-stimulating factor (CSF)-1 receptor (CSF-1R) ligand. Although CSF-1 and IL-34 share the same receptor through which they trigger similar effects, IL-34 also binds to receptors protein-tyrosine phosphatase (PTP)-ζ and syndecan-1. Thus, IL-34 is involved in several signaling pathways and participates in a wide array of biological actions. This review analyzes current studies on the role of IL-34 under physiological and pathological conditions, and explores its potential significance as a disease biomarker and therapeutic target. In physiological conditions, IL-34 expression is restricted to the microglia and Langerhans cells, with a fundamental role in cellular differentiation, adhesion and migration, proliferation, metabolism, and survival. It is released in response to inflammatory stimuli, such as pathogen-associated molecular patterns or pro-inflammatory cytokines, with effects over various immune cells, including monocytes, macrophages, and regulatory T cells that shape the immune microenvironment. Over the past decade, accumulating evidence has suggested a potent immune regulation of IL-34 in pathological states such as autoimmune diseases, cancer, transplant rejection, neurologic diseases, infections, and inflammatory diseases. Importantly, IL-34 may hold great promise for acting as a biomarker for monitoring disease severity and progression, and may serve as a new therapeutic target for the treatment of several diseases in clinical settings.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
28
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
29
|
Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H, Seino KI. Interleukin-34, a comprehensive review. J Leukoc Biol 2018; 104:931-951. [PMID: 30066957 DOI: 10.1002/jlb.mr1117-457r] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
IL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines. IL-34 is synthesized as a secreted homodimeric glycoprotein that binds to the extracellular domains of CSF-1R and receptor-type protein-tyrosine phosphatase-zeta (PTP-ζ) in addition to the chondroitin sulfate chains of syndecan-1. These interactions result in activating several signaling pathways that regulate major cellular functions, including proliferation, differentiation, survival, metabolism, and cytokine/chemokine expression in addition to cellular adhesion and migration. In the steady state, IL-34 contributes to the development and maintenance of specific myeloid cell subsets in a tissue-specific manner: Langerhans cells in the skin and microglia in the brain. In pathological conditions, changes in IL-34 expression-increased or decreased-are involved in disease pathogenesis and correlate with progression, severity, and chronicity. One decade after its discovery, IL-34 has been introduced as a newcomer to the big family of interleukins with specific physiological functions, critical pathological roles, and promising clinical applications in disease diagnosis and treatment. In this review, we celebrate the 10th anniversary of IL-34 discovery, introducing its biological characteristics, and discussing the importance of IL-34 signaling network in health and disease.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Umeyama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|