1
|
Maglione MA, Klausner JD, Wirnkar PK, Fallarme I, Lak R, Sysawang K, Fu N, Yagyu S, Motala A, Tolentino D, Hempel S. A Rapid Systematic Review of U.S. Food and Drug Administration-Authorized COVID-19 Treatments. Open Forum Infect Dis 2025; 12:ofaf097. [PMID: 40225829 PMCID: PMC11986950 DOI: 10.1093/ofid/ofaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic era saw numerous treatments authorized for emergency use by the United States (US) Food and Drug Administration (FDA). The purpose of the review was to determine if convalescent plasma, antivirals, or monoclonal antibodies are associated with serious adverse events (SAEs) and, if so, which specific populations are at risk. Methods PubMed, ClinicalTrials.gov, and the FDA submission database were searched through December 2023, and the Infectious Diseases Society of America guidelines, international COVID Network Meta-analysis database, and systematic reviews were reference mined to identify controlled studies with at least 1 US site. Reviewers abstracted study characteristics, number of patients experiencing each type of SAE, and methods of adverse event collection and reporting. Results Fifty-four studies met inclusion criteria, including 31 randomized controlled trials. We found insufficient evidence of association of any SAE with antivirals and spike protein receptor-binding antibodies. In patients hospitalized with COVID-19, the monoclonal antibody tocilizumab, an interleukin 6 inhibitor, may be associated with elevated risk of neutropenia (moderate certainty) and infection (limited certainty). Convalescent plasma may be associated with thrombotic events (limited certainty) as well as bleeding events and infection in patients with hematologic cancers (moderate certainty). Inclusion of studies without a US site could potentially change the findings. Conclusions Severe COVID-19 infection may have serious consequences, especially in hospitalized patients with comorbidities. These consequences may be confused with toxicities of the interventions. Based on our analysis, approved treatments for COVID-19 should be prescribed as clinically indicated, although continued vigilance is warranted to identify rare and potentially significant toxicities that may arise in clinical practice. Clinical Trials Registration PROSPERO (CRD42023467821).
Collapse
Affiliation(s)
- Margaret A Maglione
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Patricia K Wirnkar
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ivan Fallarme
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Rozhin Lak
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Kimny Sysawang
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ning Fu
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Sachi Yagyu
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Aneesa Motala
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Danica Tolentino
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Susanne Hempel
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Martins PN, Lourenço MHT, Mota GPS, Cavalcanti AB, Peçanha Antonio AC, Diaz-Quijano FA. Composite endpoints in COVID-19 randomized controlled trials: a systematic review. Clin Trials 2025; 22:77-87. [PMID: 39390767 DOI: 10.1177/17407745241276130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND/AIMS This study aimed to determine the prevalence of ordinal, binary, and numerical composite endpoints among coronavirus disease 2019 trials and the potential bias attributable to their use. METHODS We systematically reviewed the Cochrane COVID-19 Study Register to assess the prevalence, characteristics, and bias associated with using composite endpoints in coronavirus disease 2019 randomized clinical trials. We compared the effect measure (relative risk) of composite outcomes and that of its most critical component (i.e. death) by estimating the Bias Attributable to Composite Outcomes index [ln(relative risk for the composite outcome)/ln(relative risk for death)]. RESULTS Composite endpoints accounted for 152 out of 417 primary endpoints in coronavirus disease 2019 randomized trials, being more frequent among studies published in high-impact journals. Ordinal endpoints were the most common (54% of all composites), followed by binary or time-to-event (34%), numerical (11%), and hierarchical (1%). Composites predominated among trials enrolling patients with severe disease when compared to trials with a mild or moderate case mix (odds ratio = 1.72). Adaptations of the seven-point World Health Organization scale occurred in 40% of the ordinal primary endpoints, which frequently underwent dichotomization for the statistical analyses. Mortality accounted for a median of 24% (interquartile range: 6%-48%) of all events when included in the composite. The median point estimate of the Bias Attributable to Composite Outcomes index was 0.3 (interquartile range: -0.1 to 0.7), being significantly lower than 1 in 5 of 24 comparisons. DISCUSSION Composite endpoints were used in a significant proportion of coronavirus disease 2019 trials, especially those involving severely ill patients. This is likely due to the higher anticipated rates of competing events, such as death, in such studies. Ordinal composites were common but often not fully appreciated, reducing the potential gains in information and statistical efficiency. For studies with binary composites, death was the most frequent component, and, unexpectedly, composite outcome estimates were often closer to the null when compared to those for mortality death. Numerical composites were less common, and only two trials used hierarchical endpoints. These newer approaches may offer advantages over traditional binary and ordinal composites; however, their potential benefits warrant further scrutiny. CONCLUSION Composite endpoints accounted for more than a third of coronavirus disease 2019 trials' primary endpoints; their use was more common among studies that included patients with severe disease and their point effect estimates tended to underestimate those for mortality.
Collapse
Affiliation(s)
- Pedro Nascimento Martins
- Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Franchini M, Cruciani M, Mengoli C, Casadevall A, Glingani C, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Zani M, Focosi D. Convalescent plasma and predictors of mortality among hospitalized patients with COVID-19: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:1514-1522. [PMID: 39067517 DOI: 10.1016/j.cmi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Plasma collected from recovered patients with COVID-19 (COVID-19 convalescent plasma [CCP]) was the first antibody-based therapy employed to fight the COVID-19 pandemic. While the therapeutic effect of early administration of CCP in COVID-19 outpatients has been recognized, conflicting data exist regarding the efficacy of CCP administration in hospitalized patients. OBJECTIVES To examine the effect of CCP compared to placebo or standard treatment, and to evaluate whether time from onset of symptoms to treatment initiation influenced the effect. DATA SOURCES Electronic databases were searched for studies published from January 2020 to January 2024. STUDY ELIGIBILITY CRITERIA Randomized clinical trials (RCTs) investigating the effect of CCP on COVID-19 mortality in hospitalized patients with COVID-19. PARTICIPANTS Hospitalized patients with COVID-19. INTERVENTIONS CCP versus no CCP. ASSESSMENT OF RISK OF BIAS Cochrane risk of bias tool for RCTs. METHODS OF DATA SYNTHESIS The random-effects model was used to calculate the pooled risk ratio (RR) with 95% CI for the pooled effect estimates of CCP treatment. The Grading of Recommendations Assessment, Development and Evaluation was used to evaluate the certainty of evidence. RESULTS Twenty-seven RCTs were included, representing 18,877 hospitalized patients with COVID-19. When transfused within 7 days from symptom onset, CCP significantly reduced the risk of death compared to standard therapy or placebo (RR, 0.76; 95% CI, 0.61-0.95), while later CCP administration was not associated with a mortality benefit (RR, 0.98; 95% CI, 0.90-1.06). The certainty of the evidence was graded as moderate. Meta-regression analysis demonstrated increasing mortality effects for longer interval to transfusion or worse initial clinical severity. CONCLUSIONS In-hospital transfusion of CCP within 7 days from symptom onset conferred a mortality benefit.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy.
| | - Mario Cruciani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Claudia Glingani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Matteo Zani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
4
|
Alwakeel M, Abi Fadel F, Nanah A, Wang Y, Awad MKA, Abdeljaleel F, Obeidat M, Saleem T, Afzal S, Alayan D, Harnegie MP, Wang X, Duggal A, Zhang P. Efficacy of COVID-19 Treatments in Intensive Care Unit: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care Res Pract 2024; 2024:2973795. [PMID: 39633779 PMCID: PMC11617054 DOI: 10.1155/ccrp/2973795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives: Examining the cumulative evidence from randomized controlled trials (RCTs), evaluating the use of pharmacological agents for the treatment of COVID-19 infections in patients with critical illness. Data Sources: Databases Medline, Embase, Web of Science, Scopus, CINAHL, and Cochrane. Study Selection: Inclusion criteria were RCTs that enrolled patients with confirmed or suspected COVID-19 infection who are critically ill. Only RCTs that examined therapeutic agents against one another or no intervention, placebo, or standard of care, were included. Data Extraction: Pairs of reviewers extracted data independently. Outcomes of interest included the overall reported mortality defined as either the ICU mortality, hospital mortality, mortality within 28 days or mortality within 90 days. Data Synthesis: A total of 40 studies (11,613 patients) evaluated 50 therapeutic intervention arms divided into five main therapy categories; steroids, antiviral medications, immunomodulators, plasma therapies [intravenous immunoglobulins (IVIG), convalescent plasma and/or, therapeutic plasma exchange], and therapeutic anticoagulation. Immunomodulators was the only group with possible mortality benefit, risk ratio (RR) 0.83 (95% CI 0.73; 0.95), with nonsignificant heterogeneity (I 2 = 8%, p=0.36). In contrast, the other therapy groups showed no significant impact on mortality, as indicated by their respective pooled RRs: steroids [RR 0.91 (95% CI 0.82; 1.01), I 2 = 31%], antiviral medications [RR 1.11 (95% CI 0.82; 1.49), I 2 = 57%], plasma therapies [RR 0.77 (95% CI 0.58; 1.01), I 2 = 36%], and anticoagulation [RR 1.06 (95% CI 0.95; 1.18), I 2 = 0%]. Conclusions: This meta-analysis highlights both the heterogeneity and a lack of benefit from therapies evaluated during the COVID-19 pandemic. Many of the RCTs were developed based on limited observational data. Future RCTs investigating pharmaceutical interventions in critically ill patients during pandemics need to be designed based on better evidence.
Collapse
Affiliation(s)
- Mahmoud Alwakeel
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francois Abi Fadel
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abdelrahman Nanah
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Anesthesiology, Boston Medical Center, Boston, Massachusetts, USA
| | - Mohamed K. A. Awad
- Department of Pulmonary, Critical Care and Allergy, University of Alabama, Birmingham, Alabama, USA
| | - Fatima Abdeljaleel
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Mohammed Obeidat
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Talha Saleem
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saira Afzal
- Department of Neurology, Cleveland Clinic Florida, Weston, Florida, USA
- Department of Internal Medicine, Cleveland Clinic Florida, Cleveland, USA
| | - Dina Alayan
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Mary Pat Harnegie
- Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaofeng Wang
- Department of Qualitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhijit Duggal
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Bhimraj A, Morgan RL, Shumaker AH, Baden L, Cheng VCC, Edwards KM, Gallagher JC, Gandhi RT, Muller WJ, Nakamura MM, O’Horo JC, Shafer RW, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin Infect Dis 2024; 78:e250-e349. [PMID: 36063397 PMCID: PMC9494372 DOI: 10.1093/cid/ciac724] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
There are many pharmacologic therapies that are being used or considered for treatment of coronavirus disease 2019 (COVID-19), with rapidly changing efficacy and safety evidence from trials. The objective was to develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19. In March 2020, the Infectious Diseases Society of America (IDSA) formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise to regularly review the evidence and make recommendations about the treatment and management of persons with COVID-19. The process used a living guideline approach and followed a rapid recommendation development checklist. The panel prioritized questions and outcomes. A systematic review of the peer-reviewed and grey literature was conducted at regular intervals. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. Based on the most recent search conducted on 31 May 2022, the IDSA guideline panel has made 32 recommendations for the treatment and management of the following groups/populations: pre- and postexposure prophylaxis, ambulatory with mild-to-moderate disease, and hospitalized with mild-to-moderate, severe but not critical, and critical disease. As these are living guidelines, the most recent recommendations can be found online at: https://idsociety.org/COVID19guidelines. At the inception of its work, the panel has expressed the overarching goal that patients be recruited into ongoing trials. Since then, many trials were conducted that provided much-needed evidence for COVID-19 therapies. There still remain many unanswered questions as the pandemic evolved, which we hope future trials can answer.
Collapse
Affiliation(s)
- Adarsh Bhimraj
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Amy Hirsch Shumaker
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | | | - Vincent Chi Chung Cheng
- Queen Mary Hospital, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center,Nashville, Tennessee
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania
| | - Rajesh T Gandhi
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - William J Muller
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, Illinois
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - John C O’Horo
- Division of Infectious Diseases, Joint Appointment Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Palo Alto, California
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| |
Collapse
|
6
|
Franchini M, Mengoli C, Casadevall A, Focosi D. Exploring Study Design Foibles in Randomized Controlled Trials on Convalescent Plasma in Hospitalized COVID-19 Patients. Life (Basel) 2024; 14:792. [PMID: 39063547 PMCID: PMC11278192 DOI: 10.3390/life14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Sample size estimation is an essential step in the design of randomized controlled trials (RCTs) evaluating a treatment effect. Sample size is a critical variable in determining statistical significance and, thus, it significantly influences RCTs' success or failure. During the COVID-19 pandemic, many RCTs tested the efficacy of COVID-19 convalescent plasma (CCP) in hospitalized patients but reported different efficacies, which could be attributed to, in addition to timing and dose, inadequate sample size estimates. Methods: To assess the sample size estimation in RCTs evaluating the effect of treatment with CCP in hospitalized COVID-19 patients, we searched the medical literature between January 2020 and March 2024 through PubMed and other electronic databases, extracting information on expected size effect, statistical power, significance level, and measured efficacy. Results: A total of 32 RCTs were identified. While power and significance level were highly consistent, heterogeneity in the expected size effect was relevant. Approximately one third of the RCTs did not reach the planned sample size for various reasons, with the most important one being slow patient recruitment during the pandemic's peaks. RCTs with a primary outcome in favor of CCP treatment had a significant lower median absolute difference in the expected size effect than unfavorable RCTs (20.0% versus 33.9%, P = 0.04). Conclusions: The analyses of sample sizes in RCTs of CCP treatment in hospitalized COVID-19 patients reveal that many underestimated the number of participants needed because of excessively high expectations on efficacy, and thus, these studies had low statistical power. This, in combination with a lower-than-planned recruitment of cases and controls, could have further negatively influenced the primary outcomes of the RCTs.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
7
|
Franchini M, Casadevall A, Cruciani M, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Focosi D. Convalescent plasma: An unexpected new therapeutic option for critically ill COVID-19 patients coming from the past. J Clin Anesth 2024; 94:111411. [PMID: 38335905 DOI: 10.1016/j.jclinane.2024.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy.
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Mario Cruciani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Healthy, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| |
Collapse
|
8
|
Franchini M, Cruciani M, Casadevall A, Joyner MJ, Senefeld JW, Sullivan DJ, Zani M, Focosi D. Safety of COVID-19 convalescent plasma: A definitive systematic review and meta-analysis of randomized controlled trials. Transfusion 2024; 64:388-399. [PMID: 38156374 DOI: 10.1111/trf.17701] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Mario Cruciani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Healthy, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Matteo Zani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
9
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
10
|
Misset B, Piagnerelli M, Hoste E, Dardenne N, Grimaldi D, Michaux I, De Waele E, Dumoulin A, Jorens PG, van der Hauwaert E, Vallot F, Lamote S, Swinnen W, De Schryver N, Fraipont V, de Mey N, Dauby N, Layios N, Mesland JB, Meyfroidt G, Moutschen M, Compernolle V, Gothot A, Desmecht D, Taveira da Silva Pereira MI, Garigliany M, Najdovski T, Bertrand A, Donneau AF, Laterre PF. Convalescent Plasma for Covid-19-Induced ARDS in Mechanically Ventilated Patients. N Engl J Med 2023; 389:1590-1600. [PMID: 37889107 PMCID: PMC10755833 DOI: 10.1056/nejmoa2209502] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND Passive immunization with plasma collected from convalescent patients has been regularly used to treat coronavirus disease 2019 (Covid-19). Minimal data are available regarding the use of convalescent plasma in patients with Covid-19-induced acute respiratory distress syndrome (ARDS). METHODS In this open-label trial, we randomly assigned adult patients with Covid-19-induced ARDS who had been receiving invasive mechanical ventilation for less than 5 days in a 1:1 ratio to receive either convalescent plasma with a neutralizing antibody titer of at least 1:320 or standard care alone. Randomization was stratified according to the time from tracheal intubation to inclusion. The primary outcome was death by day 28. RESULTS A total of 475 patients underwent randomization from September 2020 through March 2022. Overall, 237 patients were assigned to receive convalescent plasma and 238 to receive standard care. Owing to a shortage of convalescent plasma, a neutralizing antibody titer of 1:160 was administered to 17.7% of the patients in the convalescent-plasma group. Glucocorticoids were administered to 466 patients (98.1%). At day 28, mortality was 35.4% in the convalescent-plasma group and 45.0% in the standard-care group (P = 0.03). In a prespecified analysis, this effect was observed mainly in patients who underwent randomization 48 hours or less after the initiation of invasive mechanical ventilation. Serious adverse events did not differ substantially between the two groups. CONCLUSIONS The administration of plasma collected from convalescent donors with a neutralizing antibody titer of at least 1:160 to patients with Covid-19-induced ARDS within 5 days after the initiation of invasive mechanical ventilation significantly reduced mortality at day 28. This effect was mainly observed in patients who underwent randomization 48 hours or less after ventilation initiation. (Funded by the Belgian Health Care Knowledge Center; ClinicalTrials.gov number, NCT04558476.).
Collapse
Affiliation(s)
- Benoît Misset
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Michael Piagnerelli
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Eric Hoste
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Nadia Dardenne
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - David Grimaldi
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Isabelle Michaux
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Elisabeth De Waele
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Alexander Dumoulin
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Philippe G Jorens
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Emmanuel van der Hauwaert
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Frédéric Vallot
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Stoffel Lamote
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Walter Swinnen
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Nicolas De Schryver
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Vincent Fraipont
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Nathalie de Mey
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Nicolas Dauby
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Nathalie Layios
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Jean-Baptiste Mesland
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Geert Meyfroidt
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Michel Moutschen
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Veerle Compernolle
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - André Gothot
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Daniel Desmecht
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Maria I Taveira da Silva Pereira
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Mutien Garigliany
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Tome Najdovski
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Axelle Bertrand
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Anne-Françoise Donneau
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| | - Pierre-François Laterre
- From the Departments of Intensive Care Medicine (B.M., N.L., A.B.), Infectious Diseases (M.M.), Immunohematology (A.G.), and Microbiology (M.I.T.S.P.), University Hospital of Liège, the Biostatistics Unit, Public Health Department (N. Dardenne, A.-F.D.), and the Department of Animal Pathology (D.D., M.G.), Liège University, and the Department of Intensive Care Medicine, Citadelle General Hospital (V.F.), Liège, the Department of Intensive Care Medicine, Centre Hospitalier Universitaire (CHU) de Charleroi-Marie Curie Hospital, Université Libre de Bruxelles, Charleroi (M.P.), the Department of Intensive Care Medicine, Ghent University Hospital (E. Hoste), and the Faculty of Medicine and Health Sciences (V.C.), Ghent University, Ghent, the Department of Intensive Care Medicine, Cliniques Universitaires de Bruxelles-Erasme, Université Libre de Bruxelles (D.G.), the Division of Infectious Diseases, Saint-Pierre University Hospital (N. Dauby), and the Department of Intensive Care Medicine, Saint-Luc University Hospital (J.-B.M., P.-F.L.), Brussels, the Department of Intensive Care, Université Catholique de Louvain (UCL), CHU UCL Namur, Yvoir (I.M.), the Department of Intensive Care Medicine, Brussels University Hospital, Vrije Universiteit Brussel, Jette (E.D.W.), the Department of Intensive Care Medicine, Delta General Hospital, Roeselare (A.D.), the Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem (P.G.J.), the Department of Intensive Care Medicine, Imelda General Hospital, Bonheiden (E. Hauwaert), the Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai (F.V.), the Department of Intensive Care Medicine, Groeninge General Hospital, Kortrijk (S.L.), the Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde (W.S.), the Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies (N.D.S.), the Department of Intensive Care Medicine, Onze-Lieve-Vrouw General Hospital, Aalst (N.M.), the Department of Intensive Care Medicine, University Hospitals Leuven, Leuven (G.M.), Blood Services from the Red Cross, Mechelen (V.C.), Blood Services from the Red Cross, Suarlée (T.N.), and the Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons (P.-F.L.) - all in Belgium
| |
Collapse
|
11
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Mihalek N, Radovanović D, Barak O, Čolović P, Huber M, Erdoes G. Convalescent plasma and all-cause mortality of COVID-19 patients: systematic review and meta-analysis. Sci Rep 2023; 13:12904. [PMID: 37558729 PMCID: PMC10412555 DOI: 10.1038/s41598-023-40009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Insight into the clinical potential of convalescent plasma in patients with coronavirus disease (COVID-19) is important given the severe clinical courses in unvaccinated and seronegative individuals. The aim of the study was to investigate whether there is a survival benefit of convalescent plasma therapy in COVID-19 patients. The authors independently assessed randomized controlled trials (RCTs) identified by the search strategy for inclusion, extracted data, and assessed risk of bias. The binary primary outcome was all-cause mortality. Risk ratio (RR) of the convalescent plasma treatment (vs. best standard care) and its associated standard error (effect size) were calculated. A random-effects model was employed to statistically pool the effect sizes of the selected studies. We included 19 RCTs with 17,021 patients. The random-effects model resulted in an estimated pooled RR of 0.94 (95% CI 0.81-1.08, p = 0.33), showing no statistical evidence of the benefit of convalescent plasma therapy on all-cause mortality. Convalescent plasma therapy was not found to be effective in reducing all-cause mortality in COVID-19 patients. Further studies are needed to determine in which patients convalescent plasma therapy may lead to a reduction in mortality.
Collapse
Affiliation(s)
- Nora Mihalek
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Department of Anaesthesiology, Intensive Therapy and Care, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Dragana Radovanović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Department of Anaesthesiology, Intensive Therapy and Care, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Petar Čolović
- Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Markus Huber
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Gabor Erdoes
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland.
| |
Collapse
|
13
|
Renard Triché L, Futier E, De Carvalho M, Piñol-Domenech N, Bodet-Contentin L, Jabaudon M, Pereira B. Sample size estimation in clinical trials using ventilator-free days as the primary outcome: a systematic review. Crit Care 2023; 27:303. [PMID: 37528425 PMCID: PMC10394791 DOI: 10.1186/s13054-023-04562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Ventilator-free days (VFDs) are a composite endpoint increasingly used as the primary outcome in critical care trials. However, because of the skewed distribution and competitive risk between components, sample size estimation remains challenging. This systematic review was conducted to systematically assess whether the sample size was congruent, as calculated to evaluate VFDs in trials, with VFDs' distribution and the impact of alternative methods on sample size estimation. METHODS A systematic literature search was conducted within the PubMed and Embase databases for randomized clinical trials in adults with VFDs as the primary outcome until December 2021. We focused on peer-reviewed journals with 2021 impact factors greater than five. After reviewing definitions of VFDs, we extracted the sample size and methods used for its estimation. The data were collected by two independent investigators and recorded in a standardized, pilot-tested forms tool. Sample sizes were calculated using alternative statistical approaches, and risks of bias were assessed with the Cochrane risk-of-bias tool. RESULTS Of the 26 clinical trials included, 19 (73%) raised "some concerns" when assessing risks of bias. Twenty-four (92%) trials were two-arm superiority trials, and 23 (89%) were conducted at multiple sites. Almost all the trials (96%) were unable to consider the unique distribution of VFDs and death as a competitive risk. Moreover, significant heterogeneity was found in the definitions of VFDs, especially regarding varying start time and type of respiratory support. Methods for sample size estimation were also heterogeneous, and simple models, such as the Mann-Whitney-Wilcoxon rank-sum test, were used in 14 (54%) trials. Finally, the sample sizes calculated varied by a factor of 1.6 to 17.4. CONCLUSIONS A standardized definition and methodology for VFDs, including the use of a core outcome set, seems to be required. Indeed, this could facilitate the interpretation of findings in clinical trials, as well as their construction, especially the sample size estimation which is a trade-off between cost, ethics, and statistical power. Systematic review registration PROSPERO ID: CRD42021282304. Registered 15 December 2021 ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021282304 ).
Collapse
Affiliation(s)
- Laurent Renard Triché
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France. lrenard--
| | - Emmanuel Futier
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France
- iGReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - Laëtitia Bodet-Contentin
- Medical Intensive Care Unit, CHRU de Tours, Tours, France
- INSERM, SPHERE, UMR1246, Université de Tours et Nantes, Tours et Nantes, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France
- iGReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research, and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
14
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5:CD013600. [PMID: 37162745 PMCID: PMC10171886 DOI: 10.1002/14651858.cd013600.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Hakim SM, Chikhouni GMA, Ammar MA, Amer AM. Effect of convalescent plasma transfusion on outcomes of coronavirus disease 2019: a meta-analysis with trial sequential analysis. J Anesth 2023; 37:451-464. [PMID: 36811668 PMCID: PMC9944423 DOI: 10.1007/s00540-023-03171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The aim of this review was to update evidence for benefit of convalescent plasma transfusion (CPT) in patients with coronavirus disease 2019 (COVID-19). Databases were searched for randomized controlled trials (RCT) comparing CPT plus standard treatment versus standard treatment only in adults with COVID-19. Primary outcome measures were mortality and need for invasive mechanical ventilation (IMV). Twenty-Six RCT involving 19,816 patients were included in meta-analysis for mortality. Quantitative synthesis showed no statistically significant benefit of adding CPT to standard treatment (RR = 0.97, 95% CI = 0.92 to 1.02) with unimportant heterogeneity (Q(25) = 26.48, p = .38, I2 = 0.00%). Trim-and-fill-adjusted effect size was unimportantly changed and level of evidence was graded as high. Trial sequential analysis (TSA) indicated information size was adequate and CPT was futile. Seventeen trials involving 16,083 patients were included in meta-analysis for need of IMV. There was no statistically significant effect of CPT (RR = 1.02, 95% CI = 0.95 to 1.10) with unimportant heterogeneity (Q(16) = 9.43, p = .89, I2 = 3.30%). Trim-and-fill-adjusted effect size was trivially changed and level of evidence was graded as high. TSA showed information size was adequate and indicated futility of CPT. It is concluded with high level of certainty that CPT added to standard treatment of COVID-19 is not associated with reduced mortality or need of IMV compared with standard treatment alone. In view of these findings, further trials on efficacy of CPT in COVID-19 patients are probably not needed.
Collapse
Affiliation(s)
- Sameh M Hakim
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt.
| | - Ghosoun M A Chikhouni
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Mona A Ammar
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Akram M Amer
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| |
Collapse
|
16
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
17
|
Rethinking the role of COVID-19 convalescent plasma in the critically ill. Transfus Apher Sci 2023; 62:103521. [PMID: 35941021 PMCID: PMC9351135 DOI: 10.1016/j.transci.2022.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
18
|
Deng J, Heybati K, Ramaraju HB, Zhou F, Rayner D, Heybati S. Differential efficacy and safety of anti-SARS-CoV-2 antibody therapies for the management of COVID-19: a systematic review and network meta-analysis. Infection 2023; 51:21-35. [PMID: 35438413 PMCID: PMC9016212 DOI: 10.1007/s15010-022-01825-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess and compare the relative efficacy and safety of anti-SARS-CoV-2 antibody regimens for COVID-19. METHODS This systematic review and random-effects network meta-analysis was conducted according to PRISMA-NMA. Literature searches were conducted across MEDLINE, EMBASE, PubMed, Web of Science, CENTRAL, and CNKI up to February 20th, 2022. Interventions were ranked using P scores. RESULTS Fifty-five RCTs (N = 45,005) were included in the review. Bamlanivimab + etesevimab (OR 0.13, 95% CI 0.02-0.77) was associated with a significant reduction in mortality compared to standard of care/placebo. Casirivimab + imdevimab reduced mortality (OR 0.67, 95% CI 0.50-0.91) in baseline seronegative patients only. Four different regimens led to a significant decrease in the incidence of hospitalization compared to standard of care/placebo with sotrovimab ranking first in terms of efficacy (OR 0.20, 95% CI 0.08-0.48). No treatment improved incidence of mechanical ventilation, duration of hospital/ICU stay, and time to viral clearance. Convalescent plasma and anti-COVID IVIg both led to a significant increase in adverse events compared to standard of care/placebo, but no treatment increased the odds of serious adverse events. CONCLUSION Anti-SARS-CoV-2 mAbs are safe, and could be effective in improving mortality and incidence of hospitalization. Convalescent plasma and anti-COVID IVIg were not efficacious and could increase odds of adverse events. Future trials should further examine the effect of baseline seronegativity, disease severity, patient risk factors, and SARS-CoV-2 strain variation on the efficacy of these regimes. REGISTRATION PROSPERO-CRD42021289903.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
| | - Kiyan Heybati
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Daniel Rayner
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Shayan Heybati
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
19
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 2:CD013600. [PMID: 36734509 PMCID: PMC9891348 DOI: 10.1002/14651858.cd013600.pub5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Li N, Zeller MP, Shih AW, Heddle NM, St John M, Bégin P, Callum J, Arnold DM, Akbari-Moghaddam M, Down DG, Jamula E, Devine DV, Tinmouth A. A data-informed system to manage scarce blood product allocation in a randomized controlled trial of convalescent plasma. Transfusion 2022; 62:2525-2538. [PMID: 36285763 DOI: 10.1111/trf.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Equitable allocation of scarce blood products needed for a randomized controlled trial (RCT) is a complex decision-making process within the blood supply chain. Strategies to improve resource allocation in this setting are lacking. METHODS We designed a custom-made, computerized system to manage the inventory and allocation of COVID-19 convalescent plasma (CCP) in a multi-site RCT, CONCOR-1. A hub-and-spoke distribution model enabled real-time inventory monitoring and assignment for randomization. A live CCP inventory system using REDCap was programmed for spoke sites to reserve, assign, and order CCP from hospital hubs. A data-driven mixed-integer programming model with supply and demand forecasting was developed to guide the equitable allocation of CCP at hubs across Canada (excluding Québec). RESULTS 18/38 hospital study sites were hubs with a median of 2 spoke sites per hub. A total of 394.5 500-ml doses of CCP were distributed; 349.5 (88.6%) doses were transfused; 9.5 (2.4%) were wasted due to mechanical damage sustained to the blood bags; 35.5 (9.0%) were unused at the end of the trial. Due to supply shortages, 53/394.5 (13.4%) doses were imported from Héma-Québec to Canadian Blood Services (CBS), and 125 (31.7%) were transferred between CBS regional distribution centers to meet demand. 137/349.5 (39.2%) and 212.5 (60.8%) doses were transfused at hubs and spoke sites, respectively. The mean percentages of total unmet demand were similar across the hubs, indicating equitable allocation, using our model. CONCLUSION Computerized tools can provide efficient and immediate solutions for equitable allocation decisions of scarce blood products in RCTs.
Collapse
Affiliation(s)
- Na Li
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada
| | - Michelle P Zeller
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Ottawa, Ontario, Canada
| | - Andrew W Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy M Heddle
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Ottawa, Ontario, Canada
| | - Melanie St John
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philippe Bégin
- Section of Allergy, Immunology and Rheumatology, Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada.,Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Donald M Arnold
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Ottawa, Ontario, Canada
| | - Maryam Akbari-Moghaddam
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Douglas G Down
- Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada
| | - Erin Jamula
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Alan Tinmouth
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Kiss-Dala N, Szabo BG, Lakatos B, Reti M, Szlavik J, Valyi-Nagy I. Use of convalescent plasma therapy in hospitalised adult patients with non-critical COVID-19: a focus on the elderly from Hungary. GeroScience 2022; 44:2427-2445. [PMID: 36367599 PMCID: PMC9650173 DOI: 10.1007/s11357-022-00683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Collapse
Affiliation(s)
- Noemi Kiss-Dala
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary.
| | - Balint Gergely Szabo
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Marienn Reti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Janos Szlavik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Istvan Valyi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| |
Collapse
|
22
|
Haddad F, Dokmak G, Karaman R. A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life (Basel) 2022; 12:1758. [PMID: 36362912 PMCID: PMC9692303 DOI: 10.3390/life12111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, the coronavirus disease-2019 (COVID-19), and the cause of the pandemic is extremely contagious among people and has spread around the world. Antivirals, immunomodulators, and other medications, such as antibiotics, stem cells, and plasma therapy, have all been utilized in the treatment of COVID-19. To better understand the clinical efficacy of these agents and to aid in the selection of effective COVID-19 therapies in various countries, this study reviewed the effectiveness of the various pharmacologic agents that have been used for COVID-19 therapy globally by summarizing the clinical outcomes that have been obtained from the clinical trials published on each drug related to COVID-19 infection. The Food and Drug Administration (FDA) has authorized the use of remdesivir, paxlovid, molnupiravir, baricitinib, tixagevimab-cilgavimab, and bebtelovimab for the management of COVID-19. On the other hand, most research advises against using chloroquine and hydroxychloroquine to treat COVID-19 patients because they are not beneficial. Although the FDA has given emergency use authorization for some monoclonal antibodies, including bamlanivimab, etesevimab, casirivimab, and imdevimab for managing COVID-19, they are not currently approved for use because the Omicron variant has significantly reduced their in vitro susceptibility. In this study, we also included a wide range of alternative therapy strategies that effectively treat COVID-19 patients, although further randomized studies are necessary to support and assess their applicability.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
23
|
Bartelt LA, Markmann AJ, Nelson B, Keys J, Root H, Henderson HI, Kuruc J, Baker C, Bhowmik DR, Hou YJ, Premkumar L, Cornaby C, Schmitz JL, Weiss S, Park Y, Baric R, de Silva AM, Lachiewicz A, Napravnik S, van Duin D, Margolis DM. Outcomes of Convalescent Plasma with Defined High versus Lower Neutralizing Antibody Titers against SARS-CoV-2 among Hospitalized Patients: CoronaVirus Inactivating Plasma (CoVIP) Study. mBio 2022; 13:e0175122. [PMID: 36135380 PMCID: PMC9601237 DOI: 10.1128/mbio.01751-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for <10 days were eligible. Participants received either CCP with nAb titers of >1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray's P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher's P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507). IMPORTANCE In this study, in a high-risk population of patients admitted for COVID-19, we found an earlier time to hospital discharge among participants receiving CCP with nAb titers of >1:640 compared with participants receiving CCP with a lower nAb titer and no CCP-related AEs. The significance of our research is in identifying a dose response of CCP and clinical outcomes based on nAb titer. Although limited by a small study size, these findings support further study of high-nAb-titer CCP defined as >1:640 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alena J. Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Bridget Nelson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jessica Keys
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Heather Root
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- The AIDS Center at Montefiore, Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York, USA
| | - Heather I. Henderson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - JoAnn Kuruc
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D. Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caleb Cornaby
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John L. Schmitz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Susan Weiss
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology, Carolinas Pathology Group, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Yara Park
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Lachiewicz
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sonia Napravnik
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David van Duin
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Efficacy and Safety of Convalescence Plasma Therapy in COVID-19 Patients: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7670817. [PMID: 36248407 PMCID: PMC9568297 DOI: 10.1155/2022/7670817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Background The coronavirus disease 2019 (COVID-19) has outbroken into a global pandemic. The death rate for hospital patients varied between 11% and 15%. Although COVID-19 is extremely contagious and has a high fatality rate, the amount of knowledge available in the published literature and public sources is rapidly growing. The efficacy of convalescent plasma (CP) therapy for COVID-19 is controversial. Objective This meta-analysis was designed to assess the efficacy of CP therapy for COVID-19 through a literature survey. Methods Until August 30, 2021, a literature search was undertaken in Pubmed, Embase, Web of Science, Cochrane Central Register of Controlling Trials (Central), and China National Knowledge Infrastructure databases. The Risk Ratio (RR) and 95% confidence intervals (CIs) were pooled using a fixed or random effect model in dichotomous data. Mean difference (MD) and 95% confidence intervals (CIs) were pooled using a fixed or random effect model in continuous data. Studies with missing or unsuitable data were presented descriptively in the outcomes. Results In total, thirteen randomized controlled trials (RCTs) were selected for the present meta-analysis, which included a total of 13232 participants. Our results revealed that the CP group has lower mortality compared to the control group, and there was a statistically significant difference (RR: 0.70, 95% CI: 0.55, 0.89, Z = 2.92, P = 0.004 < 0.01); other secondary outcomes such as the shortness of breath symptom improved significantly in CP group (RR:1.48, 95% CI: 1.13, 1.93, Z = 2.85, P = 0.004 < 0.01), as well as Interleukin-6 (IL-6) (MD: -4.46, 95% CI: -8.28, -0.63, Z = 2.28, P = 0.02 < 0.05) and Ferritin (MD: -447.68, 95% CI: -501.75, -393.6, Z = 16.23, P < 0.00001) are reduced significantly in CP group. However, there was no statistically significant change in the ventilator withdrawal rate, imaging results improvement, or days to hospital discharge. There was also no substantial difference in viral nucleic acid negative conversion rate and neutralizing antibody-positive conversion rate, as well as the incidence of adverse reactions. Conclusions The safety and potential efficacy of convalescent plasma therapy offer a promising treatment strategy for COVID-19. CP therapy can reduce mortality and improve breath and inflammatory cytokines IL-6 and Ferritin in COVID-19 with no significant increase in adverse reactions. However, it does not affect improving virology indicators. In summary, more high-quality clinical trials are needed to verify the conclusion of the present study.
Collapse
|
25
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Estcourt LJ, Cohn CS, Pagano MB, Iannizzi C, Kreuzberger N, Skoetz N, Allen ES, Bloch EM, Beaudoin G, Casadevall A, Devine DV, Foroutan F, Gniadek TJ, Goel R, Gorlin J, Grossman BJ, Joyner MJ, Metcalf RA, Raval JS, Rice TW, Shaz BH, Vassallo RR, Winters JL, Tobian AAR. Clinical Practice Guidelines From the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 Convalescent Plasma. Ann Intern Med 2022; 175:1310-1321. [PMID: 35969859 PMCID: PMC9450870 DOI: 10.7326/m22-1079] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DESCRIPTION Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT) The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS) The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and Transplant and Radcliffe Department of Medicine, University of Oxford, United Kingdom (L.J.E.)
| | - Claudia S Cohn
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, Minnesota (C.S.C.)
| | - Monica B Pagano
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington (M.B.P.)
| | - Claire Iannizzi
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nina Kreuzberger
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nicole Skoetz
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Elizabeth S Allen
- University of California San Diego, Department of Pathology, La Jolla, California (E.S.A.)
| | - Evan M Bloch
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | | | - Arturo Casadevall
- The Johns Hopkins University School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland (A.C.)
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada (D.V.D.)
| | - Farid Foroutan
- University Health Network, Ted Rogers Centre for Heart Research, Toronto, and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (F.F.)
| | - Thomas J Gniadek
- NorthShore University Health System, Department of Pathology and Laboratory Medicine, Evanston, Illinois (T.J.G.)
| | - Ruchika Goel
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | - Jed Gorlin
- Innovative Blood Resources, Division of New York Blood Center Enterprises, St. Paul, Minnesota (J.G.)
| | - Brenda J Grossman
- Washington University in St. Louis School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri (B.J.G.)
| | - Michael J Joyner
- Mayo Clinic, Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota (M.J.J.)
| | - Ryan A Metcalf
- University of Utah, Department of Pathology, Salt Lake City, Utah (R.A.M.)
| | - Jay S Raval
- University of New Mexico, Department of Pathology, Albuquerque, New Mexico (J.S.R.)
| | - Todd W Rice
- Vanderbilt University Medical Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Nashville, Tennessee (T.W.R.)
| | - Beth H Shaz
- Duke University, Department of Pathology, Durham, North Carolina (B.H.S.)
| | | | - Jeffrey L Winters
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota (J.L.W.)
| | - Aaron A R Tobian
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| |
Collapse
|
27
|
Lee HJ, Lee JH, Cho Y, Ngoc LTN, Lee YC. Efficacy and Safety of COVID-19 Treatment Using Convalescent Plasma Transfusion: Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10622. [PMID: 36078338 PMCID: PMC9518594 DOI: 10.3390/ijerph191710622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the efficacy and safety of convalescent plasma (CP) transfusion against the coronavirus disease 2019 (COVID-19) via a systematic review and meta-analysis of randomized controlled trials (RCTs). A total of 5467 articles obtained from electronic databases were assessed; however, only 34 RCTs were eligible after manually screening and eliminating unnecessary studies. The beneficial effect was addressed by assessing the risk ratio (RR) and standardized mean differences (SMDs) of the meta-analysis. It was demonstrated that CP therapy is not effective in improving clinical outcomes, including reducing mortality with an RR of 0.88 [0.76; 1.03] (I2 = 68% and p = 0.10) and length of hospitalization with SMD of -0.47 [-0.95; 0.00] (I2 = 99% and p = 0.05). Subgroup analysis provided strong evidence that CP transfusion does not significantly reduce all-cause mortality compared to standard of care (SOC) with an RR of 1.01 [0.99; 1.03] (I2 = 70% and p = 0.33). In addition, CP was found to be safe for and well-tolerated by COVID-19 patients as was the SOC in healthcare settings. Overall, the results suggest that CP should not be applied outside of randomized trials because of less benefit in improving clinical outcomes for COVID-19 treatment.
Collapse
Affiliation(s)
- Hyun-Jun Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Jun-Hyeong Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Yejin Cho
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Le Thi Nhu Ngoc
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| |
Collapse
|
28
|
Convalescent Plasma for COVID-19: A Single Center Prospective Experience with Serial Antibody Measurements and Review of the Literature. Pathogens 2022; 11:pathogens11090958. [PMID: 36145390 PMCID: PMC9503397 DOI: 10.3390/pathogens11090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background: High-titer convalescent plasma given early for COVID-19 may decrease progression into a severe infection. Here, we reported a study of serial antibody measurements in patients who received CP at our center and performed a systematic review of randomized trials on CP. Methods: Our center participated in the Mayo Clinic Expanded Access Program for COVID-19 Convalescent Plasma. Patients diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction at our center between April and August 2020 were included in the study if staffing was available for specimen collection. Through a colloidal gold immunochromatography assay, these patients’ IgM and IgG antibody responses were measured at baseline (Day 0) and after transfusion (Day 1, 2, etc.). Donor CP antibody levels were measured as well. Results: 110 serum specimens were obtained from 21 COVID-19 patients, 16 of whom received CP. The median time from developing symptoms to receiving CP was 11 days (range 4−21). In 9 of 14 (64%) cases where both recipient and donor CP antibody levels were tested, donor COVID-19 IgG was lower than that of the recipient. Higher donor antibody levels compared with the recipient (R = 0.71, p < 0.01) and low patient IgG before CP transfusion (p = 0.0108) correlated with increasing patient IgG levels from baseline to Day 1. Among all patients, an increased COVID-19 IgG in the short-term and longitudinally was positively correlated with improved clinical outcomes (ρ = 0.69, p = 0.003 and ρ = 0.58, p < 0.006, respectively). Conclusions: In a real-world setting where donor CP was not screened for the presence of antibodies, CP in donors might have less COVID-19 IgG than in recipients. An increase in patient antibody levels in the short term and longitudinally was associated with improved clinical outcomes.
Collapse
|
29
|
Qian Z, Zhang Z, Ma H, Shao S, Kang H, Tong Z. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front Immunol 2022; 13:964398. [PMID: 35967398 PMCID: PMC9366612 DOI: 10.3389/fimmu.2022.964398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to assess whether convalescent plasma therapy could offer survival advantages for patients with novel coronavirus disease 2019 (COVID-19). An electronic search of Pubmed, Web of Science, Embase, Cochrane library and MedRxiv was performed from January 1st, 2020 to April 1st, 2022. We included studies containing patients with COVID-19 and treated with CCP. Data were independently extracted by two reviewers and synthesized with a random-effect analysis model. The primary outcome was 28-d mortality. Secondary outcomes included length of hospital stay, ventilation-free days, 14-d mortality, improvements of symptoms, progression of diseases and requirements of mechanical ventilation. Safety outcomes included the incidence of all adverse events (AEs) and serious adverse events (SAEs). The Cochrane risk-of-bias assessment tool 2.0 was used to assess the potential risk of bias in eligible studies. The heterogeneity of results was assessed by I^2 test and Q statistic test. The possibility of publication bias was assessed by conducting Begg and Egger test. GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used for quality of evidence. This study had been registered on PROSPERO, CRD42021273608. 32 RCTs comprising 21478 patients with Covid-19 were included. Compared to the control group, COVID-19 patients receiving CCP were not associated with significantly reduced 28-d mortality (CCP 20.0% vs control 20.8%; risk ratio 0.94; 95% CI 0.87-1.02; p = 0.16; I² = 8%). For all secondary outcomes, there were no significant differences between CCP group and control group. The incidence of AEs (26.9% vs 19.4%,; risk ratio 1.14; 95% CI 0.99-01.31; p = 0.06; I² = 38%) and SAEs (16.3% vs 13.5%; risk ratio 1.03; 95% CI 0.87-1.20; p = 0.76; I² = 42%) tended to be higher in the CCP group compared to the control group, while the differences did not reach statistical significance. In all, CCP therapy was not related to significantly improved 28-d mortality or symptoms recovery, and should not be viewed as a routine treatment for COVID-19 patients. Trial registration number CRD42021273608. Registration on February 28, 2022. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier CRD42022313265.
Collapse
Affiliation(s)
- Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Metcalf RA, Cohn CS, Allen ES, Bakhtary S, Gniadek T, Gupta G, Harm S, Haspel R, Hess A, Jacobson J, Lokhandwala PM, Murphy C, Poston J, Prochaska MT, Raval JS, Saifee NH, Salazar E, Shan H, Zantek N, Pagano MB. Current advances in transfusion medicine 2021: A critical review of selected topics by the AABB Clinical Transfusion Medicine Committee. Transfusion 2022; 62:1435-1445. [PMID: 35713186 DOI: 10.1111/trf.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Each year the AABB Clinical Transfusion Medicine Committee (CTMC) procures a synopsis highlighting new, important, and clinically relevant studies in the field of transfusion medicine (TM). This has been made available as a publication in Transfusion since 2018. METHODS CTMC members reviewed and identified original manuscripts covering TM-related topics published electronically (ahead-of-print) or in print from December 2020 to December 2021. Selection of publications was discussed at committee meetings and chosen based on perceived relevance and originality. Next, committee members worked in pairs to create a synopsis of each topic, which was then reviewed by additional committee members. The first and senior authors assembled the final manuscript. Although this synopsis is extensive, it is not exhaustive, and some articles may have been excluded or missed. RESULTS The following topics are included: blood products; convalescent plasma; donor collections and testing; hemoglobinopathies; immunohematology and genomics; hemostasis; patient blood management; pediatrics; therapeutic apheresis; and cell therapy. CONCLUSIONS This synopsis highlights and summarizes recent key developments in TM and may be useful for educational purposes.
Collapse
Affiliation(s)
- Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Gniadek
- Department of Pathology, NorthShore University Health System, Chicago, Illinois, USA
| | - Gaurav Gupta
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Harm
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard Haspel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Aaron Hess
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica Jacobson
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Colin Murphy
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Jacqueline Poston
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eric Salazar
- Department of Pathology, UT Health San Antonio, San Antonio, Texas, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Nichole Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Monica B Pagano
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Belov A, Huang Y, Villa CH, Whitaker BI, Forshee R, Anderson SA, Eder A, Verdun N, Joyner MJ, Wright SR, Carter RE, Hung DT, Homer M, Hoffman C, Lauer M, Marks P. Early administration of COVID-19 convalescent plasma with high titer antibody content by live viral neutralization assay is associated with modest clinical efficacy. Am J Hematol 2022; 97:770-779. [PMID: 35303377 PMCID: PMC9082011 DOI: 10.1002/ajh.26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
The efficacy of COVID‐19 convalescent plasma (CCP) as a treatment for hospitalized patients with COVID‐19 remains somewhat controversial; however, many studies have not evaluated CCP documented to have high neutralizing antibody titer by a highly accurate assay. To evaluate the correlation of the administration of CCP with titer determined by a live viral neutralization assay with 7‐ and 28‐day death rates during hospitalization, a total of 23 118 patients receiving a single unit of CCP were stratified into two groups: those receiving high titer CCP (>250 50% inhibitory dilution, ID50; n = 13 636) or low titer CCP (≤250 ID50; n = 9482). Multivariable Cox regression was performed to assess risk factors. Non‐intubated patients who were transfused with high titer CCP showed 1.1% and 1.7% absolute reductions in overall 7‐ and 28‐day death rates, respectively, compared to those non‐intubated patients receiving low titer CCP. No benefit of CCP was observed in intubated patients. The relative benefit of high titer CCP was confirmed in multivariable Cox regression. Administration of CCP with high titer antibody content determined by live viral neutralization assay to non‐intubated patients is associated with modest clinical efficacy. Although shown to be only of modest clinical benefit, CCP may play a role in the future should viral variants develop that are not neutralized by other available therapeutics.
Collapse
Affiliation(s)
- Artur Belov
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Yin Huang
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Carlos H. Villa
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Barbee I. Whitaker
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Richard Forshee
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Steven A. Anderson
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Anne Eder
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Nicole Verdun
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Minnesota USA
| | - Scott R. Wright
- Department of Cardiology and the Human Research Protection Program Mayo Clinic Rochester Minnesota USA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences Mayo Clinic Jacksonville Florida USA
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program Broad Institute Cambridge Massachusetts USA
| | - Mary Homer
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Corey Hoffman
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Michael Lauer
- Office of the Director National Institutes of Health Bethesda Maryland USA
| | - Peter Marks
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | | |
Collapse
|
32
|
Sanz C, Nomdedeu M, Pereira A, Sauleda S, Alonso R, Bes M, Brillembourg H, García‐Vidal C, Millan A, Martínez‐Llonch N, Pirón M, Puerta‐Alcalde P, Puig L, Rico V, Soriano A. Efficacy of early transfusion of convalescent plasma with high-titer SARS-CoV-2 neutralizing antibodies in hospitalized patients with COVID-19. Transfusion 2022; 62:974-981. [PMID: 35338710 PMCID: PMC9115410 DOI: 10.1111/trf.16863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite most controlled trials have shown no measurable benefit of COVID-19 convalescent plasma (CCP) in patients with COVID-19, some studies suggest that early administration of CCP with high-titer anti-SARS-CoV-2 can be beneficial in selected patients. We investigated the efficacy of early administration of high-titer CCP to patients with COVID-19 who required hospitalization, STUDY DESIGN AND METHODS: Observational, propensity score (PS) matched case-control study of COVID-19 patients treated with CCP within 72 h of hospital admission and untreated controls from August 2020 to February 2021. All CCP donations had a Euroimmun anti-SARS-CoV-2 sample-to-cutoff ratio ≥3. PS matching was based on prognostic factors and presented features with high-standardized differences between the treated and control groups. The primary endpoint was mortality within 30 days of diagnosis. RESULTS A total of 1604 patients were analyzed, 261 of whom received CCP, most (82%) within 24 h after admission. Median age was 67 years (interquartile range: 56-79), and 953 (60%) were men. Presenting factors independently associated with higher 30-day mortality were increased age, cardiac disease, hypoxemic respiratory failure, renal failure, and plasma d-dimer >700 ng/ml. After PS matching, transfusion of CCP was associated with a significant reduction in the 30-day mortality rate (odds ratio [OR]; 0.94, 95% confidence interval [CI]: 0.91-0.98; p = .001) that extended to the 60th day after COVID-19 diagnosis (OR: 0.95; 95% CI: 0.92-0.99; p = .01). CONCLUSION Our results suggest that CCP can still be helpful in selected patients with COVID-19 and call for further studies before withdrawing CCP from the COVID-19 therapeutic armamentarium.
Collapse
Affiliation(s)
- Cristina Sanz
- Blood Bank and Transfusion ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - Meritxell Nomdedeu
- Hemathology and Hemotherapy ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - Arturo Pereira
- Blood Bank and Transfusion ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | | | - Rodrigo Alonso
- Infectious Diseases DepartmentHospital Clínic‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Marta Bes
- Banc de Sang i TeixitsBarcelonaSpain
| | - Helena Brillembourg
- Blood Bank and Transfusion ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - Carolina García‐Vidal
- Infectious Diseases DepartmentHospital Clínic‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | | | | | | | - Pedro Puerta‐Alcalde
- Infectious Diseases DepartmentHospital Clínic‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | | | - Veronica Rico
- Infectious Diseases DepartmentHospital Clínic‐IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Alex Soriano
- Infectious Diseases DepartmentHospital Clínic‐IDIBAPS, University of BarcelonaBarcelonaSpain
| |
Collapse
|
33
|
Jorda A, Kussmann M, Kolenchery N, Siller-Matula JM, Zeitlinger M, Jilma B, Gelbenegger G. Convalescent Plasma Treatment in Patients with Covid-19: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:817829. [PMID: 35197981 PMCID: PMC8859444 DOI: 10.3389/fimmu.2022.817829] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Convalescent plasma is a suggested treatment for Coronavirus disease 2019 (Covid-19), but its efficacy is uncertain. We aimed to evaluate whether the use of convalescent plasma is associated with improved clinical outcomes in patients with Covid-19.In this systematic review and meta-analysis, we searched randomized controlled trials investigating the use of convalescent plasma in patients with Covid-19 in Medline, Embase, Web of Science, Cochrane Library, and medRxiv from inception to October 17th, 2021. Two reviewers independently extracted the data. The primary efficacy outcome was all-cause mortality. The Cochrane Risk of Bias Tool and GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used. This study was registered with PROSPERO, CRD42021284861. Of the 8874 studies identified in the initial search, sixteen trials comprising 16 317 patients with Covid-19 were included. In the overall population, the all-cause mortality was 23.8% (2025 of 8524) with convalescent plasma and 24.4% (1903 of 7769) with standard of care (risk ratio (RR) 0.97, 95% CI 0.90-1.04) (high-certainty evidence). All-cause mortality did not differ in the subgroups of noncritically ill (21.7% [1288 of 5929] vs. 22.4% [1320 of 5882]) and critically ill (36.9% [518 of 1404] vs. 36.4% [455 of 1247]) patients with Covid-19. The use of convalescent plasma in patients who tested negative for anti-SARS-CoV-2 antibodies at baseline was not associated with significantly improved survival (RR 0.94, 95% CI 0.87-1.02). In the overall study population, initiation of mechanical ventilation (RR 0.97, 95% CI 0.88-1.07), time to clinical improvement (HR 1.09, 95% CI 0.91-1.30), and time to discharge (HR 0.95, 95% CI 0.89-1.02) were similar between the two groups. In patients with Covid-19, treatment with convalescent plasma, as compared with control, was not associated with lower all-cause mortality or improved disease progression, irrespective of disease severity and baseline antibody status. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42021284861).
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Kussmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nebu Kolenchery
- Department of Public Health, Saint Louis County, St. Louis, MO, United States
| | - Jolanta M. Siller-Matula
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Baldeón ME, Maldonado A, Ochoa-Andrade M, Largo C, Pesantez M, Herdoiza M, Granja G, Bonifaz M, Espejo H, Mora F, Abril-López P, Armijo LKR, Pacheco V, Salazar R, Reinthaller S, Zertuche F, Fornasini M. Effect of convalescent plasma as complementary treatment in patients with moderate COVID-19 infection. Transfus Med 2022; 32:153-161. [PMID: 35001439 DOI: 10.1111/tme.12851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION South America is one of the regions most affected by the COVID-19 pandemic. Specific and affordable treatments are needed to treat SARS-CoV-2 infection. Evidence regarding the use of convalescent plasma in COVID-19 patients is still limited. We compared the safety and efficacy of COVID-19-convalescent plasma administration as a complement to standard treatment in the early management of patients with moderate SARS-CoV-2 infection. METHODS We carried out a random double blinded, placebo-controlled trial that compared standard treatment plus convalescent plasma (CP) or plus non-convalescent plasma in the management of COVID-19 patients. The main outcome was survival and secondary endpoints included: length of hospitalisation (LOH), days from treatment to discharge, time to clinical improvement or death within a 28-day period, and adverse reactions to treatment. RESULTS Administration of CP with antibodies against SARS-CoV-2 did not affect patient survival, RR = 1.003, 95% CI (0.3938, 2.555). These results led to terminate the RCT prematurely. However, early treatment of COVID-19 patients with CP tended to decrease the LOH while the delay in CP treatment was associated with longer hospitalisation. In addition, delay in CP treatment negatively affected the recovery of the respiratory rate. CONCLUSION Use of CP for the treatment of COVID-19 patients is safe and its early use can decrease the LOH and improve respiratory function. Early administration of antibody-rich CP could contribute to decrease the negative impact of COVID-19 pandemic in patients with impaired immune response.
Collapse
Affiliation(s)
- Manuel E Baldeón
- Escuela de Medicina, Facultad de Ciencias Médicas, de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Augusto Maldonado
- Escuela de Medicina, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador.,Ministerio de Salud Pública, Coordinación Zonal 9, Hospital General Docente de Calderón, Quito, Ecuador
| | - Miguel Ochoa-Andrade
- Instituto Ecuatoriano de Seguridad Social, Hospital General Quito Sur - IESS, Quito, Ecuador
| | - Carolina Largo
- Ministerio de Salud Pública, Coordinación Zonal 9, Hospital General Docente de Calderón, Quito, Ecuador
| | | | | | - Gerardo Granja
- Instituto Ecuatoriano de Seguridad Social, Hospital General Quito Sur - IESS, Quito, Ecuador
| | - Marco Bonifaz
- Instituto Ecuatoriano de Seguridad Social, Hospital General Quito Sur - IESS, Quito, Ecuador
| | - Hugo Espejo
- Instituto Ecuatoriano de Seguridad Social, Hospital General Quito Sur - IESS, Quito, Ecuador
| | - Francisco Mora
- Instituto Ecuatoriano de Seguridad Social, Hospital General Quito Sur - IESS, Quito, Ecuador
| | - Patricio Abril-López
- Ministerio de Salud Pública, Coordinación Zonal 9, Hospital General Docente de Calderón, Quito, Ecuador
| | | | - Verónica Pacheco
- Ministerio de Salud Pública, Coordinación Zonal 9, Hospital Pablo Arturo Suarez, Quito, Ecuador
| | - Rafael Salazar
- Ministerio de Salud Pública, Coordinación Zonal 9, Hospital Pablo Arturo Suarez, Quito, Ecuador
| | - Steffy Reinthaller
- Ministerio de Salud Pública, Coordinación Zonal 9, Hospital Pablo Arturo Suarez, Quito, Ecuador
| | - Federico Zertuche
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Marco Fornasini
- Escuela de Medicina, Facultad de Ciencias Médicas, de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
35
|
Ling RR, Sim JJL, Tan FL, Tai BC, Syn N, Mucheli SS, Fan BE, Mitra S, Ramanathan K. Convalescent Plasma for Patients Hospitalized With Coronavirus Disease 2019: A Meta-Analysis With Trial Sequential Analysis of Randomized Controlled Trials. Transfus Med Rev 2022; 36:16-26. [PMID: 34782209 PMCID: PMC8502250 DOI: 10.1016/j.tmrv.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023]
Abstract
Current evidence from randomized controlled trials (RCTs) and systematic reviews on the utility of convalescent plasma (CP) in patients with coronavirus disease 2019 (COVID-19) suggests a lack of benefit. We conducted an updated meta-analysis of RCTs with trial sequential analysis to investigate whether convalescent plasma is futile in reducing mortality in patients hospitalized with COVID-19. We searched 6 databases from December 1, 2019 to August 1, 2021 for RCTs comparing the use of CP with standard of care or transfusion of non-CP standard plasma in patients with COVID-19. The risk of bias was assessed using the Cochrane Risk-of-Bias 2 Tool. Random effects (DerSimonian and Laird) meta-analyses were conducted. The primary outcome was the aggregate risk for in-hospital mortality between both arms. We conducted a trial sequential analysis (TSA) based on the pooled relative risks (RRs) for in-hospital mortality. Secondary outcomes included the pooled RR for receipt of mechanical ventilation and mean difference in hospital length of stay. We included 18 RCTs (8702 CP, 7906 control). CP was not associated with a significant mortality benefit (RR: 0.95, 95%-CI: 0.86-1.04, P = .27, high certainty). Subgroup analysis did not find any significant differences (pinteraction = 0.30) between patients who received CP within 8 days of symptom onset (RR: 0.97, 95%-CI: 0.79-1.19, P = .80), or after 8 days (RR: 0.79, 95%-CI: 0.57-1.10, P = .16). TSA based on a RR reduction of 10% from a baseline mortality of 20% found that CP was not effective, with the pooled effect within the boundary for futility. CP did not significantly reduce the requirement for mechanical ventilation (RR: 1.00, 95%-CI: 0.91-1.10, P = .99, moderate certainty) or hospital length of stay (+1.32, 95%-CI: -1.86 to +4.52, P = .42, low certainty). CP does not improve relevant clinical outcomes in patients with COVID-19, especially in severe disease. The pooled effect of mortality was within the boundary of futility, suggesting the lack of benefit of CP in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Jackie Jia Lin Sim
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Felicia Liying Tan
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Bee Choo Tai
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Sharavan Sadasiv Mucheli
- Department of Infectious Diseases, Tan Tock Seng Hospital, National Centre for Infectious Diseases, Singapore
| | | | - Saikat Mitra
- Lyell McEwin Hospital, Adelaide, South Australia, Australia
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Cardiothoracic Intensive Care Unit, National University Heart Centre, National University Hospital, Singapore.
| |
Collapse
|
36
|
Estcourt LJ. Passive immune therapies: another tool against COVID-19. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:628-641. [PMID: 34889410 PMCID: PMC8791113 DOI: 10.1182/hematology.2021000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Passive immune therapy consists of several different therapies, convalescent plasma, hyperimmune globulin, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing monoclonal antibodies. Although these treatments were not part of any pandemic planning prior to coronavirus disease 2019 (COVID-19), due to the absence of high-quality evidence demonstrating benefit in other severe respiratory infections, a large amount of research has now been performed to demonstrate their benefit or lack of benefit in different patient groups. This review summarizes the evidence up to July 2021 on their use and also when they should not be used or when additional data are required. Vaccination against SARS-CoV-2 is the most important method of preventing severe and fatal COVID-19 in people who have an intact immune system. Passive immune therapy should only be considered for patients at high risk of severe or fatal COVID-19. The only therapy that has received full regulatory approval is the casirivimab/imdevimab monoclonal cocktail; all other treatments are being used under emergency use authorizations. In Japan, it has been licensed to treat patients with mild to moderate COVID-19, and in the United Kingdom, it has also been licensed to prevent infection.
Collapse
|
37
|
Focosi D, Franchini M, Pirofski LA, Maggi F, Casadevall A. Is SARS-CoV-2 viral clearance in nasopharyngeal swabs an appropriate surrogate marker for clinical efficacy of neutralising antibody-based therapeutics? Rev Med Virol 2021; 32:e2314. [PMID: 34861088 DOI: 10.1002/rmv.2314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Viral clearance is likely the best way to assess the efficacy of antibody-based therapies. Although antibodies can mediate a variety of effects that include modulation of inflammation, the demonstration of viral clearance provides an accessible and measurable parameter that can be used to evaluate efficacy and determine dosing. Therefore, it is important to ascertain the ability of monoclonal antibodies and convalescent plasma to effect viral clearance. For COVID-19, which is caused by the respiratory virus SARS-CoV-2, the most common assay to assess viral clearance is via a nasopharyngeal swab (NPS). However, assessment of antibody efficacy by sampling this site may be misleading because it may not be as accessible to serum antibodies as respiratory secretions or circulating blood. Adding to the complexity of assessing the efficacy of administered antibody, particularly in randomised controlled trials (RCTs) that enroled patients at different times after the onset of COVID-19 symptoms, viral clearance may also be mediated by endogenous antibody. In this article we critically review available data on viral clearance in RCTs, matched control studies, case series and case reports of antibody therapies in an attempt to identify variables that contribute to antibody efficacy and suggest optimal strategies for future studies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, New York, USA
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Kloypan C, Saesong M, Sangsuemoon J, Chantharit P, Mongkhon P. CONVALESCENT plasma for COVID-19: A meta-analysis of clinical trials and real-world evidence. Eur J Clin Invest 2021; 51:e13663. [PMID: 34375445 PMCID: PMC8420367 DOI: 10.1111/eci.13663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is still a lack of consensus on the efficacy of convalescent plasma (CP) treatment in COVID-19 patients. We performed a systematic review and meta-analysis to investigate the efficacy of CP vs standard treatment/non-CP on clinical outcomes in COVID-19 patients. METHODS Cochrane Library, PubMed, EMBASE and ClinicalTrials.gov were searched from December 2019 to 16 July 2021, for data from clinical trials and observational studies. The primary outcome was all-cause mortality. Risk estimates were pooled using a random-effect model. Risk of bias was assessed by Cochrane Risk of Bias tool for clinical trials and Newcastle-Ottawa Scale for observational studies. RESULTS In total, 18 peer-reviewed clinical trials, 3 preprints and 26 observational studies met the inclusion criteria. In the meta-analysis of 18 peer-reviewed trials, CP use had a 31% reduced risk of all-cause mortality compared with standard treatment use (pooled risk ratio [RR] = 0.69, 95% confidence interval [CI]: 0.56-0.86, P = .001, I2 = 50.1%). Based on severity and region, CP treatment significantly reduced risk of all-cause mortality in patients with severe and critical disease and studies conducted in Asia, pooled RR = 0.61, 95% CI: 0.47-0.81, P = .001, I2 = 0.0%; pooled RR = 0.67, 95% CI: 0.49-0.92, P = .013, I2 = 0.0%; and pooled RR = 0.62, 95% CI: 0.48-0.80, P < .001, I2 = 20.3%, respectively. The meta-analysis of observational studies showed the similar results to the clinical trials. CONCLUSIONS Convalescent plasma use was associated with reduced risk of all-cause mortality in severe or critical COVID-19 patients. However, the findings were limited with a moderate degree of heterogeneity. Further studies with well-designed and larger sample size are needed.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Division of Clinical Immunology and Transfusion ScienceDepartment of Medical TechnologySchool of Allied Health SciencesUniversity of PhayaoPhayaoThailand
- Unit of Excellence in Integrative Molecular BiomedicineSchool of Allied Health SciencesUniversity of PhayaoPhayaoThailand
- Institute of Transfusion MedicineCharité Universitätsmedizin BerlinBerlinGermany
| | - Matthanaporn Saesong
- Division of Clinical Immunology and Transfusion ScienceDepartment of Medical TechnologySchool of Allied Health SciencesUniversity of PhayaoPhayaoThailand
| | - Juthamat Sangsuemoon
- Division of Clinical Immunology and Transfusion ScienceDepartment of Medical TechnologySchool of Allied Health SciencesUniversity of PhayaoPhayaoThailand
| | - Prawat Chantharit
- Division of Infectious DiseasesDepartment of MedicineFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Pajaree Mongkhon
- Division of Pharmacy PracticeDepartment of Pharmaceutical CareUnit of Excellence on Research in Health Outcomes and Patient Safety in ElderlySchool of Pharmaceutical SciencesUniversity of PhayaoPhayaoThailand
- Pharmacoepidemiology and Statistics Research CenterFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
39
|
Zhang C, Jin H, Wen YF, Yin G. Efficacy of COVID-19 Treatments: A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Front Public Health 2021; 9:729559. [PMID: 34650951 PMCID: PMC8506153 DOI: 10.3389/fpubh.2021.729559] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: We provided a comprehensive evaluation of efficacy of available treatments for coronavirus disease 2019 (COVID-19). Methods: We searched for candidate COVID-19 studies in WHO COVID-19 Global Research Database up to August 19, 2021. Randomized controlled trials for suspected or confirmed COVID-19 patients published on peer-reviewed journals were included, regardless of demographic characteristics. Outcome measures included mortality, mechanical ventilation, hospital discharge and viral clearance. Bayesian network meta-analysis with fixed effects was conducted to estimate the effect sizes using posterior means and 95% equal-tailed credible intervals (CrIs). Odds ratio (OR) was used as the summary measure for treatment effect. Bayesian hierarchical models were used to estimate effect sizes of treatments grouped by the treatment classifications. Results: We identified 222 eligible studies with a total of 102,950 patients. Compared with the standard of care, imatinib, intravenous immunoglobulin and tocilizumab led to lower risk of death; baricitinib plus remdesivir, colchicine, dexamethasone, recombinant human granulocyte colony stimulating factor and tocilizumab indicated lower occurrence of mechanical ventilation; tofacitinib, sarilumab, remdesivir, tocilizumab and baricitinib plus remdesivir increased the hospital discharge rate; convalescent plasma, ivermectin, ivermectin plus doxycycline, hydroxychloroquine, nitazoxanide and proxalutamide resulted in better viral clearance. From the treatment class level, we found that the use of antineoplastic agents was associated with fewer mortality cases, immunostimulants could reduce the risk of mechanical ventilation and immunosuppressants led to higher discharge rates. Conclusions: This network meta-analysis identified superiority of several COVID-19 treatments over the standard of care in terms of mortality, mechanical ventilation, hospital discharge and viral clearance. Tocilizumab showed its superiority compared with SOC on preventing severe outcomes such as death and mechanical ventilation as well as increasing the discharge rate, which might be an appropriate treatment for patients with severe or mild/moderate illness. We also found the clinical efficacy of antineoplastic agents, immunostimulants and immunosuppressants with respect to the endpoints of mortality, mechanical ventilation and discharge, which provides valuable information for the discovery of potential COVID-19 treatments.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Huaqing Jin
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Yi Feng Wen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Guosheng Yin
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China.,Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
40
|
Cao H, Ming L, Chen L, Zhu X, Shi Y. The Effectiveness of Convalescent Plasma for the Treatment of Novel Corona Virus Disease 2019: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:641429. [PMID: 34646833 PMCID: PMC8502818 DOI: 10.3389/fmed.2021.641429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19), sweeping across the world, has created a worldwide pandemic. Effective treatments of COVID-19 are extremely urgent. Objective: To analyze the efficacy and safety of convalescent plasma (CCP) on patients with COVID-19. Methods: All the relevant studies were searched from PubMed, EMBASE,Cochrane library, Scopus, Web of Science, CBM, CNKI, Wan fang, VIP, Medrxiv, Biorxiv, and SSRN on July 19, 2021. PICOS criteria were as follows: (P) the study interests were human subjects with the infection of COVID-19; (I) the intervention of interest was CCP; (C) comparator treatments contained placebo, sham therapy, and standard treatment; (O) the primary outcome was mortality rates by the novel coronavirus. The secondary outcomes included the incidence of serious adverse events, the rate of ICU admission and mechanical ventilation (MV); the length of hospital stay; the duration of MV and ICU stay; the antibody levels, inflammatory factor levels, and viral loads. (S) Only randomized controlled trials (RCTs) of CCP were included. Subanalysis, quality assessment, sensitive analysis, and publication bias were conducted by two reviewers independently. Results: Sixteen RCTs were included and enrolled a total of 16,296 participants in this meta-analysis. The pooled data showed that no significant difference was observed in reducing the rate of overall mortality between CCP treatment group and placebo group (OR 0.96; 95% CI 0.90 to 1.03; p = 0.30; I 2 = 6%). According to the results of subgroup analysis, severe or critical patients with CCP showed significant difference in reducing the 28-day mortality of compared with placebo (OR 0.58, 95% CI 0.36 to 0.93, p = 0.02, I 2 = 0%). CCP groups have a significantly shorter duration of MV compared with the control group (weighted MD -1.00, 95% CI -1.86 to -0.14 d p = 0.02, I 2 = 0%). No significant difference was observed in the length of hospital stay, the duration of ICU, and the rate of ICU and MV. There is no conclusive evidence about the safety of CCP. Conclusion: Convalescent plasma can significantly reduce the 28-day mortality of severe or critical COVID-19 patients and the duration of MV. However, more evidence was needed to prove the safety of convalescent plasma.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Ming
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xingwang Zhu
- Department of Pediatrics, Jiulongpo People's Hospital, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
41
|
Siemieniuk RA, Bartoszko JJ, Díaz Martinez JP, Kum E, Qasim A, Zeraatkar D, Izcovich A, Mangala S, Ge L, Han MA, Agoritsas T, Arnold D, Ávila C, Chu DK, Couban R, Cusano E, Darzi AJ, Devji T, Foroutan F, Ghadimi M, Khamis A, Lamontagne F, Loeb M, Miroshnychenko A, Motaghi S, Murthy S, Mustafa RA, Rada G, Rochwerg B, Switzer C, Vandvik PO, Vernooij RW, Wang Y, Yao L, Guyatt GH, Brignardello-Petersen R. Antibody and cellular therapies for treatment of covid-19: a living systematic review and network meta-analysis. BMJ 2021; 374:n2231. [PMID: 34556486 PMCID: PMC8459162 DOI: 10.1136/bmj.n2231] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of antiviral antibody therapies and blood products for the treatment of novel coronavirus disease 2019 (covid-19). DESIGN Living systematic review and network meta-analysis, with pairwise meta-analysis for outcomes with insufficient data. DATA SOURCES WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, and six Chinese databases (up to 21 July 2021). STUDY SELECTION Trials randomising people with suspected, probable, or confirmed covid-19 to antiviral antibody therapies, blood products, or standard care or placebo. Paired reviewers determined eligibility of trials independently and in duplicate. METHODS After duplicate data abstraction, we performed random effects bayesian meta-analysis, including network meta-analysis for outcomes with sufficient data. We assessed risk of bias using a modification of the Cochrane risk of bias 2.0 tool. The certainty of the evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. We meta-analysed interventions with ≥100 patients randomised or ≥20 events per treatment arm. RESULTS As of 21 July 2021, we identified 47 trials evaluating convalescent plasma (21 trials), intravenous immunoglobulin (IVIg) (5 trials), umbilical cord mesenchymal stem cells (5 trials), bamlanivimab (4 trials), casirivimab-imdevimab (4 trials), bamlanivimab-etesevimab (2 trials), control plasma (2 trials), peripheral blood non-haematopoietic enriched stem cells (2 trials), sotrovimab (1 trial), anti-SARS-CoV-2 IVIg (1 trial), therapeutic plasma exchange (1 trial), XAV-19 polyclonal antibody (1 trial), CT-P59 monoclonal antibody (1 trial) and INM005 polyclonal antibody (1 trial) for the treatment of covid-19. Patients with non-severe disease randomised to antiviral monoclonal antibodies had lower risk of hospitalisation than those who received placebo: casirivimab-imdevimab (odds ratio (OR) 0.29 (95% CI 0.17 to 0.47); risk difference (RD) -4.2%; moderate certainty), bamlanivimab (OR 0.24 (0.06 to 0.86); RD -4.1%; low certainty), bamlanivimab-etesevimab (OR 0.31 (0.11 to 0.81); RD -3.8%; low certainty), and sotrovimab (OR 0.17 (0.04 to 0.57); RD -4.8%; low certainty). They did not have an important impact on any other outcome. There was no notable difference between monoclonal antibodies. No other intervention had any meaningful effect on any outcome in patients with non-severe covid-19. No intervention, including antiviral antibodies, had an important impact on any outcome in patients with severe or critical covid-19, except casirivimab-imdevimab, which may reduce mortality in patients who are seronegative. CONCLUSION In patients with non-severe covid-19, casirivimab-imdevimab probably reduces hospitalisation; bamlanivimab-etesevimab, bamlanivimab, and sotrovimab may reduce hospitalisation. Convalescent plasma, IVIg, and other antibody and cellular interventions may not confer any meaningful benefit. SYSTEMATIC REVIEW REGISTRATION This review was not registered. The protocol established a priori is included as a data supplement. FUNDING This study was supported by the Canadian Institutes of Health Research (grant CIHR- IRSC:0579001321). READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Interim updates and additional study data will be posted on our website (www.covid19lnma.com).
Collapse
Affiliation(s)
- Reed Ac Siemieniuk
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Joint first authors
| | - Jessica J Bartoszko
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Juan Pablo Díaz Martinez
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Elena Kum
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Anila Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Dena Zeraatkar
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Ariel Izcovich
- Servicio de Clinica Médica del Hospital Alemán, Buenos Aires, Argentina
| | - Sophia Mangala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Long Ge
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Mi Ah Han
- Department of Preventive Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Thomas Agoritsas
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of General Internal Medicine & Division of Clinical Epidemiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Donald Arnold
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Derek K Chu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rachel Couban
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Ellen Cusano
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea J Darzi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tahira Devji
- Medical school, University of Toronto, Toronto, ON, Canada
| | - Farid Foroutan
- Ted Rogers Center for Heart Research, University Health Network, Toronto, ON, Canada
| | - Maryam Ghadimi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Assem Khamis
- Wolfson Palliative Care Research Centre, Hull York Medical School, Hull, UK
| | - Francois Lamontagne
- Department of Medicine and Centre de recherche du CHU de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mark Loeb
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Miroshnychenko
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sharhzad Motaghi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Srinivas Murthy
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver
| | - Reem A Mustafa
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | | | - Bram Rochwerg
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charlotte Switzer
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Per O Vandvik
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Robin Wm Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ying Wang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
42
|
Cho K, Keithly SC, Kurgansky KE, Madenci AL, Gerlovin H, Marucci-Wellman H, Doubleday A, Thomas ER, Park Y, Ho YL, Sugimoto JD, Moore KP, Peterson AC, Hoag C, Gupta K, Jeans K, Klote M, Ramoni R, Huang GD, Casas JP, Gagnon DR, Hernán MA, Smith NL, Gaziano JM. Early Convalescent Plasma Therapy and Mortality Among US Veterans Hospitalized With Nonsevere COVID-19: An Observational Analysis Emulating a Target Trial. J Infect Dis 2021; 224:967-975. [PMID: 34153099 PMCID: PMC8411382 DOI: 10.1093/infdis/jiab330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Early convalescent plasma transfusion may reduce mortality in patients with nonsevere coronavirus disease 2019 (COVID-19). METHODS This study emulates a (hypothetical) target trial using observational data from a cohort of US veterans admitted to a Department of Veterans Affairs (VA) facility between 1 May and 17 November 2020 with nonsevere COVID-19. The intervention was convalescent plasma initiated within 2 days of eligibility. Thirty-day mortality was compared using cumulative incidence curves, risk differences, and hazard ratios estimated from pooled logistic models with inverse probability weighting to adjust for confounding. RESULTS Of 11 269 eligible person-trials contributed by 4755 patients, 402 trials were assigned to the convalescent plasma group. Forty and 671 deaths occurred within the plasma and nonplasma groups, respectively. The estimated 30-day mortality risk was 6.5% (95% confidence interval [CI], 4.0%-9.7%) in the plasma group and 6.2% (95% CI, 5.6%-7.0%) in the nonplasma group. The associated risk difference was 0.30% (95% CI, -2.30% to 3.60%) and the hazard ratio was 1.04 (95% CI, .64-1.62). CONCLUSIONS Our target trial emulation estimated no meaningful differences in 30-day mortality between nonsevere COVID-19 patients treated and untreated with convalescent plasma. Clinical Trials Registration. NCT04545047.
Collapse
Affiliation(s)
- Kelly Cho
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston,
Massachusetts, USA
- Correspondence: Kelly Cho, PhD, VA Boston Healthcare System, 150 S.
Huntington Avenue, Boston, MA 02130 ()
| | - Sarah C Keithly
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
| | - Katherine E Kurgansky
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Arin L Madenci
- Departments of Epidemiology and Biostatistics, Harvard T.
H. Chan School of Public Health, Boston,
Massachusetts, USA
| | - Hanna Gerlovin
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Helen Marucci-Wellman
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Annie Doubleday
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
| | - Eva R Thomas
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
| | - Yojin Park
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Jonathan D Sugimoto
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
- Department of Epidemiology, School of Public Health,
University of Washington, Seattle,
Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson
Cancer Research Center, Seattle,
Washington, USA
| | - Kathryn P Moore
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
| | - Alexander C Peterson
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
| | - Constance Hoag
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
| | - Kalpana Gupta
- Boston Healthcare System,
Department of Veterans Affairs, Boston, Massachusetts,
USA
- Department of Medicine, Boston University School of
Medicine, Boston, Massachusetts, USA
| | - Karen Jeans
- Department of Veterans Affairs Office of Research and
Development, Washington, District of
Columbia, USA
| | - Molly Klote
- Department of Veterans Affairs Office of Research and
Development, Washington, District of
Columbia, USA
| | - Rachel Ramoni
- Department of Veterans Affairs Office of Research and
Development, Washington, District of
Columbia, USA
| | - Grant D Huang
- Department of Veterans Affairs Office of Research and
Development, Washington, District of
Columbia, USA
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - David R Gagnon
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
- Department of Biostatistics, Boston University School of
Public Health, Boston, Massachusetts,
USA
| | - Miguel A Hernán
- Departments of Epidemiology and Biostatistics, Harvard T.
H. Chan School of Public Health, Boston,
Massachusetts, USA
| | - Nicholas L Smith
- Seattle Epidemiologic Research and Information Center,
Department of Veterans Affairs Office of Research and Development,
Seattle, Washington, USA
- Department of Epidemiology, School of Public Health,
University of Washington, Seattle,
Washington, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and
Information Center, Department of Veterans Affairs Office of Research and
Development, Boston, Massachusetts,
USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
43
|
Bégin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, Zeller MP, Beaudoin-Bussières G, Amorim L, Bazin R, Loftsgard KC, Carl R, Chassé M, Cushing MM, Daneman N, Devine DV, Dumaresq J, Fergusson DA, Gabe C, Glesby MJ, Li N, Liu Y, McGeer A, Robitaille N, Sachais BS, Scales DC, Schwartz L, Shehata N, Turgeon AF, Wood H, Zarychanski R, Finzi A, Arnold DM. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med 2021; 27:2012-2024. [PMID: 34504336 PMCID: PMC8604729 DOI: 10.1038/s41591-021-01488-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset (NCT04348656). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm—relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94–1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57–0.95 and OR = 0.66, 95% CI 0.50–0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14–2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care. A randomized trial in patients hospitalized with COVID-19 showed no benefit and potentially increased harm associated with the use of convalescent plasma, with subgroup analyses suggesting that the antibody profile in donor plasma is critical in determining clinical outcomes.
Collapse
Affiliation(s)
- Philippe Bégin
- Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada. .,Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada. .,Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Canadian Blood Services, Ottawa, Ontario, Canada.
| | - Erin Jamula
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard Cook
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Nancy M Heddle
- Canadian Blood Services, Ottawa, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alan Tinmouth
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Centre for Transfusion Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michelle P Zeller
- Canadian Blood Services, Ottawa, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Beaudoin-Bussières
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,CHUM Research Center, Montreal, Quebec, Canada
| | - Luiz Amorim
- Hemorio, Hospital and Regional Blood Center, Rio de Janeiro, Brazil
| | - Renée Bazin
- Héma-Québec, Medical Affairs and Innovation, Quebec City, Quebec, Canada
| | | | - Richard Carl
- Patient representative, Montreal, Quebec, Canada
| | - Michaël Chassé
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Innovation Hub, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Melissa M Cushing
- Transfusion Medicine and Cellular Therapy, New York-Presbyterian, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nick Daneman
- Department of Medicine, Division of Infectious Diseases, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeannot Dumaresq
- Département de médecine, CISSS de Chaudière-Appalaches, Lévis, Quebec, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Dean A Fergusson
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Caroline Gabe
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Marshall J Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| | - Na Li
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Allison McGeer
- Department of Microbiology, Sinai Health System, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Robitaille
- Héma-Québec, Montreal, Quebec, Canada.,Division of Hematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce S Sachais
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,New York Blood Center Enterprises, New York, NY, USA
| | - Damon C Scales
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Medicine, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Schwartz
- Department of Health Research Methods, Evidence & Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nadine Shehata
- Canadian Blood Services, Ottawa, Ontario, Canada.,Departments of Medicine, Laboratory Medicine and Pathobiology, Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Division of Hematology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,CHU de Québec-Université Laval Research Centre, Population Health and Optimal Health Practices Research Unit, Trauma-Emergency-Critical Care Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ryan Zarychanski
- Department of Internal Medicine, Sections of Hematology/Medical Oncology and Critical Care, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,CHUM Research Center, Montreal, Quebec, Canada
| | | | - Donald M Arnold
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada. .,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
44
|
Convalescent Plasma and Coronavirus Disease 2019: Time for Reassessment. Crit Care Med 2021; 49:1182-1186. [PMID: 33870924 DOI: 10.1097/ccm.0000000000005068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Casadevall A, Dragotakes Q, Johnson PW, Senefeld JW, Klassen SA, Wright RS, Joyner MJ, Paneth N, Carter RE. Convalescent plasma use in the USA was inversely correlated with COVID-19 mortality. eLife 2021; 10:e69866. [PMID: 34085928 PMCID: PMC8205484 DOI: 10.7554/elife.69866] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background The US Food and Drug Administration authorized COVID-19 convalescent plasma (CCP) therapy for hospitalized COVID-19 patients via the Expanded Access Program (EAP) and the Emergency Use Authorization (EUA), leading to use in about 500,000 patients during the first year of the pandemic for the USA. Methods We tracked the number of CCP units dispensed to hospitals by blood banking organizations and correlated that usage with hospital admission and mortality data. Results CCP usage per admission peaked in Fall 2020, with more than 40% of inpatients estimated to have received CCP between late September and early November 2020. However, after randomized controlled trials failed to show a reduction in mortality, CCP usage per admission declined steadily to a nadir of less than 10% in March 2021. We found a strong inverse correlation (r = -0.52, p=0.002) between CCP usage per hospital admission and deaths occurring 2 weeks after admission, and this finding was robust to examination of deaths taking place 1, 2, or 3 weeks after admission. Changes in the number of hospital admissions, SARS-CoV-2 variants, and age of patients could not explain these findings. The retreat from CCP usage might have resulted in as many as 29,000 excess deaths from mid-November 2020 to February 2021. Conclusions A strong inverse correlation between CCP use and mortality per admission in the USA provides population-level evidence consistent with the notion that CCP reduces mortality in COVID-19 and suggests that the recent decline in usage could have resulted in excess deaths. Funding There was no specific funding for this study. AC was supported in part by RO1 HL059842 and R01 AI1520789; MJJ was supported in part by 5R35HL139854. This project has been funded in whole or in part with Federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority under Contract No. 75A50120C00096.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public HealthBaltimoreUnited States
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public HealthBaltimoreUnited States
| | - Patrick W Johnson
- Department of Quantitative Health Sciences, Mayo ClinicJacksonvilleUnited States
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo ClinicRochesterUnited States
| | - Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo ClinicRochesterUnited States
| | - R Scott Wright
- Department of Cardiology, Mayo ClinicRochesterUnited States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo ClinicRochesterUnited States
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, College of Human Medicine, Michigan State UniversityEast LansingUnited States
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo ClinicJacksonvilleUnited States
| |
Collapse
|
46
|
Piechotta V, Iannizzi C, Chai KL, Valk SJ, Kimber C, Dorando E, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2021; 5:CD013600. [PMID: 34013969 PMCID: PMC8135693 DOI: 10.1002/14651858.cd013600.pub4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required. OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone. Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences. We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence). Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group. We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence). A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline). Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence). We identified no study reporting quality of life. Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. AUTHORS' CONCLUSIONS We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Elena Dorando
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Chalmers JD, Crichton ML, Goeminne PC, Cao B, Humbert M, Shteinberg M, Antoniou KM, Ulrik CS, Parks H, Wang C, Vandendriessche T, Qu J, Stolz D, Brightling C, Welte T, Aliberti S, Simonds AK, Tonia T, Roche N. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. Eur Respir J 2021; 57:2100048. [PMID: 33692120 PMCID: PMC7947358 DOI: 10.1183/13993003.00048-2021] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hospitalised patients with coronavirus disease 2019 (COVID-19) as a result of SARS-CoV-2 infection have a high mortality rate and frequently require noninvasive respiratory support or invasive ventilation. Optimising and standardising management through evidence-based guidelines may improve quality of care and therefore patient outcomes. METHODS A task force from the European Respiratory Society and endorsed by the Chinese Thoracic Society identified priority interventions (pharmacological and non-pharmacological) for the initial version of this "living guideline" using the PICO (population, intervention, comparator, outcome) format. The GRADE approach was used for assessing the quality of evidence and strength of recommendations. Systematic literature reviews were performed, and data pooled by meta-analysis where possible. Evidence tables were presented and evidence to decision frameworks were used to formulate recommendations. RESULTS Based on the available evidence at the time of guideline development (20 February, 2021), the panel makes a strong recommendation in favour of the use of systemic corticosteroids in patients requiring supplementary oxygen or ventilatory support, and for the use of anticoagulation in hospitalised patients. The panel makes a conditional recommendation for interleukin (IL)-6 receptor antagonist monoclonal antibody treatment and high-flow nasal oxygen or continuous positive airway pressure in patients with hypoxaemic respiratory failure. The panel make strong recommendations against the use of hydroxychloroquine and lopinavir-ritonavir. Conditional recommendations are made against the use of azithromycin, hydroxychloroquine combined with azithromycin, colchicine, and remdesivir, in the latter case specifically in patients requiring invasive mechanical ventilation. No recommendation was made for remdesivir in patients requiring supplemental oxygen. Further recommendations for research are made. CONCLUSION The evidence base for management of COVID-19 now supports strong recommendations in favour and against specific interventions. These guidelines will be regularly updated as further evidence becomes available.
Collapse
Affiliation(s)
- James D Chalmers
- School of Medicine, University of Dundee, Dundee, UK
- J.D. Chalmers and N. Roche are task force co-chairs
| | | | - Pieter C Goeminne
- Department of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Bin Cao
- Department of Respiratory and Critical Care Medicine, Clinical Microbiology and Infectious Disease Lab, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP); Université Paris-Saclay; Inserm UMR_S 999, Le Kremlin Bicêtre, France
| | - Michal Shteinberg
- Pulmonology institute and CF Center, Carmel Medical Center and the Technion-Israel Institute of Technology, Haifa, Israel
| | - Katerina M Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre Hospital, Hvidovre, Denmark
| | | | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center of Respiratory Diseases, Beijing, China
| | | | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Tobias Welte
- Medizinische Hochschule Hannover, Direktor der Abteilung Pneumologie, Hannover, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Rozzano, Italy
| | - Anita K Simonds
- Sleep and Ventilation Unit, Royal Brompton and Harefield Hospital, Guys and St Thomas NHS Foundation Trust, London, UK
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University Bern, Bern, Switzerland
| | - Nicolas Roche
- Respiratory Medicine, Cochin Hospital, APHP Centre-University of Paris, Cochin Institute (INSERM UMR1016), Paris, France
- J.D. Chalmers and N. Roche are task force co-chairs
| |
Collapse
|