1
|
Kranawetter B, Brockmöller J, Sindern J, Hapke A, Bruns E, Harnisch LO, Moerer O, Stenzig J, Mielke D, Rohde V, Abboud T. Intestinal Drug Absorption After Subarachnoid Hemorrhage and Elective Neurosurgery: Insights From Esomeprazole Pharmacokinetics. Crit Care Med 2025; 53:e140-e150. [PMID: 39570079 PMCID: PMC11698135 DOI: 10.1097/ccm.0000000000006512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) may critically impair cardiovascular, metabolic, and gastrointestinal function. Previous research has demonstrated compromised drug absorption in this group of patients. This study aimed to examine the impact of SAH on gastrointestinal function and its subsequent effect on the absorption of enterally administered drugs, using esomeprazole as a probe drug. DESIGN Prospective observational cohort study. SETTING Academic hospital in Germany. PATIENTS We included 17 patients with high-grade SAH and 17 controls, comparable in age, sex, body weight, and renal function, who underwent elective cranial surgery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Both groups received esomeprazole per standard protocol to prevent acid-associated mucosal damage, either orally or through a nasogastric tube. On day 4, esomeprazole was administered IV to estimate oral bioavailability. Esomeprazole serum concentrations were measured on days 1, 3, and 4 in both groups and on day 7 in the SAH group. Patients with high-grade SAH exhibited severely impaired drug absorption. Most patients showed no improvement in intestinal drug absorption even a week after hemorrhage. CONCLUSIONS Following SAH, significantly reduced drug absorption may be attributed to decreased intestinal motility and compromised intestinal mucosal function. Clinicians should anticipate the reduced effectiveness of enterally administered medications for at least seven days after high-grade SAH.
Collapse
Affiliation(s)
- Beate Kranawetter
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Juliane Sindern
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology and Critical Care Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anne Hapke
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Aachen, Aachen, Germany
| | - Ellen Bruns
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars-Olav Harnisch
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Tammam Abboud
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
van Gassel RJ, Weijzen ME, Kouw IW, Senden JM, Wodzig WK, Olde Damink SW, van de Poll MC, van Loon LJ. Administration of Free Amino Acids Improves Exogenous Amino Acid Availability when Compared with Intact Protein in Critically Ill Patients: A Randomized Controlled Study. J Nutr 2024; 154:554-564. [PMID: 38103646 DOI: 10.1016/j.tjnut.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Protein digestion and amino acid absorption appear compromised in critical illness. The provision of enteral feeds with free amino acids rather than intact protein may improve postprandial amino acid availability. OBJECTIVE Our objective was to quantify the uptake of diet-derived phenylalanine after the enteral administration of intact protein compared with an equivalent amount of free amino acids in critically ill patients. METHODS Sixteen patients who were mechanically ventilated in intensive care unit (ICU) at risk of malabsorption received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine after an overnight fast. Patients were randomly allocated to receive 20 g intrinsically L-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of amino acids labeled with free L-[1-13C]-phenylalanine via a nasogastric tube over a 2-h period. Protein digestion and amino acid absorption kinetics and whole-body protein net balance were assessed throughout a 6-h period. RESULTS After enteral nutrient infusion, both plasma phenylalanine and leucine concentrations increased (P-time < 0.001), with a more rapid and greater rise after free amino acid compared with intact protein administration (P-time × treatment = 0.003). Diet-derived phenylalanine released into the circulation was 25% greater after free amino acids compared with intact protein administration [68.7% (confidence interval {CI}: 62.3, 75.1%) compared with 43.8% (CI: 32.4, 55.2%), respectively; P < 0.001]. Whole-body protein net balance became positive after nutrient administration (P-time < 0.001) and tended to be more positive after free amino acid in provision (P-time × treatment = 0.07). CONCLUSIONS The administration of free amino acids as opposed to intact protein further increases postprandial plasma amino acid availability in critically ill patients, allowing more diet-derived phenylalanine to become available to peripheral tissues. This trial was registered at clinicaltrials.gov as NCT04791774.
Collapse
Affiliation(s)
- Rob Jj van Gassel
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands; Department of Intensive Care Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands.
| | - Michelle Eg Weijzen
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Imre Wk Kouw
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Joan Mg Senden
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Will Khw Wodzig
- Central Diagnostic Laboratory, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Steven Wm Olde Damink
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands; Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
| | - Marcel Cg van de Poll
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands; Department of Intensive Care Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Luc Jc van Loon
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, The Netherlands
| |
Collapse
|
3
|
How much underfeeding can the critically ill adult patient tolerate? JOURNAL OF INTENSIVE MEDICINE 2022; 2:69-77. [PMID: 36789187 PMCID: PMC9923975 DOI: 10.1016/j.jointm.2022.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Critical illness leads to significant metabolic alterations that should be considered when providing nutritional support. Findings from key randomized controlled trials (RCTs) indicate that underfeeding (<70% of energy expenditure [EE]) during the acute phase of critical illness (first 7 days of intensive care unit [ICU] admission) may not be harmful and could instead promote autophagy and prevent overfeeding in light of endogenous energy production. However, the optimal energy target during this period is unclear and full starvation is unlikely to be beneficial. There are limited data regarding the effects of prolonged underfeeding on clinical outcomes in critically ill patients, but recent studies show that oral food intake is suboptimal both in the ICU and following discharge to the acute care setting. It is hypothesized that provision of full nutrition (70-100% of EE) may be important in the recovery phase of critical illness (>7 days of ICU admission) for promoting recovery and rehabilitation; however, studies on nutritional intervention delivered from ICU admission through hospital discharge are needed. The aim of this review is to provide a narrative synthesis of the existing literature on metabolic alterations experienced during critical illness and the impact of underfeeding on clinical outcomes in the critically ill adult patient.
Collapse
|
4
|
Whitehead J, Summers MJ, Louis R, Weinel LM, Lange K, Dunn B, Chapman MJ, Chapple LAS. Assessment of physiological barriers to nutrition following critical illness. Clin Nutr 2021; 41:11-20. [PMID: 34861624 DOI: 10.1016/j.clnu.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND & AIMS Nutrition may be important for recovery from critical illness. Gastrointestinal dysfunction is a key barrier to nutrition delivery in the Intensive Care Unit (ICU) and metabolic rate is elevated exacerbating nutritional deficits. Whether these factors persist following ICU discharge is unknown. We assessed whether delayed gastric emptying (GE) and impaired glucose absorption persist post-ICU discharge. METHODS A prospective observational study was conducted in mechanically ventilated adults at 3 time-points: in ICU (V1); on the post-ICU ward (V2); and 3-months after ICU discharge (V3); and compared to age-matched healthy volunteers. On each visit, all participants received a test-meal containing 100 ml of 1 kcal/ml liquid nutrient, labelled with 0.1 g 13C-octanoic acid and 3 g 3-O-Methyl-glucose (3-OMG), and breath and blood samples were collected over 240min to quantify GE (gastric emptying coefficient (GEC)), and glucose absorption (3-OMG concentration; area under the curve (AUC)). Data are mean ± standard error of the mean (SEM) and differences shown with 95% confidence intervals (95%CI). RESULTS Twenty-six critically ill patients completed V1 (M:F 20:6; 62.0 ± 2.9 y; BMI 29.8 ± 1.2 kg/m2; APACHE II 19.7 ± 1.9), 15 completed V2 and eight completed V3; and were compared to 10 healthy volunteers (M:F 6:4; 60.5 ± 7.5 y; BMI 26.0 ± 1.0 kg/m2). GE was significantly slower on V1 compared to health (GEC difference: -0.96 (95%CI -1.61, -0.31); and compared to V2 (-0.73 (-1.16, -0.31) and V3 (-1.03 (-1.47, -0.59). GE at V2 and V3 were not different to that in health (V2: -0.23 (-0.61, 0.14); V3: 0.10 (-0.27, 0.46)). GEC: V1: 2.64 ± 0.19; V2: 3.37 ± 0.12; V3: 3.67 ± 0.10; health: 3.60 ± 0.13. Glucose absorption (3-OMG AUC0-240) was impaired on V1 compared to V2 (-37.9 (-64.2, -11.6)), and faster on V3 than in health (21.8 (0.14, 43.4) but absorption at V2 and V3 did not differ from health. Intestinal glucose absorption: V1: 63.8 ± 10.4; V2: 101.7 ± 7.0; V3: 111.9 ± 9.7; health: 90.7 ± 3.8. CONCLUSION This study suggests that delayed GE and impaired intestinal glucose absorption recovers rapidly post-ICU. This requires further confirmation in a larger population. The REINSTATE trial was prospectively registered at www.anzctr.org.au. TRIAL ID ACTRN12618000370202.
Collapse
Affiliation(s)
- James Whitehead
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew J Summers
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Rhea Louis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Luke M Weinel
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Kylie Lange
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Bethany Dunn
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Marianne J Chapman
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Lee-Anne S Chapple
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
5
|
Yan Y, Chen Y, Zhang X. The effect of opioids on gastrointestinal function in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:370. [PMID: 34689805 PMCID: PMC8543814 DOI: 10.1186/s13054-021-03793-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022]
Abstract
Gastrointestinal (GI) dysfunction is common in the critical care setting and is highly associated with clinical outcomes. Opioids increase the risk for GI dysfunction and are frequently prescribed to reduce pain in critically ill patients. However, the role of opioids in GI function remains uncertain in the ICU. This review aims to describe the effect of opioids on GI motility, their potential risk of increasing infection and the treatment of GI dysmotility with opioid antagonists in the ICU setting.
Collapse
Affiliation(s)
- Yun Yan
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Chen
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China. .,Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xijing Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China. .,Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Lew CCH, Lee ZY, Day AG, Heyland DK. The correlation between gastric residual volumes and markers of gastric emptying: a post-hoc analysis of a randomized clinical trial. JPEN J Parenter Enteral Nutr 2021; 46:850-857. [PMID: 34292628 DOI: 10.1002/jpen.2234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The correlation between gastric residual volumes (GRV) and markers of gastric emptying (GE) in critically ill patients is unclear. This is especially true for ICU surgical patients as they are underrepresented in previous studies. METHODS We conducted a post-hoc analysis of a multicenter trial that investigated the effectiveness of a promotility drug in increasing enteral nutrition intake. Pharmacokinetic markers of GE [3-O-methylglucose (3-OMG) and acetaminophen] were correlated with GRV measurements. High-GRV was defined as one episode of >400 mL or two consecutive episodes of >250 mL, and delayed GE was defined as <20th percentile of the pharmacokinetic GE marker that had the strongest correlation with GE. RESULTS Out of 77 patients, 8 (10.4%) had high-GRV, and 15 (19.5%) had delayed GE. 3-OMG concentration at 60 mins had the strongest correlation with GRV (Rho: - 0.631), and high-GRV had low sensitivity (46.7%) but high specificity (98.4%) in discriminating delayed GE. The positive (87.5%) and negative (88.4%) predictive values were similar. There was a small sample of surgical patients (n = 14, 18.2%), and they had a significantly higher incidence of high-GRV (29% vs 6%, P: 0.032) and a trend towards delayed GE (36% vs 16%, p: 0.132) when compared to medical patients. CONCLUSION GRV reflects GE, and high-GRV is an acceptable surrogate marker of delayed GE. Based on our preliminary observation, surgical patients may have a higher risk of high-GRV and delayed GE. In summary, GRV should be monitored to determine if complex investigations or therapeutic interventions are warranted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Zheng-Yii Lee
- Department of Anesthesiology, Faculty of Medicine, University of Malaya, Malaysia
| | - Andrew G Day
- Clinical Evaluation Research Unit, Kingston Health Science Centre, Kingston, ON, Canada
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston Health Science Centre, Kingston, ON, Canada.,Department of Critical Care Medicine, Kingston Health Science Centre, Kingston, ON, Canada
| |
Collapse
|
7
|
McKeever L, Peterson SJ, Lateef O, Braunschweig C. The Influence of Timing in Critical Care Nutrition. Annu Rev Nutr 2021; 41:203-222. [PMID: 34143642 DOI: 10.1146/annurev-nutr-111120-114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proper timing of critical care nutrition has long been a matter of controversy. Critical illness waxes and wanes in stages, creating a dynamic flux in energy needs that we have only begun to examine. Furthermore, response to nutrition support likely differs greatly at the level of the individual patient in regard to genetic status, disease stage, comorbidities, and more. We review the observational and randomized literature concerning timing in nutrition support, discuss mechanisms of harm in feeding critically ill patients, and highlight the role of precision nutrition for moving the literature beyond the realm of blunt population averages into one that accounts for the patient-specific complexities of critical illness and host genetics. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Liam McKeever
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19063, USA;
| | - Sarah J Peterson
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Omar Lateef
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Carol Braunschweig
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois 60612, USA;
| |
Collapse
|
8
|
van Gassel RJJ, van de Poll MCG, Schaap FG, Plummer M, Deane A, Olde Damink SWM. Postprandial rise of essential amino acids is impaired during critical illness and unrelated to small-intestinal function. JPEN J Parenter Enteral Nutr 2021; 46:114-122. [PMID: 33666262 PMCID: PMC9293041 DOI: 10.1002/jpen.2103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Postprandial rise of plasma essential amino acids (EAAs) determines the anabolic effect of dietary protein. Disturbed gastrointestinal function could impair the anabolic response in critically ill patients. Aim was to investigate the postprandial EAA response in critically ill patients and its relation to small‐intestinal function. Methods Twenty‐one mechanically ventilated patients and 9 healthy controls received a bolus containing 100 ml of a formula feed (Ensure) and 2 g of 3‐O‐Methyl‐d‐glucose (3‐OMG) via postpyloric feeding tube. Fasting and postprandial plasma concentrations of EAAs, 3‐OMG, total bile salts, and the gut‐released hormone fibroblast growth factor 19 (FGF19) were measured over a 4‐hour period. Changes over time and between groups were assessed with linear mixed‐effects analysis. Early (0–60 minutes) and total postprandial responses are summarized as the incremental area under the curve (iAUC). Results At baseline, fasting EAA levels were similar in both groups: 1181 (1055–1276) vs 1150 (1065–1334) μmol·L−1, P = .87. The early postprandial rise in EAA was not apparent in critically ill patients compared with healthy controls (iAUC60, −4858 [−6859 to 2886] vs 5406 [3099–16,853] µmol·L−1·60 minutes; P = .039). Impaired EAA response did not correlate with impaired 3‐OMG response (Spearman ρ 0.32, P = .09). There was a limited increase in total bile salts but no relevant FGF19 response in either group. Conclusion Postprandial rise of EAA is blunted in critically ill patients and unrelated to glucose absorption measured with 3‐OMG. Future studies should aim to delineate governing mechanisms of macronutrient malabsorption.
Collapse
Affiliation(s)
- Rob J J van Gassel
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Intensive Care Medicine, Maastricht University Medical Centre, The Netherlands
| | - Marcel C G van de Poll
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Intensive Care Medicine, Maastricht University Medical Centre, The Netherlands
| | - Frank G Schaap
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Mark Plummer
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, Victoria, Australia.,Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Adam Deane
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, Victoria, Australia.,Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Fadeur M, Preiser JC, Verbrugge AM, Misset B, Rousseau AF. Oral Nutrition during and after Critical Illness: SPICES for Quality of Care! Nutrients 2020; 12:nu12113509. [PMID: 33202634 PMCID: PMC7696881 DOI: 10.3390/nu12113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Malnutrition is associated to poor outcomes in critically ill patients. Oral nutrition is the route of feeding in less than half of the patients during the intensive care unit (ICU) stay and in the majority of ICU survivors. There are growing data indicating that insufficient and/or inadequate intakes in macronutrients and micronutrients are prevalent within these populations. The present narrative review focuses on barriers to food intakes and considers the different points that should be addressed in order to optimize oral intakes, both during and after ICU stay. They are gathered in the SPICES concept, which should help ICU teams improve the quality of nutrition care following 5 themes: swallowing disorders screening and management, patient global status overview, involvement of dieticians and nutritionists, clinical evaluation of nutritional intakes and outcomes, and finally, supplementation in macro-or micronutrients.
Collapse
Affiliation(s)
- Marjorie Fadeur
- Department of Diabetes, Nutrition and Metabolic Diseases, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
- Multidisciplinary Nutrition Team, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
| | - Jean-Charles Preiser
- Erasme University Hospital, Medical Direction, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Anne-Marie Verbrugge
- Multidisciplinary Nutrition Team, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
| | - Benoit Misset
- Department of Intensive Care and Burn Center, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
| | - Anne-Françoise Rousseau
- Multidisciplinary Nutrition Team, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
- Department of Intensive Care and Burn Center, University Hospital, University of Liège, Sart-Tilman, 4000 Liège, Belgium;
- Correspondence: ; Tel.: +32-4-3667495
| |
Collapse
|
10
|
Reintam Blaser A, Preiser JC, Fruhwald S, Wilmer A, Wernerman J, Benstoem C, Casaer MP, Starkopf J, van Zanten A, Rooyackers O, Jakob SM, Loudet CI, Bear DE, Elke G, Kott M, Lautenschläger I, Schäper J, Gunst J, Stoppe C, Nobile L, Fuhrmann V, Berger MM, Oudemans-van Straaten HM, Arabi YM, Deane AM. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine. Crit Care 2020; 24:224. [PMID: 32414423 PMCID: PMC7226709 DOI: 10.1186/s13054-020-02889-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) dysfunction is frequent in the critically ill but can be overlooked as a result of the lack of standardization of the diagnostic and therapeutic approaches. We aimed to develop a research agenda for GI dysfunction for future research. We systematically reviewed the current knowledge on a broad range of subtopics from a specific viewpoint of GI dysfunction, highlighting the remaining areas of uncertainty and suggesting future studies. METHODS This systematic scoping review and research agenda was conducted following successive steps: (1) identify clinically important subtopics within the field of GI function which warrant further research; (2) systematically review the literature for each subtopic using PubMed, CENTRAL and Cochrane Database of Systematic Reviews; (3) summarize evidence for each subtopic; (4) identify areas of uncertainty; (5) formulate and refine study proposals that address these subtopics; and (6) prioritize study proposals via sequential voting rounds. RESULTS Five major themes were identified: (1) monitoring, (2) associations between GI function and outcome, (3) GI function and nutrition, (4) management of GI dysfunction and (5) pathophysiological mechanisms. Searches on 17 subtopics were performed and evidence summarized. Several areas of uncertainty were identified, six of them needing consensus process. Study proposals ranked among the first ten included: prevention and management of diarrhoea; management of upper and lower feeding intolerance, including indications for post-pyloric feeding and opioid antagonists; acute gastrointestinal injury grading as a bedside tool; the role of intra-abdominal hypertension in the development and monitoring of GI dysfunction and in the development of non-occlusive mesenteric ischaemia; and the effect of proton pump inhibitors on the microbiome in critical illness. CONCLUSIONS Current evidence on GI dysfunction is scarce, partially due to the lack of precise definitions. The use of core sets of monitoring and outcomes are required to improve the consistency of future studies. We propose several areas for consensus process and outline future study projects.
Collapse
Affiliation(s)
- Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Jean-Charles Preiser
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Wilmer
- Department of Medical Intensive Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Wernerman
- Department of Anaesthesiology and Intensive Care Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Carina Benstoem
- Department of Intensive Care Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia Research and Evaluation (3CARE), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael P. Casaer
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joel Starkopf
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Arthur van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Olav Rooyackers
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern, Switzerland
- University of Bern, Bern, Switzerland
| | - Cecilia I. Loudet
- Department of Intensive Care, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Danielle E. Bear
- Departments of Critical Care and Nutrition and Dietetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London, UK
| | - Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jörn Schäper
- Department of Anaesthesiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christian Stoppe
- Department of Intensive Care Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Leda Nobile
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine B, University of Münster, Münster, Germany
| | - Mette M. Berger
- Service of Adult Intensive Care Medicine and Burns, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Yaseen M. Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) and King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Adam M. Deane
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050 Australia
| |
Collapse
|
11
|
Translating the European Society for Clinical Nutrition and Metabolism 2019 guidelines into practice. Curr Opin Crit Care 2020; 25:314-321. [PMID: 31107309 DOI: 10.1097/mcc.0000000000000619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To present a pragmatic approach to facilitate clinician's implementing the recent European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines on clinical nutrition in the intensive care unit. RECENT FINDINGS The ESPEN guidelines include 54 recommendations with a rationale for each recommendation. All data published since 1 January 2000 was reviewed and 31 meta-analyses were performed to inform these guidelines. An important aspect of the most recent ESPEN guidelines is an attempt to separate periods of critical illness into discrete - early acute, late acute and recovery - phases, with each exhibiting different metabolic profiles and requiring different strategies for nutritional and metabolic support. SUMMARY A pragmatic approach to incorporate the recent ESPEN guidelines into everyday clinical practice is provided.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To provide a comprehensive update of diagnosis and treatment of gastrointestinal dysmotility in the critically ill, with a focus on work published in the last 5 years. RECENT FINDINGS Symptoms and clinical features consistent with upper and/or lower gastrointestinal dysmotility occur frequently. Although features of gastrointestinal dysmotility are strongly associated with adverse outcomes, these associations may be because of unmeasured confounders. The use of ultrasonography to identify upper gastrointestinal dysmotility appears promising. Both nonpharmacological and pharmacological approaches to treat gastrointestinal dysmotility have recently been evaluated. These approaches include modification of macronutrient content and administration of promotility drugs, stool softeners or laxatives. Although these approaches may reduce features of gastrointestinal dysmotility, none have translated to patient-centred benefit. SUMMARY 'Off-label' metoclopramide and/or erythromycin administration are effective for upper gastrointestinal dysmotility but have adverse effects. Trials of alternative or novel promotility drugs have not demonstrated superiority over current pharmacotherapies. Prophylactic laxative regimens to prevent non-defecation have been infrequently studied and there is no recent evidence to further inform treatment of established pseudo-obstruction. Further trials of nonpharmacological and pharmacological therapies to treat upper and lower gastrointestinal dysmotility are required and challenges in designing such trials are explored.
Collapse
|
13
|
McClave SA, Gualdoni J, Nagengast A, Marsano LS, Bandy K, Martindale RG. Gastrointestinal Dysfunction and Feeding Intolerance in Critical Illness: Do We Need an Objective Scoring System? Curr Gastroenterol Rep 2020; 22:1. [PMID: 31912312 DOI: 10.1007/s11894-019-0736-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Efforts to provide early enteral nutrition in critical illness are thwarted by gastrointestinal dysfunction and feeding intolerance. While many of the signs and symptoms of this dysfunction reflect gastroparesis and intestinal dysmotility, other symptoms which may or may not be related are often included such as diarrhea, bleeding, and intra-abdominal hypertension. This paper discusses the need to monitor tolerance of nutritional therapy in the critical care setting and reviews the results of those clinical trials which have helped establish objective measures, define feeding intolerance, and provide a tool to guide continued delivery of the enteral regimen. RECENT FINDINGS While definitions vary, the presence of gastrointestinal dysfunction and feeding intolerance correlates with adverse clinical outcomes, including prolonged duration of mechanical ventilation, greater length of stay in the intensive care unit, and increased mortality. Despite their prognostic value, it is not clear to what extent these scoring systems should direct nutritional therapy. The clinician should be astute in the careful selection of monitors, in identifying and addressing signs and symptoms of intolerance, and by responding appropriately with feeding strategies that are effective and safe. Early enteral feeding in critical illness has been shown to be optimized by following protocols which allow monitoring patient tolerance while providing individualized care.
Collapse
Affiliation(s)
- Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
- Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY, 40202, USA.
| | - Jill Gualdoni
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annie Nagengast
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| | - Luis S Marsano
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kathryn Bandy
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | | |
Collapse
|
14
|
Wu S, Furutani E, Sugawara T, Asaga T, Shirakami G. Glycemic Control for Critically Ill Patients with Online Identification of Insulin Sensitivity. ADVANCED BIOMEDICAL ENGINEERING 2020. [DOI: 10.14326/abe.9.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sha Wu
- Department of Electrical Engineering, Kyoto University
| | - Eiko Furutani
- Department of Electrical Materials and Engineering, University of Hyogo
- Department of Anesthesiology, Kagawa University
| | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Gastrointestinal dysmotility occurs frequently in the critically ill. Although the causes underlying dysmotility are multifactorial, both pain and its treatment with exogenous opioids are likely causative factors. The purpose of this review is to describe the effects of pain and opioids on gastrointestinal motility; outline the rationale for and evidence supporting the administration of opioid antagonists to improve dysmotility; and describe the potential influence opioids drugs have on the intestinal microbiome and infectious complications. RECENT FINDINGS Opioid drugs are frequently prescribed in the critically ill to alleviate pain. In health, opioids cause gastric dysmotility, yet the evidence for this in critical illness is inconsistent and limited to observational studies. Administration of opioid antagonists may improve gastrointestinal motility, but data are sparse, and these agents cannot be recommended outside of clinical trials. Although critical illness is associated with alterations in the microbiome, the extent to which opioid administration influences these changes, and the subsequent development of infection, remains uncertain. SUMMARY Replication of clinical studies from ambulant populations in critical care is required to ascertain the independent influence of opioid administration on gastrointestinal motility and infectious complications.
Collapse
|
16
|
Doola R, Deane AM, Tolcher DM, Presneill JJ, Barrett HL, Forbes JM, Todd AS, Okano S, Sturgess DJ. The effect of a low carbohydrate formula on glycaemia in critically ill enterally-fed adult patients with hyperglycaemia: A blinded randomised feasibility trial. Clin Nutr ESPEN 2019; 31:80-87. [PMID: 31060838 DOI: 10.1016/j.clnesp.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Enteral nutrition is a source of carbohydrate that may exacerbate hyperglycaemia. Its treatment, insulin, potentially exacerbates glycaemic variability. METHODS This was a prospective, parallel group, blinded, randomised feasibility trial. Patients were eligible if 18 years or over when admitted to the intensive care unit and receiving enteral nutrition (EN) exclusively with two consecutive blood glucose > 10 mmol/L. A standardized glucose management protocol determined administration of insulin. Key outcome measures were insulin administered and glycaemic variability (coefficient of variation) over the first 48 h. RESULTS 41 patients were randomized to either standard EN (14.1 g/100 mL carbohydrate; n = 20) or intervention EN (7.4 g/100 mL carbohydrate; n = 21). Overall 59% were male, mean (±SD) age of 62.3 years ± 10.4, APACHE II score of 16.5 ± 7.8 and a median (IQR) Body Mass Index 29.0 kg/m2 (25.2-35.5). Most patients (73%) were mechanically ventilated. Approximately half (51%) were identified as having diabetes prior to ICU admission. Patients in the intervention arm received less insulin over the 48 h study period than those in the control group (mean insulin units over study period (95% CI) 45.0 (24.4-68.7) vs. 107 (56.1-157.9) units; p = 0.02) and had lower mean glycaemic variability (12.6 vs. 15.9%, p = 0.01). There was a small difference in the mean percentage of energy requirements met (intervention: 72.9 vs. control: 79.1%; p = 0.4) or protein delivered (78.2 vs. 85.4%; p = 0.3). CONCLUSIONS A low carbohydrate formula was associated with reduced insulin use and glycaemic variability in enterally-fed critically ill patients with hyperglycaemia. Further large trials are required to determine the impact of this formula on clinical outcomes. Registered under Australian and New Zealand Clinical Trials Registry, ANZCTR number: 12614000166673.
Collapse
Affiliation(s)
- Ra'eesa Doola
- Mater Health Services, Mater Research Institute, The University of Queensland, Australia.
| | - Adam M Deane
- The Royal Melbourne Hospital, The University of Melbourne, Mater Research Institute, The University of Queensland, Australia
| | | | - Jeffrey J Presneill
- The Royal Melbourne Hospital, The University of Melbourne, Monash University, Australia
| | - Helen L Barrett
- Mater Health Services, Mater Research Institute, The University of Queensland, Australia
| | | | - Alwyn S Todd
- Mater Research Institute, The University of Queensland, Menzies Health Institute Brisbane, Griffith University, Australia
| | - Satomi Okano
- Mater Research Institute, Statistics Unit, QIMR Berghofer Medical Research Institute, Australia
| | - David J Sturgess
- Mater Research Institute, The University of Queensland, Princess Alexandra Hospital, Australia
| |
Collapse
|
17
|
Deane AM, Chapman MJ, Reintam Blaser A, McClave SA, Emmanuel A. Pathophysiology and Treatment of Gastrointestinal Motility Disorders in the Acutely Ill. Nutr Clin Pract 2018; 34:23-36. [PMID: 30294835 DOI: 10.1002/ncp.10199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal dysmotility causes delayed gastric emptying, enteral feed intolerance, and functional obstruction of the small and large intestine, the latter functional obstructions being frequently termed ileus and Ogilvie syndrome, respectively. In addition to meticulous supportive care, drug therapy may be appropriate in certain situations. There is, however, considerable variation among individuals regarding what gastric residual volume identifies gastric dysmotility and would encourage use of a promotility drug. While the administration of either metoclopramide or erythromycin is supported by evidence it appears that, dual-drug therapy (erythromycin and metoclopramide) reduces the rate of treatment failure. There is a lack of evidence to guide drug therapy of ileus, but neither erythromycin nor metoclopramide appear to have a role. Several drugs, including ghrelin agonists, highly selective 5-hydroxytryptamine receptor agonists, and opiate antagonists are being studied in clinical trials. Neostigmine, when infused at a relatively slow rate in patients receiving continuous hemodynamic monitoring, may alleviate the need for endoscopic decompression in some patients.
Collapse
Affiliation(s)
- Adam M Deane
- Intensive Care Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia.,Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia.,Center of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Stephen A McClave
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Anton Emmanuel
- Department of Neuro-Gastroenterology, University College London, London, UK
| |
Collapse
|
18
|
Heruc GA, Little TJ, Kohn MR, Madden S, Clarke SD, Horowitz M, Feinle-Bisset C. Effects of starvation and short-term refeeding on gastric emptying and postprandial blood glucose regulation in adolescent girls with anorexia nervosa. Am J Physiol Endocrinol Metab 2018; 315:E565-E573. [PMID: 29969316 DOI: 10.1152/ajpendo.00149.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postprandial glucose is reduced in malnourished patients with anorexia nervosa (AN), but the mechanisms and duration for this remain unclear. We examined blood glucose, gastric emptying, and glucoregulatory hormone changes in malnourished patients with AN and during 2 wk of acute refeeding compared with healthy controls (HCs). Twenty-two female adolescents with AN and 17 age-matched female HCs were assessed after a 4-h fast. Patients were commenced on a refeeding protocol of 2,400 kcal/day. Gastric emptying (13C-octanoate breath test), glucose absorption (3-O-methylglucose), blood glucose, plasma glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin, C-peptide, and glucagon responses to a mixed-nutrient test meal were measured on admission and 1 and 2 wk after refeeding. HCs were assessed once. On admission, patients had slower gastric emptying, lower postprandial glucose and insulin, and higher glucagon and GLP-1 than HCs ( P < 0.05). In patients with AN, the rise in glucose (0-30 min) correlated with gastric emptying ( P < 0.05). With refeeding, postprandial glucose and 3-O-methylglucose were higher, gastric emptying faster, and baseline insulin and C-peptide less ( P < 0.05), compared with admission. After 2 wk of refeeding, postprandial glucose remained lower, and glucagon and GLP-1 higher, in patients with AN than HCs ( P < 0.05) without differences in gastric emptying, baseline glucagon, or postprandial insulin. Delayed gastric emptying may underlie reduced postprandial glucose in starved patients with AN; however, postprandial glucose and glucoregulatory hormone changes persist after 2 wk of refeeding despite improved gastric emptying. Future research should explore whether reduced postprandial glucose in AN is related to medical risk by examining associated symptoms alongside continuous glucose monitoring during refeeding.
Collapse
Affiliation(s)
- Gabriella A Heruc
- Adelaide Medical School, University of Adelaide, SA, Australia
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health , Adelaide, SA , Australia
- The Children's Hospital at Westmead , Sydney, NSW , Australia
| | - Tanya J Little
- Adelaide Medical School, University of Adelaide, SA, Australia
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health , Adelaide, SA , Australia
| | - Michael R Kohn
- The Children's Hospital at Westmead , Sydney, NSW , Australia
- Westmead Hospital , Sydney, NSW , Australia
| | - Sloane Madden
- The Children's Hospital at Westmead , Sydney, NSW , Australia
| | | | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, SA, Australia
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health , Adelaide, SA , Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, SA, Australia
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health , Adelaide, SA , Australia
| |
Collapse
|
19
|
Yandell R, Wang S, Bautz P, Shanks A, O'Connor S, Deane A, Lange K, Chapman M. A retrospective evaluation of nutrition support in relation to clinical outcomes in critically ill patients with an open abdomen. Aust Crit Care 2018; 32:237-242. [PMID: 29903605 DOI: 10.1016/j.aucc.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Optimising nutrition support in critically ill patients with an open abdomen is challenging. OBJECTIVES The aims of this study were to (i) quantify the amount and adequacy of nutrition support administered and (ii) determine any relationships that exist between mode of nutrition support delivery and clinical outcomes in critically ill patients with an open abdomen. METHODS A retrospective review of critically ill patients mechanically ventilated for at least 48 h with an open abdomen in a mixed quaternary referral intensive care unit. Enteral and parenteral nutrition (ml) administered daily to patients was recorded for up to 21 days. Length of stay in the intensive care unit and hospital and duration of mechanical ventilation (days) were reported. RESULTS Thirty patients were studied [14 male, 68 y (15-90 y), body mass index 25 kg/m2 (11-51 kg/m2), Acute Physiology and Chronic Health Evaluation II score 20 (7-41), energy goal 1860 kcal/d (1250-2712 kcal/d)]. Patients received 55% (0-117%) of energy goal and 56% (0-105%) protein goal from either enteral or parenteral nutrition. When enteral nutrition was delivered alone or in combination with parenteral nutrition, patients received 48% (0-146%) of their energy and 59% (19-105%) of their protein goal. Patients fed parenteral nutrition, either alone or as supplementary to enteral nutrition (n = 18), received more energy when compared with those who only received enteral nutrition (n = 9) [65 (27-117) vs 49 (15-89) % energy goal, P = 0.025]. Parenteral nutrition was associated with an increased length of stay in hospital [63 (45-156) vs 45 (17-93) d, P = 0.037]. CONCLUSION Patients with an open abdomen receive about half of their nutrition requirements when fed exclusively via the enteral route. Providing combination enteral and parenteral nutrition to reach nutritional goals may not result in better clinical outcomes for patients with an open abdomen.
Collapse
Affiliation(s)
- Rosalie Yandell
- Department of Nutrition and Dietetics, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia; Centre of Clinical Research Excellence (CRE) in Translating Science to Good Health, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia; Discipline of Acute Care Medicine, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia.
| | - Susan Wang
- Department of Critical Care Services, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia
| | - Peter Bautz
- Hepatobiliary Surgery, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia
| | - Alison Shanks
- Department of Nutrition and Dietetics, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia
| | - Stephanie O'Connor
- Department of Critical Care Services, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia; Discipline of Acute Care Medicine, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia
| | - Adam Deane
- Department of Critical Care Services, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia; Centre of Clinical Research Excellence (CRE) in Translating Science to Good Health, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia; Discipline of Acute Care Medicine, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia
| | - Kylie Lange
- Centre of Clinical Research Excellence (CRE) in Translating Science to Good Health, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia
| | - Marianne Chapman
- Department of Critical Care Services, Trauma Services, Royal Adelaide Hospital, Port Rd, Adelaide, 5000, Australia; Centre of Clinical Research Excellence (CRE) in Translating Science to Good Health, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia; Discipline of Acute Care Medicine, The University of Adelaide, Frome Rd, Adelaide, 5000, Australia
| |
Collapse
|
20
|
Ladopoulos T, Giannaki M, Alexopoulou C, Proklou A, Pediaditis E, Kondili E. Gastrointestinal dysmotility in critically ill patients. Ann Gastroenterol 2018; 31:273-281. [PMID: 29720852 PMCID: PMC5924849 DOI: 10.20524/aog.2018.0250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) motility disorders are commonly present in critical illness. Up to 60% of critically ill patients have been reported to experience GI dysmotility of some form necessitating therapeutic intervention. It has been attributed to various factors, related to both the underlying disease and the therapeutic interventions undertaken. The assessment of motility disturbances can be challenging in critically ill patients, as the available tests used to detect abnormal motility have major limitations in the setting of an Intensive Care Unit. Critically ill patients with GI dysmotility require a multifaceted treatment approach that addresses multiple causes and utilizes multiple pharmacological pathways. In this review, we discuss the pathophysiology, assessment and management of GI dysmotility in critically ill patients.
Collapse
Affiliation(s)
- Theodoros Ladopoulos
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Maria Giannaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christina Alexopoulou
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Athanasia Proklou
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Emmanuel Pediaditis
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Eumorfia Kondili
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
21
|
van Steen SC, Rijkenberg S, Sechterberger MK, DeVries JH, van der Voort PH. Glycemic Effects of a Low-Carbohydrate Enteral Formula Compared With an Enteral Formula of Standard Composition in Critically Ill Patients: An Open-Label Randomized Controlled Clinical Trial. JPEN J Parenter Enteral Nutr 2017; 42:1035-1045. [DOI: 10.1002/jpen.1045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Sigrid C. van Steen
- Department of Endocrinology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
- Department of Intensive Care; OLVG; Amsterdam the Netherlands
| | | | - Marjolein K. Sechterberger
- Department of Endocrinology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
- Department of Intensive Care; OLVG; Amsterdam the Netherlands
| | - J. Hans DeVries
- Department of Endocrinology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | - Peter H.J. van der Voort
- Department of Intensive Care; OLVG; Amsterdam the Netherlands
- TIAS; School for Business and Society; Tilburg University; Tilburg the Netherlands
| |
Collapse
|
22
|
Lautenschläger I, Wong YL, Sarau J, Goldmann T, Zitta K, Albrecht M, Frerichs I, Weiler N, Uhlig S. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep 2017; 7:13382. [PMID: 29042668 PMCID: PMC5645457 DOI: 10.1038/s41598-017-13850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Yuk Lung Wong
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jürgen Sarau
- Division of Mucosal Immunology and Diagnostic, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Chapman MJ, Deane AM, O'Connor SL, Nguyen NQ, Fraser RJL, Richards DB, Hacquoil KE, Vasist Johnson LS, Barton ME, Dukes GE. The effect of camicinal (GSK962040), a motilin agonist, on gastric emptying and glucose absorption in feed-intolerant critically ill patients: a randomized, blinded, placebo-controlled, clinical trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:232. [PMID: 27476581 PMCID: PMC4967996 DOI: 10.1186/s13054-016-1420-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/20/2016] [Indexed: 02/08/2023]
Abstract
Background The promotility agents currently available to treat gastroparesis and feed intolerance in the critically ill are limited by adverse effects. The aim of this study was to assess the pharmacodynamic effects and pharmacokinetics of single doses of the novel gastric promotility agent motilin agonist camicinal (GSK962040) in critically ill feed-intolerant patients. Methods A prospective, randomized, double-blind, parallel-group, placebo-controlled, study was performed in mechanically ventilated feed-intolerant patients [median age 55 (19–84), 73 % male, APACHE II score 18 (5–37) with a gastric residual volume ≥200 mL]. Gastric emptying and glucose absorption were measured both pre- and post-treatment after intragastric administration of 50 mg (n = 15) camicinal and placebo (n = 8) using the 13C-octanoic acid breath test (BTt1/2), acetaminophen concentrations, and 3-O-methyl glucose concentrations respectively. Results Following 50 mg enteral camicinal, there was a trend to accelerated gastric emptying [adjusted geometric means: pre-treatment BTt1/2 117 minutes vs. post- treatment 76 minutes; 95 % confidence intervals (CI; 0.39, 1.08) and increased glucose absorption (AUC240min pre-treatment: 28.63 mmol.min/L vs. post-treatment: 71.63 mmol.min/L; 95 % CI (1.68, 3.72)]. When two patients who did not have detectable plasma concentrations of camicinal were excluded from analysis, camicinal accelerated gastric emptying (adjusted geometric means: pre-treatment BTt1/2 121 minutes vs. post-treatment 65 minutes 95 % CI (0.32, 0.91) and increased glucose absorption (AUC240min pre-treatment: 33.04 mmol.min/L vs. post-treatment: 74.59 mmol.min/L; 95 % CI (1.478, 3.449). In those patients receiving placebo gastric emptying was similar pre- and post-treatment. Conclusions When absorbed, a single enteral dose of camicinal (50 mg) accelerates gastric emptying and increases glucose absorption in feed-intolerant critically ill patients. Trial registration The study protocol was registered with the US NIH clinicaltrials.gov on 23 December 2009 (Identifier NCT01039805).
Collapse
Affiliation(s)
- Marianne J Chapman
- Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide, Australia. .,Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia.
| | - Adam M Deane
- Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide, Australia.,Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Stephanie L O'Connor
- Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide, Australia.,Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Robert J L Fraser
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Maharaj AR, Edginton AN. Examining Small Intestinal Transit Time as a Function of Age: Is There Evidence to Support Age-Dependent Differences among Children? Drug Metab Dispos 2016; 44:1080-9. [PMID: 26977099 DOI: 10.1124/dmd.115.068700] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/10/2016] [Indexed: 02/13/2025] Open
Abstract
The small intestine represents the region where the majority of drug and nutrient absorption transpires. Among adults, small intestinal transit kinetics is well delineated; however, the applicability of these values toward children remains unclear. This article serves to examine the relationship between age and mean small intestinal transit time (SITT) based on the available literature. In addition, the influence of alterations in intestinal transit time was explored among children using a model-based approach. Primary literature sources depicting SITT from children to adults were ascertained via the PubMed database. Data were limited to subjects without pathologies that could influence intestinal motility. Random-effect meta-regression models with between-study variability were employed to assess the influence of age on SITT. Three separate models with age as a linear or higher-order (i.e., second- and third-order polynomial) regressor were implemented to assess for the potential of both linear and curvilinear relationships. Examination of the influence of altered intestinal transit kinetics on the absorption of a sustained release theophylline preparation was explored among children between 8 and 14 years using physiologically based pharmacokinetic (PBPK) modeling. Age was not found to be a significant modulator of small intestinal transit within either the linear or higher-order polynomial meta-regression models. PBPK simulations indicated a lack of influence of variations in SITT on the absorption of theophylline from the examined sustained release formulation in older children. Based on the current literature, there is no evidence to suggest that mean SITT differs between children and adults.
Collapse
Affiliation(s)
- Anil R Maharaj
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Thazhath SS, Wu T, Bound MJ, Checklin HL, Standfield S, Jones KL, Horowitz M, Rayner CK. Effects of intraduodenal hydroxycitrate on glucose absorption, incretin release, and glycemia in response to intraduodenal glucose infusion in health and type 2 diabetes: A randomised controlled trial. Nutrition 2016; 32:553-559. [PMID: 26792024 DOI: 10.1016/j.nut.2015.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hydroxycitric acid (HCA), derived from the fruit Garcinia cambogia, reduces the rate of glucose absorption and lowers postprandial glycemia in rodents, but its effect in humans is unknown. The aim of this study was to investigate the effects of small intestinal perfusion with HCA on glucose absorption, as well as the incretin and glycemic responses to a subsequent intraduodenal glucose infusion, in both healthy individuals and patients with type 2 diabetes. METHODS Twelve healthy participants and 8 patients with type 2 diabetes received an intraduodenal infusion of HCA (2800 mg in water) or control (water) over 60 min, followed by an intraduodenal infusion of 60 g glucose over 120 min, in a double-blind, randomized crossover design. In healthy individuals, 5 g 3-O-methylglucose (3-OMG) was co-infused with glucose as a marker of glucose absorption. Blood was sampled frequently. RESULTS In healthy individuals, blood glucose was lower with HCA than control, both before and during the intraduodenal glucose infusion (P < 0.05 for each). Plasma glucose-dependent insulinotropic polypeptide (GIP; P = 0.01) and glucagon (P = 0.06) were higher with HCA, but there were no differences in plasma glucagon-like peptide (GLP)-1, insulin, or serum 3-OMG concentrations. In patients with type 2 diabetes, blood glucose, and plasma GIP, GLP-1, and insulin did not differ between HCA and control either before or after intraduodenal glucose, but during glucose infusion, plasma glucagon was higher with HCA (P = 0.04). CONCLUSION In healthy individuals, small intestinal exposure to HCA resulted in a modest reduction in glycemia and stimulation of plasma GIP and glucagon, but no effect on plasma GLP-1 or insulin, or on glucose absorption. HCA had no effect on glycemia in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Helen L Checklin
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Scott Standfield
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
26
|
Abstract
Critically ill patients often require enteral feedings as a primary supply of nutrition. Whether enteral nutrition (EN) should be delivered as a gastric versus small bowel feeding in the critically ill patient population remains a contentious topic. The Society of Critical Care Medicine (SCCM)/American Society for Parenteral and Enteral Nutrition (ASPEN), the European Society for Parenteral and Enteral Nutrition (ESPEN), and the Canadian Clinical Practice Guidelines (CCPG) are not in consensus on this topic. No research to date demonstrates a significant difference between the two feeding routes in terms of patient mortality, ventilator days, or length of stay in the intensive care unit (ICU); however, studies provide some evidence that there may be other benefits to using a small bowel feeding route in critically ill patients. The purpose of this paper is to examine both sides of this debate and review advantages and disadvantages of both small bowel and gastric routes of EN. Practical issues and challenges to small bowel feeding tube placement are also addressed. Finally, recommendations are provided to help guide the clinician when selecting a feeding route, and suggestions are made for future research.
Collapse
|
27
|
Abstract
Acute gastrointestinal injury (AGI) is common in critical illness and negatively affects outcome. A variety of definitions have been used to describe AGI, which has led to clinical confusion and hampered comparison of research studies across institutions. An international working group of the European Society of Intensive Care Medicine was convened to standardize definitions for AGI and provide current evidence-based understanding of its pathophysiology and management. This disorder is associated with a wide variety of signs and symptoms and may be difficult to detect, therefore a high index of suspicion is warranted.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Critical Care Medicine, Mercy Hospital St. Louis, Suite 4006B, St Louis, MO 63141, USA.
| |
Collapse
|
28
|
Lansink M, Hofman Z, Genovese S, Rouws CHFC, Ceriello A. Improved Glucose Profile in Patients With Type 2 Diabetes With a New, High-Protein, Diabetes-Specific Tube Feed During 4 Hours of Continuous Feeding. JPEN J Parenter Enteral Nutr 2016; 41:968-975. [PMID: 26826263 DOI: 10.1177/0148607115625635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperglycemia frequently occurs in hospitalized patients receiving nutrition support. In this study, the effects of a new diabetes-specific formula (DSF) on glucose profile during 4 hours of continuous feeding and 4 hours after stopping feeding were compared with a standard formula (SF). MATERIALS AND METHODS In this randomized, controlled, double-blind, crossover study, ambulant, nonhospitalized patients with type 2 diabetes received the DSF or an isocaloric, fiber-containing SF via a nasogastric tube. After overnight fasting, the formula was continuously administered to the patients during 4 hours. Plasma glucose and insulin concentrations were determined during the 4-hour period and in the subsequent 4 hours during which no formula was provided. RESULTS During the 4-hour feeding period, DSF compared with SF resulted in a lower mean delta glucose concentration in the 3- to 4-hour period (0.3 ± 1.0 and 2.4 ± 1.5 mmol/L; P < .001). Also, the (delta) peak concentrations, (delta) mean concentrations, and incremental area under the curve (iAUC) for glucose and insulin were significantly lower during DSF compared with SF feeding (all comparisons: P < .001). Furthermore, fewer patients experienced hyperglycemia (>10 mmol/L) on DSF compared with SF (2 vs 11, P = .003, respectively). No differences in number of patients with hypoglycemia (<3.9 mmol/L) were observed. No significant differences in tolerance were observed. CONCLUSION Administration of a new, high-protein DSF during 4 hours of continuous feeding resulted in lower glucose and insulin levels compared with a fiber-containing SF in ambulant, nonhospitalized patients with type 2 diabetes. These data suggest that a DSF may contribute to lower glucose levels in these patients.
Collapse
Affiliation(s)
- Mirian Lansink
- 1 Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, the Netherlands
| | - Zandrie Hofman
- 1 Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, the Netherlands
| | - Stefano Genovese
- 2 Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Sesto San Giovanni (MI), Italy
| | - Carlette H F C Rouws
- 1 Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, the Netherlands
| | - Antonio Ceriello
- 3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,4 Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
29
|
Thazhath SS, Marathe CS, Wu T, Chang J, Khoo J, Kuo P, Checklin HL, Bound MJ, Rigda RS, Crouch B, Jones KL, Horowitz M, Rayner CK. The Glucagon-Like Peptide 1 Receptor Agonist Exenatide Inhibits Small Intestinal Motility, Flow, Transit, and Absorption of Glucose in Healthy Subjects and Patients With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes 2016; 65:269-275. [PMID: 26470783 DOI: 10.2337/db15-0893] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 02/05/2023]
Abstract
The short-acting glucagon-like peptide 1 receptor agonist exenatide reduces postprandial glycemia, partly by slowing gastric emptying, although its impact on small intestinal function is unknown. In this study, 10 healthy subjects and 10 patients with type 2 diabetes received intravenous exenatide (7.5 μg) or saline (-30 to 240 min) in a double-blind randomized crossover design. Glucose (45 g), together with 5 g 3-O-methylglucose (3-OMG) and 20 MBq (99m)Tc-sulfur colloid (total volume 200 mL), was given intraduodenally (t = 0-60 min; 3 kcal/min). Duodenal motility and flow were measured using a combined manometry-impedance catheter and small intestinal transit using scintigraphy. In both groups, duodenal pressure waves and antegrade flow events were fewer, and transit was slower with exenatide, as were the areas under the curves for serum 3-OMG and blood glucose concentrations. Insulin concentrations were initially lower with exenatide than with saline and subsequently higher. Nausea was greater in both groups with exenatide, but suppression of small intestinal motility and flow was observed even in subjects with little or no nausea. The inhibition of small intestinal motor function represents a novel mechanism by which exenatide can attenuate postprandial glycemia.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Chinmay S Marathe
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Jessica Chang
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Joan Khoo
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Paul Kuo
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Helen L Checklin
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Rachael S Rigda
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Benjamin Crouch
- Department of Nuclear Medicine, PET & Bone Densitometry, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
30
|
Ali Abdelhamid Y, Cousins CE, Sim JA, Bellon MS, Nguyen NQ, Horowitz M, Chapman MJ, Deane AM. Effect of Critical Illness on Triglyceride Absorption. JPEN J Parenter Enteral Nutr 2015; 39:966-972. [PMID: 24963026 DOI: 10.1177/0148607114540214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/24/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Adequate nutrition support for critically ill patients optimizes outcome, and enteral feeding is the preferred route of nutrition. Small intestinal glucose absorption is frequently impaired in critical illness. Despite lipid being a major constituent of liquid nutrient administered, there is little information about lipid absorption during critical illness. OBJECTIVES To determine small intestinal lipid, as well as glucose, absorption in critical illness compared with health. MATERIALS AND METHODS Twenty-nine mechanically ventilated critically ill patients and 16 healthy volunteers were studied. Liquid nutrient (60 mL, 1 kcal/mL), containing 200 µL (13)C-triolein and 3 g 3-O-methyl-glucose (3-OMG), was infused directly into the duodenum at a rate of 2 kcal/min. Exhaled (13)CO2 and serum 3-OMG concentrations were measured at timed intervals over 360 minutes. Lipid absorption was measured as the cumulative percentage dose (cPDR) of (13)CO2 recovered at 360 minutes. Glucose absorption was measured as the area under the 3-OMG concentration curve. Data are median (range) and analyzed using the Mann-Whitney U and Pearson correlation tests. RESULTS Lipid absorption was markedly less in the critically ill (cPDR(13)CO2: patients, 22.6% [0%-100%] vs healthy participants, 40.7% [5.3%-84.7%]; P = .018). While glucose absorption was less at 60 minutes in the critically ill (3-OMG60: 13.2 [3.5-29.5] vs 21.1 [9.3-31.9] mmol/L·min; P = .003), this was not apparent at 360 minutes (3-OMG360: 92.7 [54.5-147.9] vs 107.9 [64.0-168.7] mmol/L·min; P = .126). There was no relationship between lipid and glucose absorption. CONCLUSION Small intestinal absorption of lipid is diminished during critical illness.
Collapse
Affiliation(s)
| | - Caroline E Cousins
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Jennifer A Sim
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Max S Bellon
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Nam Q Nguyen
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Marianne J Chapman
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Adam M Deane
- Department of Critical Care Services, Royal Adelaide Hospital, Adelaide, Australia Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
31
|
Kar P, Jones KL, Horowitz M, Chapman MJ, Deane AM. Measurement of gastric emptying in the critically ill. Clin Nutr 2015; 34:557-564. [PMID: 25491245 DOI: 10.1016/j.clnu.2014.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Enteral nutrition is important in critically ill patients and is usually administered via a nasogastric tube. As gastric emptying is frequently delayed, and this compromises the delivery of nutrient, it is important that the emptying rate can be quantified. METHODS A comprehensive search of MEDLINE/PubMed, of English articles, from inception to 1 July 2014. References of included manuscripts were also examined for additional studies. RESULTS A number of methods are available to measure gastric emptying and these broadly can be categorised as direct- or indirect-test and surrogate assessments. Direct tests necessitate visualisation of the stomach contents during emptying and are unaffected by liver or kidney metabolism. The most frequently used direct modality is scintigraphy, which remains the 'gold standard'. Indirect tests use a marker that is absorbed in the proximal small intestine, so that measurements of the marker, or its metabolite measured in plasma or breath, correlates with gastric emptying. These tests include drug and carbohydrate absorption and isotope breath tests. Gastric residual volumes (GRVs) are used frequently to quantify gastric emptying during nasogastric feeding, but these measurements may be inaccurate and should be regarded as a surrogate measurement. While the inherent limitations of GRVs make them less suitable for research purposes they are often the only technique that is available for clinicians at the bedside. CONCLUSIONS Each of the available techniques has its strength and limitations. Accordingly, the choice of gastric emptying test is dictated by the particular requirement(s) and expertise of the investigator or clinician.
Collapse
Affiliation(s)
- Palash Kar
- Discipline of Acute Care Medicine, University of Adelaide, South Australia, Australia; Intensive Care Unit, Royal Adelaide Hospital, South Australia, Australia.
| | - Karen L Jones
- Centre for Research Excellence, University of Adelaide, South Australia, Australia; Discipline of Medicine, University of Adelaide, South Australia, Australia
| | - Michael Horowitz
- Centre for Research Excellence, University of Adelaide, South Australia, Australia; Discipline of Medicine, University of Adelaide, South Australia, Australia
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide, South Australia, Australia; Intensive Care Unit, Royal Adelaide Hospital, South Australia, Australia; Centre for Research Excellence, University of Adelaide, South Australia, Australia
| | - Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, South Australia, Australia; Intensive Care Unit, Royal Adelaide Hospital, South Australia, Australia; Centre for Research Excellence, University of Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Moshrefi M, Yari N, Nabipour F, Bazrafshani MR, Nematollahi-mahani SN. Transplantation of differentiated umbilical cord mesenchymal cells under kidney capsule for control of type I diabetes in rat. Tissue Cell 2015; 47:395-405. [PMID: 26025422 DOI: 10.1016/j.tice.2015.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/29/2022]
Abstract
Nowadays, stem cells have been introduced as an appropriate source of regenerative medicine for treatment of type I diabetes. Human umbilical cord matrix-derived mesenchymal cells (hUCMC) have successfully been differentiated into insulin producing cells. The isolated hUCM cells were characterized by the expression of stem cell surface markers and by differentiation into adipocytes and osteocytes. The hUCMCs were cultured with different concentrations of neural conditional medium (NCM) and were induced to differentiate into insulin producing cells (IPCs). As 60% NCM concentration resulted in higher nestin and PDX1 expression, the cells were first exposed to 60% NCM and were then induced for IPCs differentiation. PDX1 and insulin gene expression was evaluated in the treated cells. Also, the secretion capacity of the IPCs was assessed by glucose challenge test. IPCs were transferred under the rat kidney capsule. Blood glucose level, weight gain and immunohistochemistry assessments were done in the treated animals. hUCMC expressed mesenchymal cell surface markers and successfully differentiated into adipocytes and osteocytes. Higher NCM concentration resulted in higher PDX1 and nestin expression. The IPCs expressed insulin and PDX1. IPCs were detectable under the kidney capsule 2 months after injection. IPCs transplantation resulted in a sharp decline of blood sugar level and less weight loss. Differentiated hUCM cells could alleviate the insulin deprivation in the rat model of type I diabetes. In addition, higher NCM concentration leads to more differentiation into IPCs and more nestin and PDX1 expression. Kidney capsule can serve as a suitable nominee for IPCs transplantation.
Collapse
Affiliation(s)
- Mojgan Moshrefi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Afzal Research Institute (NGO), Kerman, Iran
| | - Nahid Yari
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Nabipour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Bazrafshani
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Afzal Research Institute (NGO), Kerman, Iran.
| |
Collapse
|
33
|
Chapman MJ, Deane AM. Gastrointestinal dysfunction relating to the provision of nutrition in the critically ill. Curr Opin Clin Nutr Metab Care 2015; 18:207-12. [PMID: 25603226 DOI: 10.1097/mco.0000000000000149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW During critical illness, enteral nutrition remains central to clinical care and an understanding of gut dysfunction is therefore important. Contemporary data have contributed to our knowledge in this area and this review will concentrate on recently published studies. RECENT FINDINGS It is difficult to precisely measure gastric emptying and nutrient absorption as part of routine clinical care. However, techniques for the measurement of these parameters for research purposes have been refined, studied and validated. These methodologies allow the evaluation of novel treatments that modulate gastric emptying. Quantification and an understanding of the mechanisms of nutrient malabsorption may facilitate the development of therapeutic agents to improve absorption and/or formulae, which are more readily absorbed, thereby improving nutritional and clinical outcomes. SUMMARY Improved understanding of gut pathophysiology in critical illness provides opportunities for the development and testing of novel and targeted treatment strategies, with the objective to improve clinical outcomes in this group.
Collapse
Affiliation(s)
- Marianne J Chapman
- aDepartment of Critical Care Services, Royal Adelaide Hospital, North Terrace bNHMRC Centre of Research Excellence (CRE) in the Translation of Nutritional Science into Good Health cDiscipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
34
|
Kar P, Cousins CE, Annink CE, Jones KL, Chapman MJ, Meier JJ, Nauck MA, Horowitz M, Deane AM. Effects of glucose-dependent insulinotropic polypeptide on gastric emptying, glycaemia and insulinaemia during critical illness: a prospective, double blind, randomised, crossover study. Crit Care 2015; 19:20. [PMID: 25613747 PMCID: PMC4340673 DOI: 10.1186/s13054-014-0718-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Insulin is used to treat hyperglycaemia in critically ill patients but can cause hypoglycaemia, which is associated with poorer outcomes. In health glucose-dependent insulinotropic polypeptide (GIP) is a potent glucose-lowering peptide that does not cause hypoglycaemia. The objectives of this study were to determine the effects of exogenous GIP infusion on blood glucose concentrations, glucose absorption, insulinaemia and gastric emptying in critically ill patients without known diabetes. METHODS A total of 20 ventilated patients (Median age 61 (range: 22 to 79) years, APACHE II 21.5 (17 to 26), BMI 28 (21 to 40) kg/m(2)) without known diabetes were studied on two consecutive days in a randomised, double blind, placebo controlled, cross-over fashion. Intravenous GIP (4 pmol/kg/min) or placebo (0.9% saline) was infused between T = -60 to 300 minutes. At T0, 100 ml of liquid nutrient (2 kcal/ml) containing 3-O-Methylglucose (3-OMG), 100 mcg of Octanoic acid and 20 MBq Tc-99 m Calcium Phytate, was administered via a nasogastric tube. Blood glucose and serum 3-OMG (an index of glucose absorption) concentrations were measured. Gastric emptying, insulin and glucagon levels and plasma GIP concentrations were also measured. RESULTS While administration of GIP increased plasma GIP concentrations three- to four-fold (T = -60 23.9 (16.5 to 36.7) versus T = 0 84.2 (65.3 to 111.1); P <0.001) and plasma glucagon (iAUC300 4217 (1891 to 7715) versus 1232 (293 to 4545) pg/ml.300 minutes; P = 0.04), there were no effects on postprandial blood glucose (AUC300 2843 (2568 to 3338) versus 2819 (2550 to 3497) mmol/L.300 minutes; P = 0.86), gastric emptying (AUC300 15611 (10993 to 18062) versus 15660 (9694 to 22618) %.300 minutes; P = 0.61), glucose absorption (AUC300 50.6 (22.3 to 74.2) versus 64.3 (9.9 to 96.3) mmol/L.300 minutes; P = 0.62) or plasma insulin (AUC300 3945 (2280 to 6731) versus 3479 (2316 to 6081) mU/L.300 minutes; P = 0.76). CONCLUSIONS In contrast to its profound insulinotropic effect in health, the administration of GIP at pharmacological doses does not appear to affect glycaemia, gastric emptying, glucose absorption or insulinaemia in the critically ill patient. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12612000488808. Registered 3 May 2012.
Collapse
Affiliation(s)
- Palash Kar
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Caroline E Cousins
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Christopher E Annink
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrald Building, North Terrace, Adelaide, South Australia, 5000, Australia.
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Marianne J Chapman
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
- Discipline of Acute Care Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Juris J Meier
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstraße 56, Bochum, 44791, Germany.
| | - Michael A Nauck
- Diabetes Centre, Bad Lauterberg, Kirchberg 21, Bad Lauterberg, Harz, 37431, Germany.
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrald Building, North Terrace, Adelaide, South Australia, 5000, Australia.
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Adam M Deane
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
- Discipline of Acute Care Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
35
|
Poole A, Deane A, Summers M, Fletcher J, Chapman M. The relationship between fasting plasma citrulline concentration and small intestinal function in the critically ill. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:16. [PMID: 25599966 PMCID: PMC4355456 DOI: 10.1186/s13054-014-0725-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/18/2014] [Indexed: 01/21/2023]
Abstract
Introduction In this study, we aimed to evaluate whether fasting plasma citrulline concentration predicts subsequent glucose absorption in critically ill patients. Methods In a prospective observational study involving 15 healthy and 20 critically ill subjects, fasting plasma citrulline concentrations were assayed in blood samples immediately prior to the administration of a liquid test meal (1 kcal/ml; containing 3 g of 3-O-methylglucose (3-OMG)) that was infused directly into the small intestine. Serum 3-OMG concentrations were measured over the following 4 hours, with the area under the 3-OMG concentration curve (AUC) calculated as an index of glucose absorption. Results The groups were well matched in terms of age, sex and body mass index (BMI) (healthy subjects versus patients, mean (range) values: age, 47 (18 to 88) versus 49 (21 to 77) years; sex ratio, 60% versus 80% male; BMI, 25.2 (18.8 to 30.0) versus 25.5 (19.4 to 32.2) kg/m2). Compared to the healthy subjects, patients who were critically ill had reduced fasting citrulline concentration (26.5 (13.9 to 43.0) versus 15.2 (5.7 to 28.6) μmol/L; P < 0.01) and glucose absorption (3-OMG AUC, 79.7 (28.6 to 117.8) versus 61.0 (4.5 to 97.1) mmol/L/240 min; P = 0.05). There was no relationship between fasting citrulline concentration and subsequent glucose absorption (r = 0.28; P = 0.12). Conclusions Whereas both plasma citrulline concentrations and glucose absorption were reduced in critical illness, fasting plasma citrulline concentrations were not predictive of subsequent glucose absorption. These data suggest that fasting citrulline concentration does not appear to be a marker of small intestinal absorptive function in patients who are critically ill.
Collapse
Affiliation(s)
- Alexis Poole
- Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Adam Deane
- Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.,Discipline of Acute Care Medicine, University of Adelaide, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Matthew Summers
- Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.,Discipline of Acute Care Medicine, University of Adelaide, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Janice Fletcher
- Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Marianne Chapman
- Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia. .,Discipline of Acute Care Medicine, University of Adelaide, Frome Road, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
36
|
BLASER AREINTAM, STARKOPF J, KIRSIMÄGI Ü, DEANE AM. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis. Acta Anaesthesiol Scand 2014; 58:914-22. [PMID: 24611520 DOI: 10.1111/aas.12302] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 12/16/2022]
Abstract
Clinicians and researchers frequently use the phrase 'feeding intolerance' (FI) as a descriptive term in enterally fed critically ill patients. We aimed to: (1) determine what is the most accepted definition of FI; (2) estimate the prevalence of FI; and (3) evaluate whether FI is associated with important outcomes. Systematic searches of peer-reviewed publications using PubMed, MEDLINE, and Web of Science were performed with studies reporting FI extracted. We identified 72 studies defining FI. In 33 studies, the definition was based on large gastric residual volumes (GRVs) together with other gastrointestinal symptoms, while 30 studies relied solely on large GRVs, six studies used inadequate delivery of enteral nutrition (EN) as a threshold, and three studies gastrointestinal symptoms without reference to GRV. The median volume used to define a 'large' GRV was 250 ml (ranges from 75 to 500 ml). The pooled proportion (n = 31 studies) of FI was 38.3% (95% CI 30.7-46.2). Five studies reported outcomes, all of them observed adverse outcome in FI patients. In three studies, respectively, FI was associated with increased mortality and ICU length-of-stay. In summary, FI is inconsistently defined but appears to occur frequently. There are preliminary data indicating that FI is associated with adverse outcomes. A standard definition of FI is required to determine the accuracy of these preliminary data.
Collapse
Affiliation(s)
- A. REINTAM BLASER
- Department of Anaesthesiology and Intensive Care; University of Tartu; Tartu Estonia
| | - J. STARKOPF
- Department of Anaesthesiology and Intensive Care; University of Tartu; Tartu Estonia
- Department of Anaesthesiology and Intensive Care; Tartu University Hospital; Tartu Estonia
| | - Ü. KIRSIMÄGI
- Department of Surgery; Tartu University Hospital; Tartu Estonia
| | - A. M. DEANE
- Discipline of Acute Care Medicine; University of Adelaide; Adelaide SA Australia
- Department of Critical Care Services; Royal Adelaide Hospital; Adelaide SA Australia
| |
Collapse
|
37
|
Thazhath SS, Wu T, Young RL, Horowitz M, Rayner CK. Glucose absorption in small intestinal diseases. Expert Rev Gastroenterol Hepatol 2014; 8:301-312. [PMID: 24502537 DOI: 10.1586/17474124.2014.887439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent developments in the field of diabetes and obesity management have established the central role of the gut in glucose homeostasis; not only is the gut the primary absorptive site, but it also triggers neurohumoral feedback responses that regulate the pre- and post-absorptive phases of glucose metabolism. Structural and/or functional disorders of the intestine have the capacity to enhance (e.g.: diabetes) or inhibit (e.g.: short-gut syndrome, critical illness) glucose absorption, with potentially detrimental outcomes. In this review, we first describe the normal physiology of glucose absorption and outline the methods by which it can be quantified. Then we focus on the structural and functional changes in the small intestine associated with obesity, critical illness, short gut syndrome and other malabsorptive states, and particularly Type 2 diabetes, which can impact upon carbohydrate absorption and overall glucose homeostasis.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Summers MJ, DI Bartolomeo AE, Zaknic AV, Chapman MJ, Nguyen NQ, Zacharakis B, Rayner CK, Horowitz M, Deane AM. Endogenous amylin and glucagon-like peptide-1 concentrations are not associated with gastric emptying in critical illness. Acta Anaesthesiol Scand 2014; 58:235-242. [PMID: 24410108 DOI: 10.1111/aas.12252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND In health, the hormones amylin and glucagon-like peptide-1 (GLP-1) slow gastric emptying (GE) and modulate glycaemia. The aims of this study were to determine amylin and GLP-1 concentrations in the critically ill and their relationship with GE, glucose absorption and glycaemia. METHODS In fasted critically ill and healthy subjects (n = 26 and 23 respectively), liquid nutrient, containing 100 mg (13) C-sodium octanoate and 3 g 3-O-methlyglucose (3-OMG), was administered via a nasogastric tube. Amylin, GLP-1, glucose and 3-OMG concentrations were measured in blood samples taken during fasting, and 30 min and 60 min after the 'meal'. Breath samples were taken to determine gastric emptying coefficient (GEC). Intolerance to intragastric feeding was defined as a gastric residual volume of ≥ 250 ml and/or vomiting within the 24 h prior to the study. RESULTS Although GE was slower (GEC: critically ill 2.8 ± 0.9 vs. health, 3.4 ± 0.2; P = 0.002), fasting blood glucose was higher (7.0 ± 1.9 vs. 5.7 ± 0.2 mmol/l; P = 0.005) and overall glucose absorption was reduced in critically ill patients (3-OMG: 9.4 ± 8.0 vs. 17.7 ± 4.9 mmol/l.60 min; P < 0.001), there were no differences in fasting or postprandial amylin concentrations. Furthermore, although fasting [1.7 (0.4-7.2) vs. 0.7 (0.3-32.0) pmol/l; P = 0.04] and postprandial [3.0 (0.4-8.5) vs. 0.8 (0.4-34.3) pmol/l; P = 0.02] GLP-1 concentrations were increased in the critically ill and were greater in feed intolerant when compared with those tolerating feed [3.7 (0.4-7.2) vs. 1.2 (0.7-4.6) pmol/l; P = 0.02], there were no relationships between GE and fasting amylin or GLP-1 concentrations. CONCLUSION In the critically ill, fasting GLP-1, but not amylin, concentrations are elevated and associated with feed intolerance. Neither amylin nor GLP-1 appears to substantially influence the rate of GE.
Collapse
Affiliation(s)
- M J Summers
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Deane AM, Rayner CK, Keeshan A, Cvijanovic N, Marino Z, Nguyen NQ, Chia B, Summers MJ, Sim JA, van Beek T, Chapman MJ, Horowitz M, Young RL. The effects of critical illness on intestinal glucose sensing, transporters, and absorption. Crit Care Med 2014; 42:57-65. [PMID: 23963126 DOI: 10.1097/ccm.0b013e318298a8af] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Providing effective enteral nutrition is important during critical illness. In health, glucose is absorbed from the small intestine via sodium-dependent glucose transporter-1 and glucose transporter-2, which may both be regulated by intestinal sweet taste receptors. We evaluated the effect of critical illness on glucose absorption and expression of intestinal sodium-dependent glucose transporter-1, glucose transporter-2, and sweet taste receptors in humans and mice. DESIGN Prospective observational study in humans and mice. SETTING ICU and university-affiliated research laboratory. SUBJECTS Human subjects were 12 critically ill patients and 12 healthy controls. In the laboratory 16-week-old mice were studied. INTERVENTIONS Human subjects underwent endoscopy. Glucose (30 g) and 3-O-methylglucose (3 g), used to estimate glucose absorption, were infused intraduodenally over 30 minutes. Duodenal mucosa was biopsied before and after infusion. Mice were randomized to cecal ligation and puncture to model critical illness (n = 16) or sham laparotomy (control) (n = 8). At day 5, mice received glucose (100 mg) and 3-O-methylglucose (10 mg) infused intraduodenally prior to mucosal tissue collection. MEASUREMENTS AND MAIN RESULTS Quantitative polymerase chain reaction was performed to measure absolute (human) and relative levels of sodium-dependent glucose transporter-1, glucose transporter-2, and taste receptor type 1 member 2 (T1R2) transcripts. Blood samples were assayed for 3-O-methylglucose to estimate glucose absorption. Glucose absorption was three-fold lower in critically ill humans than in controls (p = 0.002) and reduced by a similar proportion in cecal ligation and puncture mice (p = 0.004). In critically ill patients, duodenal levels of sodium-dependent glucose transporter-1, glucose transporter-2, and T1R2 transcript were reduced 49% (p < 0.001), 50% (p = 0.009), and 85% (p = 0.007), whereas in the jejunum of cecal ligation and puncture mice sodium-dependent glucose transporter-1, glucose transporter-2, and T1R2 transcripts were reduced by 55% (p < 0.001), 50% (p = 0.002), and 69% (p = 0.004). CONCLUSIONS Critical illness is characterized by markedly diminished glucose absorption, associated with reduced intestinal expression of glucose transporters (sodium-dependent glucose transporter-1 and glucose transporter-2) and sweet taste receptor transcripts. These changes are paralleled in cecal ligation and puncture mice.
Collapse
Affiliation(s)
- Adam M Deane
- 1Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia. 2Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia. 3Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia. 4Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia. 5Discipline of Medicine, Nerve-Gut Research Laboratory, Level-1 Hanson Institute, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Young RL, Chia B, Isaacs NJ, Ma J, Khoo J, Wu T, Horowitz M, Rayner CK. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes 2013; 62:3532-3541. [PMID: 23761104 PMCID: PMC3781477 DOI: 10.2337/db13-0581] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/05/2013] [Indexed: 02/05/2023]
Abstract
We previously established that the intestinal sweet taste receptors (STRs), T1R2 and T1R3, were expressed in distinct epithelial cells in the human proximal intestine and that their transcript levels varied with glycemic status in patients with type 2 diabetes. Here we determined whether STR expression was 1) acutely regulated by changes in luminal and systemic glucose levels, 2) disordered in type 2 diabetes, and 3) linked to glucose absorption. Fourteen healthy subjects and 13 patients with type 2 diabetes were studied twice, at euglycemia (5.2 ± 0.2 mmol/L) or hyperglycemia (12.3 ± 0.2 mmol/L). Endoscopic biopsy specimens were collected from the duodenum at baseline and after a 30-min intraduodenal glucose infusion of 30 g/150 mL water plus 3 g 3-O-methylglucose (3-OMG). STR transcripts were quantified by RT-PCR, and plasma was assayed for 3-OMG concentration. Intestinal STR transcript levels at baseline were unaffected by acute variations in glycemia in healthy subjects and in type 2 diabetic patients. T1R2 transcript levels increased after luminal glucose infusion in both groups during euglycemia (+5.8 × 10(4) and +5.8 × 10(4) copies, respectively) but decreased in healthy subjects during hyperglycemia (-1.4 × 10(4) copies). T1R2 levels increased significantly in type 2 diabetic patients under the same conditions (+6.9 × 10(5) copies). Plasma 3-OMG concentrations were significantly higher in type 2 diabetic patients than in healthy control subjects during acute hyperglycemia. Intestinal T1R2 expression is reciprocally regulated by luminal glucose in health according to glycemic status but is disordered in type 2 diabetes during acute hyperglycemia. This defect may enhance glucose absorption in type 2 diabetic patients and exacerbate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Richard L. Young
- Nerve-Gut Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Bridgette Chia
- Nerve-Gut Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nicole J. Isaacs
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Jing Ma
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology and Metabolism, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Joan Khoo
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K. Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Nielsen ST, Krogh-Madsen R, Møller K. Glucose metabolism in critically ill patients: are incretins an important player? J Intensive Care Med 2013; 30:201-8. [PMID: 24065782 DOI: 10.1177/0885066613503291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Critical illness afflicts millions of people worldwide and is associated with a high risk of organ failure and death or an adverse outcome with persistent physical or cognitive deficits. Spontaneous hyperglycemia is common in critically ill patients and is associated with an adverse outcome compared to normoglycemia. Insulin is used for treating hyperglycemia in the critically ill patients but may be complicated by hypoglycemia, which is difficult to detect in these patients and which may lead to serious neurological sequelae and death. The incretin hormone, glucagon-like peptide (GLP) 1, stimulates insulin secretion and inhibits glucagon release both in healthy individuals and in patients with type 2 diabetes (T2DM). Compared to insulin, GLP-1 appears to be associated with a lower risk of severe hypoglycemia, probably because the magnitude of its insulinotropic action is dependent on blood glucose (BG). This is taken advantage of in the treatment of patients with T2DM, for whom GLP-1 analogs have been introduced during the recent years. Infusion of GLP-1 also lowers the BG level in critically ill patients without causing severe hypoglycemia. The T2DM and critical illness share similar characteristics and are, among other things, both characterized by different grades of systemic inflammation and insulin resistance. The GLP-1 might be a potential new treatment target in critically ill patients with stress-induced hyperglycemia.
Collapse
Affiliation(s)
- Signe Tellerup Nielsen
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Kirsten Møller
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark Neurointensive Care Unit, Department of Neuroanaesthesia, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Nguyen NQ, Bryant LK, Burgstad CM, Chapman M, Deane A, Bellon M, Lange K, Bartholomeuz D, Horowitz M, Holloway RH, Fraser RJ. Gastric emptying measurement of liquid nutrients using the (13)C-octanoate breath test in critically ill patients: a comparison with scintigraphy. Intensive Care Med 2013; 39:1238-1246. [PMID: 23471513 DOI: 10.1007/s00134-013-2881-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Scintigraphy is considered the most accurate technique for the measurement of gastric emptying (GE) but, for patients in the intensive care unit, it is technically demanding, involves radiation and can interfere with care. The (13)C-octanoate breath test ((13)C-OBT) is a simple, non-invasive technique that does not involve radiation exposure. AIM To evaluate the performance of the (13)C-OBT in the assessment of GE in critically ill patients. METHODS The GE was assessed in 33 mechanically ventilated patients (23 M; 54.3 ± 3.0 yrs; APACHE II: 22.0 ± 1.1). Following test meal administration (100 ml Ensure(®)), concurrent scintigraphic measurement and breath samples ((13)C-OBT) were collected over 4 h. Scintigraphic meal retention was determined and the gastric emptying coefficient (GEC) and half emptying time [t50(BT)] were calculated for the (13)C-OBT. Delayed GE was defined as meal retention >13 % at 180 min. RESULTS Delayed GE was identified in 27/33 patients. Meal retention correlated modestly with t50(BT) (r = 0.55-0.66; P < 0.001) and well with GEC (r = -0.63 to -0.74; P < 0.0001). The strength of agreement between the two techniques was highest between GEC and retention at 120 min. The best cut-off GEC for defining delayed GE was 3.25 (AUC = 0.75; 95 % CI = 0.52-0.99; P = 0.05), with 89 % sensitivity and 67 % specificity to detect delayed GE. The GE was delayed in all (23/23) patients with feed intolerance (GRV > 250 ml) on scintigraphy and 91 % (21/23) patients on (13)C-OBT. CONCLUSION In critical illness, there was a correlation between (13)C-OBT and gastric scintigraphy, with GEC performing as a better and more sensitive marker of detecting delayed GE than t50. However the relatively wide 95 % confidence intervals suggest that (13)C-OBT is more suitable as a technique to assess GE in a group setting for research studies rather than for individual patients in clinical practice.
Collapse
Affiliation(s)
- Nam Q Nguyen
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sucrose Malabsorption and Impaired Mucosal Integrity in Enterally Fed Critically Ill Patients. Crit Care Med 2013; 41:1221-8. [DOI: 10.1097/ccm.0b013e31827ca2fa] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Abstract
PURPOSE OF REVIEW To highlight the recent developments in nutritional support for critically ill patients. RECENT FINDINGS Increasing data support the benefits of early initiation of enteral nutrition, with improvements in small intestinal absorption and clinical outcomes. In contrast to the previous belief, recent data suggest caloric administration of greater than 65-70% of daily requirement is associated with poorer clinical outcomes, especially when supplemental parenteral nutrition is used to increase the amount of caloric delivery. The role of supplementary micronutrients and anti-inflammatory lipids has been further evaluated but remains inconclusive, and is not currently recommended. SUMMARY Together, current findings indicate that intragastric enteral nutrition should be initiated within 24 h of admission to ICU and supplementary parenteral nutrition should be avoided. Future research should aim to clarify the optimal energy delivery for best clinical outcomes, and the role of small intestinal function and its flora in nutritional care and clinical outcomes.
Collapse
|
46
|
Sim JA, Horowitz M, Summers MJ, Trahair LG, Goud RS, Zaknic AV, Hausken T, Fraser JD, Chapman MJ, Jones KL, Deane AM. Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years. Intensive Care Med 2013; 39:258-266. [PMID: 23096428 DOI: 10.1007/s00134-012-2719-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness. METHODS Following a 1-h 'observation' period (t (0)-t (60)), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t (60)-t (120), and t (120)-t (180), respectively. SMA blood flow was measured using Doppler ultrasonography at t (60) (fasting), t (90) and t (150) and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t (120)-t (180) and t (120)-t (240)). Mean arterial pressure was recorded between t (60)-t (240). Data are presented as median (25th, 75th percentile). RESULTS Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt (150): patients 115 (-138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC(120-180): 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC(120-240): 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC(120-180) and ∆SMA flow at t (150): r (2) = 0.29; P < 0.05). CONCLUSIONS In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.
Collapse
Affiliation(s)
- Jennifer A Sim
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schaal JV, Libert N, De Rudnicki S, Auroy Y, Mérat S. [Glucose variability in intensive care unit]. ACTA ACUST UNITED AC 2012; 31:950-60. [PMID: 23107472 DOI: 10.1016/j.annfar.2012.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/05/2012] [Indexed: 01/08/2023]
Abstract
Hyperglycemia is significantly associated with increased mortality in critically ill patients and then, strict control of blood glucose (BG) concentration is important. Lowering of BG levels with intensive insulin therapy (IIT) was recommended in order to improve patient outcomes. But recently, some recent prospective trials failed to confirm the initial data, showing conflicting results (significantly increased mortality with IIT, more hypoglycemic episodes). So there is no consensus about efficiency and safety of IIT. Significant associations between glucose variability and mortality have been confirmed by several recent studies. A difference in variability of BG control could explain why the effect of IIT varied from beneficial to harmful. Managing and decreasing this BG variability could be an important goal of BG control in critically ill patients. Clinicians have to consider definitions, physiopathology and impacts of glucose variability, in order to improve patient outcomes.
Collapse
Affiliation(s)
- J-V Schaal
- Département d'anesthésie-réanimation, hôpital d'Instruction des Armées Val-de-Grâce, 74 boulevard de Port-Royal, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Di Bartolomeo AE, Chapman MJ, V Zaknic A, Summers MJ, Jones KL, Nguyen NQ, Rayner CK, Horowitz M, Deane AM. Comparative effects on glucose absorption of intragastric and post-pyloric nutrient delivery in the critically ill. Crit Care 2012; 16:R167. [PMID: 22985684 PMCID: PMC3682265 DOI: 10.1186/cc11522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/16/2012] [Accepted: 09/14/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Studies in the critically ill that evaluate intragastric and post-pyloric delivery of nutrient have yielded conflicting data. A limitation of these studies is that the influence in the route of feeding on glucose absorption and glycaemia has not been determined. METHODS In 68 mechanically ventilated critically ill patients, liquid nutrient (100 ml; 1 kcal/ml containing 3 g of 3-O-Methyl-D-glucopyranose (3-OMG), as a marker of glucose absorption), was infused into either the stomach (n = 24) or small intestine (n = 44) over six minutes. Blood glucose and serum 3-OMG concentrations were measured at regular intervals for 240 minutes and the area under the curves (AUCs) calculated for 'early' (AUC60) and 'overall' (AUC240) time periods. Data are presented as mean (95% confidence intervals). RESULTS Glucose absorption was initially more rapid following post-pyloric, when compared with intragastric, feeding (3-OMG AUC60: intragastric 7.3 (4.3, 10.2) vs. post-pyloric 12.5 (10.1, 14.8) mmol/l.min; P = 0.008); however, 'overall' glucose absorption was similar (AUC240: 49.1 (34.8, 63.5) vs. 56.6 (48.9, 64.3) mmol/l.min; P = 0.31). Post-pyloric administration of nutrients was also associated with greater increases in blood glucose concentrations in the 'early' period (AUC60: 472 (425, 519) vs. 534 (501, 569) mmol/l.min; P = 0.03), but 'overall' glycaemia was also similar (AUC240: 1,875 (1,674, 2,075) vs. 1,898 (1,755, 2,041) mmol/l.min; P = 0.85). CONCLUSIONS In the critically ill, glucose absorption was similar whether nutrient was administered via a gastric or post-pyloric catheter. These data may have implications for the perceived benefit of post-pyloric feeding on nutritional outcomes and warrant further investigation.
Collapse
Affiliation(s)
- Anna E Di Bartolomeo
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Antony V Zaknic
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Matthew J Summers
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Christopher K Rayner
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
49
|
Deane AM, Wong GL, Horowitz M, Zaknic AV, Summers MJ, Di Bartolomeo AE, Sim JA, Maddox AF, Bellon MS, Rayner CK, Chapman MJ, Fraser RJ. Randomized double-blind crossover study to determine the effects of erythromycin on small intestinal nutrient absorption and transit in the critically ill. Am J Clin Nutr 2012; 95:1396-1402. [PMID: 22572649 DOI: 10.3945/ajcn.112.035691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The gastrokinetic drug erythromycin is commonly administered to critically ill patients during intragastric feeding to augment small intestinal nutrient delivery. However, erythromycin has been reported to increase the prevalence of diarrhea, which may reflect reduced absorption and/or accelerated small intestinal transit. OBJECTIVE The objective was to evaluate the effects of intravenous erythromycin on small intestinal nutrient absorption and transit in the critically ill. DESIGN On consecutive days, erythromycin (200 mg in 20 mL 0.9% saline) or placebo (20 mL 0.9% saline) were infused intravenously between -20 and 0 min in a randomized, blinded, crossover fashion. Between 0 and 30 min, a liquid nutrient containing 3-O-methylglucose (3-OMG), [13C]triolein, and [(99m)Tc]sulfur colloid was administered directly into the small intestine at 2 kcal/min. Serum 3-OMG concentrations and exhaled (13)CO2 (indices of glucose and lipid absorption, respectively) were measured. Cecal arrival of the infused nutrient was determined by scintigraphy. Data are medians (ranges) and were analyzed by using Wilcoxon's signed-rank test. RESULTS Thirty-two mechanically ventilated patients were studied. Erythromycin increased small intestinal glucose absorption [3-OMG AUC360: 105.2 (28.9-157.0) for erythromycin compared with 91.8 (51.4-147.9) mmol/L · min for placebo; P = 0.029] but tended to reduce lipid absorption [cumulative percentage dose (13)CO2 recovered: 10.4 (0-90.6) compared with 22.6 (0-100) %; P = 0.06]. A trend to slower transit was observed after erythromycin [300 (39-360) compared with 228 (33-360) min; P = 0.07]. CONCLUSIONS Acute administration of erythromycin increases small intestinal glucose absorption in the critically ill, but there was a tendency for the drug to reduce small intestinal lipid absorption and slow transit. These observations have implications for the use of erythromycin as a gastrokinetic drug in the critically ill. This trial was registered in the Australian New Zealand Clinical Trials Registry as ACTRN 12610000615088.
Collapse
Affiliation(s)
- Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Decision support for optimized blood glucose control and nutrition in a neurotrauma intensive care unit: preliminary results of clinical advice and prediction accuracy of the Glucosafe system. J Clin Monit Comput 2012; 26:319-28. [PMID: 22581038 DOI: 10.1007/s10877-012-9364-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
Assessment of glycemic control with model-based decision support ("Glucosafe") in neurotrauma intensive care patients in an ongoing randomized controlled trial with a blood glucose (BG) target of 5-8 mmol/L. Assessment of BG prediction accuracy of the model and assessment of the effect that two potential model extensions would have on prediction accuracy in this trial. In the intervention group insulin infusion rates and nutrition are varied based on Glucosafe's decision support. In the control group, the caloric target is 25-30 kcal/kg per day and insulin is regulated according to department rules. BG concentrations, insulin infusion rates, and feed rates are compared from the data of 12 consecutive patients. BG measurements are predicted retrospectively and the mean relative prediction error is calculated using (1) the current model from the trial, (2) the current model modified by using a BG-dependent variable endogenous insulin appearance rate, (3) the current model modified by a patient-specific carbohydrate absorption factor. BG control was improved by Glucosafe. 76 % of BG measurements in Glucosafe patients were in the 5-8 mmol/L band (Controls: 51 %). BG means (log-normal) ± SD were 7.0 ± 1.19 mmol/L in Glucosafe patients compared to 8.0 ± 1.24 mmol/L in controls (P = 0.05). Mean caloric intake was 93.5 ± 15 % of resting energy expenditure in Glucosafe patients (Controls: 129 ± 29 %). The BG-dependent variable insulin appearance rate had no measurable effect on prediction accuracy. The patient-specific carbohydrate absorption factor improved prediction accuracy significantly (P = 0.001). Glucosafe advice reduces hyperglycemia in neurotrauma intensive care patients. Further parameterization can improve model prediction accuracy.
Collapse
|