1
|
Zhao L, Li T, Zhou Y, Wang P, Luo L. Monoclonal antibody targeting CEACAM1 enhanced the response to anti-PD1 immunotherapy in non-small cell lung cancer. Int Immunopharmacol 2024; 143:113395. [PMID: 39426236 DOI: 10.1016/j.intimp.2024.113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1), an extensively studied cell surface molecule, mainly expressed by certain epithelial, endothelial, lymphoid and myeloid cells, and is an attractive target for cancer immunotherapy. Here, to investigate the anti-tumor effects and mechanisms of CEACAM1 antibody, we prepared the antibody and explored its anti-tumor effects on Non-small Cell Lung Cancer (NSCLC) in vitro and in vivo. Firstly, antigen of human CEACAM1 recombinant protein was immunized on BALB/c mice and the high-affinity mouse anti-human monoclonal antibody 3C11 was selected by hybridoma technique. Next, ELISA was applied to detect the blocking effects of 3C11 on CEACAM1-CEACAM1 and CEACAM1-CEACAM5. Then, cell assays and ELISA were used to evaluate the role of 3C11 in blocking CEACAM1-CEACAM1 immunosuppressive signal transduction between dendritic cells (DCs) and T cells or natural killer cells (NK) and tumor cells. Finally, the synergistic anti-tumor effect of 3C11 combined with anti-PD-1 antibody was evaluated through cell stimulation assays and NCI-H358-induced tumor models in mice. The results showed the EC50 of 3C11 binding to NCI-H358 or exhausted T cells were 0.04971 μg/mL and 0.03475 μg/mL, respectively. 3C11 activated the exhausted T cells and enhanced the killing effect of NK by blocking CEACAM1-CEACAM1. In addition, the combination of 3C11 and anti-PD1 antibody produced synergistic anti-tumor effect on NSCLC. Its improved tumor growth inhibition value (TGI) of anti-PD-1 from 18 % to 85 % in vivo. These findings suggest that 3C11 can be considered an effective immunotherapy drug for NSCLC.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/therapy
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/therapy
- Mice, Inbred BALB C
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Immunotherapy/methods
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Mice
- Cell Line, Tumor
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Female
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Xenograft Model Antitumor Assays
- Carcinoembryonic Antigen/immunology
Collapse
Affiliation(s)
- Lianqi Zhao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China; Ouyue Biotech. Inc, Suzhou, Jiangsu 215400, PR China; In Vivo Pharmacology, Frontage Laboratories, Suzhou, Jiangsu 215400, PR China
| | - Tingting Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China; Ouyue Biotech. Inc, Suzhou, Jiangsu 215400, PR China
| | - Yinwei Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Pengbo Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China.
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
2
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024; 54 Suppl 2:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Centonze M, Fiori V, Kujawski M, Li L, Wong P, Williams L, Di Mambro T, Dominici S, Sparti A, Shively JE, Magnani M. Development and characterization of DIA 12.3, a fully human intact anti-CEACAM1 monoclonal antibody. PLoS One 2024; 19:e0295345. [PMID: 38346003 PMCID: PMC10861082 DOI: 10.1371/journal.pone.0295345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 02/15/2024] Open
Abstract
Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1), a homotypic cell adhesion molecule glycoprotein with apical expression on normal epithelial cells and activated lymphocytes, is overexpressed on many tumors and acts as an inhibitory receptor on NK cells, preventing their killing of CEACAM1 positive tumors. Production of humanized anti-CEACAM1 antibodies to block the inhibitory activity of CEACAM1 for immunotherapy and immunoimaging. Starting from a scFv, a fully human intact anti-CEACAM1 (DIA 12.3) that recognizes the N-terminal domain of CEACAM1 was developed and shown to bind CEACAM1 positive tumor cells and enhanced NK cell killing of CEACAM1 positive targets. DIA 12.3 bound to human neutrophils without activation, indicating they would be safe for human use. DIA 12.3 exhibited some cross-reactivity to CEACAM5, a tumor marker with high sequence homology to the N-terminal domain of CEACAM1. CEACAM1 PET imaging with 64Cu-COTA-DIA 12.3 showed excellent imaging of CEACAM1 positive tumors with reduced binding to CEACAM5 tumors. Based on its immunoinhibitory an immunoimaging activities, DIA 12.3 shows promise for therapeutic studies in man.
Collapse
Affiliation(s)
- Michela Centonze
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | | | - Maciej Kujawski
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Lin Li
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Patty Wong
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Lindsay Williams
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | | | | | | | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| |
Collapse
|
4
|
Park DJ, Sung PS, Kim JH, Lee GW, Jang JW, Jung ES, Bae SH, Choi JY, Yoon SK. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer 2020; 8:e000301. [PMID: 32221015 PMCID: PMC7206970 DOI: 10.1136/jitc-2019-000301] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells can recognize and kill cancer cells directly, but their activity can be attenuated by various inhibitory molecules expressed on the surface. The expression of epithelial cell adhesion molecule (EpCAM), a potential marker for cancer stem cells (CSCs), is known to be strongly associated with poor clinical outcomes in hepatocellular carcinoma (HCC). NK cells targeting CSCs may be a promising strategy for anti-tumor therapy, but little is known about how they respond to EpCAMhigh CSCs in HCC. METHODS EpCAM expression was assessed by immunohistochemistry in 280 human HCC tissues obtained from curative surgery. To investigate the functional activity of NK cells against liver CSCs, EpCAMhigh and EpCAMlow Huh-7 cells were sorted by flow cytometry. The functional role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is related to NK cells, was determined by in vitro co-culture of NK cells and hepatoma cells using Hepa1-6 mouse hepatoma cells, as well as in vivo experiments using C57/BL6 mice. RESULTS The frequency of recurrence after curative surgery was higher in patients with positive EpCAM expression than in those with negative EpCAM expression. In subsequent analysis based on the anatomical location of EpCAM expression, patients with peritumoral EpCAM expression showed worse prognosis than those with pantumoral EpCAM expression. Co-culture experiments demonstrated that CEACAM1 was upregulated on the surface of EpCAMhigh HCC cells, resulting in resistance to NK cell-mediated cytotoxicity. Inversely, silencing CEACAM1 restored cytotoxicity of NK cells against EpCAMhigh Huh-7 cells. Moreover, neutralizing CEACAM1 on the NK cell surface enhanced killing of Huh-7 cells, suggesting that homophilic interaction of CEACAM1 is responsible for attenuated NK cell-mediated killing of CEACAM1high cells. In mouse experiments with Hepa1-6 cells, EpCAMhigh Hepa1-6 cells formed larger tumors and showed higher CEACAM1 expression after NK cell depletion. NK-mediated cytotoxicity was enhanced after blocking CEACAM1 expression using the anti-CEACAM1 antibody, thereby facilitating tumor regression. Moreover, CEACAM1 expression positively correlated with EpCAM expression in human HCC tissues, and serum CEACAM1 levels were also significantly higher in patients with EpCAM+ HCC. CONCLUSION Our data demonstrated that EpCAMhigh liver CSCs resist NK cell-mediated cytotoxicity by upregulation of CEACAM1 expression.
Collapse
Affiliation(s)
- Dong Jun Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kim WM, Huang YH, Gandhi A, Blumberg RS. CEACAM1 structure and function in immunity and its therapeutic implications. Semin Immunol 2019; 42:101296. [PMID: 31604530 PMCID: PMC6814268 DOI: 10.1016/j.smim.2019.101296] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
The type I membrane protein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) distinctively exhibits significant alternative splicing that allows for tunable functions upon homophilic binding. CEACAM1 is highly expressed in the tumor environment and is strictly regulated on lymphocytes such that its expression is restricted to activated cells where it is now recognized to function in tolerance pathways. CEACAM1 is also an important target for microbes which have co-opted these attributes of CEACAM1 for the purposes of invading the host and evading the immune system. These properties, among others, have focused attention on CEACAM1 as a unique target for immunotherapy in autoimmunity and cancer. This review examines recent structural information derived from the characterization of CEACAM1:CEACAM1 interactions and heterophilic modes of binding especially to microbes and how this relates to CEACAM1 function. Through this, we aim to provide insights into targeting CEACAM1 for therapeutic intervention.
Collapse
Affiliation(s)
- Walter M Kim
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Amit Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Branca M, Orso S, Molinari RC, Xu H, Guerrier S, Zhang Y, Mili N. Is nonmetastatic cutaneous melanoma predictable through genomic biomarkers? Melanoma Res 2018; 28:21-29. [PMID: 29194095 DOI: 10.1097/cmr.0000000000000412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous melanoma is a highly aggressive skin cancer whose treatment and prognosis are critically affected by the presence of metastasis. In this study, we address the following issue: which gene transcripts and what kind of interactions between them can allow to predict nonmetastatic from metastatic melanomas with a high level of accuracy? We carry out a meta-analysis on the first gene expression set of the Leeds melanoma cohort, as made available online on 11 May 2016 through the ArrayExpress platform with MicroArray Gene Expression number 4725. According to the authors, primary melanoma mRNA expression was measured in 204 tumours using an illumina DASL HT12 4 whole-genome array. The tumour transcripts were selected through a recently proposed predictive-based regression algorithm for gene-network selection. A set of 64 equivalent models, each including only two gene transcripts, were each sufficient to accurately classify primary tumours into metastatic and nonmetastatic melanomas. The sensitivity and specificity of the genomic-based models were, respectively, 4% (95% confidence interval: 0.11-21.95%) and 99% (95% confidence interval: 96.96-99.99%). The very high specificity coupled with a significantly large positive likelihood ratio leads to a conclusive increase in the likelihood of disease when these biomarkers are present in the primary tumour. In conjunction with other highly sensitive methods, this approach can aspire to be part of the future standard diagnosis methods for the screening of metastatic cutaneous melanoma. The small dimension of the selected transcripts models enables easy handling of large-scale genomic testing procedures. Moreover, some of the selected transcripts have an understandable link with what is known about cutaneous melanoma oncogenesis, opening a window on the molecular pathways underlying the metastatic process of this disease.
Collapse
Affiliation(s)
- Mattia Branca
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Samuel Orso
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Roberto C Molinari
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Haotian Xu
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Stéphane Guerrier
- Department of Statistics and Institute for CyberScience, Eberly College of Science, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yuming Zhang
- Department of Statistics and Institute for CyberScience, Eberly College of Science, Pennsylvania State University, State College, Pennsylvania, USA
| | - Nabil Mili
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Li J, Liu X, Duan Y, Wang H, Su W, Wang Y, Zhuang G, Fan Y. Abnormal expression of circulating and tumor-infiltrating carcinoembryonic antigen-related cell adhesion molecule 1 in patients with glioma. Oncol Lett 2018; 15:3496-3503. [PMID: 29467871 PMCID: PMC5796289 DOI: 10.3892/ol.2018.7786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Glioma, the most prevalent primary tumor of the central nervous system, is known to evade immune surveillance and escape immune attacks by inducing immunosuppression. The homophilic interactions of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) serve a critical function in immunoregulation. In the present study, the expression levels of CEACAM1 in peripheral blood mononuclear cells and tumor-infiltrating lymphocytes (TILs) from patients with gliomas were assessed. Furthermore, associations between CEACAM1 expression and multiple clinicopathological characteristics in patients with gliomas were analyzed. The results of the present study suggested that the expression of CEACAM1 in circulating T cells was markedly increased in patients with gliomas compared with control subjects, and was further increased in TILs. Patients with high-grade gliomas [World Health Organization (WHO) grade III–IV] demonstrated a significantly increased expression of CEACAM1 on T cells compared with those with low-grade gliomas (WHO grade I–II). Furthermore, the expression of CEACAM1 on T cells was negatively correlated with the Karnofsky score and the plasma level of interferon-γ in patients with gliomas. Immunohistochemical analysis revealed that the expression levels of CEACAM1 in high-grade glioma tissues (WHO grade III–IV) were increased compared with the expression levels in the controls, and were associated with the expression of CEACAM1 in TILs. In summary, the results of the present study indicate that homophilic interactions of CEACAM1 may participate in the progression and development of gliomas through their negative regulatory effects on T cells. Thus, CEACAM1 may be a promising candidate for targeted glioma immunotherapy.
Collapse
Affiliation(s)
- Jinhu Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaodong Liu
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yijun Duan
- Department of Immunology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Hongqin Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Su
- Department of Immunology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yazhou Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou, Zhengzhou, Henan 450053, P.R. China
| | - Guotao Zhuang
- Department of Neurosurgery, The Fifth People's Hospital of Datong, Datong, Shanxi 037006, P.R. China
| | - Yimin Fan
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
9
|
Li J, Liu X, Duan Y, Liu Y, Wang H, Lian S, Zhuang G, Fan Y. Combined Blockade of T Cell Immunoglobulin and Mucin Domain 3 and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Results in Durable Therapeutic Efficacy in Mice with Intracranial Gliomas. Med Sci Monit 2017; 23:3593-3602. [PMID: 28736431 PMCID: PMC5540004 DOI: 10.12659/msm.903098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) evades immune surveillance by inducing immunosuppression via receptor-ligand interactions between immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3) is a key checkpoint receptor responsible for exhaustion and dysfunction of T cells and plays a critical role in immunosuppression. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been recently identified as a heterophilic ligand for Tim-3. Material/Methods We established an intracranial GBM model using C57BL/6 mice and GL261 cells, and treated the mice with single or combined monoclonal antibodies (mAbs) against Tim-3/CEACAM1. The CD4+, CD8+, and regulatory T cells in brain-infiltrating lymphocytes were analyzed using flow cytometry, and the effector function of T cells was assessed using ELISA. We performed a rechallenge by subcutaneous injection of GL261 cells in the “cured” (>90 days post-orthotopic tumor implantation) and naïve mice. Results The mean survival time in the control, anti-Tim-3, anti-CEACAM1, and combined treatment groups was 29.8, 43.4, 42.3, and 86.0 days, respectively, with 80% of the mice in the combined group becoming long-term survivors showing immune memory against glioma cells. Infiltrating CD4+ and CD8+ T cells increased and immunosuppressive Tregs decreased with the combined therapy, which resulted in a markedly elevated ratio of CD4+ and CD8+ cells to Tregs. Additionally, plasma IFN-γ and TGF-β levels were upregulated and downregulated, respectively. Conclusions Our data indicate that combined blockade of Tim-3 and CEACAM1 generates robust therapeutic efficacy in mice with intracranial tumors, and provides a promising option for GBM immunotherapy.
Collapse
Affiliation(s)
- Jinhu Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Xiaodong Liu
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yijun Duan
- Department of Immunology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China (mainland)
| | - Yueting Liu
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Hongqin Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Shizhong Lian
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Guotao Zhuang
- Department of Neurosurgery, General Hospital of Datong Coal Mine Group, Datong, Shanxi, China (mainland)
| | - Yimin Fan
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
10
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|