1
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
2
|
Petroni G, Buqué A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021; 39:310-345. [PMID: 33338426 DOI: 10.1016/j.ccell.2020.11.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
At odds with conventional chemotherapeutics, targeted anticancer agents are designed to inhibit precise molecular alterations that support oncogenesis or tumor progression. Despite such an elevated degree of molecular specificity, many clinically employed and experimental targeted anticancer agents also mediate immunostimulatory or immunosuppressive effects that (at least in some settings) influence therapeutic efficacy. Here, we discuss the main immunomodulatory effects of targeted anticancer agents and explore potential avenues to harness them in support of superior clinical efficacy.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, Villejuif, France; INSERM U1015, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
3
|
Juliá EP, Mordoh J, Levy EM. Cetuximab and IL-15 Promote NK and Dendritic Cell Activation In Vitro in Triple Negative Breast Cancer. Cells 2020; 9:cells9071573. [PMID: 32605193 PMCID: PMC7408037 DOI: 10.3390/cells9071573] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) treatment is still challenging, and immunotherapy is a potential approach in this tumor subtype. Cetuximab is an IgG1 monoclonal antibody (mAb) directed against Epidermic Growth Factor Receptor (EGFR), a protein overexpressed in a subgroup of TNBC patients and associated with poor prognosis. Previously, we demonstrated in vitro that Cetuximab triggers Ab-dependent cell cytotoxicity against TNBC cells. In this study, using co-cultures including TNBC cells, and NK and Dendritic Cells (DCs) from healthy donors, we studied the effect of Cetuximab-activated NK cells on DC function. Given that we already demonstrated that TNBC has an immunosuppressive effect on NK cells, we also tested Cetuximab combination with IL-15. We determined that Cetuximab opsonization of TNBC cells increased IFN-γ and TNF-α production by NK cells co-cultured with DCs. Moreover, we showed that NK cells activated by TNBC cells opsonized with Cetuximab promoted tumor material uptake and maturation of DCs, as well as their ability to produce IL-12. Furthermore, the stimulation with IL-15 increased the activation of NK cells and the maturation of DCs. These results suggest that IL-15 may enhance the efficacy of Cetuximab in the treatment of TNBC by promoting activation of both NK cells and DCs.
Collapse
Affiliation(s)
- Estefanía Paula Juliá
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
| | - José Mordoh
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
- Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Estrella Mariel Levy
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
- Correspondence: ; Tel.: +54-11-3221-8900
| |
Collapse
|
4
|
Cabezas-Camarero S, García-Barberán V, Sáiz-Pardo Sanz M, Cabrera-Martín MN, Gimeno-Hernández J, Pérez-Segura P. Durable intracranial and extracranial response to nivolumab with appearance of secondary resistance in a heavily pretreated patient with head and neck cancer. Head Neck 2019; 41:E86-E92. [PMID: 30652379 DOI: 10.1002/hed.25635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recently, nivolumab was approved in the second-line setting of squamous cell cancer of the head and neck (SCCHN). The benefits of PD-(L)1 inhibitors in PD-L1(-) tumors are unclear, and no reports exist on the activity of these agents in brain metastases from SCCHN. Little is known regarding the mechanisms underlying acquired resistance to PD-(L)1 inhibition. METHODS A patient with PD-L1(-) metastatic SCCHN progressing to cetuximab-based chemotherapy received third-line nivolumab. T cell infiltration and mRNA expression of immune-related genes were compared in prenivolumab and postnivolumab biopsies from a progressing tumor lesion. RESULTS An exceptional local and systemic response was achieved, including complete devitalization of brain metastases that lasted for more than a year. Increased T cell infiltration and upregulation of genes related to T cell exhaustion and resistance to PD-1 inhibition were found. CONCLUSION Durable responses to PD-(L)1 inhibitors may be observed in biomarker-negative SCCHN. Mechanisms of resistance should be studied.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Molecular Oncology Laboratory, Medical Oncology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | | | - Jesús Gimeno-Hernández
- Department of Otolaryngology-Head and Neck Surgery, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Deligne C, Milcent B, Josseaume N, Teillaud JL, Sibéril S. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? Front Immunol 2017; 8:950. [PMID: 28855903 PMCID: PMC5557783 DOI: 10.3389/fimmu.2017.00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.
Collapse
Affiliation(s)
- Claire Deligne
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Benoît Milcent
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Nathalie Josseaume
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Jean-Luc Teillaud
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Sophie Sibéril
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| |
Collapse
|
7
|
Concha-Benavente F, Ferris RL. Reversing EGFR Mediated Immunoescape by Targeted Monoclonal Antibody Therapy. Front Pharmacol 2017; 8:332. [PMID: 28611673 PMCID: PMC5447743 DOI: 10.3389/fphar.2017.00332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Uncontrolled growth is a signature of carcinogenesis, in part mediated by overexpression or overstimulation of growth factor receptors. The epidermal growth factor receptor (EGFR) mediates activation of multiple oncogenic signaling pathways and escape from recognition by the host immune system. We discuss how EGFR signaling downregulates tumor antigen presentation, upregulates suppressive checkpoint receptor ligand programmed death ligand (PD-L1), induces secretion of inhibitory molecules such as transforming growth factor beta (TGFβ) and reprograms the metabolic pathways in cancer cells to upregulate aerobic glycolysis and lactate secretion that ultimately lead to impaired cellular immunity mediated by natural killer (NK) cell and cytotoxic T lymphocytes (CTL). Ultimately, our understanding of EGFR-mediated escape mechanisms has led us to design EGFR-specific monoclonal antibody therapies that not only inhibit tumor cell metabolic changes and intrinsic oncogenic signaling but also activates immune cells that mediate tumor clearance. Importantly, targeted immunotherapy may also benefit from combination with antibodies that target other immunosuppressive pathways such PD-L1 or TGFβ and ultimately enhance clinical efficacy.
Collapse
Affiliation(s)
- Fernando Concha-Benavente
- Department of Otolaryngology, University of PittsburghPittsburgh, PA, United States.,University of Pittsburgh Cancer InstitutePittsburgh, PA, United States
| | - Robert L Ferris
- Department of Otolaryngology, University of PittsburghPittsburgh, PA, United States.,University of Pittsburgh Cancer InstitutePittsburgh, PA, United States
| |
Collapse
|
8
|
Barnhart BC, Quigley M. Role of Fc-FcγR interactions in the antitumor activity of therapeutic antibodies. Immunol Cell Biol 2016; 95:340-346. [PMID: 27974746 DOI: 10.1038/icb.2016.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
The use of antibody therapy for cancer has steadily increased in recent years and has become standard treatment for numerous tumor types. It is now appreciated that the clinical activity of these antibodies relies upon their specific interactions with Fc receptors in addition to the well-studied target-binding region. The interactions mediated by antibody Fc domains can strongly affect the functional outcome of antibody therapy. The Fc portion of an antibody defines its interaction with numerous immune cells and has become an intense area of research as selecting the optimal Fc can greatly enhance the activity as well as mechanism of action of therapeutic antibodies. Recent advances in antibody engineering have enabled the development of antibodies that have altered Fc receptor interactions to take advantage of these findings. Engineering the Fc can fulfill diverse functions such as enhancing effector function for killing of tumor cells or depletion of unwanted immune subsets, enhancing agonist receptor signaling on particular immune cells or eliminating interaction with Fc receptors to avoid cellular depletion or toxicity in normal tissues. This review highlights important data and studies examining the role of Fc-Fc receptor interactions in therapeutic antibodies with a considerations for the future of engineered antibody therapy.
Collapse
Affiliation(s)
| | - Michael Quigley
- Immuno-Oncology Discovery Research, Bristol-Myers Squibb Company, Princeton, NJ, USA
| |
Collapse
|
9
|
|
10
|
Tian F, Dou C, Qi S, Chen B, Zhao L, Wang X. Dendritic cell-glioma fusion activates T lymphocytes by elevating cytotoxic efficiency as an antitumor vaccine. Cent Eur J Immunol 2014; 39:265-70. [PMID: 26155134 PMCID: PMC4439993 DOI: 10.5114/ceji.2014.45935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hybrid cells produced by fusions of tumor and dendritic cells (DC) have demonstrated remarkable efficacy for priming the anti-tumor immune response. In the current study, we examined the antitumor activity of cytotoxic T lymphocytes (CTLs) primed in response to a tumor vaccine comprising a glioma-DC fusion as part of a therapeutic against glioma. MATERIAL AND METHODS Primary cultured glioma cells were fused with peripheral blood DC under conditions of polyethylene glycol (PEG) incubation. Glioma cell suspensions were designated as three groups to include (1) CTL-effective cell group activated by fused cells; (2) CTL-effective cell group stimulated by co-cultured glioma cells and DC cells; and (3) lymphocyte-only group as a control, which was not stimulated by the DC. Cytotoxicity of CTLs on glioma cells was accessed by MTT assay in vitro. RESULTS Glioma cells with peripheral blood DC were cultured and fused. The killing effect of CTLs pre-activated by fused cells was significantly higher than that of the co-culture CTL group with unsensitized lymphocytes (p < 0.01). The killing activity, as measured by an enhanced efficiency ratio, was increased significantly in the co-cultures of fused cells with CTL groups (p < 0.01). CONCLUSIONS The glioma-dendritic cell fusion vaccine possessed a more effective anticancer activity by stimulating the effector activity of CTLs.
Collapse
Affiliation(s)
- Fuming Tian
- Department of Neurosurgery, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Changwu Dou
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
| | - Bo Chen
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Liqun Zhao
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Xiaojuan Wang
- Guangdong Foshan Medical University, Foshan, Guangdong, PR China
| |
Collapse
|
11
|
Yuan J, Kashiwagi S, Reeves P, Nezivar J, Yang Y, Arrifin NH, Nguyen M, Jean-Mary G, Tong X, Uppal P, Korochkina S, Forbes B, Chen T, Righi E, Bronson R, Chen H, Orsulic S, Brauns T, Leblanc P, Scholler N, Dranoff G, Gelfand J, Poznansky MC. A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. J Hematol Oncol 2014; 7:15. [PMID: 24565018 PMCID: PMC3943805 DOI: 10.1186/1756-8722-7-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Although dendritic cell (DC) vaccines are considered to be promising treatments for advanced cancer, their production and administration is costly and labor-intensive. We developed a novel immunotherapeutic agent that links a single-chain antibody variable fragment (scFv) targeting mesothelin (MSLN), which is overexpressed on ovarian cancer and mesothelioma cells, to Mycobacterium tuberculosis (MTB) heat shock protein 70 (Hsp70), which is a potent immune activator that stimulates monocytes and DCs, enhances DC aggregation and maturation and improves cross-priming of T cells mediated by DCs. Methods Binding of this fusion protein with MSLN on the surface of tumor cells was measured by flow cytometry and fluorescence microscopy. The therapeutic efficacy of this fusion protein was evaluated in syngeneic and orthotopic mouse models of papillary ovarian cancer and malignant mesothelioma. Mice received 4 intraperitoneal (i.p.) treatments with experimental or control proteins post i.p. injection of tumor cells. Ascites-free and overall survival time was measured. For the investigation of anti-tumor T-cell responses, a time-matched study was performed. Splenocytes were stimulated with peptides, and IFNγ- or Granzyme B- generating CD3+CD8+ T cells were detected by flow cytometry. To examine the role of CD8+ T cells in the antitumor effect, we performed in vivo CD8+ cell depletion. We further determined if the fusion protein increases DC maturation and improves antigen presentation as well as cross-presentation by DCs. Results We demonstrated in vitro that the scFvMTBHsp70 fusion protein bound to the tumor cells used in this study through the interaction of scFv with MSLN on the surface of these cells, and induced maturation of bone marrow-derived DCs. Use of this bifunctional fusion protein in both mouse models significantly enhanced survival and slowed tumor growth while augmenting tumor-specific CD8+ T-cell dependent immune responses. We also demonstrated in vitro and in vivo that the fusion protein enhanced antigen presentation and cross-presentation by targeting tumor antigens towards DCs. Conclusions This new cancer immunotherapy has the potential to be cost-effective and broadly applicable to tumors that overexpress mesothelin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
12
|
Huhtala T, Kaikkonen MU, Lesch HP, Viitala S, Ylä-Herttuala S, Närvänen A. Biodistribution and antitumor effect of Cetuximab-targeted lentivirus. Nucl Med Biol 2013; 41:77-83. [PMID: 24267054 DOI: 10.1016/j.nucmedbio.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Viral vectors are central tools for gene therapy. Targeting of the vector to desired tissues followed by expression of the therapeutic gene forms one of the most critical points in effective therapy. In this study we used streptavidin-displaying lentivirus conjugated to biotinylated anti-epidermal growth factor receptor (EGFR) antibody (Cetuximab) to target vector specifically to ovarian tumors. Biodistribution of the targeted virus was studied in nude mice with orthotropic SKOV-3m human ovarian carcinoma xenografts. Radiolabeled antibodies were conjugated to streptavidin-displaying lentiviruses and biodistribution of the virus after the intravenous delivery to tumor-bearing mice was monitored up to 6 days using combined SPECT/CT imaging modality. Organ samples were collected post mortem and specific organ activities were measured. The integration of lentivirus vectors in collected tissue samples was analyzed using qPCR and the expression of green fluorescent protein (GFP)-transgene was tested by enzyme-linked immunosorbent assay. Our results showed that lentiviruses conjugated to Cetuximab (Cet-LV) or control human IgG (IgG-LV) accumulated mainly to the liver and spleen of the mice and to lower extent to lung, kidneys and tumors. Strikingly, in 50% of the mice injected with cetuximab-targeted lentivirus no tumor tissue was found, whereas the remaining half showed a significant decrease in tumor size. We hypothesize/present data that lentivirus-mediated INF-αβ production together with tumor targeting could function as an effective antitumor treatment.
Collapse
Affiliation(s)
- Tuulia Huhtala
- University of Eastern Finland, A.I. Virtanen institute, Department of Biotechnology and Molecular Medicine, P.O.B. 1627, 70211 Kuopio, Finland; Biocenter Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
It has recently become clear that the tumour microenvironment, and in particular the immune system, has a crucial role in modulating tumour progression and response to therapy. Indicators of an ongoing immune response, such as the composition of the intratumoural immune infiltrate, as well as polymorphisms in genes encoding immune modulators, have been correlated with therapeutic outcome. Moreover, several anticancer agents--including classical chemotherapeutics and targeted compounds--stimulate tumour-specific immune responses either by inducing the immunogenic death of tumour cells or by engaging immune effector mechanisms. Here, we discuss the molecular and cellular circuitries whereby cytotoxic agents can activate the immune system against cancer, and their therapeutic implications.
Collapse
|
14
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
15
|
Lee SC, Srivastava RM, López-Albaitero A, Ferrone S, Ferris RL. Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol Res 2011; 50:248-54. [PMID: 21717064 DOI: 10.1007/s12026-011-8231-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tumor antigen (TA)-targeted monoclonal antibodies (mAb), trastuzumab, cetuximab, panitumumab, and rituximab, have been among the most successful new therapies in the present generation. Clinical activity is observed as a single agent, or in combination with radiotherapy or chemotherapy, against metastatic colorectal cancer, head and neck cancer, breast cancer, and follicular lymphoma. However, the activity is seen only in a minority of patients. Thus, an intense need exists to define the mechanism of action of these immunoactive mAb. Here, we discuss some of the likely immunological events that occur in treated patients: antibody-dependent cellular cytotoxicity (ADCC), cross talk among immune cells including NK cells and dendritic cells (DCs), and generation of TA-specific T lymphocyte responses. We present evidence supporting the induction of "NK:DC cross talk," leading to priming of TA-specific cellular immunity. These observations show that mAb-mediated NK cell activation can be greatly enhanced by the action of stimulatory cytokines and surface molecules on maturing DC and that NK:DC interaction facilitates the recruitment of both NK cells and DC to the tumor site(s). The cooperative, reciprocal stimulatory activity of both NK cells and DC can modulate both the innate immune response in the local tumor microenvironment and the adaptive immune response in secondary lymphoid organs. These events likely contribute to clinical activity, as well as provide a potential biomarker of response to mAb therapy.
Collapse
Affiliation(s)
- Steve C Lee
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
16
|
Pal I, Ramsey JD. The role of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev 2011; 63:909-22. [PMID: 21683103 DOI: 10.1016/j.addr.2011.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 01/26/2011] [Indexed: 01/13/2023]
Abstract
The development and improvement of vaccines has been a significant endeavor on the part of the medical community for more than the last two centuries, and the success of these efforts is obvious when one considers the millions of lives that have been saved. Recent work in the field of vaccines, however, indicates that vaccines may be developed for even more challenging diseases than those previously addressed. It will be important in achieving this feat to account for the physical and chemical processes related to vaccine trafficking, rather than solely relying on our knowledge of the pathogen and our empirical experience. A thorough understanding of the lymphatic system is essential considering the role it plays in antigen trafficking and all immunological activity. This review describes the results of recent work that provides insight into the physiological processes of the lymphatic system and its various components with an emphasis on vaccine antigen trafficking from the administration site to secondary lymphoid tissues and the ensuing immune response. The review also discusses current challenges in designing vaccines and presents modern strategies for designing vaccines to better interface with the lymphatic system.
Collapse
|
17
|
Correale P, Botta C, Cusi MG, Del Vecchio MT, De Santi MM, Gori Savellini G, Bestoso E, Apollinari S, Mannucci S, Marra M, Abbruzzese A, Aquino A, Turriziani M, Bonmassar L, Caraglia M, Tagliaferri P. Cetuximab ± chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro. Int J Cancer 2011; 130:1577-89. [PMID: 21618510 DOI: 10.1002/ijc.26181] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/12/2011] [Indexed: 01/06/2023]
Abstract
Cetuximab is a human/mouse chimeric IgG1 monoclonal antibody (mAb) to epidermal growth factor receptor, approved for colorectal carcinoma treatment in combination with chemotherapy. The immune-mediated effects elicited by its human fraction of crystallization moiety might critically contribute to the overall anti-tumor effectiveness of the antibody. We therefore investigated cetuximab ability to promote colon cancer cell opsonization and phagocytosis by human dendritic cells (DCs) that are subsequently engaged in antigen-cross presentation to cytotoxic T-lymphocyte (CTL) precursors. Human colon cancer cell lines were evaluated for susceptibility to DC-mediated phagocytosis before and after treatment with chemotherapy ± cetuximab in vitro. Human DCs loaded with control or drug-treated cetuximab-coated colon cancer cells were used to in vitro generate cytotoxic T cell clones from peripheral blood mononuclear cells of human leucocyte antigen-A(*)02.01(+) donors. T-cell cultures were characterized for immune-phenotype and tumor-antigen specific CTL activity. The results confirmed that treatment of tumor cells with irinotecan + L-folinate + 5-flurouracil (ILF) or with gemcitabine + ILF increased tumor antigen expression. Moreover, malignant cells exposed to chemotherapy and cetuximab were highly susceptible to phagocytosis by human DCs and were able to promote their activation. The consequent DC-mediated cross-priming of antigens derived from mAb-covered/drug-treated cancer cells elicited a robust CTL anti-tumor response. On the basis of our data, we suggest a possible involvement of CTL-dependent immunity in cetuximab anti-cancer effects.
Collapse
Affiliation(s)
- P Correale
- Medical Oncology Unit, Department of Oncology, Siena University Hospital, Istituto Toscano Tumori, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol 2010; 28:4390-9. [PMID: 20697078 PMCID: PMC2954137 DOI: 10.1200/jco.2009.27.6360] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/21/2010] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Tumor antigen (TA) -targeted monoclonal antibodies (mAb), rituximab, trastuzumab, and cetuximab, are clinically effective for some advanced malignancies, especially in conjunction with chemotherapy and/or radiotherapy. However, these results are only seen in a subset (20% to 30%) of patients. We discuss the immunologic mechanism(s) underlying these clinical findings and their potential role in the variability in patients' clinical response. METHODS We reviewed the evidence indicating that the effects of TA-targeted mAb-based immunotherapy are mediated not only by inhibition of signaling pathways, but also by cell-mediated cytotoxicity triggered by the infused TA-targeted mAb. We analyzed the immunologic variables that can influence the outcome of antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro and in animal model systems. We also analyzed the correlation reported between these variables and the clinical response to mAb-based immunotherapy. RESULTS Of the variables that influence ADCC mediated by TA-targeted mAb, only polymorphisms of Fcγ receptors (FcγR) expressed by patients' lymphocytes were correlated with clinical efficacy. However, this correlation is not absolute and is not observed in all malignancies. Thus other variables may be responsible for the antitumor effects seen in mAb-treated patients. We discuss the evidence that triggering of TA-specific cellular immunity by TA-targeted mAb, in conjunction with immune escape mechanisms used by tumor cells, may contribute to the differential clinical responses to mAb-based immunotherapy. CONCLUSION Identification of the mechanism(s) underlying the clinical response of patients with cancer treated with TA-targeted mAb is crucial to optimizing their application in the clinic and to selecting the patients most likely to benefit from their use.
Collapse
Affiliation(s)
- Robert L Ferris
- The Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Room 2.26b, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
19
|
He J, Yin Y, Luster TA, Watkins L, Thorpe PE. Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 2009; 15:6871-80. [PMID: 19887482 DOI: 10.1158/1078-0432.ccr-09-1499] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The vascular targeting antibody bavituximab is being combined with chemotherapy in clinical trials in cancer patients. Bavituximab targets the membrane phospholipid, phosphatidylserine, complexed with beta2-glycoprotein I. Phosphatidylserine is normally intracellular but becomes exposed on the luminal surface of vascular endothelium in tumors. Phosphatidylserine exposure on tumor vessels is increased by chemotherapy and irradiation. Here, we determined whether treatment with the murine equivalent of bavituximab, 2aG4, combined with irradiation can suppress tumor growth in a rat model of glioblastoma. EXPERIMENTAL DESIGN F98 glioma cells were injected into the brains of syngeneic rats where they grow initially as a solid tumor and then infiltrate throughout the brain. Rats with established tumors were treated with 10 Gy whole brain irradiation and 2aG4. RESULTS Combination treatment doubled the median survival time of the rats, and 13% of animals were rendered disease free. Neither treatment given individually was as effective. We identified two mechanisms. First, irradiation induced phosphatidylserine exposure on tumor blood vessels and enhanced antibody-mediated destruction of tumor vasculature by monocytes/macrophages. Second, the antibody treatment induced immunity to F98 tumor cells, which are normally weakly immunogenic. Surviving rats were immune to rechallenge with F98 tumor cells. In vitro, 2aG4 enhanced the ability of dendritic cells (DCs) to generate F98-specific cytotoxic T cells. Phosphatidylserine exposure, which is induced on tumor cells by irradiation, likely suppresses tumor antigen presentation, and 2aG4 blocks this tolerogenic effect. CONCLUSION Bavituximab combined with radiotherapy holds promise as a vascular targeting and immune enhancement strategy for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Jin He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | |
Collapse
|
20
|
Immunotherapy for head and neck cancer. Oral Oncol 2009; 45:747-51. [PMID: 19442565 DOI: 10.1016/j.oraloncology.2009.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
Abstract
Overall survival for patients with squamous cell carcinoma of the head and neck (SCCHN) has not improved appreciably over the past few decades. Novel therapeutic approaches, such as immunotherapy, are under clinical investigation since the standard treatments are toxic and have not successfully controlled this disease with sufficiently high success rates. Cancer immunotherapy describes various techniques to expand and activate the immune system to control tumor growth in vivo, and clinical evaluation has so far demonstrated low toxicity. Immunotherapy appears to have the most applicability in settings of minimal residual disease and to reduce distant metastases after other therapeutic interventions, and its potential clinical value is now receiving intensive evaluation. Emerging forms of SCCHN immunotherapy involve both the use of monoclonal antibodies (mAb) that target growth factor receptors where immune activation appears to contribute to tumor cell lysis, as well as various forms of active vaccination strategies which activate and direct the patient's cellular immunity against the tumor. This article reviews immunotherapeutic strategies currently in clinical trials or under development for patients with SCCHN.
Collapse
|
21
|
Immunotherapy of head and neck cancer using tumor antigen-specific monoclonal antibodies. Curr Oncol Rep 2009; 11:156-62. [PMID: 19216848 DOI: 10.1007/s11912-009-0023-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Monoclonal antibodies (mAbs) are now commonly used therapeutic agents in cancer patients. Since US Food and Drug Administration approval of cetuximab for head and neck squamous cell carcinoma, it has been used increasingly in this disease. Several other mAbs also are in development or in clinical -trials. Recently, evidence has accumulated that mAbs induce activation of cellular immunity, including natural killer and T cells and that this may contribute to clinical response. mAbs have been shown to mediate antibody-dependent cellular cytotoxicity, complement-dependent lysis, and activation of tumor antigen-specific T cells. Various patient and tumor factors, such as polymorphisms in Fcgamma receptors expressed by immune cells, activity of T-regulatory cells, and tumor escape through downregulation of antigen-processing machinery in tumor cells, are likely to modulate the immune activation mediated by therapeutic mAbs. Understanding the interplay of these factors is likely to improve the selection of the most appropriate candidates for mAb-based immunotherapy, prediction of clinical response, and our understanding of mechanisms of tumor escape from therapeutic mAbs.
Collapse
|
22
|
Abstract
Monoclonal antibodies are effective treatments for many malignant diseases. However, the ability of antibodies to initiate tumour-antigen-specific immune responses has received less attention than have other mechanisms of antibody action. We describe the rationale and evidence for the development of antibodies that can stimulate host tumour-antigen-specific immune responses. Such responses can be induced through the induction of antibody-dependent cellular cytotoxicity, promotion of antibody-targeted cross-presentation of tumour antigens, or by triggering of the idiotypic network. Future treatment modifications or combinations might be able to prolong, amplify, and shape these immune responses to increase the clinical benefits of antibody therapy for human cancer.
Collapse
Affiliation(s)
- Louis M. Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20016
| | - Madhav V. Dhodapkar
- Section of Hematology, Yale University, New Haven, CT 06510; Lab of Tumor Immunology and Immunotherapy, The Rockefeller university, New York, NY 10065
| | - Soldano Ferrone
- University of Pittsburgh Cancer Institute, Departments of Surgery, Pathology and Immunology, Pittsburgh, PA
| |
Collapse
|
23
|
Saenger YM, Li Y, Chiou KC, Chan B, Rizzuto G, Terzulli SL, Merghoub T, Houghton AN, Wolchok JD. Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma. Cancer Res 2008; 68:9884-91. [PMID: 19047169 PMCID: PMC2742375 DOI: 10.1158/0008-5472.can-08-2233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Passive immunization with monoclonal antibody TA99 targeting melanoma differentiation antigen tyrosinase-related protein-1 (Tyrp1; gp75) and active immunization with plasmid DNA encoding altered Tyrp1 both mediate tumor immunity in the B16 murine melanoma model. We report here that TA99 enhances Tyrp1 DNA vaccination in the treatment of B16 lung metastases, an effect mediated by immunologic mechanisms as Tyrp1 has no known role in regulating tumor growth. TA99 is shown to increase induction of anti-Tyrp1 CD8+T-cell responses to DNA vaccination against Tyrp1 as assessed by IFN-gamma ELISPOT assays. Immunohistochemistry studies reveal that TA99 localizes rapidly and specifically to B16 lung nodules. Augmentation of T-cell responses is dependent on the presence of tumor as well as on activating Fc receptors. Furthermore, TA99 enhances DNA vaccination against a distinct melanoma antigen, gp100(pmel17/silver locus), improving antitumor efficacy, augmenting systemic CD8+ T-cell responses to gp100, and increasing CD8+ T-cell infiltration at the tumor site. Epitope spreading was observed, with CD8+ T-cell responses generated to Tyrp1 peptide in mice receiving gp100 DNA vaccination in the presence of TA99. Finally, we show that TA99 improves therapeutic efficacy of DNA vaccination combined with adoptive T-cell transfer in treatment of established subcutaneous B16 melanoma. In conclusion, TA99 enhances DNA vaccination against both the target antigen Tyrp1 and a distinct melanoma antigen gp100 in an Fc receptor-dependent mechanism, consistent with enhanced cross-presentation of tumor-derived antigen. Monoclonal antibodies should be tested as vaccine adjuvants in the treatment of cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- DNA/genetics
- DNA/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/secondary
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidoreductases/genetics
- Oxidoreductases/immunology
- Receptors, Fc/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Yvonne M. Saenger
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Yanyun Li
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Karoline C. Chiou
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Brian Chan
- State University of New York Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Gabrielle Rizzuto
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Stephanie L. Terzulli
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Taha Merghoub
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
| | - Alan N. Houghton
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
- Weill Medical College of Cornell University, New York, NY, 10021
| | - Jedd D. Wolchok
- The Swim Across America Laboratory, Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room Z-1445, New York, NY 10021
- Weill Medical College of Cornell University, New York, NY, 10021
| |
Collapse
|
24
|
Abstract
Cancer immunotherapy seeks to mobilize a patient's immune system for therapeutic benefit. It can be passive, that is, transfer of immune effector cells (T cells) or proteins (antibodies), or active, that is, vaccination. Early clinical trials testing vaccination with ex vivo generated dendritic cells (DCs) pulsed with tumor antigens provide a proof-of-principle that therapeutic immunity can be elicited. Yet, the clinical benefit measured by regression of established tumors in patients with stage IV cancer has been observed in a fraction of patients only. The next generation of DC vaccines is expected to generate large numbers of high avidity effector CD8 T cells and to overcome regulatory T cells and suppressive environment established by tumors, a major obstacle in metastatic disease. Therapeutic vaccination protocols will combine improved DC vaccines with chemotherapy to exploit immunogenic chemotherapy regimens. We foresee adjuvant vaccination in patients with resected tumors but at high risk of relapse to be based on in vivo targeting of DCs with fusion proteins containing anti-DCs antibodies, antigens from tumor stem/propagating cells, and DC activators.
Collapse
|
25
|
Dhodapkar MV, Dhodapkar KM, Li Z. Role of chaperones and FcgammaR in immunogenic death. Curr Opin Immunol 2008; 20:512-7. [PMID: 18572395 PMCID: PMC3224819 DOI: 10.1016/j.coi.2008.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 12/22/2022]
Abstract
Cell death under physiologic conditions does not lead to the induction of immunity. However recognition of stressed or opsonized cells can trigger immune responses. Recent studies have begun to illustrate the critical role of molecular chaperones such as inducible heat shock proteins in mediating immunogenicity of stressed cells. Immunity to opsonized cells depends in part on the engagement and the balance of activating and inhibitory FcgammaRs on antigen presenting dendritic cells. Understanding both these pathways of immunogenic cell death may yield novel approaches to regulate immunity.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Section of Hematology, Yale University, New Haven, CT
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY
| | - Kavita M. Dhodapkar
- Lab of Tumor Immunology and Immunotherapy, The Rockefeller University, New York, NY
| | - Zihai Li
- Center for Immunotherapy of Cancer and Infectious Diseases, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|