1
|
Tharian LR, Verma S, Gupta S. Chimeric Antigen Receptor-Modified T Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer: Promise and Potential. Cancers (Basel) 2024; 16:1053. [PMID: 38473408 DOI: 10.3390/cancers16051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Prostate cancer, the most common cancer among males, has a mortality rate of approximately 29,000 deaths each year in the United States alone [...].
Collapse
Affiliation(s)
- Leah R Tharian
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44016, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44016, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44016, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Steinbach C, Merchant A, Zaharie AT, Horak P, Marhold M, Krainer M. Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers (Basel) 2022; 14:5719. [PMID: 36428811 PMCID: PMC9688882 DOI: 10.3390/cancers14225719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, the development of immunotherapies such as cellular therapy, monoclonal antibodies, vaccines and immunomodulators has revolutionized the treatment of various cancer entities. In order to close the existing gaps in knowledge about cellular immunotherapy, specifically focusing on the chimeric antigen receptors (CAR) T-cells, their benefits and application in clinical settings, we conducted a comprehensive systematic review. Two co-authors independently searched the literature and characterized the results. Out of 183 records, 26 were considered eligible. This review provides an overview of the cellular immunotherapy landscape in treating prostate cancer, honing in on the challenges of employing CAR T-cell therapy. CAR T-cell therapy is a promising avenue for research due to the presence of an array of different tumor specific antigens. In prostate cancer, the complex microenvironment of the tumor vastly contributes to the success or failure of immunotherapies.
Collapse
Affiliation(s)
- Christina Steinbach
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Almas Merchant
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Peter Horak
- Nationales Centrum für Tumorerkrankungen (NCT), 69120 Heidelberg, Germany
| | - Maximilian Marhold
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Krainer
- Internal Medicine I, Department of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, Plesa G, Vapiwala N, Chew A, Moniak M, Sebro RA, Farwell MD, Marshall A, Gilmore J, Lledo L, Dengel K, Church SE, Hether TD, Xu J, Gohil M, Buckingham TH, Yee SS, Gonzalez VE, Kulikovskaya I, Chen F, Tian L, Tien K, Gladney W, Nobles CL, Raymond HE, Hexner EO, Siegel DL, Bushman FD, June CH, Fraietta JA, Haas NB. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2022; 28:724-734. [PMID: 35314843 PMCID: PMC10308799 DOI: 10.1038/s41591-022-01726-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-β-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.
Collapse
Affiliation(s)
- Vivek Narayan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie S Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - In-Young Jung
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Rech
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priti Lal
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Vapiwala
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Moniak
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie A Sebro
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas H Buckingham
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Tien
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Whitney Gladney
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Naomi B Haas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Wolf P. Targeted Toxins for the Treatment of Prostate Cancer. Biomedicines 2021; 9:biomedicines9080986. [PMID: 34440190 PMCID: PMC8391386 DOI: 10.3390/biomedicines9080986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common cancer and the fifth leading cause of cancer deaths worldwide. Despite improvements in diagnosis and treatment, new treatment options are urgently needed for advanced stages of the disease. Targeted toxins are chemical conjugates or fully recombinant proteins consisting of a binding domain directed against a target antigen on the surface of cancer cells and a toxin domain, which is transported into the cell for the induction of apoptosis. In the last decades, targeted toxins against prostate cancer have been developed. Several challenges, however, became apparent that prevented their direct clinical use. They comprise immunogenicity, low target antigen binding, endosomal entrapment, and lysosomal/proteasomal degradation of the targeted toxins. Moreover, their efficacy is impaired by prostate tumors, which are marked by a dense microenvironment, low target antigen expression, and apoptosis resistance. In this review, current findings in the development of targeted toxins against prostate cancer in view of effective targeting, reduction of immunogenicity, improvement of intracellular trafficking, and overcoming apoptosis resistance are discussed. There are promising approaches that should lead to the clinical use of targeted toxins as therapeutic alternatives for advanced prostate cancer in the future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; ; Tel.: +49-761-270-28921
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
A Single-Domain Antibody-Based Anti-PSMA Recombinant Immunotoxin Exhibits Specificity and Efficacy for Prostate Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115501. [PMID: 34071152 PMCID: PMC8197099 DOI: 10.3390/ijms22115501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men, causing more than 300,000 deaths every year worldwide. Due to their superior cell-killing ability and the relative simplicity of their preparation, immunotoxin molecules have great potential in the clinical treatment of cancer, and several such molecules have been approved for clinical application. In this study, we adopted a relatively simple strategy based on a single-domain antibody (sdAb) and an improved Pseudomonas exotoxin A (PE) toxin (PE24X7) to prepare a safer immunotoxin against prostate-specific membrane antigen (PSMA) for PCa treatment. The designed anti-PSMA immunotoxin, JVM-PE24X7, was conveniently prepared in its soluble form in an Escherichia coli (E. coli) system, avoiding the complex renaturation process needed for immunotoxin preparation by the conventional strategy. The product was very stable and showed a very strong ability to bind the PSMA receptor. Cytotoxicity assays showed that this molecule at a very low concentration could kill PSMA-positive PCa cells, with an EC50 value (concentration at which the cell viability decreased by 50%) of 15.3 pM against PSMA-positive LNCaP cells. Moreover, this molecule showed very good killing selectivity between PSMA-positive and PSMA-negative cells, with a selection ratio of more than 300-fold. Animal studies showed that this molecule at a very low dosage (5 × 0.5 mg/kg once every three days) completely inhibited the growth of PCa tumors, and the maximum tolerable dose (MTD) was more than 15 mg/kg, indicating its very potent tumor-treatment ability and a wide therapeutic window. Use of the new PE toxin, PE24X7, as the effector moiety significantly reduced off-target toxicity and improved the therapeutic window of the immunotoxin. The above results demonstrate that the designed anti-PSMA immunotoxin, JVM-PE24X7, has good application value for the treatment of PCa.
Collapse
|
6
|
Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Metastatic Prostate Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22020640. [PMID: 33440664 PMCID: PMC7826945 DOI: 10.3390/ijms22020640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) has a vast clinical spectrum from the hormone-sensitive setting to castration-resistant metastatic disease. Thus, chemotherapy regimens and the administration of androgen receptor axis-targeted (ARAT) agents for advanced PCa have shown limited therapeutic efficacy. Scientific advances in the field of molecular medicine and technological developments over the last decade have paved the path for immunotherapy to become an essential clinical modality for the treatment of patients with metastatic PCa. However, several immunotherapeutic agents have shown poor outcomes in patients with advanced disease, possibly due to the low PCa mutational burden. Adoptive cellular approaches utilizing chimeric antigen receptor T cells (CAR-T) targeting cancer-specific antigens would be a solution for circumventing the immune tolerance mechanisms. The immunotherapeutic regimen of CAR-T cell therapy has shown potential in the eradication of hematologic malignancies, and current clinical objectives maintain the equivalent efficacy in the treatment of solid tumors, including PCa. This review will explore the current modalities of CAR-T therapy in the disease spectrum of PCa while describing key limitations of this immunotherapeutic approach and discuss future directions in the application of immunotherapy for the treatment of metastatic PCa and patients with advanced disease.
Collapse
|
7
|
Fischer A, Wolf I, Fuchs H, Masilamani AP, Wolf P. Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer. Toxins (Basel) 2020; 12:E753. [PMID: 33260619 PMCID: PMC7761469 DOI: 10.3390/toxins12120753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.
Collapse
Affiliation(s)
- Alexandra Fischer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Isis Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Anie Priscilla Masilamani
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Philipp Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| |
Collapse
|
8
|
PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:226-235. [PMID: 32728611 PMCID: PMC7372156 DOI: 10.1016/j.omto.2020.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
While chimeric antigen receptor (CAR) T cell immunotherapy targeting CD19 has shown remarkable success in patients with lymphoid malignancies, the potency of CAR T cells in solid tumors is low so far. To improve the efficacy of CAR T cells targeting prostate carcinoma, we designed a novel CAR that recognizes a new epitope in the prostate-specific membrane antigen (PSMA) and established novel paradigms to apply CAR T cells in a preclinical prostate cancer model. In vitro characterization of the D7 single-chain antibody fragment-derived anti-PSMA CAR confirmed that the choice of the co-stimulatory domain is a major determinant of CAR T cell activation, differentiation, and exhaustion. In vivo, focal injections of the PSMA CAR T cells eradicated established human prostate cancer xenografts in a preclinical mouse model. Moreover, systemic intravenous CAR T cell application significantly inhibited tumor growth in combination with non-ablative low-dose docetaxel chemotherapy, while docetaxel or CAR T cell application alone was not effective. In conclusion, the focal application of D7-derived CAR T cells and their combination with chemotherapy represent promising immunotherapeutic avenues to treat local and advanced prostate cancer in the clinic.
Collapse
|
9
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
10
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Abdoli S, Modarressi MH, Abolhassani M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677604 PMCID: PMC6984713 DOI: 10.29252/ibj.24.2.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Recently, modification of T cells with CAR has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a scFv. Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a specific antigen-binding fragment derived from camelid that has great homology to human VH and low immunogenic potential. Therefore, in this study, nanobody was employed instead of scFv in CAR construct. Methods: In this study, a CAR was constructed based on a nanobody against PSMA (NBPII-CAR). At first, Jurkat cells were electroporated with NBPII-CAR, and then flow cytometry was performed for NBPII-CAR expression. For functional analysis, CAR T cells were co-cultured with prostate cancer cells and analyzed for IL-2 secretion, CD25 expression, and cell proliferation. Results: Flow cytometry results confirmed the expression of NBPII-CAR on the transfected Jurkat cells. Our data showed the specificity of engineered Jurkat cells against prostate cancer cells by not only increasing the IL-2 cytokine (about 370 pg/ml) but also expressing the T-cell activation marker CD25 (about 30%). In addition, proliferation of engineered Jurkat cells increased nearly 60% when co-cultured with LNCaP (PSMA+), as compared with DU145 (PSMA-). Conclusion: Here, we describe the ability of nanobody-based CAR to recognize PSMA that leads to the activation of Jurkat cells. This construct might be used as a promising candidate for clinical applications in prostate cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Schepisi G, Cursano MC, Casadei C, Menna C, Altavilla A, Lolli C, Cerchione C, Paganelli G, Santini D, Tonini G, Martinelli G, De Giorgi U. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer 2019; 7:258. [PMID: 31619289 PMCID: PMC6794851 DOI: 10.1186/s40425-019-0741-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is one of the main causes of cancer-related death in men. In the present immunotherapy era, several immunotherapeutic agents have been evaluated in PCa with poor results, possibly due to its low mutational burden. The recent development of chimeric antigen receptor (CAR)-T cell therapy redirected against cancer-specific antigens would seem to provide the means for bypassing immune tolerance mechanisms. CAR-T cell therapy has proven effective in eradicating hematologic malignancies and the challenge now is to obtain the same degree of in solid tumors, including PCa. In this study we review the principles that have guided the engineering of CAR-T cells and the specific prostatic antigens identified as possible targets for immunological and non-immunological therapies. We also provide a state-of-the-art overview of CAR-T cell therapy in PCa, defining the key obstacles to its development and underlining the mechanisms used to overcome these barriers. At present, although there are still many unanswered questions regarding CAR-T cell therapy, there is no doubt that it has the potential to become an important treatment option for urological malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy.
| | | | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Claudio Cerchione
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giovanni Paganelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | | | | | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
12
|
Wüstemann T, Haberkorn U, Babich J, Mier W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Med Res Rev 2018; 39:40-69. [PMID: 29771460 DOI: 10.1002/med.21508] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels.
Collapse
Affiliation(s)
- Till Wüstemann
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Babich
- Department for Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Walter Mier
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Noll T, Schultze-Seemann S, Kuckuck I, Michalska M, Wolf P. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol Immunother 2018; 67:413-422. [PMID: 29188305 PMCID: PMC11028116 DOI: 10.1007/s00262-017-2097-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
In many tumors, including prostate cancer, anti-apoptotic members of the Bcl-2 family are overexpressed and cause cell death resistance, which is a typical hallmark of cancer. Different therapeutic approaches, therefore, aim to restore the death mechanisms for enhanced apoptosis. Our recombinant immunotoxin D7(VL-VH)-PE40 is composed of the scFv D7(VL-VH) against the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer cells and of the cytotoxic domain of the bacterial toxin Pseudomonas Exotoxin A (PE40). Since Pseudomonas Exotoxin A-based immunotoxins are known to preferentially inhibit the expression of the anti-apoptotic protein Mcl-1, the rationale was to test our immunotoxin in combination with the BH3 mimetic ABT-737, which specifically inhibits Bcl-2, Bcl-xl, and Bcl-w for enhanced induction of apoptosis in prostate cancer cells. The immunotoxin showed high and specific binding and cytotoxicity against PSMA expressing prostate cancer cells marked by a direct inhibition of Mcl-1. The combination of the immunotoxin with a subtoxic concentration of ABT-737 caused additive or even synergistic effects, which were based on an enhanced apoptosis induction as detected by poly(ADP-ribose) polymerase (PARP) and Caspase-3 cleavage in Western blot. Our study shows that the combination therapy of immunotoxin plus ABT-737 is a promising approach for the future treatment of advanced prostate cancer to improve therapeutic efficacy and to reduce adverse side effects.
Collapse
Affiliation(s)
- Theresa Noll
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Irina Kuckuck
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Marta Michalska
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany.
| |
Collapse
|
14
|
Michalska M, Schultze-Seemann S, Bogatyreva L, Hauschke D, Wetterauer U, Wolf P. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget 2017; 7:22531-42. [PMID: 26968813 PMCID: PMC5008379 DOI: 10.18632/oncotarget.8001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Docetaxel (DOC) is used for the first-line treatment of castration resistant prostate cancer (CPRC). However, the therapeutic effects are limited, only about one half of patients respond to the therapy and severe side effects possibly lead to discontinuation of treatment. Therefore, actual research is focused on the development of new DOC-based combination treatments. In this study we investigated the antitumor effects of a recombinant immunotoxin targeting the prostate specific membrane antigen (PSMA) in combination with DOC in vitro and in vivo. The immunotoxin consists of an anti-PSMA single chain antibody fragment (scFv) as binding and a truncated form of Pseudomonas aeruginosa Exotoxin A (PE40) as toxin domain. The immunotoxin induced apoptosis and specifically reduced the viability of androgen-dependent LNCaP and androgen-independent C4-2 prostate cancer cells. A synergistic cytotoxic activity was observed in combination with DOC with IC50 values in the low picomolar or even femtomolar range. Moreover, combination treatment resulted in an enhanced antitumor activity in a C4-2 SCID mouse xenograft model. This highlights the immunotoxin as a promising therapeutic agent for a future DOC-based combination therapy of CPRC.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Lioudmila Bogatyreva
- Institute for Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dieter Hauschke
- Institute for Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Wetterauer
- Department of Urology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Kessler C, Pardo A, Tur MK, Gattenlöhner S, Fischer R, Kolberg K, Barth S. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer. J Cancer Res Clin Oncol 2017; 143:2025-2038. [PMID: 28667390 DOI: 10.1007/s00432-017-2472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Despite great progress in the diagnosis and treatment of localized prostate cancer (PCa), there remains a need for new diagnostic markers that can accurately distinguish indolent and aggressive variants. One promising approach is the antibody-based targeting of prostate stem cell antigen (PSCA), which is frequently overexpressed in PCa. Here, we show the construction of a molecular imaging probe comprising a humanized scFv fragment recognizing PSCA genetically fused to an engineered version of the human DNA repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT), the SNAP-tag, enabling specific covalent coupling to various fluorophores for diagnosis of PCa. Furthermore, the recombinant immunotoxin (IT) PSCA(scFv)-ETA' comprising the PSCA(scFv) and a truncated version of Pseudomonas exotoxin A (PE, ETA') was generated. METHODS We analyzed the specific binding and internalization behavior of the molecular imaging probe PSCA(scFv)-SNAP in vitro by flow cytometry and live cell imaging, compared to the corresponding IT PSCA(scFv)-ETA'. The cytotoxic activity of PSCA(scFv)-ETA' was tested using cell viability assays. Specific binding was confirmed on formalin-fixed paraffin-embedded tissue specimen of early and advanced PCa. RESULTS Alexa Fluor® 647 labeling of PSCA(scFv)-SNAP confirmed selective binding to PSCA, leading to rapid internalization into the target cells. The recombinant IT PSCA(scFv)-ETA' showed selective binding leading to internalization and efficient elimination of target cells. CONCLUSIONS Our data demonstrate, for the first time, the specific binding, internalization, and cytotoxicity of a scFv-based fusion protein targeting PSCA. Immunohistochemical staining confirmed the specific ex vivo binding to primary PCa material.
Collapse
Affiliation(s)
- Claudia Kessler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Alessa Pardo
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Mehmet K Tur
- Institute for Pathology, Justus-Liebig University, Giessen, Germany
| | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Katharina Kolberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| |
Collapse
|
16
|
Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SLM. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Markers 2014; 29:e169-e179. [PMID: 24425321 DOI: 10.5301/jbm.5000063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Prostate cancer is the most common type of cancer in men. The antibody-mediated therapy for cancer treatment depends on the identification of selected molecular targets. The prostate-specific membrane antigen (PSMA) is a potential molecular target in prostate cancer and is abundantly expressed in this type of cancer. This study is aimed at designing and producing a recombinant PSMA epitope and a monoclonal nanobody with a high affinity toward the PSMA protein. A DNA fragment encoding the dominant epitopes of PSMA was designed, synthesized, and expressed in E. coli BL21 (DE3). A camel was immunized with the purified recombinant PSMA (rPSMA). Following mRNA isolation and cDNA synthesis, the variable fragment of heavy-chain antibodies (VHH) fragments were cloned and displayed on the surface of an M13 phage and used in sequential panning rounds. After phage ELISA and selection of colonies with the highest affinity, soluble nanobodies were produced and evaluated. Affinity of the nanobodies to rPSMA was estimated to be 3.5 × 10-7. Adherence of the purified anti-PSMA VHH was tested in cell-ELISA in the LnCaP and PC3 cell lines. VHH efficiently bound to LnCaP cells. The high specificity and affinity of this nanobody suggests its possible application as an effective tool in the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Hamed Zare
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran - Iran
| | | | | | | | | | | | | |
Collapse
|
17
|
Westdorp H, Sköld AE, Snijer BA, Franik S, Mulder SF, Major PP, Foley R, Gerritsen WR, de Vries IJM. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 2014; 5:191. [PMID: 24834066 PMCID: PMC4018526 DOI: 10.3389/fimmu.2014.00191] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for PCa have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that PCa is a suitable target for immunotherapy. In this review, we will discuss PCa antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy.
Collapse
Affiliation(s)
- Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Berit A Snijer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sebastian Franik
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sasja F Mulder
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Pierre P Major
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| |
Collapse
|
18
|
Wiehr S, Bühler P, Gierschner D, Wolf P, Rolle AM, Kesenheimer C, Pichler BJ, Elsässer-Beile U. Pharmacokinetics and PET imaging properties of two recombinant anti-PSMA antibody fragments in comparison to their parental antibody. Prostate 2014; 74:743-55. [PMID: 24610028 DOI: 10.1002/pros.22794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/31/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Radioimmunoimaging with disease-specific tracers can be advantageous compared to that with nonspecific tracers for the imaging of glucose metabolism and cell proliferation. Monoclonal antibodies (mAbs) or their fragments are excellent tools for immuno-positron emission tomography (PET). In this study, PSMA-specific mAb 3/F11 and its recombinant fragments were compared for the imaging of prostate cancer in xenografts. METHODS Recombinant anti-PSMA antibody fragments D7-Fc and D7-CH3 were constructed by genetically fusing the binding domains of mAb 3/F11 (D7) to the human IgG3 CH3 or CH2-CH3 (Fc) domain. The fragments and the mAb 3/F11 were DOTA conjugated, tested in vitro, and radiolabeled with (64) Cu. PSMA-positive C4-2 and PSMA-negative DU 145 prostate cancer xenografts were used for PET-MR imaging and for ex vivo biodistribution. RESULTS The constructs showed strong and specific binding to PSMA-positive C4-2 cells in vitro which did not decrease after DOTA conjugation. Both tested fragments showed stable accumulation in PSMA-positive C4-2 tumors at all measured time points but reduced uptake compared to the full-length antibody. Other organs and PSMA-negative tumors showed a very low tracer uptake only 3 hr after injection, with the exception of the kidneys, which demonstrated high radioactivity uptake due to rapid renal clearance of the mAb fragments. CONCLUSION Stable tumor uptake and fast serum clearance of the tested radiolabeled fragments was observed in this preclinical study compared to the full length mAb. Since the fragments show rapid and specific tumor uptake, the tested fragments might serve as tools for theranostic imaging with suitable isotopes for radioimmunotherapy.
Collapse
Affiliation(s)
- Stefan Wiehr
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Su Y, Yu L, Liu N, Guo Z, Wang G, Zheng J, Wei M, Wang H, Yang AG, Qin W, Wen W. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Cancer Lett 2013; 338:282-91. [DOI: 10.1016/j.canlet.2013.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 11/26/2022]
|
21
|
Baum V, Bühler P, Gierschner D, Herchenbach D, Fiala GJ, Schamel WW, Wolf P, Elsässer-Beile U. Antitumor activities of PSMA×CD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy 2013; 5:27-38. [PMID: 23256796 DOI: 10.2217/imt.12.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Although prostate cancer is one of the most commonly diagnosed malignancies in men, there is no effective curative therapy for the advanced disease. Therefore, the aim of the present study was to generate prostate-specific membrane antigen (PSMA)×CD3 diabodies as a novel treatment option for this tumor. METHODS A PSMA×CD3 diabody and a covalently linked single-chain diabody were constructed from the anti-PSMA single-chain Fv fragment D7 and an anti-CD3 single-chain Fv fragment. The fusion proteins were periplasmatically expressed in Escherichia coli. The binding properties were tested on PSMA-expressing C4-2 prostate cancer cells and CD3(+) Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability assay was used. T-cell activation was determined by flow cytometry. In vivo activity of the diabody was tested in SCID mice reconstituted with human peripheral blood lymphocytes bearing C4-2 tumor xenografts. RESULTS Bacterial expression levels were significantly higher for the diabody (1-1.5 mg/l culture) compared with the single-chain diabody (0.2-0.4 mg/l culture). Specific binding on CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown with both diabody formats. In vitro, both diabodies proved to be potent agents for retargeting human CD4(+) and CD8(+) lymphocytes to lyse C4-2 prostate cancer cells. The formation of conjugates between T cells and target cells with clustering of the diabody at sites of interaction could be shown. SCID mice reconstituted with human peripheral blood lymphocytes bearing C4-2 tumor xenografts with the diabody showed an efficient inhibition of tumor growth. CONCLUSION Both diabody formats showed a highly efficient and specific T cell-mediated killing of prostate cancer cells and are encouraging for further development in preclinical and clinical studies.
Collapse
Affiliation(s)
- Volker Baum
- Department of Urology, Experimental Urology, University Hospital, University of Freiburg, Breisacher Street 117, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang F, Shan L, Liu Y, Neville D, Woo JH, Chen Y, Korotcov A, Lin S, Huang S, Sridhar R, Liang W, Wang PC. An anti-PSMA bivalent immunotoxin exhibits specificity and efficacy for prostate cancer imaging and therapy. Adv Healthc Mater 2013; 2:736-44. [PMID: 23184611 PMCID: PMC3741670 DOI: 10.1002/adhm.201200254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/22/2012] [Indexed: 11/10/2022]
Abstract
Prostate specific membrane antigen (PSMA) is overexpressed on prostate tumor cells and the neovascular endothelia various solid tumors. A bivalent immunotoxin generated by fusing a fold-back single-chain diabody derived from the Fv fragments of an anti-PSMA monoclonal antibody with a truncated diphtheria toxin (DT) containing the activity and translocation domains [A-dmDT390-scfbDb(PSMA)] might be suitable for targeted therapy of tumors that overexpress PSMA. In this study, a PSMA-positive and a PSMA-negative prostate cancer cell lines were treated with immunotoxin A-dmDT390-scfbDb(PSMA) in order to study the tumor targeting specificity and therapeutic potential of the immunotoxin. The cellular uptake and selective toxicity of the immunotoxin were evident in monolayer cultures of PSMA-positive LNCaP prostate cancer cells but not in cultures of PSMA-negative PC-3 prostate cancer cells. Cellular accumulation of A-dmDT390-scfbDb(PSMA) increased with increasing incubation times and concentrations in LNCaP cells. The proportion of apoptotic LNCaP cells increased upon incubation with increasing doses of the fold-back immunotoxin. Optical imaging and MRI with the Alexa Fluor 680-labeled A-dmDT390-scfbDb(PSMA) confirmed the specific targeting and therapeutic efficacy of this immunotoxin towards PSMA-positive LNCaP solid tumor xenografts in athymic nude mice.
Collapse
Affiliation(s)
- Fayun Zhang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Shan
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Jung-Hee Woo
- Cancer Research Institute of Scott and White Healthcare, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - Yue Chen
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Alexandru Korotcov
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Sophia Huang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Rajagopalan Sridhar
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| |
Collapse
|
23
|
Liu J, Kopečková P, Pan H, Sima M, Bühler P, Wolf P, Elsässer-Beile U, Kopeček J. Prostate-cancer-targeted N-(2-hydroxypropyl)methacrylamide copolymer/docetaxel conjugates. Macromol Biosci 2012; 12:412-22. [PMID: 22493797 DOI: 10.1002/mabi.201100340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biodistribution, pharmacokinetics, and efficacy of prostate-cancer-targeted HPMA copolymer/DTX conjugates are evaluated in nude mice bearing prostate cancer C4-2 xenografts. PSMA-specific monoclonal antibodies 3F/11 are used as the targeting moiety. Control conjugates tumor accumulation to total background organs (heart, lung, kidney, liver, spleen and blood) accumulation increase substantially with time for the targeted conjugate, and the ratio at 48 h is 7-fold higher than that at 6 h. Preliminary evaluation of the efficacy of the conjugates in vivo show tumor growth inhibition for all HPMA copolymer/DTX conjugates.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 2012; 19:856-70. [PMID: 22214450 DOI: 10.2174/092986712799034888] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/14/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) is a membrane-bound binuclear zinc metallopeptidase with the highest expression levels found in the nervous and prostatic tissue. Throughout the nervous system, glia-bound GCPII is intimately involved in the neuron-neuron and neuron-glia signaling via the hydrolysis of N-acetylaspartylglutamate (NAAG), the most abundant mammalian peptidic neurotransmitter. The inhibition of the GCPII-controlled NAAG catabolism has been shown to attenuate neurotoxicity associated with enhanced glutamate transmission and GCPII-specific inhibitors demonstrate efficacy in multiple preclinical models including traumatic brain injury, stroke, neuropathic and inflammatory pain, amyotrophic lateral sclerosis, and schizophrenia. The second major area of pharmacological interventions targeting GCPII focuses on prostate carcinoma; GCPII expression levels are highly increased in androgen-independent and metastatic disease. Consequently, the enzyme serves as a potential target for imaging and therapy. This review offers a summary of GCPII structure, physiological functions in healthy tissues, and its association with various pathologies. The review also outlines the development of GCPII-specific small-molecule compounds and their use in preclinical and clinical settings.
Collapse
Affiliation(s)
- C Bařinka
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 14200 Praha 4, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers (Basel) 2012; 4:193-217. [PMID: 24213236 PMCID: PMC3712678 DOI: 10.3390/cancers4010193] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8+ cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4+ T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.
Collapse
|
26
|
Fortmüller K, Alt K, Gierschner D, Wolf P, Baum V, Freudenberg N, Wetterauer U, Elsässer-Beile U, Bühler P. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA × CD3 bispecific single-chain diabody. Prostate 2011; 71:588-96. [PMID: 20945402 DOI: 10.1002/pros.21274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND For redirecting T-lymphocytes to induce prostate cancer cell lysis, we constructed a novel bispecific single-chain (bsc) diabody directed to the prostate specific membrane antigen (PSMA) and the T-cell receptor (TCR)-associated CD3 molecule on T-cells. METHODS The PSMA × CD3 bsc diabody was generated from an anti-CD3 single chain Fv fragment (scFv) and the anti-PSMA scFv D7. It was expressed in E. coli and purified from the periplasmic extract and culture supernatant by immobilized metal affinity chromatography (IMAC). The binding properties were tested on PSMA-expressing prostate cancer cells and PSMA-negative cell lines as well as on Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability test (WST-1) was used and activation of T-cells was determined by measuring the surface marker expression of CD25 and CD69. For in vivo evaluation, the diabody was administered in combination with human peripheral blood lymphocytes (Ly) in a C4-2 xenograft-SCID mouse model. RESULTS Specific binding of the PSMA × CD3 bsc diabody both to CD3-positive Jurkat cells and PSMA-expressing C4-2 cells was shown by flow cytometry. In vitro, the PSMA × CD3 bsc diabody proved to be a potent agent for retargeting CD4+ and CD8+ human lymphocytes to lyse C4-2 prostate cancer cells. Treatment of SCID mice bearing C4-2 tumor xenografts with the diabody and human lymphocytes efficiently inhibited tumor growth. CONCLUSIONS The PSMA × CD3 bsc diabody bears a high potential for the immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Kerstin Fortmüller
- Department of Urology, Experimental Urology, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jachimowicz RD, Fracasso G, Yazaki PJ, Power BE, Borchmann P, Engert A, Hansen HP, Reiners KS, Marie M, von Strandmann EP, Rothe A. Induction of in vitro and in vivo NK cell cytotoxicity using high-avidity immunoligands targeting prostate-specific membrane antigen in prostate carcinoma. Mol Cancer Ther 2011; 10:1036-45. [PMID: 21525185 DOI: 10.1158/1535-7163.mct-10-1093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer that might develop as host natural killer (NK) cells fail to detect ligands for their activating NK receptors. Immunoligands represent promising immunotherapeutic tools to overcome this deficit. These are fusion proteins containing a single-chain antibody fragment (scFv) to target an available tumor antigen and ULBP2 to activate host NK cells by targeting the activatory receptor NKG2D. Prostate-specific membrane antigen (PSMA) is an integral non-shed type 2 membrane protein that is highly and specifically expressed on prostate epithelial cells and strongly upregulated in prostate cancer. Here, we compare the impact of various anti-PSMA immunoligand formats on the therapeutic efficacy against prostate carcinoma cells by activating NK cells via NKG2D. Shortening of the linker separating the heavy and light chain antibody domain leads to the formation of dimers, trimers, and higher molecular mass oligomers. NK cells are most efficiently activated by multimeric immunoligands, thus showing an altered cytokine release pattern. The high avidity format is also superior in in vitro NK-mediated tumor cell targeting as shown in cytotoxicity assays. Finally, the efficacy of a multimeric immunoligand is shown in a prostate carcinoma mouse xenograft model showing a strong activity against advanced established tumors.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- Department I of Internal Medicine, University Hospital Cologne, LFI, Ebene 4, Room 703, Kerpener Str. 62, 50927 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|