1
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
2
|
Sankarasubramanian S, Prabhakar P, Narasimhan MK. Genetic insights into cardiac tumors: a comprehensive review. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:164. [PMID: 35972566 DOI: 10.1007/s12032-022-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
Cardiac neoplasms are rare, however, also a curable form of the disease once detected early. In recent years the viscus tumors have gained their highlights, due to the advancement in techniques like echocardiography both 2D and 3D, MRI, etc. These cardiac tumors are divided based on their benign and malignant nature and also as well as primary and secondary cardiac tumors. Largely the primary cardiac tumors are often than secondary cardiac tumors. The secondary tumor happens anywhere in the body involving the heart. The most common malignant tumors are sarcoma, some are angiosarcomas, fibromas, rhabdosarcoma, and leiomyosarcoma. The primary sarcoma affects both men and women at an equal rate with non-specific symptoms. These conditions led to high demand in genomic testing that helps in spot the mutation that leads to the particular type of cardiac neoplasm and it additionally helps to screen the mutated sequence and stop it from being inherited. Recent studies on cardiac tumors have revealed many genes that are involved in tumorigenesis and technologies have enabled the right screening of the tumor location within the heart and their histopathological studies were also studied. This review principally focuses on the understanding of the various forms of cardiac tumors, genetic variants involved and their influence, genetic testing, and different diagnostic approaches in cardiac tumors.
Collapse
Affiliation(s)
- Sivaramasundaram Sankarasubramanian
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Prathiksha Prabhakar
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers (Basel) 2021; 13:1685. [PMID: 33918490 PMCID: PMC8038208 DOI: 10.3390/cancers13071685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| |
Collapse
|
4
|
Minimal Residual Disease in Melanoma:molecular characterization of in transit cutaneous metastases and Circulating Melanoma Cells recognizes an expression panel potentially related to disease progression. Cancer Treat Res Commun 2020; 25:100262. [PMID: 33338742 DOI: 10.1016/j.ctarc.2020.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Isolating circulating melanoma cells (CMCs) represents a powerful method to monitor minimal residual disease. We documented that MCAM/MUC18/CD146 expression is strongly associated with disease progression. ABCB5 is melanoma-stem antigen with self-renewal, proliferation, differentiation, tumorigenicity capabilities. These findings supported us to improve CMC detection, investigating MCAM/MUC18/CD146 and ABCB5 as enrichment targets in MM progression. Moreover, we decided to compare possible molecular diversity of these CMC fractions with metastatic tissue expression, collecting concomitantly cutaneous in transit metastases (CTM). We enriched CMCs from eight melanoma patients staged ≥pT1b AJCC, who developed CTMs at baseline or during follow up. We assessed a gene expression panel comprising ABCB5, the differentiation markers (Tyrosinase, MART1), angiogenic factors (VEGF, bFGF), the cell-cell adhesion molecules (MCAM/MUC18/CD146 5'-portion, Long, and Short isoforms, E-Cadherin, N-Cadherin, VE-Cadherin) and matrix-metallo-proteinases (MMP2 and MMP9) via high-sensitive RT-PCR. Preliminary findings defined three distinct sub-populations: "endothelial" CD45-CD146+CMCs, "stem" CD45-ABCB5+CMCs and a "hybrid- stem-endothelial"- CD45-MCAM+ABCB5+CMCs. The expression panel documented that - almost high expression found in CTMs - like in 73.5% of CMCs resulted positive for at least one transcript at baseline, showing gene-expression variability. Longitudinal monitoring documented shut-down of all gene-expressions in "endothelial"- and "hybrid stem-endothelial"-subsets, whilst persistency or acquisition of MCAM/MUC18/CD146, VE-CADH and MMPs was documented in disease-progression status.Conversely, a drastic expression shut-down was documented when patients achieved clinical remission. The "stem"- CMCs fraction" showed quite lower gene expression frequencies. MCAM/MUC18/CD146 and ABCB5 as melanoma-specific-targets are effective in the selection of highly primitive CMCs and highlights those putative genes associated with disease spreading progression.
Collapse
|
5
|
Rapanotti MC, Campione E, Suarez Viguria TM, Spallone G, Costanza G, Rossi P, Orlandi A, Valenti P, Bernardini S, Bianchi L. Stem-Mesenchymal Signature Cell Genes Detected in Heterogeneous Circulating Melanoma Cells Correlate With Disease Stage in Melanoma Patients. Front Mol Biosci 2020; 7:92. [PMID: 32548126 PMCID: PMC7272706 DOI: 10.3389/fmolb.2020.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of metastasis, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through the blood stream, may develop metastatic lesions or remain dormant. Some emerging clinical evidence supports that some tumor cells may possess metastatic properties already in the earlier stages of tumorigenesis. Because the initiation and progression of vertical growth in human melanoma is fundamental to the notion of tumor virulence and progression, we decided to immune-magnetic collect and molecularly characterize circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b (i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly heterogeneous, thus we performed a "home-made Liquid-Biopsy," by targeting the melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-cell adhesion molecules, matrix-metallo-proteinases, which was performed on three enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients. At first, a significant differential expression of the specific transcripts was documented between and within the CMC fractions enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage I-II) and advanced- staged patients (stage II-IV). Moreover, in the early-AJCC staged-group, we could distinguish "endothelial," CD45-MCAM+ enriched-, "stem" S-CMCs, CD45-ABCB5+ enriched- and a third hybrid bi-phenotypic CD45-MCAM+/ABCB5+ enriched-fractions, due to three distinct gene-expression profiles. In particular, the endothelial-CMCs were characterized by positive expression of genes involved in migration and invasion, whilst the stem CMC-fraction only expressed stem and differentiation markers. The third subpopulation isolated based on concurrent MCAM and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs sub-populations, exhibited a primitive, "stem-mesenchymal" profile suggesting a highly aggressive and metastasizing phenotype. This study confirms the phenotypic and molecular heterogeneity observed in melanoma and highlights those putative genes involved in early melanoma spreading and disease progression.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Tara Mayte Suarez Viguria
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
6
|
Combining ERBB family and MET inhibitors is an effective therapeutic strategy in cutaneous malignant melanoma independent of BRAF/NRAS mutation status. Cell Death Dis 2019; 10:663. [PMID: 31506424 PMCID: PMC6737096 DOI: 10.1038/s41419-019-1875-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Current treatment modalities for disseminated cutaneous malignant melanoma (CMM) improve survival; however, relapses are common. A number of receptor tyrosine kinases (RTKs) including EGFR and MET have been reported to be involved in CMM metastasis and in the development of resistance to therapy, targeting the mitogen-activated protein kinase (MAPK pathway). IHC analysis showed that patients with higher MET protein expression had a significantly shorter overall survival. In addition, silencing of MET caused an upregulation of EGFR and p-AKT, which was abrogated by concomitant silencing of MET and EGFR in CMM cells resistant to MAPK-targeting drugs. We therefore explored novel treatment strategies using clinically approved drugs afatinib (ERBB family inhibitor) and crizotinib (MET inhibitor), to simultaneously block MET and ERBB family RTKs. The effects of the combination were assessed in cell culture and spheroid models using established CMM and patient-derived short-term cell lines, and an in vivo xenograft mouse model. The combination had a synergistic effect, promoting cell death, concomitant with a potent downregulation of migratory and invasive capacity independent of their BRAF/NRAS mutational status. Furthermore, the combination attenuated tumor growth rate, as ascertained by the significant reduction of Ki67 expression and induced DNA damage in vivo. Importantly, this combination therapy had minimal therapy-related toxicity in mice. Lastly, the cell cycle G2 checkpoint kinase WEE1 and the RTK IGF1R, non-canonical targets, were altered upon exposure to the combination. Knockdown of WEE1 abrogated the combination-mediated effects on cell migration and proliferation in BRAF mutant BRAF inhibitor-sensitive cells, whereas WEE1 silencing alone inhibited cell migration in NRAS mutant cells. In summary, our results show that afatinib and crizotinib in combination is a promising alternative targeted therapy option for CMM patients, irrespective of BRAF/NRAS mutational status, as well as for cases where resistance has developed towards BRAF inhibitors.
Collapse
|
7
|
Active repurposing of drug candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Mol Med 2019; 25:30. [PMID: 31221082 PMCID: PMC6584997 DOI: 10.1186/s10020-019-0098-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Drug repurposing is a swift, safe, and cheap drug discovery method. Melanoma disorders present low survival and high mortality rates and are challenging to diagnose and treat. Moreover, there is a high volume of worldwide investigations that are attempting to find melanoma-related genes of influence, which can be identified as responsive targets for reliable treatment. Method In this study, we used a wide range of data analyses to analyze over 1100 genes and proteins of influence with respect to cutaneous malignant melanoma. Our analysis included various investigational results from genome- and phenome-wide association studies (GWAS and PheWAS, respectively), biomedical, transcriptomic, and metabolomic datasets. We then researched the DrugBank for potential melanoma targets from the selected list. We excluded known melanoma targets to obtain a list of druggable proteins. We performed a precise analysis of the drugs’ pathogenesis and checked the expression profiles of the selected drugs having high associations with known anti-melanoma drugs. Result We found 35 drugs that interacted with 20 unique targets. These drugs appear to have high melanoma treatment potentials. We confirmed our results with previous studies and found supporting references for 30 of these drugs. In conclusion, this investigation can be applied to various diseases for the efficient and economical repurposing of various drug compounds. For further validation, the results may be applicable for in vivo tests and clinical trials.
Collapse
|
8
|
Inhibition of epidermal growth factor receptor improves antitumor efficacy of vemurafenib in BRAF-mutant human melanoma in preclinical model. Melanoma Res 2019; 28:536-546. [PMID: 30124539 DOI: 10.1097/cmr.0000000000000488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oncogenic activation of the epidermal growth factor receptor (EGFR) signaling pathway occurs in a variety of tumor types, albeit in human melanoma, the contribution of EGFR is still unclear. The potential role of EGFR was analyzed in four BRAF-mutant, one NRAS-mutant and one wild-type NRAS-BRAF-carrying human melanoma cell lines. We have tested clinically available reversible tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, irreversible EGFR-TKI pelitinib and a reversible experimental compound PD153035 on in-vitro proliferation, apoptosis, migration as well as in-vivo metastatic colonization in a spleen-liver model. The presence of the intracellular domain of EGFR protein and its constitutive activity were demonstrated in all cell lines. Efficacies of EGFR-TKIs showed significant differences, and irreversible inhibition had the strongest antitumor potential. Compared with BRAF-mutant cells, wild-type BRAF was associated with relative resistance against gefitinib. In combination with gefitinib, selective mutant BRAF-inhibitor vemurafenib showed additive effect in all BRAF-mutant cell lines. Treatment of BRAF-mutant cells with gefitinib or pelitinib attenuated in-vitro cell migration and in-vivo colonization. Our preclinical data suggest that EGFR is a potential target in the therapy of BRAF-mutant malignant melanoma; however, more benefits could be expected from irreversible EGFR-TKIs and combined treatment settings.
Collapse
|
9
|
The Effect of Canertinib on Sensitivity of Cytotoxic Drugs in Tamoxifen-Resistant Breast Cancer Cells In Vitro. Int J Genomics 2018; 2018:7628734. [PMID: 30425998 PMCID: PMC6218737 DOI: 10.1155/2018/7628734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
Aims and Objectives To investigate and examine the reversal effects of canertinib on the activity of EGFR and tamoxifen resistance in drug-resistant human breast carcinoma cells (MCF-7/TamR). Materials and Methods The antiproliferative activity of canertinib alone or in combination with a conventional EGFR-targeting chemotherapies cytotoxic drugs differing in the mechanism(s) of action, such as paclitaxel, carboplatin, etoposide, vinorelbine, and daunorubicin as well as resistance mechanisms of EGFR targeting, have been investigated. Results With an elevated dosage of canertinib, a significant decrease in proliferation and increase in apoptosis was observed. The treatment with higher doses of canertinib resulted in a 2-3-fold increase in apoptosis. In the combined treatment, it had been noticed a significant developed apoptotic cell death rather induced by single agent treatment. A significant downregulation of the antiapoptotic protein bcl-2 was exposed by immunocytochemistry investigation. Sensitivity to paclitaxel was also measured and was found to inversely correlate to bcl-2 status. Conclusion Proliferation inhibition and apoptosis in MCF-7/TAM-R cells increase with increasing dosage of canertinib. This suggests that canertinib can reverse tamoxifen resistance in breast cancer cells. The antitumor effect of this EGFR-irreversible tyrosine kinase inhibitor provides a rationale for its clinical evaluation in combination with other cytotoxic drugs.
Collapse
|
10
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Hutchinson KE, Johnson DB, Johnson AS, Sanchez V, Kuba M, Lu P, Chen X, Kelley MC, Wang Q, Zhao Z, Kris M, Berger MF, Sosman JA, Pao W. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget 2016; 6:22348-60. [PMID: 26084293 PMCID: PMC4673168 DOI: 10.18632/oncotarget.4255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
Melanomas are characterized by activating “driver” mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative (“pan-negative”) patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease.
Collapse
Affiliation(s)
- Katherine E Hutchinson
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam S Johnson
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Kuba
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark C Kelley
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qingguo Wang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhongming Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Kris
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.,Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jeffrey A Sosman
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William Pao
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Currently an employee of Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|
12
|
Godugu C, Doddapaneni R, Patel AR, Singh R, Mercer R, Singh M. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma. Pharm Res 2016; 33:137-54. [PMID: 26286185 PMCID: PMC4774891 DOI: 10.1007/s11095-015-1771-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anticancer drugs have poor water solubility leading to low bioavailability. METHODS Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. RESULTS In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. CONCLUSION Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models.
Collapse
Affiliation(s)
- Chandraiah Godugu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, Telangana, India
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Apurva R Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Rakesh Singh
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Roger Mercer
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
13
|
A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-016-0108-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Garay T, Molnár E, Juhász É, László V, Barbai T, Dobos J, Schelch K, Pirker C, Grusch M, Berger W, Tímár J, Hegedűs B. Sensitivity of Melanoma Cells to EGFR and FGFR Activation but Not Inhibition is Influenced by Oncogenic BRAF and NRAS Mutations. Pathol Oncol Res 2015; 21:957-68. [PMID: 25749811 DOI: 10.1007/s12253-015-9916-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
BRAF and NRAS are the two most frequent oncogenic driver mutations in melanoma and are pivotal components of both the EGF and FGF signaling network. Accordingly, we investigated the effect of BRAF and NRAS oncogenic mutation on the response to the stimulation and inhibition of epidermal and fibroblast growth factor receptors in melanoma cells. In the three BRAF mutant, two NRAS mutant and two double wild-type cell lines growth factor receptor expression had been verified by qRT-PCR. Cell proliferation and migration were determined by the analysis of 3-days-long time-lapse videomicroscopic recordings. Of note, a more profound response was found in motility as compared to proliferation and double wild-type cells displayed a higher sensitivity to EGF and FGF2 treatment when compared to mutant cells. Both baseline and induced activation of the growth factor signaling was assessed by immunoblot analysis of the phosphorylation of the downstream effectors Erk1/2. Low baseline and higher inducibility of the signaling pathway was characteristic in double wild-type cells. In contrast, oncogenic BRAF or NRAS mutation did not influence the response to EGF or FGF receptor inhibitors in vitro. Our findings demonstrate that the oncogenic mutations in melanoma have a profound impact on the motogenic effect of the activation of growth factor receptor signaling. Since emerging molecularly targeted therapies aim at the growth factor receptor signaling, the appropriate mutational analysis of individual melanoma cases is essential in both preclinical studies and in the clinical trials and practice.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ng YK, Lee JY, Supko KM, Khan A, Torres SM, Berwick M, Ho J, Kirkwood JM, Siegfried JM, Stabile LP. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res 2014; 24:207-18. [PMID: 24709886 PMCID: PMC4394744 DOI: 10.1097/cmr.0000000000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The BRAF inhibitor vemurafenib is currently used for treating patients with BRAF V600E mutant melanoma. However, the responses to vemurafenib are generally partial and of relatively short duration. Recent evidence suggests that activation of the epidermal growth factor receptor (EGFR)/erbB signaling pathway may be responsible for the development of BRAF inhibitor resistance in melanoma patients. In this study, we characterized the erbB family of receptors and ligands in melanoma cell lines and examined whether targeting both BRAF and erbB provided enhanced antitumor activity in BRAF mutant melanoma. Variable levels of erbB2, erbB3, and truncated erbB4 were expressed in both BRAF wildtype and mutant melanoma cells with no significant differences between wildtype and mutant lines. EGFR was rarely expressed. Neuregulin 3 and neuregulin 4 were the major erbB ligands released by melanoma cells. Multi-erbB targeting with the irreversible tyrosine kinase inhibitor canertinib exerted a more effective growth inhibitory effect in both BRAF wildtype and mutant melanoma cells compared with the single-erbB or dual-erbB targeting inhibitors, gefitinib, erlotinib, and lapatinib. Canertinib inhibited both EGF-induced and neuregulin 1-induced erbB downstream signaling in both mutant and wildtype cell lines. However, canertinib induced apoptosis and sub-G1 arrest only in mutant cells. Canertinib statistically increased the antiproliferative effects of vemurafenib in the BRAF mutant melanoma cell lines while little or no enhanced effect was observed with the combination treatment in the wildtype cell lines. A combined inhibition strategy targeting BRAF together with multiple erbB family kinases is potentially beneficial for treating BRAF V600E mutant melanoma. Wildtype BRAF melanoma may also benefit from a multi-erbB kinase inhibitor.
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jia-Ying Lee
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathryn M. Supko
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ayesha Khan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Salina M. Torres
- Department of Internal Medicine, Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, New Mexico
| | - Marianne Berwick
- Department of Internal Medicine, Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, New Mexico
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M. Kirkwood
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill M. Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura P. Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway. Target Oncol 2014; 10:77-84. [PMID: 24824730 DOI: 10.1007/s11523-014-0318-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Data regarding the expression of epidermal growth factor receptor (EGFR) in melanoma and its role in the tumor biology are conflicting. In BRAF V600-mutant melanomas, the expression of EGFR has been associated with acquired resistance to BRAF inhibitors. In this study, we assessed EGFR expression and downstream signaling activity in a panel of melanoma cell lines and we investigated the effects of the BRAF inhibitor vemurafenib on expression of EGFR and its downstream effectors in a subgroup of BRAF-mutant melanoma cells. Three out of 10 melanoma cell lines expressed EGFR. Downstream signaling via ERK and AKT was responsive to either stimulation by EGF or inhibition by erlotinib. Constitutive activation of ERK occurred in all the cell lines investigated whereas constitutive activation of AKT only in three cell lines. Constitutive activation of ERK and AKT was independent from EGFR expression. Vemurafenib did not affect EGFR expression in general, but it increased EGFR phosphorylation in the cell line SkMel5. Induced EGFR phosphorylation was sensitive to treatment with erlotinib. Vemurafenib efficiently blocked ERK activation in all the BRAF-mutant cell lines tested, whereas its effects on AKT activation were dissimilar in the different cell lines. Our data suggest that EGFR is functional but usually inactive in EGFR high-expressing cell lines. Basal EGFR expression unlikely represents a biomarker for predicting the sensitivity to vemurafenib in melanoma, but EGFR activation might represent a mechanism of vemurafenib resistance in a subset of melanoma cells.
Collapse
|
17
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Mirkina I, Hadzijusufovic E, Krepler C, Mikula M, Mechtcheriakova D, Strommer S, Stella A, Jensen-Jarolim E, Höller C, Wacheck V, Pehamberger H, Valent P. Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R. PLoS One 2014; 9:e84417. [PMID: 24489649 PMCID: PMC3906015 DOI: 10.1371/journal.pone.0084417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45-/CD31- cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4-40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R- subpopulations produced melanoma lesions in NOD/SCID IL-2Rgamma(null) (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Line, Tumor
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Immunophenotyping
- Male
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred NOD
- Neoplasm Transplantation
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Proto-Oncogene Proteins c-kit/deficiency
- Proto-Oncogene Proteins c-kit/genetics
- Receptor, ErbB-4
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Irina Mirkina
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology & Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Austria
| | - Clemens Krepler
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pathophysiology & Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Strommer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexander Stella
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pathophysiology & Allergy Research, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna and University Vienna, Vienna, Austria
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Volker Wacheck
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hubert Pehamberger
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology & Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
19
|
Kunz M. Oncogenes in melanoma: an update. Eur J Cell Biol 2013; 93:1-10. [PMID: 24468268 DOI: 10.1016/j.ejcb.2013.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
20
|
Ribeiro DC, Gleber-Netto FO, Sousa SF, Bernardes VDF, Guimarães-Abreu MHN, Aguiar MCF. Immunohistochemical expression of EGFR in oral leukoplakia: association with clinicopathological features and cellular proliferation. Med Oral Patol Oral Cir Bucal 2012; 17:e739-44. [PMID: 22322523 PMCID: PMC3482515 DOI: 10.4317/medoral.17950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/13/2011] [Indexed: 01/08/2023] Open
Abstract
Objectives: to investigate the immunoexpression of epidermal growth factor receptor (EGFR) in a sample of oral leukoplakias (OL) and to determine the receptor’s association with dysplasia, tobacco consumption, lesion site, and proliferation rate. Although EGFR should be overexpressed in some oral leukoplakias, the factors that may interfere with this expression and the influence of this receptor on epithelial proliferation have yet to be investigated.
Study Design: Samples of oral leukoplakias (48) and of normal oral epithelium (10) were immunohistologically examined for expression of EGFR. Immunohistochemistry for Ki-67, and p27 were also performed in leukoplakias. EGFR expression was associated with clinical and pathological features.
Results: EGFR was positive in 62.5% of the leukoplakias and 50% of normal oral epithelium. The number of EGFR positive OL located in high-risk sites was significantly higher than EGFR positive OL located in low-risk sites. Most of the p27 negative leukoplakias were EGFR positive, and the p27 index in the parabasal layer was diminished in the presence of dysplasia. Positivity for EGFR was not associated with dysplasia, tobacco exposure, or Ki-67.
Conclusion: EGFR is expressed in leukoplakia regardless of dysplasia, but EGFR positivity should be more frequent in lesions sited in areas of high cancer risk. The association between EGFR and p27 may represent an important mechanism in the control of cellular proliferation and malignant progression of oral epithelium and therefore warrants further investigation.
Key words:Oral leukoplakia, EGFR, p27, Ki-67, epithelial dysplasia.
Collapse
Affiliation(s)
- Daniela-Cotta Ribeiro
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Faculdade de Odontologia, Av. Antônio Carlos, 6627 sala 3201, Pampulha 31.270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Hyperactivation of constitutively dimerized oncogenic EGF receptors by autocrine loops. Oncogene 2012; 32:2403-11. [PMID: 22751127 DOI: 10.1038/onc.2012.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) has a key role in normal embryonic development, adult tissue homeostasis and many pathological processes, in particular tumour formation. Aberrant EGFR activation occurs in many cancer types, and inhibition of this receptor is a promising anti-tumour strategy. Besides overexpression of the wild-type receptor, mutated oncogenic EGFR variants are often associated with malignant transformation. In human non-small-cell lung cancers, kinase mutants of the EGFR are rather common. Human glioblastoma often express the truncated EGFRvIII version as well as other dimerized and permanently activated mutants of the receptor, which are considered as tumour drivers. Similarly, the mutated and dimerized EGFR variant Xiphophorus melanoma receptor kinase (Xmrk) is causative for the development of malignant pigment cell tumours in medaka and Xiphophorus melanoma models. It is generally believed that oncogenic receptors that are active due to dimerizing mutations are ligand independent. Here, we show that different EGFR variants from fish and human efficiently induce autocrine loops by inducing EGFR ligands such as amphiregulin and HB-EGF. Importantly, the pre-dimerized oncogenic EGFR versions Xmrk from Xiphophorus and human EGFR(C600F), though already active in absence of ligands, respond to ligand stimulation with enhanced oncogenic signalling. In summary, our data show that autocrine or paracrine loops are still acting on pre-dimerized oncogenic EGFRs and contribute to their pro-tumorigenic signalling.
Collapse
|
22
|
Abstract
Melanoma is often considered one of the most aggressive and treatment-resistant human cancers. It is a disease that, due to the presence of melanin pigment, was accurately diagnosed earlier than most other malignancies and that has been subjected to countless therapeutic strategies. Aside from early surgical resection, no therapeutic modality has been found to afford a high likelihood of curative outcome. However, discoveries reported in recent years have revealed a near avalanche of breakthroughs in the melanoma field-breakthroughs that span fundamental understanding of the molecular basis of the disease all the way to new therapeutic strategies that produce unquestionable clinical benefit. These discoveries have been born from the successful fruits of numerous researchers working in many-sometimes-related, although also distinct-biomedical disciplines. Discoveries of frequent mutations involving BRAF(V600E), developmental and oncogenic roles for the microphthalmia-associated transcription factor (MITF) pathway, clinical efficacy of BRAF-targeted small molecules, and emerging mechanisms underlying resistance to targeted therapeutics represent just a sample of the findings that have created a striking inflection in the quest for clinically meaningful progress in the melanoma field.
Collapse
Affiliation(s)
- Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- The Wellman Center for Photomedicine, Boston, Massachusetts 02114, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Levi A. Garraway
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
23
|
Chong K, Daud A, Ortiz-Urda S, Arron ST. Cutting edge in medical management of cutaneous oncology. SEMINARS IN CUTANEOUS MEDICINE AND SURGERY 2012; 31:140-9. [PMID: 22640435 PMCID: PMC3367308 DOI: 10.1016/j.sder.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 01/03/2023]
Abstract
Traditional chemotherapy has resulted in only a modest response, if any, for the 3 most common cutaneous malignancies of basal cell carcinoma, squamous cell carcinoma, and melanoma. Recent advances in understanding of the defects in the pathways driving tumorigenesis have changed the way that we think of these cancers and paved the way to targeted therapy for specific tumors. In this review, we will introduce the novel systemic treatments currently available for these cancers in the context of what is understood about the tumor pathogenesis. We will also introduce ongoing studies that will hopefully broaden our options for highly effective and tolerable treatment.
Collapse
Affiliation(s)
- Kim Chong
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
24
|
Belleudi F, Marra E, Mazzetta F, Fattore L, Giovagnoli MR, Mancini R, Aurisicchio L, Torrisi MR, Ciliberto G. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle 2012; 11:1455-67. [PMID: 22421160 DOI: 10.4161/cc.19861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.
Collapse
Affiliation(s)
- Francesca Belleudi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Universita' di Roma, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta Rev Cancer 2012; 1826:103-11. [PMID: 22503823 DOI: 10.1016/j.bbcan.2012.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 12/11/2022]
Abstract
Exosomes constitute the newest mode of intercellular communication, transmitting information between cells. This exchange of molecular information is facilitated by their unique composition which is enriched with enzymes, structural proteins, adhesion molecules, lipid rafts and RNAs. Following the discovery that cancer cells secrete excessive amounts of exosomes compared to normal cells, it became evident that i) these vesicles can be used as diagnostic markers; ii) their active secretion has functional implications, albeit unknown whether they are tumor promoting or suppressing. Notably, the interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma may promote the transfer of oncogenes (e.g. β-catenin, CEA, HER2, Melan-A/Mart-1 and LMP-1) and onco-microRNAs (e.g. let7, miR1, miR15, miR16 and miR375) from one cell to another, leading to the reprogramming of the recipient cells. The molecular composition and functional role of tumor cell-derived exosomes in tumorigenesis, metastasis and response to therapy are slowly decrypted and the latest findings as well as potential therapeutic strategies are discussed in this review.
Collapse
|
26
|
Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol 2012; 3:32-42. [PMID: 22442756 PMCID: PMC3309891 DOI: 10.5306/wjco.v3.i3.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
Cutaneous malignant melanoma is the most aggressive form of skin cancer with an extremely poor survival rate for the patients diagnosed with locally invasive and metastatic disease states. Intensive research has led in last few years to an improvement of the early detection and curative treatment of primary cutaneous melanomas that are confined to the skin by tumor surgical resection. However, locally advanced and disseminated melanomas are generally resistant to conventional treatments, including ionizing radiation, systemic chemotherapy, immunotherapy and/or adjuvant stem cell-based therapies, and result in the death of patients. The rapid progression of primary melanomas to locally invasive and/or metastatic disease states remains a major obstacle for an early effective diagnosis and a curative therapeutic intervention for melanoma patients. Importantly, recent advances in the melanoma research have led to the identification of different gene products that are often implicated in the malignant transformation of melanocytic cells into melanoma cells, including melanoma stem/progenitor cells, during melanoma initiation and progression to locally advanced and metastatic disease states. The frequent deregulated genes products encompass the oncogenic B-RafV600E and N-RasQ61R mutants, different receptor tyrosine kinases and developmental pathways such as epidermal growth factor receptor (EGFR), stem cell-like factor (SCF) receptor KIT, hedgehog, Wnt/β-catenin, Notch, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF)/VEGFR receptor. These growth factors can cooperate to activate distinct tumorigenic downstream signaling elements and epithelial-mesenchymal transition (EMT)-associated molecules, including phosphatidylinositol 3’-kinase (PI3K)/Akt/ molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), macrophage inhibitory cytokine-1 (MIC-1), vimentin, snail and twist. Of therapeutic relevance, these deregulated signal transduction components constitute new potential biomarkers and therapeutic targets of great clinical interest for improving the efficacy of current diagnostic and prognostic methods and management of patients diagnosed with locally advanced, metastatic and/or relapsed melanomas.
Collapse
Affiliation(s)
- Murielle Mimeault
- Murielle Mimeault, Surinder K Batra, Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States
| | | |
Collapse
|
27
|
Djerf Severinsson EA, Trinks C, Gréen H, Abdiu A, Hallbeck AL, Stål O, Walz TM. The pan-ErbB receptor tyrosine kinase inhibitor canertinib promotes apoptosis of malignant melanoma in vitro and displays anti-tumor activity in vivo. Biochem Biophys Res Commun 2011; 414:563-8. [PMID: 21982771 DOI: 10.1016/j.bbrc.2011.09.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022]
Abstract
The ErbB receptor family has been suggested to constitute a therapeutic target for tumor-specific treatment of malignant melanoma. Here we investigate the effect of the pan-ErbB tyrosine kinase inhibitor canertinib on cell growth and survival in human melanoma cells in vitro and in vivo. Canertinib significantly inhibited growth of cultured melanoma cells, RaH3 and RaH5, in a dose-dependent manner as determined by cell counting. Half-maximum growth inhibitory dose (IC(50)) was approximately 0.8 μM and by 5 μM both cell lines were completely growth-arrested within 72 h of treatment. Incubation of exponentially growing RaH3 and RaH5 with 1 μM canertinib accumulated the cells in the G(1)-phase of the cell cycle within 24h of treatment without induction of apoptosis as determined by flow cytometry. Immunoblot analysis showed that 1 μM canertinib inhibited ErbB1-3 receptor phosphorylation with a concomitant decrease of Akt-, Erk1/2- and Stat3 activity in both cell lines. In contrast to the cytostatic effect observed at doses ≤ 5μM canertinib, higher concentrations induced apoptosis as demonstrated by the Annexin V method and Western blot analysis of PARP cleavage. Furthermore, canertinib significantly inhibited growth of RaH3 and RaH5 melanoma xenografts in nude mice. Pharmacological targeting of the ErbB receptors may prove successful in the treatment of patients with metastatic melanoma.
Collapse
Affiliation(s)
- Emelie A Djerf Severinsson
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
28
|
Leong SPL, Gershenwald JE, Soong SJ, Schadendorf D, Tarhini AA, Agarwala S, Hauschild A, Soon CWM, Daud A, Kashani-Sabet M. Cutaneous melanoma: a model to study cancer metastasis. J Surg Oncol 2011; 103:538-49. [PMID: 21480247 DOI: 10.1002/jso.21816] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nodal status in melanoma is a critically important prognostic factor for patient outcome. The survival rate drops to <10% when melanoma has spread beyond the regional lymph nodes and includes visceral involvement. In general, the process of melanoma metastasis is progressive in that dissemination of melanoma from the primary site to the regional lymph nodes occurs prior to systemic disease. The goal of this review article is to describe melanoma as a clinical model to study cancer metastasis. A future challenge is to develop a molecular taxonomy to subgroup melanoma patients at various stages of tumor progression for more accurate targeted treatment.
Collapse
Affiliation(s)
- Stanley P L Leong
- Center for Melanoma Research and Treatment and Department of Surgery, California Pacific Medical Center and Research Institute, San Francisco, California 94115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trinks C, Severinsson EA, Holmlund B, Gréen A, Gréen H, Jönsson JI, Hallbeck AL, Walz TM. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells. Biochem Biophys Res Commun 2011; 410:422-7. [PMID: 21669187 DOI: 10.1016/j.bbrc.2011.05.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects are however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 μM caused accumulation of Jurkat cells in the G(1) cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.
Collapse
Affiliation(s)
- Cecilia Trinks
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Melnick M, Abichaker G, Htet K, Sedghizadeh P, Jaskoll T. Small molecule inhibitors of the host cell COX/AREG/EGFR/ERK pathway attenuate cytomegalovirus-induced pathogenesis. Exp Mol Pathol 2011; 91:400-10. [PMID: 21565184 DOI: 10.1016/j.yexmp.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 11/17/2022]
Abstract
As with other herpesviruses, human cytomegalovirus (hCMV) has the ability to establish lifelong persistence and latent infection following primary exposure, salivary glands (SMGs) being the primary site of both. In the immunocompromised patient, hCMV is a common cause of opportunistic infections, and subsequent morbidity and mortality. Elucidating the molecular pathogenesis of CMV-induced disease is critical to the development of more effective and safer drug therapies. In the present study, we used a novel mouse postnatal SMG organ culture model of mCMV-induced dysplasia to investigate a candidate signaling network suggested by our prior studies (COX-2/AREG/EGFR/ERK). The objective was to employ small molecule inhibitors to target several key steps in the autocrine loop, and in this way ameliorate pathology. Our results indicate that upregulation of ERK phosphorylation is necessary for initial mCMV-induced pathogenesis, and that ErbB receptor family phosphorylation and downstream signaling are highly relevant targets for drug discovery.
Collapse
Affiliation(s)
- Michael Melnick
- Laboratory for Developmental Genetics, USC, Los Angeles, CA 90089-0641, USA.
| | | | | | | | | |
Collapse
|
31
|
Easty DJ, Gray SG, O'Byrne KJ, O'Donnell D, Bennett DC. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res 2011; 24:446-61. [PMID: 21320293 DOI: 10.1111/j.1755-148x.2011.00836.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use.
Collapse
Affiliation(s)
- David J Easty
- Department of Oncology, St James's Hospital, Dublin, Ireland Division of Biomedical Sciences, St George's, University of London, London, UK.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
PURPOSE OF REVIEW The identification of mutations in signal transduction pathways that are central in melanoma pathophysiology has provided new therapeutic targets for drug development. The purpose of this review is to define those oncogenes for which there are preclinical data supporting clinical trials and to summarize results from clinical investigations. RECENT FINDINGS CKIT mutations were first reported in 2005 but are present in only a small subpopulation of melanoma patients. The validation of inhibitors developed in gastrointestinal stromal tumors has taken several years, but recent evidence suggests that responses can be seen in CKIT mutant melanoma. First reported in 2002, BRAF is mutated in 50% of all melanomas and subsets of other cancers. The melanoma field is leading the clinical trials evaluating the value of targeting BRAF and MEK in BRAF mutant tumors. Results from the first clinical trial with a potent and selective BRAF inhibitor clearly show the therapeutic promise of this approach. SUMMARY Larger clinical trials are needed to fully define the efficacy of BRAF and CKIT-directed therapy in melanoma, but early results suggest that this strategy will transform treatment options. Additional potential targets have been identified, and clinical trials evaluating novel drugs against them are underway.
Collapse
|
34
|
Trinks C, Djerf EA, Hallbeck AL, Jönsson JI, Walz TM. The pan-ErbB receptor tyrosine kinase inhibitor canertinib induces ErbB-independent apoptosis in human leukemia (HL-60 and U-937) cells. Biochem Biophys Res Commun 2010; 393:6-10. [PMID: 20096663 DOI: 10.1016/j.bbrc.2010.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor (EGF) receptor tyrosine kinase inhibitors have recently been shown to display anti-neoplastic effects in human malignant myeloid cells. Our study was initiated in order to determine the effect of the pan-ErbB receptor tyrosine kinase inhibitor, canertinib (CI-1033), on growth and survival of human leukemia (HL-60 and U-937) cells. We show that treatment of HL-60 and U-937 cells with canertinib significantly inhibits growth of both cell lines in a dose-dependent manner; half maximal effective dose (IC(50)) in HL-60 and U-937 cells was approximately 2.5 microM and 1.0 microM, respectively. Treatment with 2 microM canertinib promoted a G(1) cell cycle arrest, whereas doses of 5 microM or more induced apoptosis as determined by the Annexin V method and cleavage of poly-(ADP-ribose) polymerase (PARP). HL-60 and U-937 cells lacked EGF-receptor transcript but expressed ErbB2-4 mRNA as determined by RT-PCR. However, none of the corresponding ErbB-receptor proteins could be detected by Western blot analysis. We conclude that canertinib induces apoptosis in HL-60 and U-937 cells devoid of functional ErbB1-4 receptors. Our results suggest that canertinib could be of potential clinical interest in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Cecilia Trinks
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Recent progress in the analysis of genetic alterations in melanoma has identified recurrent mutations that result in the activation of critical signaling pathways promoting growth and survival of tumors cells. Alterations in the RAS-RAF-MAP kinase and PI3-kinase signaling pathways are commonly altered in melanoma. Mutations in BRAF, NRAS, KIT, and GNAQ occur in a mutually exclusive pattern and lead to MAP-kinase activation. Loss of PTEN function, primarily by deletion, is the most common known genetic alteration in the PI3-kinase cascade, and is commonly associated with BRAF mutations (Curtin et al., N Engl J Med 353:2135-2147, 2005; Tsao et al., Cancer Res 60:1800-1804, 2000, J Investig Dermatol 122:337-341, 2004). The growth advantage conveyed by the constitutive activation of these pathways leads to positive selection of cells that have acquired the mutations and in many instances leads to critical dependency of the cancer cells on their activation. This creates opportunities for therapeutic interventions targeted at signaling components within these pathways that are amenable for pharmacological inhibition. This concept follows the paradigm established by the landmark discovery that inhibition of the fusion kinase BCR-ABL can be used to treat chronic myelogenous leukemia (Druker et al., N Engl J Med 344:1031-037, 2001). The review will focus primarily on kinases involved in signaling that are currently being evaluated for therapeutic intervention in melanoma.
Collapse
|
36
|
Liu J, Lin B, Hao Y, Qi Y, Zhu L, Li F, Liu D, Cong J, Zhang S, Iwamori M. Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 2009; 28:154. [PMID: 20003467 PMCID: PMC2806302 DOI: 10.1186/1756-9966-28-154] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 12/15/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells. METHODS We constructed a plasmid encoding alpha1,2-fucosyltransferase (alpha1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after alpha-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. RESULTS Our results showed that the levels of alpha1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of alpha-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of alpha1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002. CONCLUSIONS Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Bei Lin
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Yue Qi
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Feifei Li
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Jianping Cong
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| |
Collapse
|