1
|
Nel C, Frater J. Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination. Front Immunol 2024; 15:1478703. [PMID: 39575236 PMCID: PMC11578998 DOI: 10.3389/fimmu.2024.1478703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Although HIV infection can be managed with antiretroviral drugs, there is no cure and therapy has to be taken for life. Recent successes in animal models with HIV-specific broadly neutralising antibodies (bNAbs) have led to long-term virological remission and even possible cures in some cases. This has resulted in substantial investment in human studies to explore bNAbs as a curative intervention for HIV infection. Emerging data are encouraging, but suggest that combinations of bNAbs with other immunomodulatory agents may be needed to induce and sustain long-term viral control. As a result, a number of clinical trials are currently underway exploring these combinations. If successful, the impact for the millions of people living with HIV could be substantial. Here, we review the background to the use of bNAbs in the search for an HIV cure and how different adjunctive agents might be used together to enhance their efficacy.
Collapse
Affiliation(s)
- Carla Nel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
2
|
Huvelle S, Pinon A, Coulon C, Bonasera T, Chapon C, Naninck T, Le Grand R, Parry CM, Kuhnast B, Caillé F. Improved Automated Radiosynthesis of [ 18F]Dolutegravir: Toward Clinical Applications. ACS OMEGA 2024; 9:41732-41741. [PMID: 39398184 PMCID: PMC11465247 DOI: 10.1021/acsomega.4c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Positron emission tomography imaging using radiolabeled dolutegravir (DTG) is an interesting approach to understand the biodistribution of this antiretroviral drug at HIV-1 sanctuary sites. In the course of clinical translation, we depict herein an improved and pharmaceutically compliant radiosynthesis of [18F]DTG from an original tin precursor. The radiosynthesis was achieved in two steps by copper-mediated radiofluorination, followed by enol ether deprotection using a kit-based AllInOne module. Ready-to-inject [18F]DTG was obtained in 20 ± 5% (n = 12) decay-corrected radiochemical yield within 90 min, representing a 4-fold increase compared to the previously published three-step radiosynthesis. Quality control was carried out with three consecutive [18F]DTG productions according to the current European Pharmacopoeia guidelines, which include pH determination, identity and purity (chemical, radiochemical, and radionuclide) assessments, residual solvent quantification, dosage of lithium, copper, and tin traces, sterility and bacterial endotoxin tests. [18F]DTG (∼2 GBq) was obtained with a molar activity of 59 ± 2 GBq/μmol at the time of injection and was suitable for human applications.
Collapse
Affiliation(s)
- Steve Huvelle
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Antoine Pinon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Christine Coulon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Thomas Bonasera
- GSK,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Catherine Chapon
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Thibaut Naninck
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Roger Le Grand
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Chris M. Parry
- ViiV
Healthcare, 980 Great West Road, London TW8 9GS, U.K.
| | - Bertrand Kuhnast
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Fabien Caillé
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| |
Collapse
|
3
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
4
|
Wang C, Zhang W, Xu L, Tu J, Su S, Li Q, Zhang T, Zheng L, Wang H, Zhuang X, Tang X, Yuan Y, Meng G, Lu L, Xiao J, Wang Q, Jiang S. Discovery of a Double-Stapled Short Peptide as a Long-Acting HIV-1 Inactivator with Potential for Oral Bioavailability. J Med Chem 2024; 67:9991-10004. [PMID: 38888038 DOI: 10.1021/acs.jmedchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Different from most antiretroviral drugs that act as passive defenders to inhibit HIV-1 replication inside the host cell, virus inactivators can attack and inactivate HIV-1 virions without relying on their replication cycle. Herein, we describe the discovery of a hydrocarbon double-stapled helix peptide, termed D26. D26 is based on the HIV-1 gp41 protein lentiviral lytic peptide-3 motif (LLP3) sequence, which can efficiently inhibit HIV-1 infection and inactivate cell-free HIV-1 virions. It was noted that D26 was highly resistant to proteolytic degradation and exhibited a remarkably extended in vivo elimination half-life. Additionally, relative to its linear, nonstapled version, D26 exhibited much higher exposure in sanctuary sites for HIV-1. Amazingly, this lead compound also demonstrated detectable oral absorption. Thus, it can be concluded that D26 is a promising candidate for further development as a long-acting, orally applicable HIV-1 inactivator for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xuan Tang
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Yu Yuan
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Guangpeng Meng
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
5
|
Kisaka JK, Rauch D, Griffith M, Kyei GB. A macrophage-cell model of HIV latency reveals the unusual importance of the bromodomain axis. Virol J 2024; 21:80. [PMID: 38581045 PMCID: PMC10996205 DOI: 10.1186/s12985-024-02343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Although macrophages are now recognized as an essential part of the HIV latent reservoir, whether and how viral latency is established and reactivated in these cell types is poorly understood. To understand the fundamental mechanisms of viral latency in macrophages, there is an urgent need to develop latency models amenable to genetic manipulations and screening for appropriate latency-reversing agents (LRAs). Given that differentiated THP-1 cells resemble monocyte-derived macrophages in HIV replication mechanisms, we set out to establish a macrophage cell model for HIV latency using THP-1 cells. METHODS We created single-cell clones of THP-1 cells infected with a single copy of the dual-labeled HIVGKO in which a codon switched eGFP (csGFP) is under the control of the HIV-1 5' LTR promoter, and a monomeric Kusabira orange 2 (mKO2) under the control of cellular elongation factor one alpha promoter (EF1α). Latently infected cells are csGFP-, mKO2+, while cells with actively replicating HIV (or reactivated virus) are csGFP+,mKO2+. After sorting for latently infected cells, each of the THP-1 clones with unique integration sites for HIV was differentiated into macrophage-like cells with phorbol 12-myristate 13-acetate (PMA) and treated with established LRAs to stimulate HIV reactivation. Monocyte-derived macrophages (MDMs) harboring single copies of HIVGKO were used to confirm our findings. RESULTS We obtained clones of THP-1 cells with latently infected HIV with unique integration sites. When the differentiated THP-1 or primary MDMs cells were treated with various LRAs, the bromodomain inhibitors JQ1 and I-BET151 were the most potent compounds. Knockdown of BRD4, the target of JQ1, resulted in increased reactivation, thus confirming the pharmacological effect. The DYRK1A inhibitor Harmine and lipopolysaccharide (LPS) also showed significant reactivation across all three MDM donors. Remarkably, LRAs like PMA/ionomycin, bryostatin-1, and histone deacetylase inhibitors known to potently reactivate latent HIV in CD4 + T cells showed little activity in macrophages. CONCLUSIONS Our results indicate that this model could be used to screen for appropriate LRAs for macrophages and show that HIV latency and reactivation mechanisms in macrophages may be distinct from those of CD4 + T cells.
Collapse
Affiliation(s)
- Javan K Kisaka
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Daniel Rauch
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, 63108, USA
| | - George B Kyei
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Medical and Scientific Research Center, University of Ghana Medical Center, Accra, Ghana.
| |
Collapse
|
6
|
D’Orso I, Forst CV. Mathematical Models of HIV-1 Dynamics, Transcription, and Latency. Viruses 2023; 15:2119. [PMID: 37896896 PMCID: PMC10612035 DOI: 10.3390/v15102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
HIV-1 latency is a major barrier to curing infections with antiretroviral therapy and, consequently, to eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best described with the help of mathematical models followed by experimental validation. Here, we review the use of viral dynamics models for HIV-1, with a focus on applications to the latent reservoir. Such models have been used to explain the multi-phasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of post-treatment control. Finally, we discuss that mathematical models have been used to predict the efficacy of potential HIV-1 cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
Affiliation(s)
- Iván D’Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Scévola S, Niubó J, Domingo P, Verdejo G, Curran A, Diaz-Brito V, Peñafiel J, Tiraboschi J, Morenilla S, Garcia B, Soriano I, Podzamczer D, Imaz A. Decay of HIV RNA in Seminal Plasma and Rectal Fluid in Treatment-Naive Adults Starting Antiretroviral Therapy With Dolutegravir Plus Lamivudine or Bictegravir/Emtricitabine/Tenofovir Alafenamide. J Infect Dis 2023; 228:919-925. [PMID: 37526315 DOI: 10.1093/infdis/jiad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Decay of HIV in seminal plasma (SP) and rectal fluid (RF) has not yet been described for the antiretroviral combination of dolutegravir (DTG) + lamivudine (3TC). METHODS In this randomized multicenter pilot trial, males who were antiretroviral naive were randomized (2:1) to DTG + 3TC or bictegravir/emtricitabine/tenofovir alafenamide (BIC/FTC/TAF). HIV-1 RNA was measured in blood plasma (BP), SP, and RF at baseline; days 3, 7, 14, and 28; and weeks 12 and 24. RESULTS Of 25 individuals enrolled, 24 completed the study (DTG + 3TC, n = 16; BIC/FTC/TAF, n = 8). No significant differences were observed between groups for median decline in HIV-1 RNA from baseline at each time point or median time to achieve HIV-1 RNA <20 copies/mL in BP and SP and <20 copies/swab in RF. HIV-1 RNA decay patterns were compared in individuals receiving DTG + 3TC. Despite significantly higher percentages for changes from baseline in BP, median (IQR) times to HIV-1 RNA suppression were shorter in SP (7 days; 0-8.75) and RF (10.5 days; 3-17.5) than in BP (28 days; 14-84; P < .001). CONCLUSIONS Comparable HIV-1 RNA decay in BP, SP, and RF was observed between DTG + 3TC and BIC/FTC/TAF. As shown with triple-drug integrase inhibitor-based regimens, rapid HIV-1 RNA suppression in SP and RF is achieved with DTG + 3TC, despite decay patterns differing from those of BP. CLINICAL TRIALS REGISTRATION EudraCT 2019-004109-28.
Collapse
Affiliation(s)
- Sofía Scévola
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Niubó
- Department of Microbiology, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pere Domingo
- HIV Unit, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Guillermo Verdejo
- Department of Internal Medicine, Sant Camil Hospital, Sant Pere de Ribes, Barcelona, Spain
| | - Adrian Curran
- Department of Infectious Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Vicens Diaz-Brito
- Department of Infectious Diseases, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Judith Peñafiel
- Biostatistics Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Juan Tiraboschi
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Morenilla
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Benito Garcia
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Soriano
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Podzamczer
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Arkaitz Imaz
- HIV and STI Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
8
|
Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens 2023; 12:879. [PMID: 37513726 PMCID: PMC10383313 DOI: 10.3390/pathogens12070879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (S.G.)
| |
Collapse
|
9
|
Panda K, Chinnapaiyan S, Rahman MS, Santiago MJ, Black SM, Unwalla HJ. Circadian-Coupled Genes Expression and Regulation in HIV-Associated Chronic Obstructive Pulmonary Disease (COPD) and Lung Comorbidities. Int J Mol Sci 2023; 24:9140. [PMID: 37298092 PMCID: PMC10253051 DOI: 10.3390/ijms24119140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
People living with HIV (PLWH) have an elevated risk of chronic obstructive pulmonary disease (COPD) and are at a higher risk of asthma and worse outcomes. Even though the combination of antiretroviral therapy (cART) has significantly improved the life expectancy of HIV-infected patients, it still shows a higher incidence of COPD in patients as young as 40 years old. Circadian rhythms are endogenous 24 h oscillations that regulate physiological processes, including immune responses. Additionally, they play a significant role in health and diseases by regulating viral replication and its corresponding immune responses. Circadian genes play an essential role in lung pathology, especially in PLWH. The dysregulation of core clock and clock output genes plays an important role in chronic inflammation and aberrant peripheral circadian rhythmicity, particularly in PLWH. In this review, we explained the mechanism underlying circadian clock dysregulation in HIV and its effects on the development and progression of COPD. Furthermore, we discussed potential therapeutic approaches to reset the peripheral molecular clocks and mitigate airway inflammation.
Collapse
Affiliation(s)
- Kingshuk Panda
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Maria J. Santiago
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Stephen M. Black
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| |
Collapse
|
10
|
Vimonpatranon S, Goes LR, Chan A, Licavoli I, McMurry J, Wertz SR, Arakelyan A, Huang D, Jiang A, Huang C, Zhou J, Yolitz J, Girard A, Van Ryk D, Wei D, Hwang IY, Martens C, Kanakabandi K, Virtaneva K, Ricklefs S, Darwitz BP, Soares MA, Pattanapanyasat K, Fauci AS, Arthos J, Cicala C. MAdCAM-1 costimulation in the presence of retinoic acid and TGF-β promotes HIV infection and differentiation of CD4+ T cells into CCR5+ TRM-like cells. PLoS Pathog 2023; 19:e1011209. [PMID: 36897929 PMCID: PMC10032498 DOI: 10.1371/journal.ppat.1011209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/22/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-β, promote the differentiation of CD4+ T cells into a distinct subset α4β7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.
Collapse
Affiliation(s)
- Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia R Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Amanda Chan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Samuel R Wertz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Anush Arakelyan
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Georgiamune, Gaithersburg, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andrew Jiang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Cindy Huang
- Bioinformatics Program, St. Bonaventure University, St. Bonaventure, New York, United States of America
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Il Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Craig Martens
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Kishore Kanakabandi
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Benjamin P Darwitz
- Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Marcelo A Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kovit Pattanapanyasat
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Maric D, Corbin L, Greco N, Lorenzo-Redondo R, McRaven MD, Veazey RS, Hope TJ. Temporal and spatial characterization of HIV/SIV infection at anorectal mucosa using rhesus macaque rectal challenge model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529624. [PMID: 36865309 PMCID: PMC9980105 DOI: 10.1101/2023.02.22.529624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The study described herein is a continuation of our work in which we developed a methodology to identify small foci of transduced cells following rectal challenge of rhesus macaques with a non-replicative luciferase reporter virus. In the current study, the wild-type virus was added to the inoculation mix and twelve rhesus macaques were necropsied 2-4 days after the rectal challenge to study the changes in infected cell phenotype as the infection progressed. Relying on luciferase reporter we noted that both anus and rectum tissues are susceptible to the virus as early as 48h after the challenge. Small regions of the tissue containing luciferase-positive foci were further analyzed microscopically and were found to also contain cells infected by wild-type virus. Phenotypic analysis of the Env and Gag positive cells in these tissues revealed the virus can infect diverse cell populations, including but not limited to Th17 T cells, non Th17 T cells, immature dendritic cells, and myeloid-like cells. The proportions of the infected cell types, however, did not vary much during the first four days of infection when anus and rectum tissues were examined together. Nonetheless, when the same data was analyzed on a tissue-specific basis, we found significant changes in infected cell phenotypes over the course of infection. For anal tissue, a statistically significant increase in infection was observed for Th17 T cells and myeloid-like cells, while in the rectum, the non-Th17 T cells showed the biggest temporal increase, also of statistical significance.
Collapse
Affiliation(s)
- Danijela Maric
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| | - Lisette Corbin
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
- Current affiliation: Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalie Greco
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
- Current affiliation: Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Ramon Lorenzo-Redondo
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Infectious Diseases, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Michael D. McRaven
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington, Louisiana, USA
| | - Thomas J. Hope
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| |
Collapse
|
12
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
13
|
Boczar KE, Faller E, Zeng W, Wang J, Small GR, Corrales-Medina VF, deKemp RA, Ward NC, Beanlands RSB, MacPherson P, Dwivedi G. Anti-inflammatory effect of rosuvastatin in patients with HIV infection: An FDG-PET pilot study. J Nucl Cardiol 2022; 29:3057-3068. [PMID: 34820771 DOI: 10.1007/s12350-021-02830-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/29/2023]
Abstract
AIMS This study aimed to evaluate markers of systemic as well as imaging markers of inflammation in the ascending aorta, bone marrow, and spleen measured by 18F-FDG PET/CT, in HIV+ patients at baseline and following therapy with rosuvastatin. METHODS AND RESULTS Of the 35 HIV+ patients enrolled, 17 were randomized to treatment with 10 mg/day rosuvastatin and 18 to usual care for 6 months. An HIV- control cohort was selected for baseline comparison of serum inflammatory markers and monocyte markers of inflammation. 18F-FDG-PET/CT imaging of bone marrow, spleen, and thoracic aorta was performed in the HIV+ cohort at baseline and 6 months. While CD14++CD16- and CCR2 expressions were reduced, serum levels of IL-7, IL-8, and MCP-1 were elevated in the HIV+ population compared to the controls. There was a significant drop in FDG uptake in the bone marrow (TBRmax), spleen (SUVmax) and thoracic aortic (TBRmax) in the statin-treated group compared to the control group (bone marrow: - 10.3 ± 16.9% versus 5.0 ± 18.9%, p = .0262; spleen: - 9.8 ± 20.3% versus 11.3 ± 28.8%, p = .0497; thoracic aorta: - 19.1 ± 24.2% versus 4.3 ± 15.4%, p = .003). CONCLUSIONS HIV+ patients had significantly markers of systemic inflammation including monocyte activation. Treatment with low-dose rosuvastatin in the HIV+ cohort significantly reduced bone marrow, spleen and thoracic aortic FDG uptake.
Collapse
Affiliation(s)
- Kevin E Boczar
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Elliot Faller
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wanzhen Zeng
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jerry Wang
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gary R Small
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Vicente F Corrales-Medina
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natalie C Ward
- School of Public Health, Curtin University, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul MacPherson
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Girish Dwivedi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- School of Medicine, University of Western Australia, Perth, Australia.
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, The University of Western Australia, Murdoch, Australia.
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, 6009, Australia.
- School of Biomedical Sciences at Curtin University, Perth, WA, Australia.
| |
Collapse
|
14
|
Abstract
The emergence of drug resistance during antimicrobial therapy is a major global health problem, especially for chronic infections like human immunodeficiency virus, hepatitis B and C, and tuberculosis. Sub-optimal adherence to long-term treatment is an important contributor to resistance risk. New long-acting drugs are being developed for weekly, monthly or less frequent dosing to improve adherence, but may lead to long-term exposure to intermediate drug levels. In this study, we analyse the effect of dosing frequency on the risk of resistance evolving during time-varying drug levels. We find that long-acting therapies can increase, decrease or have little effect on resistance, depending on the source (pre-existing or de novo) and degree of resistance, and rates of drug absorption and clearance. Long-acting therapies with rapid drug absorption, slow clearance and strong wild-type inhibition tend to reduce resistance caused by partially resistant strains in the early stages of treatment even if they do not improve adherence. However, if subpopulations of microbes persist and can reactivate during sub-optimal treatment, longer-acting therapies may substantially increase the resistance risk. Our results show that drug kinetics affect selection for resistance in a complicated manner, and that pathogen-specific models are needed to evaluate the benefits of new long-acting therapies.
Collapse
Affiliation(s)
- Anjalika Nande
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alison L. Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Tisseraud M, Goutal S, Bonasera T, Goislard M, Desjardins D, Le Grand R, Parry CM, Tournier N, Kuhnast B, Caillé F. Isotopic Radiolabeling of the Antiretroviral Drug [ 18F]Dolutegravir for Pharmacokinetic PET Imaging. Pharmaceuticals (Basel) 2022; 15:587. [PMID: 35631413 PMCID: PMC9143889 DOI: 10.3390/ph15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Deciphering the drug/virus/host interactions at infected cell reservoirs is a key leading to HIV-1 remission for which positron emission tomography (PET) imaging using radiolabeled antiretroviral (ARV) drugs is a powerful asset. Dolutegravir (DTG) is one of the preferred therapeutic options to treat HIV and can be isotopically labeled with fluorine-18. [18F]DTG was synthesized via a three-step approach of radiofluorination/nitrile reduction/peptide coupling with optimization for each step. Radiofluorination was performed on 2-fluoro-4-nitrobenzonitrile in 90% conversion followed by nitrile reduction using sodium borohydride and aqueous nickel(II) chloride with 72% conversion. Final peptide coupling reaction followed by HPLC purification and formulation afforded ready-to-inject [18F]DTG in 5.1 ± 0.8% (n = 10) decay-corrected radiochemical yield within 95 min. The whole process was automatized using a TRACERlab® FX NPro module, and quality control performed by analytical HPLC showed that [18F]DTG was suitable for in vivo injection with >99% chemical and radiochemical purity and a molar activity of 83 ± 18 GBq/µmol (n = 10). Whole-body distribution of [18F]DTG was performed by PET imaging on a healthy macaque and highlighted the elimination routes of the tracer. This study demonstrated the feasibility of in vivo [18F]DTG PET imaging and paved the way to explore drug/virus/tissues interactions in animals and humans.
Collapse
Affiliation(s)
- Marion Tisseraud
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Thomas Bonasera
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK;
| | - Maud Goislard
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, 92032 Paris, France; (D.D.); (R.L.G.)
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, 92032 Paris, France; (D.D.); (R.L.G.)
| | - Chris M. Parry
- ViiV Healthcare, 980 Great West Road, London TW8 9GS, UK;
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| |
Collapse
|
16
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
17
|
Lemaitre J, Desjardins D, Gallouët AS, Gomez-Pacheco M, Bourgeois C, Favier B, Sáez-Cirión A, Le Grand R, Lambotte O. Expansion of Immature Neutrophils During SIV Infection Is Associated With Their Capacity to Modulate T-Cell Function. Front Immunol 2022; 13:781356. [PMID: 35185880 PMCID: PMC8851599 DOI: 10.3389/fimmu.2022.781356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
In spite of the efficacy of combinational antiretroviral treatment (cART), HIV-1 persists in the host and infection is associated with chronic inflammation, leading to an increased risk of comorbidities, such as cardiovascular diseases, neurocognitive disorders, and cancer. Myeloid cells, mainly monocytes and macrophages, have been shown to be involved in the immune activation observed in HIV-1 infection. However, less attention has been paid to neutrophils, the most abundant circulating myeloid cell, even though neutrophils are strongly involved in tissue damage and inflammation in several chronic diseases, in particular, autoimmune diseases. Herein, we performed a longitudinal characterization of neutrophil phenotype and we evaluated the interplay between neutrophils and T cells in the model of pathogenic SIVmac251 experimental infection of cynomolgus macaques. We report that circulating granulocytes consists mainly of immature CD10- neutrophils exhibiting a prime phenotype during primary and chronic infection. We found that neutrophil priming correlates with CD8+ T cell activation. Moreover, we provide the evidence that neutrophils are capable of modulating CD4+ and CD8+ T-cell proliferation and IFN-γ production in different ways depending on the time of infection. Thus, our study emphasizes the role of primed immature neutrophils in the modulation of T-cell responses in SIV infection.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Mario Gomez-Pacheco
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Christine Bourgeois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
- Assistance Publique - Hôpitaux de Paris, Université Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Paris, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV inflammation and persistance, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
- Assistance Publique - Hôpitaux de Paris, Université Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Paris, France
- *Correspondence: Olivier Lambotte,
| |
Collapse
|
18
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
19
|
Smith L, Letendre S, Erlandson KM, Ma Q, Ellis RJ, Farhadian SF. Polypharmacy in older adults with HIV infection: Effects on the brain. J Am Geriatr Soc 2021; 70:924-927. [PMID: 34855982 PMCID: PMC8904273 DOI: 10.1111/jgs.17569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Lauren Smith
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Scott Letendre
- Department of Infectious Diseases, University of California San Diego School of Medicine, San Diego, California, USA
| | - Kristine M Erlandson
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Qing Ma
- School of Pharmacy & Pharmaceutical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego School of Medicine, San Diego, California, USA
| | - Shelli F Farhadian
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Wu S, Frank I, Derby N, Martinelli E, Cheng CY. HIV-1 Establishes a Sanctuary Site in the Testis by Permeating the BTB Through Changes in Cytoskeletal Organization. Endocrinology 2021; 162:6338140. [PMID: 34343260 PMCID: PMC8407494 DOI: 10.1210/endocr/bqab156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Studies suggest that HIV-1 invades the testis through initial permeation of the blood-testis barrier (BTB). The selectivity of the BTB to antiretroviral drugs makes this site a sanctuary for the virus. Little is known about how HIV-1 crosses the BTB and invades the testis. Herein, we used 2 approaches to examine the underlying mechanism(s) by which HIV-1 permeates the BTB and gains entry into the seminiferous epithelium. First, we examined if recombinant Tat protein was capable of perturbing the BTB and making the barrier leaky, using the primary rat Sertoli cell in vitro model that mimics the BTB in vivo. Second, we used HIV-1-infected Sup-T1 cells to investigate the activity of HIV-1 infection on cocultured Sertoli cells. Using both approaches, we found that the Sertoli cell tight junction permeability barrier was considerably perturbed and that HIV-1 effectively permeates the BTB by inducing actin-, microtubule-, vimentin-, and septin-based cytoskeletal changes in Sertoli cells. These studies suggest that HIV-1 directly perturbs BTB function, potentially through the activity of the Tat protein.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
21
|
Imaz A, Tiraboschi JM, Niubó J, Martinez-Picado J, Cottrell ML, Domingo P, Chivite I, Negredo E, Schauer A, Van Horne B, Morenilla S, Urrea V, Silva-Klug A, Scévola S, Garcia B, Kashuba ADM, Podzamczer D. Dynamics of the Decay of Human Immunodeficiency Virus (HIV) RNA and Distribution of Bictegravir in the Genital Tract and Rectum in Antiretroviral-naive Adults Living With HIV-1 Treated With Bictegravir/Emtricitabine/Tenofovir Alafenamide (Spanish HIV/AIDS Research Network, PreEC/RIS 58). Clin Infect Dis 2021; 73:e1991-e1999. [PMID: 32945851 PMCID: PMC8492151 DOI: 10.1093/cid/ciaa1416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The pharmacokinetics of bictegravir (BIC) and its association with the decay of human immunodeficiency virus (HIV)-1 RNA in genital fluids and the rectum have not yet been addressed. METHODS We conducted a prospective, multicenter study of antiretroviral-naive people living with HIV-1 and initiating BIC/emtricitabine (FTC)/tenofovir alafenamide (TAF). HIV-1 RNA was measured (limit of quantification, 40 copies/mL) in blood plasma (BP), seminal plasma (SP), rectal fluid (RF), and cervicovaginal fluid (CVF) at baseline; Days 3, 7, 14, and 28; and Weeks 12 and 24. Total and protein-unbound BIC concentrations at 24 hours postdose (C24h) were quantified in BP, SP, CVF and rectal tissue (RT) on Day 28 and Week 12 using a validated liquid chromatography-tandem mass spectrometry assay. RESULTS The study population comprised 15 males and 8 females. In SP, RF, and CVF, the baseline HIV-1 RNA was >40 copies/mL in 12/15, 13/15, and 4/8 individuals, respectively, with medians of 3.54 (2.41-3.79), 4.19 (2.98-4.70), and 2.56 (1.61-3.56) log10 copies/mL, respectively. The initial decay slope was significantly lower in SP than in RF and BP. The time to undetectable HIV-1 RNA was significantly shorter in SP and RF than in BP. All women achieved undetectable HIV-1 RNA in CVF at Day 14. The median total BIC concentrations in SP, RT, and CVF were 65.5 (20.1-923) ng/mL, 74.1 (6.0-478.5) ng/g, and 61.6 (14.4-1760.2) ng/mL, respectively, representing 2.7%, 2.6%, and 2.8% of the BP concentration, respectively, while the protein-unbound fractions were 51.1%, 44.6%, and 42.6%, respectively. CONCLUSIONS BIC/FTC/TAF led to rapid decay of HIV-1 RNA in genital and rectal fluids. Protein-unbound BIC concentrations in SP, RT, and CVF highly exceeded the half-maximal effective concentration (EC50) value (1.1 ng/mL). CLINICAL TRIALS REGISTRATION EudraCT 2018-002310-12.
Collapse
Affiliation(s)
- Arkaitz Imaz
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan M Tiraboschi
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Niubó
- Department of Microbiology, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mackenzie L Cottrell
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pere Domingo
- Department of Infectious Diseases, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Ivan Chivite
- Department of Internal Medicine, Sant Joan Despí Moisès Broggi Hospital, Sant Joan Despí, Barcelona, Spain
| | - Eugenia Negredo
- Lluita Contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain
| | - Amanda Schauer
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Van Horne
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Morenilla
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Ana Silva-Klug
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sofía Scévola
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Benito Garcia
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel Podzamczer
- Human Immunodeficiency Virus (HIV) and Sexually Transmitted Infection (STI) Unit, Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
22
|
Devanathan AS, Kashuba AD. Human Immunodeficiency Virus Persistence in the Spleen: Opportunities for Pharmacologic Intervention. AIDS Res Hum Retroviruses 2021; 37:725-735. [PMID: 33499746 DOI: 10.1089/aid.2020.0266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The persistence of HIV in the spleen, despite combination antiretroviral therapy, is not well understood. Sustained immune dysregulation and delayed immune recovery, in addition to immune cell exhaustion, may contribute to persistence of infection in the spleen. Eliminating HIV from this secondary lymphoid organ will require a thorough understanding of antiretroviral (ARV) pharmacology in the spleen, which has been minimally investigated. Low ARV exposure within the spleen may hinder the achievement of a functional or sterilizing cure if cells are not protected from HIV infection. In this study, we provide an overview of the anatomy and physiology of the spleen, review the evidence of the spleen as a site for persistence of HIV, discuss the consequences of persistence of HIV in the spleen, address challenges to eradicating HIV in the spleen, and examine opportunities for future curative efforts.
Collapse
Affiliation(s)
| | - Angela D.M. Kashuba
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW HIV persists in distinct cellular and anatomical compartments in the body including blood, Central nervous system, and lymphoid tissues (spleen, lymph nodes [LNs], gut-associated lymphoid tissue) by diverse mechanisms despite antiretroviral therapy. Within LNs, human and animal studies have highlighted that a specific CD4 T cell subset - called T follicular helper cells locating in B cell follicles is enriched in cells containing replication-competent HIV as compared to extra-follicular CD4 T cells. Therefore, the objective of the present review is to focus on the potential mechanisms allowing HIV to persist within LN microenvironment. RECENT FINDINGS The combination of factors that might be involved in the regulation of HIV persistence within LNs remain to be fully identified but may include - the level of activation, antiretroviral drug concentrations, presence of cytolytic mechanisms and/or regulatory cells, in addition to cell survival and proliferation propensity which would ultimately determine the fate of HIV-infected cells within LN tissue areas. SUMMARY HIV persistence in blood and distinct body compartments despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on composition, viral diversity, distribution, replication competence, migration dynamics across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
24
|
Hoque TMD, Cattin A, Whyte-Allman SK, Winchester L, Fletcher CV, Routy JP, Ancuta P, Bendayan R. Antiretroviral Drug Transporters and Metabolic Enzymes in Circulating Monocytes and Monocyte-Derived Macrophages of ART-Treated People Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 87:1093-1101. [PMID: 34153016 PMCID: PMC8346207 DOI: 10.1097/qai.0000000000002682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
ABSTRACT Membrane-associated drug transport proteins and drug metabolic enzymes could regulate intracellular antiretroviral (ARV) drug concentrations in HIV-1 target cells such as myeloid cells. We investigated the expression of these transporters and enzymes in monocyte subsets and monocyte-derived macrophages (MDMs) isolated from peripheral blood mononuclear cells (PBMCs) of HIV-uninfected individuals (HIV-negative) and people living with HIV receiving viral suppressive antiretroviral therapy (ART; HIV+ART) and examined plasma and intracellular ARV concentrations. Monocytes were isolated from PBMCs of 12 HIV-negative and 12 HIV+ART donors and differentiated into MDMs. The mRNA and protein expression of drug transporters and metabolic enzymes were analyzed by quantitative real-time polymerase chain reaction and flow cytometry, respectively. ARV drug concentrations were quantified in plasma, PBMCs, monocytes, and MDMs by LC-MS/MS. The mRNA expression of relevant ARV transporters or metabolic enzymes, ABCB1/P-gp, ABCG2/BCRP, ABCC1/MRP1, ABCC4/MRP4, SLC22A1/OCT1, SLC29A2/ENT2, CYP2B6, CYP2D6, and UGT1A1, was demonstrated in monocytes and MDMs of 2 to 4 HIV-negative donors. P-gp, BCRP, and MRP1 proteins were differentially expressed in classical, intermediate, and nonclassical monocytes and MDMs of both HIV+ART and HIV-negative donors. Intracellular concentrations of ARVs known to be substrates of these transporters and metabolic enzymes were detected in monocytes of HIV+ART donors but were undetectable in MDMs. In this study, we demonstrated the expression of drug transporters and metabolic enzymes in monocytes and MDMs of HIV-negative and HIV+ART individuals, which could potentially limit intracellular concentrations of ARVs and contribute to residual HIV replication. Further work is needed to assess the role of these transporters in the penetration of ARVs in tissue macrophages.
Collapse
Affiliation(s)
- Tozammel M. D. Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Amélie Cattin
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Jean-Pierre Routy
- The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Petronela Ancuta
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Th17 T cells and immature dendritic cells are the preferential initial targets after rectal challenge with an SIV-based replication-defective dual-reporter vector. J Virol 2021; 95:e0070721. [PMID: 34287053 DOI: 10.1128/jvi.00707-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the earliest events of HIV sexual transmission is critical to develop and optimize HIV prevention strategies. To gain insights into the earliest steps of HIV rectal transmission, including cellular targets, rhesus macaques were intra-rectally challenged with a single-round SIV-based dual reporter that expresses luciferase and iRFP670 upon productive transduction. The vector was pseudotyped with the HIV-1 envelope JRFL. Regions of tissue containing foci of luminescent, transduced cells were identified macroscopically using an in vivo imaging system, and individual transduced cells expressing fluorescent protein were identified and phenotyped microscopically. This system revealed that anal and rectal tissues are both susceptible to transduction 48 hours after the rectal challenge. Detailed phenotypic analysis revealed that on average, 62% of transduced cells are CCR6+ T cells-the vast majority of which express RORγT, a Th17 lineage-specific transcription factor. The second most common target cells were immature dendritic cells at 20%. These two cell types were transduced at the rates that are four to five times higher than their relative abundances indicate. Our work demonstrates that Th17 T and immature dendritic cells are preferential initial targets of HIV/SIV rectal transmission. IMPORTANCE Men and women who participate in unprotected receptive anal intercourse are at high risk for acquiring HIV. While in vitro data have developed a framework for understanding HIV cell tropism, the initial target cells in the rectal mucosa have not been identified. In this study, we identify these early host cells by using an innovative rhesus macaque rectal challenge model and methodology, which we previously developed. Thus, by shedding light on these early HIV/SIV transmission events, this study provides a specific cellular target for future prevention strategies.
Collapse
|
26
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
27
|
Naidu ECS, Olojede SO, Lawal SK, Rennie CO, Azu OO. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology. Pharmacol Res Perspect 2021; 9:e00776. [PMID: 34107163 PMCID: PMC8189564 DOI: 10.1002/prp2.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
The conjugation of nanoparticles (NPs) with antiretroviral drugs is a drug delivery approach with great potential for managing HIV infections. Despite their promise, recent studies have highlighted the toxic effects of nanoparticles on testicular tissue and their impact on sperm morphology. This review explores the role of stereological techniques in assessing the testicular morphology in highly active antiretroviral therapy (HAART) when a nanoparticle drug delivery system is used. Also, NPs penetration and pharmacokinetics concerning the testicular tissue and blood-testis barrier form the vital part of this review. More so, various classes of NPs employed in biomedical and clinical research to deliver antiretroviral drugs were thoroughly discussed. In addition, considerations for minimizing nanoparticle-drugs toxicity, ensuring enhanced permeability of nanoparticles, maximizing drug efficacy, ensuring adequate bioavailability, and formulation of HAART-NPs fabrication are well discussed.
Collapse
Affiliation(s)
- Edwin Coleridge S. Naidu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of AnatomySchool of MedicineUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
28
|
Mu Y, Cory TJ. Suppression of HIV-1 Viral Replication by Inhibiting Drug Efflux Transporters in Activated Macrophages. Curr HIV Res 2021; 19:128-137. [PMID: 33032513 DOI: 10.2174/1570162x18666201008143833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ethanol has been shown to increase oxidative stress, drug efflux transporter expression, and promote HIV progression. Macrophages, which express drug efflux transporters, serve as an essential sanctuary site for HIV. The antiretroviral drug lopinavir, a protease inhibitor, is a substrate of the drug efflux transporters P-glycoprotein and multidrug resistance-associated protein 1. The NF-κB signaling pathway is associated with inflammation and drug efflux transporter expression. OBJECTIVE To examine the effects of ethanol on drug efflux transporters and HIV replication of macrophages and develop strategies to increase the efficacy of the protease inhibitor. METHODS The expression of PGP and MRP1 was examined with western blot. The NF- κB inhibition was assessed with nuclear western blot. LC-MS/MS and p24 ELISA were used to assess intracellular LPV and viral replication. RESULTS Ethanol at 40mM slightly increased drug efflux transporter PGP and MRP1 expression in activated macrophages. IKK-16, an NF- κB inhibitor, counteracted the increased transporter expression caused by ethanol exposure. MK571, an MRP1 inhibitor, and IKK-16 significantly increased intracellular LPV concentration with or without ethanol treatment. MK571 significantly increased LPV efficacy in suppressing viral replication with or without ethanol treatment. A decreasing trend and a significant decrease were observed with IKK-16+LPV treatment compared with LPV alone in the no ethanol treatment and ethanol treatment groups, respectively. CONCLUSION In activated macrophages, inhibiting drug efflux transporter MRP1 activity and reducing its expression may represent a promising approach to suppress viral replication by increasing intracellular antiretroviral concentrations. However, different strategies may be required for ethanolrelated vs. untreated groups.
Collapse
Affiliation(s)
- Ying Mu
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| |
Collapse
|
29
|
Horn C, Augustin M, Ercanoglu MS, Heger E, Knops E, Bondet V, Duffy D, Chon SH, Nierhoff D, Oette M, Schäfer H, Vivaldi C, Held K, Anderson J, Geldmacher C, Suárez I, Rybniker J, Klein F, Fätkenheuer G, Müller-Trutwin M, Lehmann C. HIV DNA reservoir and elevated PD-1 expression of CD4 T-cell subsets particularly persist in the terminal ileum of HIV-positive patients despite cART. HIV Med 2021; 22:397-408. [PMID: 33421299 DOI: 10.1111/hiv.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/23/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Despite its importance as an HIV anatomic sanctuary, little is known about the characteristics of the HIV reservoir in the terminal ileum (TI). In blood, the immune checkpoint inhibitor programmed-death-1 (PD-1) has been linked to the HIV reservoir and T-cell immune dysfunction. We thus evaluated PD-1 expression and cell-associated HIV DNA in memory CD4 T-cell subsets from TI, peripheral blood (PB) and rectum (RE) of untreated and treated HIV-positive patients to identify associations between PD-1 and HIV reservoir in other sites. METHODS Using mononuclear cells from PB, TI and RE of untreated HIV-positive (N = 6), treated (n = 18) HIV-positive and uninfected individuals (n = 16), we identified and sorted distinct memory CD4 T-cell subsets by flow cytometry, quantified their cell-associated HIV DNA using quantitative PCR and assessed PD-1 expression levels using geometric mean fluorescence intensity. Combined HIV-1 RNA in situ hybridization and immunohistochemistry was performed on ileal biopsy sections. RESULTS Combined antiretroviral therapy (cART)-treated patients with undetectable HIV RNA and significantly lower levels of HIV DNA in PB showed particularly high PD-1 expression in PB and TI, and high HIV DNA levels in TI, irrespective of clinical characteristics. By contrast, in treatment-naïve patients HIV DNA levels in memory CD4 T-cell subsets were high in PB and TI. CONCLUSION Elevated PD-1 expression on memory CD4 T-cells in PB and TI despite treatment points to continuous immune dysfunction and underlines the importance of evaluating immunotherapy in reversing HIV latency and T-cell reconstitution. As HIV DNA particularly persists in TI despite cART, investigating samples from TI is crucial in understanding HIV immunopathogenesis.
Collapse
Affiliation(s)
- C Horn
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Augustin
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M S Ercanoglu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - V Bondet
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - D Duffy
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - S-H Chon
- Department of General, Visceral Surgery and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - D Nierhoff
- Clinic for Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - M Oette
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - H Schäfer
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - C Vivaldi
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - K Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J Anderson
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - I Suárez
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - J Rybniker
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - F Klein
- German Center for Infection Research (DZIF), Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - G Fätkenheuer
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Müller-Trutwin
- Unité HIV, Inflammation & Persistence, Institut Pasteur, Paris Cedex 15, France
| | - C Lehmann
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| |
Collapse
|
30
|
Interferon-Mediated Long Non-Coding RNA Response in Macrophages in the Context of HIV. Int J Mol Sci 2020; 21:ijms21207741. [PMID: 33086748 PMCID: PMC7589721 DOI: 10.3390/ijms21207741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Interferons play a critical role in the innate immune response against a variety of pathogens, such as HIV-1. Recent studies have shown that long non-coding genes are part of a reciprocal feedforward/feedback relationship with interferon expression. They presumably contribute to the cell type specificity of the interferon response, such as the phenotypic and functional transition of macrophages throughout the immune response. However, no comprehensive understanding exists today about the IFN–lncRNA interplay in macrophages, also a sanctuary for latent HIV-1. Therefore, we completed a poly-A+ RNAseq analysis on monocyte-derived macrophages (MDMs) treated with members of all three types of IFNs (IFN-α, IFN-ε, IFN-γ or IFN-λ) and on macrophages infected with HIV-1, revealing an extensive non-coding IFN and/or HIV-1 response. Moreover, co-expression correlation with mRNAs was used to identify important (long) non-coding hub genes within IFN- or HIV-1-associated gene clusters. This study identified and prioritized IFN related hub lncRNAs for further functional validation.
Collapse
|
31
|
Kehinde I, Ramharack P, Nlooto M, Gordon M. Molecular dynamic mechanism(s) of inhibition of bioactive antiviral phytochemical compounds targeting cytochrome P450 3A4 and P-glycoprotein. J Biomol Struct Dyn 2020; 40:1037-1047. [PMID: 33063648 DOI: 10.1080/07391102.2020.1821780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4) metabolize almost all known human immunodeficiency virus' protease inhibitor drugs (PIs). Over induction of these proteins' activities has been linked to rapid metabolism of PIs which are then pumped out of the circulatory system, eventually leading to drug-resistance in HIV-positive patients. This study aims to determine, with the use of computational tools, the inhibitory potential of four phytochemical compounds (PCs) (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) in inhibiting the activities of these drug-metabolizing proteins. The comparative analysis of the MM/GBSA results revealed that the binding affinity (ΔGbind) of EGCG and K7G for CYP3A4 and ABCB1 are higher than LUT and EGA and fall between the ΔGbind of the inhibitors of CYP3A4 and ABCB1 (Ritonavir (strong inhibitor) and Lopinavir (moderate inhibitor)). The structural analysis (RMSD, RMSF, RoG and protein-ligand interaction plots) also confirmed that EGCG and K7G showed similar inhibitory activities with the inhibitors. The study has shown that EGCG and K7G have inhibitory activities against the two proteins and assumes they could decrease intracellular efflux of PIs, consequently increasing the optimal concentration of PIs in the systemic circulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Idowu Kehinde
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Pritika Ramharack
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Manimbulu Nlooto
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, Durban, South Africa
| | - Michelle Gordon
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Bloch M, John M, Smith D, Rasmussen TA, Wright E. Managing HIV-associated inflammation and ageing in the era of modern ART. HIV Med 2020; 21 Suppl 3:2-16. [PMID: 33022087 DOI: 10.1111/hiv.12952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This paper aims to address the concerns around ongoing immune activation, inflammation, and resistance in those ageing with HIV that represent current challenges for clinicians. METHODS Presentations at a symposium addressing issues of ageing with HIV infection were reviewed and synthesised. RESULTS The changing natural history and demographics of human immunodeficiency virus (HIV)-infected individuals means new challenges in contemporary management. In the early years of the epidemic,management was focussed on acute, potentially life-threatening AIDS-related complications. From initial monotherapy with first-generation antiretroviral therapy (ART), the development of combination highly active ART (HAART) allowed HIV control but ART toxicities, treatment adherence and drug resistance emerged as major issues. Today, the availability of potent and tolerable ART has made viral suppression achievable in most people living with HIV (PLHIV), and clinicians are confronted with managing a chronic condition among an ageing population. The combination of diseases of ageing and the co-morbidities associated with HIV-infection, even when well controlled, results in a complex set of challenges for many older PLHIV. There is a growing appreciation that many non-AIDS-related co-morbidities are caused, at least in part, by persistent, low-grade immune activation, inflammation, and hypercoagulability, despite suppressive ART. CONCLUSIONS In order to further improve HIV management, it is important to understand the enduring effects of chronically suppressed HIV infection, the potential contribution of these factors to the ageing process, the possibility of drug resistance, and the impact of different treatment strategies, including early ART initiation.
Collapse
Affiliation(s)
- M Bloch
- Holdsworth House Medical Practice, Sydney, NSW, Australia.,Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - M John
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,Royal Perth Hospital, Perth, WA, Australia.,Institute of Immunology and Infectious Disease, Perth, WA, Australia
| | - D Smith
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia.,The Albion Centre, Sydney, NSW, Australia
| | - T A Rasmussen
- Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia.,University of Melbourne, Melbourne, Vic., Australia
| | - E Wright
- The Alfred Hospital, Melbourne, Vic., Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Vic., Australia.,The Burnett Institute, Melbourne, Vic., Australia
| |
Collapse
|
33
|
Thomford NE, Mhandire D, Dandara C, Kyei GB. Promoting Undetectable Equals Untransmittable in Sub-Saharan Africa: Implication for Clinical Practice and ART Adherence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176163. [PMID: 32854292 PMCID: PMC7503341 DOI: 10.3390/ijerph17176163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022]
Abstract
In the last decade, reliable scientific evidence has emerged to support the concept that undetectable viral loads prevent human immunodeficiency virus (HIV). Undetectable equals untransmissible (U = U) is a simple message that everyone can understand. The success of this concept depends on strict adherence to antiretroviral therapy (ART) and the attainment of suppressed viral loads (VLs). To achieve U = U in sub-Saharan Africa (SSA), poor adherence to ART, persistent low-level viremia, and the emergence of drug-resistant mutants are challenges that cannot be overlooked. Short of a cure for HIV, U = U can substantially reduce the burden and change the landscape of HIV epidemiology on the continent. From a public health perspective, the U = U concept will reduce stigmatization in persons living with HIV (PLWHIV) in SSA and strengthen public opinion to accept that HIV infection is not a death sentence. This will also promote ART adherence because PLWHIV will aim to achieve U = U within the shortest possible time. This article highlights challenges and barriers to achieving U = U and suggests how to promote the concept to make it beneficial and applicable in SSA. This concept, if expertly packaged by policy-makers, clinicians, health service providers, and HIV control programs, will help to stem the tide of the epidemic in SSA.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.M.); (C.D.)
- School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Correspondence: ; Tel.: +27-21-650-7911
| | - Doreen Mhandire
- Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.M.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.M.); (C.D.)
| | - George B. Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana;
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Drug efflux transporters and metabolic enzymes in human circulating and testicular T-cell subsets: relevance to HIV pharmacotherapy. AIDS 2020; 34:1439-1449. [PMID: 32310902 DOI: 10.1097/qad.0000000000002548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES ATP-binding cassette (ABC) drug efflux transporters and drug metabolic enzymes could reduce antiretroviral concentrations in HIV target cells. The testis has been demonstrated to be a sanctuary site, displaying suboptimal antiretroviral concentrations and persistent HIV infection. Therefore, we compared the expression and function of ABC transporters and metabolic enzymes in CD4 and CD8 T cells isolated from human testis and peripheral blood mononuclear cells (PBMCs), and assessed their expression in circulating naive and memory CD4 T-cell phenotypes. DESIGN Testicular tissue and blood were collected from 15 uninfected donors undergoing gender affirmation surgery. Testicular interstitial cells were isolated by enzymatic digestion, whereas PBMCs were isolated from blood by density gradient centrifugation. The expression and/or function of ABC transporters and metabolic enzymes were examined in blood and testicular T-cell subsets by flow cytometry. RESULTS ABC transporters (P-gp, BCRP, MRP1) and metabolic enzymes (CYP3A4, UGT1A1) were expressed in testicular and circulating CD4 and CD8 T cells, as well as in circulating naive, central, transitional, and effector memory T-cell phenotypes. MRP1 demonstrated lower frequencies in T cells from testis compared with PBMCs, as well as in circulating naive T cells compared with the memory T-cell phenotypes. Functional activity of P-gp and BCRP was detected in T-cell subsets from testis and PBMCs. CONCLUSION Our findings demonstrate for the first time that antiretroviral drug efflux transporters and metabolic enzymes are functionally expressed in T-cell subsets infiltrating the human testis. These transporters and enzymes can reduce antiretroviral intracellular concentrations, potentially contributing to residual HIV replication in the testis, and negatively impact HIV cure strategies.
Collapse
|
35
|
Campbell GR, To RK, Zhang G, Spector SA. SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected macrophages. Cell Death Dis 2020; 11:590. [PMID: 32719312 PMCID: PMC7385130 DOI: 10.1038/s41419-020-02761-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency type 1 (HIV)-infected macrophages (HIV-Mφ) are a reservoir for latent HIV infection and a barrier to HIV eradication. In contrast to CD4+ T cells, HIV-Mφ are resistant to the cytopathic effects of acute HIV infection and have increased expression of cell survival factors, including X-linked inhibitor of apoptosis (XIAP), baculoviral IAP repeat containing (BIRC) 2/cIAP1, beclin-1, BCL2, BCL-xl, triggering receptor expressed on myeloid cells 1, mitofusin (MFN) 1, and MFN2. DIABLO/SMAC mimetics are therapeutic agents that affect cancer cell survival and induce cell death. We found that DIABLO/SMAC mimetics (LCL-161, AT-406 (also known as SM-406 or Debio 1143), and birinapant) selectively kill HIV-Mφ without increasing bystander cell death. DIABLO/SMAC mimetic treatment of HIV-Mφ-induced XIAP and BIRC2 degradation, leading to the induction of autophagy and the formation of a death-inducing signaling complex on phagophore membranes that includes both pro-apoptotic or necroptotic (FADD, receptor-interacting protein kinase (RIPK) 1, RIPK3, caspase 8, and MLKL) and autophagy (ATG5, ATG7, and SQSTM1) proteins. Genetic or pharmacologic inhibition of early stages of autophagy, but not late stages of autophagy, ablated this interaction and inhibited apoptosis. Furthermore, DIABLO/SMAC mimetic-mediated apoptosis of HIV-Mφ is dependent upon tumor necrosis factor signaling. Our findings thus demonstrate that DIABLO/SMAC mimetics selectively induce autophagy-dependent apoptosis in HIV-Mφ.
Collapse
Affiliation(s)
- Grant R Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Rachel K To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
36
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW People infected with HIV through injection drug use are more likely to experience progression to AIDS, death due to AIDS, and all-cause mortality even when controlling for access to care and antiretroviral therapy. While high-risk behavior and concurrent infections most certainly are contributors, chronic immune activation, downstream metabolic comorbidities may play an important role. RECENT FINDINGS Altered intestinal integrity plays a major role in HIV-related immune activation and microbial translocation markers are heightened in active heroin users. Additionally, greater injection frequency drives systemic inflammation and is associated with HIV viral rebound. Finally, important systemic inflammation markers have been linked with frailty and mortality in people who inject drugs with and without concurrent HIV infection. Heroin use may work synergistically with HIV infection to cause greater immune activation than either factor alone. Further research is needed to understand the impact on downstream metabolic comorbidities including cardiovascular disease. Medication-assisted treatment for opioid use disorder with methadone or buprenorphine may ameliorate some of this risk; however, there is presently limited research in humans, including in non-HIV populations, describing changes in immune activation on these treatments which is of paramount importance for those with HIV infection.
Collapse
|
39
|
Pérez-Velázquez J, Rejniak KA. Drug-Induced Resistance in Micrometastases: Analysis of Spatio-Temporal Cell Lineages. Front Physiol 2020; 11:319. [PMID: 32362836 PMCID: PMC7180185 DOI: 10.3389/fphys.2020.00319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance to anti-cancer drugs is a major cause of treatment failure. While several intracellular mechanisms of resistance have been postulated, the role of extrinsic factors in the development of resistance in individual tumor cells is still not fully understood. Here we used a hybrid agent-based model to investigate how sensitive tumor cells develop drug resistance in the heterogeneous tumor microenvironment. We characterized the spatio-temporal evolution of lineages of the resistant cells and examined how resistance at the single-cell level contributes to the overall tumor resistance. We also developed new methods to track tumor cell adaptation, to trace cell viability trajectories and to examine the three-dimensional spatio-temporal lineage trees. Our findings indicate that drug-induced resistance can result from cells adaptation to the changes in drug distribution. Two modes of cell adaptation were identified that coincide with microenvironmental niches—areas sheltered by cell micro-communities (protectorates) or regions with limited drug penetration (refuga or sanctuaries). We also recognized that certain cells gave rise to lineages of resistant cells (precursors of resistance) and pinpointed three temporal periods and spatial locations at which such cells emerged. This supports the hypothesis that tumor micrometastases do not need to harbor cell populations with pre-existing resistance, but that individual tumor cells can adapt and develop resistance induced by the drug during the treatment.
Collapse
Affiliation(s)
- Judith Pérez-Velázquez
- Mathematical Modeling of Biological Systems, Centre for Mathematical Science, Technical University of Munich, Garching, Germany
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
40
|
TREM-1 Protects HIV-1-Infected Macrophages from Apoptosis through Maintenance of Mitochondrial Function. mBio 2019; 10:mBio.02638-19. [PMID: 31719184 PMCID: PMC6851287 DOI: 10.1128/mbio.02638-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major challenge to human immunodeficiency virus (HIV) treatment is the development of strategies that lead to viral eradication. A roadblock to accomplishing this goal is the lack of an approach that would safely eliminate HIV from all resting/latent reservoirs, including macrophages. Macrophages are a key part of the innate immune system and are responsible for recognizing invading microbes and sending appropriate signals to other immune cells. Here, we found that HIV induces the upregulation of the protein TREM1 (triggering receptor expressed on myeloid cells 1), which signals an increase in the expression of antiapoptotic proteins, thus promoting survival of HIV-infected macrophages. Macrophages are a reservoir for latent human immunodeficiency type 1 (HIV) infection and a barrier to HIV eradication. In contrast to CD4+ T cells, macrophages are resistant to the cytopathic effects of acute HIV infection. Emerging data suggest a role for TREM1 (triggering receptor expressed on myeloid cells 1) in this resistance to HIV-mediated cytopathogenesis. Here, we show that upon HIV infection, macrophages increase the expression of BCL2, BCLXL, TREM1, mitofusin 1 (MFN1), and MFN2 and the translocation of BCL2L11 (BIM) to the mitochondria and decrease the expression of BCL2-associated agonist of cell death (BAD) and BAX while maintaining a 95% survival rate over 28 days. The HIV proteins Tat and gp120 and the GU-rich single-stranded RNA (ssRNA) (RNA40) from the HIV long terminal repeat region (and a natural Toll-like receptor 8 [TLR8] agonist) induced similar effects. TREM1 silencing in HIV-infected macrophages led to decreased expression of BCL2, BCLXL, MFN1, and MFN2 and increased expression of BAD and BAX. This correlated with a significant increase in apoptosis mediated by a disruption of the mitochondrial membrane potential (Δψm), leading to the release of cytochrome c and caspase 9 cleavage. Exposure of TREM1-silenced macrophages to Tat, gp120, or RNA40 similarly resulted in the disruption of Δψm, cytochrome c release, caspase 9 cleavage, and apoptosis. Thus, our findings identify a mechanism whereby HIV promotes macrophage survival through TREM1-dependent upregulation of BCL2 family proteins and mitofusins that inhibits BCL2L11-mediated disruption of Δψm and subsequent apoptosis. These findings indicate that TREM1 can be a useful target for elimination of the HIV reservoir in macrophages.
Collapse
|
41
|
Novel Approaches for the Delivery of Anti-HIV Drugs-What Is New? Pharmaceutics 2019; 11:pharmaceutics11110554. [PMID: 31661775 PMCID: PMC6921055 DOI: 10.3390/pharmaceutics11110554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
|
42
|
McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, Sobolewski MD, Musick VK, Anderson EM, Cyktor JC, Halvas EK, Shao W, Wells D, Wu X, Keele BF, Milush JM, Hoh R, Mellors JW, Hughes SH, Deeks SG, Coffin JM, Kearney MF. HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy. J Clin Invest 2019; 129:4629-4642. [PMID: 31361603 PMCID: PMC6819093 DOI: 10.1172/jci126714] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.
Collapse
Affiliation(s)
- William R. McManus
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Andrew Musick
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sean C. Patro
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | - Victoria K. Musick
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Elizabeth M. Anderson
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daria Wells
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F. Keele
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
43
|
Thompson CG, Rosen EP, Prince HMA, White N, Sykes C, de la Cruz G, Mathews M, Deleage C, Estes JD, Charlins P, Mulder LR, Kovarova M, Adamson L, Arora S, Dellon ES, Peery AF, Shaheen NJ, Gay C, Muddiman DC, Akkina R, Garcia JV, Luciw P, Kashuba ADM. Heterogeneous antiretroviral drug distribution and HIV/SHIV detection in the gut of three species. Sci Transl Med 2019; 11:eaap8758. [PMID: 31270274 PMCID: PMC8273920 DOI: 10.1126/scitranslmed.aap8758] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
HIV replication within tissues may increase in response to a reduced exposure to antiretroviral drugs. Traditional approaches to measuring drug concentrations in tissues are unable to characterize a heterogeneous drug distribution. Here, we used mass spectrometry imaging (MSI) to visualize the distribution of six HIV antiretroviral drugs in gut tissue sections from three species (two strains of humanized mice, macaques, and humans). We measured drug concentrations in proximity to CD3+ T cells that are targeted by HIV, as well as expression of HIV or SHIV RNA and expression of the MDR1 drug efflux transporter in gut tissue from HIV-infected humanized mice, SHIV-infected macaques, and HIV-infected humans treated with combination antiretroviral drug therapy. Serial 10-μm sections of snap-frozen ileal and rectal tissue were analyzed by MSI for CD3+ T cells and MDR1 efflux transporter expression by immunofluorescence and immunohistochemistry, respectively. The tissue slices were analyzed for HIV/SHIV RNA expression by in situ hybridization and for antiretroviral drug concentrations by liquid chromatography-mass spectrometry. The gastrointestinal tissue distribution of the six drugs was heterogeneous. Fifty percent to 60% of CD3+ T cells did not colocalize with detectable drug concentrations in the gut tissue. In all three species, up to 90% of HIV/SHIV RNA was found to be expressed in gut tissue with no exposure to drug. These data suggest that there may be gut regions with little to no exposure to antiretroviral drugs, which may result in low-level HIV replication contributing to HIV persistence.
Collapse
Affiliation(s)
- Corbin G Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elias P Rosen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M A Prince
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela de la Cruz
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Mathews
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Paige Charlins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila R Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Martina Kovarova
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lourdes Adamson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Shifali Arora
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evan S Dellon
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne F Peery
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Shaheen
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Gay
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Luciw
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Hatami E, Mu Y, Shields DN, Chauhan SC, Kumar S, Cory TJ, Yallapu MM. Mannose-decorated hybrid nanoparticles for enhanced macrophage targeting. Biochem Biophys Rep 2019; 17:197-207. [PMID: 30723809 PMCID: PMC6351286 DOI: 10.1016/j.bbrep.2019.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Our goal was to design nanocarriers that specifically target and deliver therapeutics to polarized macrophages. Mannose receptors are highly overexpressed on polarized macrophages. In this study, we constructed Pluronic® -F127 polymer and tannic acid (TA) based nanoparticles (F127-TA core nanoparticles) with varying mannose densities. The particle size of the optimized mannose-decorated F127-TA hybrid nanoparticles (MDNPs) was found to be ~ 265 nm with a negative zeta potential of ~ - 4.5 mV. No significant changes in the size and zeta potentials of nanoparticles were observed, which demonstrated structural integrity and stability of the nanoformulation. Physicochemical characteristics of MDNPs were evaluated by FTIR and TGA and demonstrated the presence of mannose units on surface nanoparticles. A mannose-dependent cellular targeting and uptake of MDNPs was found in U937 macrophages. The uptake process was found to vary directly with time and volume of MDNPs nanoparticles. The uptake pattern is higher in M2 than M1. This behavior was also evident from the instantaneous and superior binding profile of M2 macrophage lysate protein with MDNPs over that of M1 macrophage lysate protein. These results demonstrated that an appropriate mannose ligand density was confirmed, suggesting efficient targeting of M2. Altogether, these data support that the MDNPs formulation could serve as a targeted therapeutic guide in the generation of nanomedicine to treat various conditions as an anti-inflammation therapy.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Mu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Theodore J. Cory
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
46
|
Avataneo V, D’Avolio A, Cusato J, Cantù M, De Nicolò A. LC-MS application for therapeutic drug monitoring in alternative matrices. J Pharm Biomed Anal 2019; 166:40-51. [DOI: 10.1016/j.jpba.2018.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
47
|
Abstract
Sex-specific differences affecting various aspects of HIV-1 infection have been reported, including differences in susceptibility to infection, course of HIV-1 disease, and establishment of viral reservoirs. Once infected, initial plasma levels of HIV-1 viremia in women are lower compared to men while the rates of progression to AIDS are similar. Factors contributing to these sex differences are poorly understood, and range from anatomical differences and differential expression of sex hormones to differences in immune responses, the microbiome and socio-economic discrepancies, all of which may impact HIV-1 acquisition and disease progression. Ongoing research efforts aiming at controlling HIV-1 disease or reducing viral reservoirs need to take these sex-based differences in HIV-1 pathogenesis into account. In this review, we discuss established knowledge and recent findings on immune pathways leading to sex differences in HIV-1 disease manifestations, with focus on HIV-1 latency and the effect of female sex hormones on HIV-1.
Collapse
|
48
|
Lahiri CD, Brown NL, Ryan KJ, Acosta EP, Sheth AN, Mehta CC, Ingersoll J, Ofotokun I. HIV RNA persists in rectal tissue despite rapid plasma virologic suppression with dolutegravir-based therapy. AIDS 2018; 32:2151-2159. [PMID: 30005011 PMCID: PMC6200454 DOI: 10.1097/qad.0000000000001945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Despite plasma virologic suppression with antiretroviral therapy (ART), HIV persists in gut tissue. The objectives of this study were to compare plasma and rectal tissue HIV RNA dynamics and to assess relationships with dolutegravir (DTG) plasma and tissue concentrations. DESIGN A longitudinal cohort study of HIV-infected treatment-naïve individuals initiating DTG-based ART was conducted over 12 weeks with plasma and rectal tissue sampling (Clinicaltrials.gov:NCT02924389). METHODS HIV RNA and DTG concentrations were quantified in plasma and rectal tissue samples collected pre-ART (baseline) and post-ART at weeks 2, 6, and 12 using Abbott Real-Time HIV-1 assays and high-performance liquid chromatography tandem mass spectroscopy, respectively. Relationships between rectal tissue RNA and DTG concentrations were modeled using binary logistic regression, controlling for repeated measures. RESULTS Twelve participants were enrolled: six (50.0%) women, nine (75.0%) black, median age 42.0 years (Q1 31.2, Q3 52.0). All attained plasma virologic suppression by week 6. 11 of 12 (91.7%) had detectable rectal tissue HIV RNA at baseline, and only three of 11 (27.3%) achieved rectal tissue virologic suppression at any time-point. Compared with rectal tissue nonsuppressors, three of three (100.0%) of rectal tissue suppressors were women, had higher BMI, 35.9 kg/m (range 24.9-38.5) versus 20.6 (17.7-29.9), P = 0.05, and lower baseline log plasma HIV RNA: 3.7 copies/ml (range 3.6-4.4) versus 4.7 (3.8-5.4), P = 0.02. No significant relationships between rectal tissue RNA suppression and DTG concentrations were seen. CONCLUSION Rectal tissue HIV RNA persisted in most participants and was not predicted by DTG concentrations. Impact of host factors, particularly sex, on tissue HIV viral dynamics warrants further exploration.
Collapse
Affiliation(s)
- Cecile D Lahiri
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases
- Grady Healthcare System Infectious Diseases Program, Atlanta, Georgia
| | - Nakita L Brown
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases
| | - Kevin J Ryan
- University of Alabama at Birmingham School of Medicine, Division of Clinical Pharmacology, Birmingham, Alabama
| | - Edward P Acosta
- University of Alabama at Birmingham School of Medicine, Division of Clinical Pharmacology, Birmingham, Alabama
| | - Anandi N Sheth
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases
- Grady Healthcare System Infectious Diseases Program, Atlanta, Georgia
| | - Cyra C Mehta
- Emory University, Rollins School of Public Health, Department of Biostatistics and Bioinformatics
| | - Jessica Ingersoll
- Emory Center for AIDS Research, Virology and Molecular Biomarkers Core, Atlanta, Georgia, USA
| | - Ighovwerha Ofotokun
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases
- Grady Healthcare System Infectious Diseases Program, Atlanta, Georgia
| |
Collapse
|
49
|
Paquin-Proulx D, Greenspun BC, Kitchen SM, Saraiva Raposo RA, Nixon DF, Grayfer L. Human interleukin-34-derived macrophages have increased resistance to HIV-1 infection. Cytokine 2018; 111:272-277. [PMID: 30241016 DOI: 10.1016/j.cyto.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
The establishment of latent HIV-1 reservoirs in terminally differentiated cells represents a major impediment to the success of antiretroviral therapies. Notably, macrophages (Mϕs) are susceptible to HIV-1 infection and recent evidence suggests that they may be involved in long-term HIV-1 persistence. While the extensive functional heterogeneity seen across the Mϕ cell lineage parallels the spectrum of HIV-1 susceptibility reported across these cell subsets, the facets of Mϕ HIV-1 resistance and susceptibility remain to be fully defined. Notably, the differentiation of most Mϕ subsets depends on signaling through the macrophage colony-stimulating factor receptor (M-CSFR), which in addition to M-CSF, is now known to bind the unrelated interleukin-34 (IL-34) cytokine. The biological need for two M-CSFR ligands awaits full elucidation. Here, we report that Mϕs differentiated from human peripheral blood monocytes with IL-34 are substantially more resistant to HIV-1 infection than M-CSF-derived Mϕs. Moreover, while both Mϕ subsets express comparable surface protein levels of the HIV-1 receptor and co-receptor, CD4 and CCR5 respectively, the IL-34-Mϕs express significantly greater levels of pertinent restriction factor genes, potentially accounting for their greater resistance to HIV-1 infection than that observed in M-CSF-Mϕs. Together, our findings underline previously unexplored differentiation pathways resulting in HIV-1-susceptible and resistant Mϕ subsets and pave the way for further research that may overcome one of the last major hurdles in developing more successful antiretroviral therapy.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Benjamin C Greenspun
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Shannon M Kitchen
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Rui André Saraiva Raposo
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To provide a summary of the contributions of mathematical modeling to understanding of HIV persistence during antiretroviral therapy. RECENT FINDINGS Although HIV persistence during therapy could be caused by continual viral replication or slow-decaying latent infection, most evidence points toward the latter mechanism. The latent reservoir is maintained by a balance of cell death, proliferation, and reactivation, and new methods to estimate the relative contributions of these rates use a wide range of experimental data. This has led to new quantitative predictions about the potential benefit of therapies such as latency-reversing agents or antiproliferative drugs. SUMMARY Results of these mathematical modeling studies can be used to design and interpret future trials of new therapies targeting HIV persistence.
Collapse
Affiliation(s)
- Alison L Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|