1
|
Cao B, Yu W, Diao Z, Ma Z, Yan S, Yang L, Huang X, Yang J. KLK8: charting new territories in left ventricular hypertrophy biomarker research. Biomark Med 2025; 19:277-286. [PMID: 40171640 PMCID: PMC11980516 DOI: 10.1080/17520363.2025.2483153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
OBJECTIVE This study investigates the diagnostic potential of serum Kallikrein-related peptidase 8 (KLK8) in detecting left ventricular hypertrophy (LVH). METHODS A total of 62 hypertensive patients with LVH, 60 without LVH, and 60 healthy controls were analyzed. LVH was defined by echocardiography using LVMI thresholds (>95 g/m2 for females, >115 g/m2 for males). Serum KLK8 levels were measured via ELISA, and receiver operating characteristic (ROC) curve analysis assessed its diagnostic performance. RESULTS KLK8 levels were significantly higher in hypertensive patients with LVH (8.59 ± 1.59 ng/mL) than in those without LVH (5.80 ± 1.35 ng/mL) and healthy controls (3.68 ± 0.82 ng/mL). KLK8 positively correlated with blood pressure and cardiac structural parameters, including IVST, LVPWT, and LVEDD. ROC analysis revealed high sensitivity and specificity, indicating KLK8's potential as a biomarker for early LVH detection in hypertension. CONCLUSION In hypertensive patients, KLK8 demonstrates good diagnostic value in predicting LVH.
Collapse
Affiliation(s)
- Buqing Cao
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wenhong Yu
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhihong Diao
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenli Ma
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shineng Yan
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lihua Yang
- Department of Laboratory Medicine, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army of China, Nanning, China
| | - Xiaoqun Huang
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jingmei Yang
- Department of Laboratory Medicine, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army of China, Nanning, China
| |
Collapse
|
2
|
Li Y, Zeng R, Huang Y, Zhuo Y, Huang J. Integrating machine learning and single-cell sequencing to identify shared biomarkers in type 1 diabetes mellitus and clear cell renal cell carcinoma. Front Oncol 2025; 15:1543806. [PMID: 40098701 PMCID: PMC11911197 DOI: 10.3389/fonc.2025.1543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Type 1 diabetes mellitus (T1DM), as an autoimmune disease, can increase susceptibility to clear cell renal cell carcinoma (ccRCC) due to its proinflammatory effects. ccRCC is characterized by its subtle onset and unfavorable prognosis. Thus, the aim of this study was to highlight prevention and early detection opportunities in high-risk populations by identifying common biomarkers for T1DM and ccRCC. Methods Based on multiple publicly available datasets, WGCNA was applied to identify gene modules closely associated with T1DM, which were then integrated with prognostic DEGs in ccRCC. Subsequently, the LASSO and SVM algorithms were employed to identify shared hub genes between the two diseases. Additionally, clinical samples were used to validate the expression patterns of these hub genes, and scRNA-seq data were utilized to analyze the cell types expressing these genes and to explore potential mechanisms of cell communication. Results Overall, three hub genes (KIF21A, PIGH, and RPS6KA2) were identified as shared biomarkers for TIDM and ccRCC. Analysis of clinical samples and multiple datasets revealed that KIF21A and PIGH were significantly downregulated and that PIG was upregulated in the disease group. KIF21A and PIGH are mainly expressed in NK and T cells, PRS6KA2 is mainly expressed in endothelial and epithelial cells, and the MIF signaling pathway may be related to hub genes. Conclusion Our results demonstrated the pivotal roles of hub genes in T1DM and ccRCC. These genes hold promise as novel biomarkers, offering potential avenues for preventive strategies and the development of new precision treatment modalities.
Collapse
Affiliation(s)
- Yi Li
- Department of Ultrasound, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Rui Zeng
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Yuhua Huang
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Huang
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Kishor S, Chen J, Zhang Y, Liu W, Zhu L, Xu J, Wang J. Interaction of proteinuria and diabetes on the risk of cardiovascular events: a prospective cohort CKD-ROUTE study. BMC Public Health 2024; 24:3192. [PMID: 39558295 PMCID: PMC11572061 DOI: 10.1186/s12889-024-20715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE We evaluated the interaction of urinary protein-to-creatinine ratio (UPCR) with diabetes on the risk of cardiovascular events in a cohort study. METHODS The study population consisted of 639 participants with chronic kidney disease (CKD) stages 2-5, enrolled between 2010 and 2011 in Japan. Cox proportional hazards models were used to evaluate the independent and combined effects of the UPCR and diabetes on cardiovascular events. RESULTS During a median follow-up of 3 years, 59 participants developed cardiovascular events during follow-up. A notably higher risk of cardiovascular events was found in participants with proteinuria [hazards ratio (HR): 2.16, 95% confidence interval (95% CI): 1.17-3.97] compared to those without proteinuria at UPCR levels. In addition, the participants with diabetes had a higher risk of cardiovascular events (HR: 2.53, 95% CI: 1.49-4.30) than those without diabetes. Moreover, an interaction was found between UPCR and diabetes on cardiovascular events (P for interaction = 0.04). Participants with both proteinuria (UPCR ≥ 0.5 g/gCr) and diabetes had a 4.09 times higher risk of cardiovascular events (HR: 4.09, 95% CI: 1.97-8.47) compared with those without proteinuria (UPCR < 0.5 g/gCr) and diabetes. CONCLUSIONS In summary, among participants with CKD stages 2-5, proteinuria and diabetes were found to independently and jointly affect the risk of cardiovascular events. Participants with proteinuria and diabetes had the highest risk of cardiovascular events compared with other groups.
Collapse
Affiliation(s)
- Shahi Kishor
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China
| | - Yan Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China
| | - Wei Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China
| | - Lingyan Zhu
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China.
| | - Jiancheng Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Department of Endocrinology and Metabolism, People's Hospital of Jiangxi Province, Jingan, 330600, People's Republic of China.
| |
Collapse
|
4
|
Kim HY, Shin S, Yoon JJ, Ahn YM, Song JH, Lee DS, Park JY, Lee HS, Jung J. Exploring the potential effect of electroacupuncture on cardiovascular function and lipid profiles in spontaneously hypertensive rats. Integr Med Res 2024; 13:101041. [PMID: 38948488 PMCID: PMC11214362 DOI: 10.1016/j.imr.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 07/02/2024] Open
Abstract
Background Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.
Collapse
Affiliation(s)
- Hye-Yoom Kim
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jung-Joo Yoon
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - You-Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Da-Som Lee
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ho-Sub Lee
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
5
|
Zhang L, Chi J, Wu H, Xia X, Xu C, Hao H, Liu Z. Extracellular vesicles and endothelial dysfunction in infectious diseases. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e148. [PMID: 38938849 PMCID: PMC11080793 DOI: 10.1002/jex2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity globally. Studies have shown that infections especially bacteraemia and sepsis are associated with increased risks for endothelial dysfunction and related CVDs including atherosclerosis. Extracellular vesicles (EVs) are small, sealed membrane-derived structures that are released into body fluids and blood from cells and/or microbes and are critically involved in a variety of important cell functions and disease development, including intercellular communications, immune responses and inflammation. It is known that EVs-mediated mechanism(s) is important in the development of endothelial dysfunction in infections with a diverse spectrum of microorganisms including Escherichia coli, Candida albicans, SARS-CoV-2 (the virus for COVID-19) and Helicobacter pylori. H. pylori infection is one of the most common infections globally. During H. pylori infection, EVs can carry H. pylori components, such as lipopolysaccharide, cytotoxin-associated gene A, or vacuolating cytotoxin A, and transfer these substances into endothelial cells, triggering inflammatory responses and endothelial dysfunction. This review is to illustrate the important role of EVs in the pathogenesis of infectious diseases, and the development of endothelial dysfunction in infectious diseases especially H. pylori infection, and to discuss the potential mechanisms and clinical implications.
Collapse
Affiliation(s)
- Linfang Zhang
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Jingshu Chi
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Canxia Xu
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| |
Collapse
|
6
|
Das AK, Kalra S, Punyani H, Deshmukh S, Taur S. 'Oxidative stress'-A new target in the management of diabetes mellitus. J Family Med Prim Care 2023; 12:2552-2557. [PMID: 38186790 PMCID: PMC10771163 DOI: 10.4103/jfmpc.jfmpc_2249_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/21/2022] [Accepted: 01/13/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic condition that poses a mammoth challenge for the healthcare system in developing as well as developed nations. Diabetes mellitus is associated with damage to the vasculature which leads to microvascular and macrovascular complications. Oxidative stress is a consequence of glucotoxicity and lipotoxicity, which are associated with diabetes. Glucotoxicity and lipotoxicity play a part in the pathogenesis of β-cell dysfunction. The hyperglycemic state in DM leads to oxidative stress which further hampers insulin secretion. In diabetes, the biological antioxidants also get depleted along with a reduction in glutathione (GSH), an increase in the oxidized glutathione (GSSG)/GSH ratio, and a depletion of non-enzymatic antioxidants. This results in the formation of a viscous circle of hyperglycemia leading to increased oxidative stress that further hampers insulin secretion which in turn results in hyperglycemia. Antioxidants are efficacious in reducing diabetic complications. The antioxidants produced biologically fall short, hence external supplements are required. In this review, the authors have discussed the relationship between oxidative stress in DM and the advantages of antioxidant supplements in controlling blood glucose levels and also in deaccelerating the complications related to DM.
Collapse
Affiliation(s)
- Ashok K. Das
- Professor of Eminence, Department of Medicine and Dean Academics, Mahatma Gandhi Medical College and Institute, and SBV University, Pondicherry, India
| | - Sanjay Kalra
- Consultant and Head, Bharti Research Institute of Diabetes and Endocrinology (BRIDE), Kunjpura Road, Karnal, Haryana, India
| | - Hitesh Punyani
- Director, Chaitanya Cardio Diabetes Centre, New Delhi, India
| | | | - Santosh Taur
- Internal Medicine, Pfizer Biopharmaceuticals Group
| |
Collapse
|
7
|
Dardi P, dos Reis Costa D, Assunção H, Rossoni L. Venous endothelial function in cardiovascular disease. Biosci Rep 2022; 42:BSR20220285. [PMID: 36281946 PMCID: PMC9685499 DOI: 10.1042/bsr20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
The essential role of the endothelium in vascular homeostasis is associated with the release of endothelium-dependent relaxing and contractile factors (EDRF and EDCF, respectively). Different from arteries, where these factors are widely studied, the vasoactive factors derived from the venous endothelium have been given less attention. There is evidence for a role of the nitric oxide (NO), endothelium-dependent hyperpolarization (EDH) mechanism, and cyclooxygenase (COX)-derived metabolites as EDRFs; while the EDCFs need to be better evaluated since no consensus has been reached about their identity in venous vessels. The imbalance between the synthesis, bioavailability, and/or action of EDRFs and/or EDCFs results in a pathological process known as endothelial dysfunction, which leads to reduced vasodilation and/or increased vasoconstriction. In the venous system, endothelial dysfunction is relevant since reduced venodilation may increase venous tone and decrease venous compliance, thus enhancing mean circulatory filling pressure, which maintains or modify cardiac workload contributing to the etiology of cardiovascular diseases. Interestingly, some alterations in venous function appear at the early stages (or even before) the establishment of these diseases. However, if the venous endothelium dysfunction is involved in these alterations is not yet fully understood and requires further studies. In this sense, the present study aims to review the current knowledge on venous endothelial function and dysfunction, and the general state of the venous tone in two important cardiovascular diseases of high incidence and morbimortality worldwide: hypertension and heart failure.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Henrique Charlanti Reis Assunção
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
8
|
Demirel S. Rosa damascena Miller essential oil relaxes rat thoracic aorta through the NO-cGMP-dependent pathway. Prostaglandins Other Lipid Mediat 2022; 162:106661. [PMID: 35750298 DOI: 10.1016/j.prostaglandins.2022.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
Abstract
AIM This study aimed to investigate the effects of Rosa damascena Mill. essential oil on the vascular activity of rat thoracic aorta and its underlying mechanisms. METHODS Experiments were performed using the isolated tissue bath model and Wistar rats. 0.1, 1, 10, and 100 µg/mL concentrations of rose oil were administered in all groups. To determine the vasoactive effects of rose oil, submaximal contractions were conducted by applying 10-5 M PE and 45 mM KCl separately in both endothelium-intact and -denuded segments. Time-matched distilled water groups were formed for control. To evaluate the role of endothelium-derived vasodilative factors, endothelium-intact segments were incubated with nitric oxide synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, and a non-selective cyclooxygenase inhibitor INDO. The statistical significance level was considered as p < 0.05. RESULTS 1, 10, and 100 µg/mL rose oil doses led to vasorelaxation in thoracic aortas precontracted with 10-5 M PE (p: 0.029, p: 0.000, p: 0.000, respectively). In precontracted thoracic aortas with 45 mM KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant (p: 0.035, p: 0.028, p: 0.000, respectively). Preincubations with L-NAME and ODQ significantly attenuated rose oil-induced relaxation of endothelium-intact aortas precontracted with 10-5 M PE. In contrast, preincubation INDO did not modulate rose oil-induced relaxation. CONCLUSION In conclusion, it was shown for the first time that rose oil can significantly mediate vasorelaxation in both PE and KCl precontracted rat thoracic aortas. Rose oil induced vasodilation with or without endothelium in a concentration-dependent manner. It was also shown that rose oil-induced vasorelaxant effects were reduced by L-NAME or ODQ pretreatment, but not modulated by INDO. These results demonstrated that rose oil-induced endothelium-dependent vasodilation is mediated by the NO-cGMP-dependent pathway.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey.
| |
Collapse
|
9
|
Demirel S. Geraniol and β-citronellol participate in the vasorelaxant effects of Rosa damascena Miller essential oil on the rat thoracic aorta. Fitoterapia 2022; 161:105243. [PMID: 35728707 DOI: 10.1016/j.fitote.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
AIM This study aimed to investigate the vasoactive effects of Rosa damascena Miller essential oil and its major components, geraniol and β-citronellol, on the rat thoracic aorta. METHODS Isolated tissue bath model and Wistar rats were used to perform the experiments. Two-fold increasing concentrations (20-160 μg/mL) of rose oil were administered to determine its vasoactive effects. Submaximal contractions were induced by PE or KCl in both endothelium-intact and -denuded segments. Time-matched control groups were also formed. To evaluate the role of geraniol and β-citronellol, concentrations in the range of 0.4-3.2 μg/mL and 0.8-6.4 μg/mL were applied respectively. The statistical significance level was considered as p < 0.05. RESULTS All doses of rose oil applied led to vasorelaxation in thoracic aortas precontracted with PE. In precontracted thoracic aortas with KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant. Besides, although geraniol relaxed aortic segments at all concentrations (0.4 to 3.2 μg/mL), β-citronellol caused vasorelaxation at doses of 1.6, 3.2, and 6.4 μg/mL. CONCLUSION In conclusion, the first findings were obtained that rose oil can cause a vasorelaxant effect in a concentration-dependent manner in rat thoracic aorta. This effect substantially persisted in vascular segments without endothelium or precontracted with KCl. It was further shown for the first time that geraniol and β-citronellol exert vasodilatory effects on the rat thoracic aorta. These results suggest that rose oil exhibits its vasorelaxant effect through geraniol and β-citronellol.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey.
| |
Collapse
|
10
|
Antioxidant Potential of Adiponectin and Full PPAR- γ Agonist in Correcting Streptozotocin-Induced Vascular Abnormality in Spontaneously Hypertensive Rats. PPAR Res 2021; 2021:6661181. [PMID: 34691163 PMCID: PMC8531825 DOI: 10.1155/2021/6661181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (n = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 μg/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (P < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all P < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-γ agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-γ agonists (pioglitazone).
Collapse
|
11
|
Afzal S, Sattar MA, Johns EJ, Eseyin OA. Peroxisome proliferator-activated receptor agonist (pioglitazone) with exogenous adiponectin ameliorates arterial stiffness and oxidative stress in diabetic Wistar Kyoto rats. Eur J Pharmacol 2021; 907:174218. [PMID: 34111396 DOI: 10.1016/j.ejphar.2021.174218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress causes hypoadiponectemia and reactive oxygen species production. This study investigates the pathophysiological role and potential effects of adiponectin with partial and full peroxisome proliferator-activated receptor-gamma agonists on modulation of metabolic dysregulation and oxidative stress in diabetic model of Wistar Kyoto rats (WKY). Forty two male WKY rats were randomized equally into 7 groups (n = 6), Group I serve as control, group II as WKY diabetic control, groups III, IV and V treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg) and adiponectin (2.5 μg/kg), groups VI and VII were co-treated as: irbesartan + adiponectin, pioglitazone + adiponectin, respectively. Streptozotocin @ 40 mg/kg was administered intraperitoneally to induce diabetes. Plasma adiponectin, metabolic indices, pulse wave velocity, oxidative stress and antioxidant enzymatic activities were measured. Streptozotocin induced WKYs expressed hyperglycaemia, hypertriglyceridemia, hypercholesterolemia, hypoadiponectemia, increased arterial stiffness and decreased antioxidant enzymatic levels (P<0.05). Treatment with adiponectin or pioglitazone alone showed improvements in metabolic indices, antioxidant enzymes, and abrogated arterial stiffness, attenuated generation of reactive oxygen species and dyslipidaemic effects of streptozotocin better as compared to irbesartan sets of treatment (all P<0.05). Co-treatment of adiponectin with pioglitazone significantly amplified the improvement in plasma triglycerides, adiponectin concentration, pulse wave velocity and antioxidant enzymatic activities indicating synergistic effects of adiponectin with full PPAR-γ agonist.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | | | | - Olorunfemi A Eseyin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| |
Collapse
|
12
|
Wang XL, Zhang W, Li Z, Han WQ, Wu HY, Wang QR, Liu XH, Xing K, Cheng G, Chang FJ. Vascular damage effect of circulating microparticles in patients with ACS is aggravated by type 2 diabetes. Mol Med Rep 2021; 23:474. [PMID: 33899122 PMCID: PMC8097757 DOI: 10.3892/mmr.2021.12113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
As a common factor of both type 2 diabetes mellitus (T2DM) and acute coronary syndrome (ACS), circulating microparticles (MPs) may provide a link between these two diseases. The present study compared the content and function of MPs from patients with ACS with or without T2DM. MPs from healthy subjects (n=20), patients with ACS (n=24), patients with T2DM (n=20) and patients with combined ACS and T2DM (n=24) were obtained. After incubating rat thoracic tissue with MPs, the effect of MPs on endothelial‑dependent vasodilatation, expression of caveolin‑1 and endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS at the S1177 and T495 sites and its association with heat shock protein 90 (Hsp90), and the generation of NO and superoxide anion (O2˙‑) were determined. MP concentrations were higher in patients with T2DM and patients with ACS with or without T2DM than in healthy subjects. Moreover, MPs from patients with T2DM or ACS led to impairment in endothelial‑dependent vasodilatation, decreased expression of NO, as well as eNOS and its phosphorylation at Ser1177 and association with Hsp90, but increased eNOS phosphorylation at T495, caveolin‑1 expression and O2˙‑ generation. These effects were strengthened by MPs from patients with ACS combined with T2DM. T2DM not only increased MP content but also resulted in greater vascular impairment effects in ACS. These results may provide novel insight into the treatment of patients with ACS and T2DM.
Collapse
Affiliation(s)
- Xu-Lan Wang
- Department of Nursing, Xian'yang Vocational and Technical College, Fengxi New Town United Avenue, Xi'an, Shaanxi 712000, P.R. China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Zhe Li
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Wen-Qi Han
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Hao-Yu Wu
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Qun-Rang Wang
- Department of Cardiology, Affiliated Hospital of Shaanxi Traditional Chinese Medicine University, Xianyang, Shaanxi 712000, P.R. China
| | - Xin-Hong Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Kun Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Jun Chang
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
13
|
Ma J, Cao X, Chen F, Ye Q, Qin R, Cheng Y, Zhu X, Xu Y. Exosomal MicroRNAs Contribute to Cognitive Impairment in Hypertensive Patients by Decreasing Frontal Cerebrovascular Reactivity. Front Neurosci 2021; 15:614220. [PMID: 33732103 PMCID: PMC7957933 DOI: 10.3389/fnins.2021.614220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Mechanisms underlying cognitive impairment (CI) in hypertensive patients remain relatively unclear. The present study aimed to explore the relationship among serum exosomal microRNAs (miRNAs), cerebrovascular reactivity (CVR), and cognitive function in hypertensive patients. Seventy-three hypertensive patients with CI (HT-CI), 67 hypertensive patients with normal cognition (HT-NC), and 37 healthy controls underwent identification of exosomal miRNA, multimodal magnetic resonance imaging (MRI) scans, and neuropsychological tests. CVR mapping was investigated based on resting-state functional MRI data. Compared with healthy subjects and HT-NC subjects, HT-CI subjects displayed decreased serum exosomal miRNA-330-3p. The group difference of CVR was mainly found in the left frontal lobe and demonstrated that HT-CI group had a lower CVR than both HT-NC group and control group. Furthermore, both the CVR in the left medial superior frontal gyrus and the miRNA-330-3p level were significantly correlated with executive function (r = -0.275, P = 0.021, and r = -0.246, P = 0.04, respectively) in HT-CI subjects, and the CVR was significantly correlated with the miRNA-330-3p level (r = 0.246, P = 0.040). Notably, path analysis showed that the CVR mediated the association between miRNA-330-3p and executive function. In conclusion, decreased miRNA-330-3p might contribute to CI in hypertensive patients by decreasing frontal CVR and could be a biomarker of early diagnosis.
Collapse
Affiliation(s)
- Junyi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiang Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Fangyu Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Qing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yue Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| |
Collapse
|
14
|
M Abd El-Kader S, H Al-Jiffri O, A Neamatallah Z, M AlKhateeb A, S AlFawaz S. Weight reduction ameliorates inflammatory cytokines, adipocytokines and endothelial dysfunction biomarkers among Saudi patients with type 2 diabetes. Afr Health Sci 2020; 20:1329-1336. [PMID: 33402982 PMCID: PMC7751542 DOI: 10.4314/ahs.v20i3.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) considered as one of the cardiovascular disorders (CVD) principle risk factor as diabetes is associated with abnormal levels of endothelial function, inflammatory and adipocytokines. Objective The aim of this study was to measure the impact of weight reducing on inflammatory cytokines, adipocytokines and endothelial function biomarkers among obese T2DM patients. Methods One-hundred T2DM patients enrolled in the present study; the age range was 35–55 year. Participants shared in this study were enrolled in group (A) received diet control and aerobic exercise on treadmill, while, group (B) had no intervention for 3 months. Results The mean values of body mass index (BMI), tumor necrosis factor -alpha (TNF-α), interleukin-6 (IL-6), leptin, inter-cellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), E-selectin and plasminogen activator inhibitor-1 activity (PAI-1 activity) were significantly decreased and adiponectin was increased significantly in the training group, however the results of the control group were not significant. Also, there were significant differences between both groups at the end of the study. Conclusion Weight reducing program modulates inflammatory cytokines, adipocytokines and endothelial function biomarkers among obese T2DM patients.
Collapse
|
15
|
Yu N, Shen A, Chu J, Huang Y, Zhang L, Lin S, Cai Q, Sankararaman S, Sferra TJ, Chen Y, Peng J. Qingda granule inhibits angiotensin Ⅱ induced VSMCs proliferation through MAPK and PI3K/AKT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112767. [PMID: 32199989 DOI: 10.1016/j.jep.2020.112767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The abnormal increase in vascular smooth muscle cell (VSMC) proliferation is widely accepted as the pivotal process in the vascular remodeling of hypertension. Qingda granule (QDG) is simplified from Qingxuan Jiangya Decoction (QXJYD) which has been in usage for a long time as a traditional Chinese medicine formula to treat hypertension based on the theory of traditional Chinese medicine. However, its underlying molecular mechanisms of action remain largely unknown. AIM OF STUDY To investigate the therapeutic efficacy of QDG in the attenuation of elevation of blood pressure and proliferation of VSMCs in vivo and in vitro and explore its possible mechanism of action. MATERIALS AND METHODS In vivo, we established an angiotensin Ⅱ (Ang Ⅱ)-mediated hypertension model in C57BL/6 mice and orally administered 1.145 g/kg/day of QDG. The systolic and diastolic blood pressures of all mice were measured at the end of the treatment by using the tail-cuff plethysmograph method and CODA™ noninvasive blood pressure system. VSMC proliferation within the aorta was determined by immunohistochemistry. In vitro, primary rat VSMCs were cultured to further verify the effects of QDG on Ang Ⅱ induced VSMC proliferation. Cell proliferation was investigated using cell counting and MTT assays. The protein expression was determined by western blotting. RESULTS We found that oral administration of QDG significantly attenuated the elevation of blood pressure and proliferation of VSMCs in Ang Ⅱ-induced hypertensive mice. Moreover, QDG remarkably inhibited Ang Ⅱ-induced primary rat VSMCs proliferation and decreased mitogen-activated protein kinase (MAPK) and PI3K/AKT activity by attenuating the expression of phospho-extracellular signaling-regulated kinase 1/2, phospho-p38, phospho-c-Jun N-terminal kinase and phospho-protein kinase B. CONCLUSION Collectively, our findings suggest that QDG attenuates Ang Ⅱ-induced elevation of blood pressure and proliferation of VSMCs through a decrease in the activation of MAPK and PI3K/AKT pathways. Based on this study, we postulate this could be one of the mechanisms whereby QDG effectively controls hypertension.
Collapse
Affiliation(s)
- Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
16
|
Chen M, Xiang L, Wu G, Liao Y, Cai Y. Puerarin Inhibits Endothelium-Dependent Contractions in Mouse Carotid Arteries. Med Sci Monit 2020; 26:e923163. [PMID: 32555127 PMCID: PMC7325555 DOI: 10.12659/msm.923163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Many bioactive ingredients of medicinal plants are known to produce vaso-protective benefits. Puerarin is one of the major isoflavone glucosides found in the root of kudzu vine and it exerts an anti-inflammatory effect and many other pharmacological actions. However, the mechanism underlying the vascular effect of puerarin is incompletely understood. Therefore, the present study aims to examine how puerarin reduces endothelium-dependent contractions (EDCs) in mouse arteries. Material/Methods EDCs were evoked by acetylcholine (ACh) in isolated mouse carotid arteries with intact endothelium pretreated with Nω-NO2-L-Arg-OMe (L-NAME). The arteries were pretreated with puerarin and other pharmacological inhibitors before the addition of cumulative concentrations of ACh. The concentration of several prostaglandins (PGs) was measured by high performance liquid chromatography-coupled spectrometry (HPLC-MS). Results EDCs induced by ACh only presented in endothelium-intact arteries pretreated by L-NAME and EDCs were prevented by the treatment with cyclooxygenase (COX) inhibitor indomethacin (3 μmol/L) or thromboxane prostanoid receptor (TP receptor) antagonist S18886 (30 nmol/L). Acute 40-minute treatment with puerarin reduced EDCs in a concentration-dependent manner without affecting U46619-induced contraction. However, treatment with puerarin did not inhibit ACh-induced production of prostaglandins (PGs) in endothelium-intact arteries. Conclusions The present results show that puerarin is able to suppress EDCs in mouse carotid arteries, independent of inhibition of TP receptor or COX2-derived PGs.
Collapse
Affiliation(s)
- Mei Chen
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Li Xiang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Guangliang Wu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yingdi Liao
- Department of Neurology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Yefeng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China (mainland).,School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
Austin SA, Katusic ZS. Partial loss of endothelial nitric oxide leads to increased cerebrovascular beta amyloid. J Cereb Blood Flow Metab 2020; 40:392-403. [PMID: 30614363 PMCID: PMC7370614 DOI: 10.1177/0271678x18822474] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is present in over half of the elderly population and in 80-90% of Alzheimer's disease (AD) patients. CAA is defined by the deposition of beta amyloid (Aβ) in small cerebral arteries and capillaries. Cardiovascular risk factors are associated with an increased incidence of CAA. We utilized 18-month-old endothelial nitric oxide synthase (eNOS) heterozygous knockout (+/-) mice, a clinically relevant model of endothelial dysfunction, to examine the role of endothelial nitric oxide (NO) in vascular Aβ accumulation. eNOS+/- mice had significantly higher vascular levels of Aβ40 (P < 0.05). Aβ42 was not detected. There was no difference in Aβ in brain tissue. Amyloid precursor protein and β-site APP cleavage enzyme 1 protein levels were unaltered, while levels of the α-secretase enzyme, a disintegrin and metalloproteinase 10, were significantly lower in eNOS + /- microvascular tissue (P < 0.05). Insulin degrading enzyme and low-density lipoprotein receptor-related protein 1 were significantly increased in eNOS+/- microvascular tissue, most likely an adaptive response to locally higher Aβ concentrations. Lastly, catalase and CuZn superoxide dismutase were significantly elevated in eNOS+/- microvascular tissue (P < 0.05). These data demonstrate decreased availability of endothelial NO leads to increased cerebrovascular concentration of Aβ along with compensatory mechanisms to protect the vasculature.
Collapse
Affiliation(s)
- Susan A Austin
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
18
|
Nox1-derived oxidative stress as a common pathogenic link between obesity and hyperoxaluria-related kidney injury. Urolithiasis 2019; 48:481-492. [DOI: 10.1007/s00240-019-01170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
|
19
|
White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo. Biomed Pharmacother 2019; 116:109022. [DOI: 10.1016/j.biopha.2019.109022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023] Open
|
20
|
El-Ouady F, Eddouks M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0024/jcim-2019-0024.xml. [PMID: 31348761 DOI: 10.1515/jcim-2019-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/24/2019] [Indexed: 11/15/2022]
Abstract
Background Warionia saharae Bentham & Cosson. is used in traditional medicine to treat many diseases including hypertension. Method The present study was designed to investigate the antihypertensive activity of aqueous extract of Warionia saharae (WSLAE) in anesthetized L-NAME (Nω-L-arginine methyl ester)-induced rats. The acute and sub-chronic effects of WSLAE on systolic, diastolic, mean arterial blood pressure and heart rate (HR) were investigated after oral administration of the extract (100 mg/kg body weight of WSLAE) during 6 h for the acute experiment and during 7 days for the sub-chronic test. In addition the effect of WSLAE on the contractile response of isolated rat aortic rings was tested and the role of the vascular receptors was evaluated using several drugs. Results The results showed that WSLAE induced a significant decrease in the systolic, diastolic, mean arterial blood pressure and HR in both normotensive and hypertensive rats. Furthermore, this extract induced relaxation in rings pre-contracted with Epinephrine (10 µM) or with KCl (100 mM). This vasorelaxant capacity seems to be mediated through inhibition of KATP channels and nitric oxide (NO) synthase pathways. Conclusion This study supports the use of Warionia saharae in the management of hypertension in Moroccan traditional medicine.
Collapse
Affiliation(s)
- Fadwa El-Ouady
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, BP 21, Errachidia, 52000, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, BP 21, Errachidia, 52000, Morocco
| |
Collapse
|
21
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
22
|
Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. J Hypertens 2019; 36:651-665. [PMID: 29084084 DOI: 10.1097/hjh.0000000000001605] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aimed to elucidate the ameliorative effect of hydrogen sulfide (H2S) on endothelium-dependent relaxation disturbances via peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase (PPARδ/eNOS) pathway activation in hypertensive patients and rats. METHODS Renal arteries were collected from normotensive and hypertensive patients who underwent nephron-sparing surgery. Renal arteries from 37 patients were cultured with or without sodium H2S (NaHS) 50 μmol/l. The rats were randomly divided into four groups: Sham; Sham + NaHS, two kidneys; one clipped (2K1C); and 2K1C + NaHS. Mean arterial pressure was measured by tail-cuff plethysmography. A microvessel recording technique was used to observe the effect of NaHS on endothelium-dependent relaxation. Plasma H2S concentrations were detected using the monobromobimane method. Real-time PCR and western blotting were used to assess mRNA and protein levels of AT1, cystathionine γ-lyase, PPARδ, and phosphor-eNOS. Laser confocal scanning microscopy measured intracellular NO production in human umbilical vein endothelial cells. RESULTS NaHS improved endothelial function in hypertensive humans and rats. The 20-week administration of NaHS to 2K1C rats lowered the mean arterial pressure. In human umbilical vein endothelial cells, NaHS improved the AngII-induced production of NO. NaHS upregulated PPARδ expression, increased protein kinase B (Akt) or adenosine monophosphate kinase-activated protein kinase (AMPK) phosphorylation, and enhanced eNOS phosphorylation. A PPARδ agonist could mimic the ameliorative effect of NaHS that was suppressed by PPARδ, AMPK, or Akt inhibition. CONCLUSION H2S plays a protective function in renal arterial endothelium in hypertension by activating the PPARδ/PI3K/Akt/eNOS or PPARδ/AMPK/eNOS pathway. H2S may serve as an effective strategy against hypertension.
Collapse
|
23
|
Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L, Abbas M, Auger C, Kessler L, Mayoux E, Toti F, Schini-Kerth VB. Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med 2019; 24:2109-2122. [PMID: 30929316 PMCID: PMC7011151 DOI: 10.1111/jcmm.14233] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
High glucose (HG)-induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co-transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG-induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence-associated beta-galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT-PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2-NBD-glucose. HG increased ECs senescence markers and oxidative stress, down-regulated eNOS expression and NO formation, and induced the expression of VCAM-1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX-4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2 O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG-induced ECs senescence and SGLT1 and 2 expression. Thus, HG-induced ECs ageing is driven by the local angiotensin system via the redox-sensitive up-regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.
Collapse
Affiliation(s)
- Sonia Khemais-Benkhiat
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eugenia Belcastro
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Noureddine Idris-Khodja
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.,UMR INSERM 1109, Nanomédecine Régénérative Ostéo-articulaire et Dentaire, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Sin-Hee Park
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Lamia Amoura
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Laurence Kessler
- EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, FMTS, Université de Strasbourg, Illkirch, France
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Florence Toti
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Valérie B Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
24
|
Li M, Fang H, Hu J. Apelin‑13 ameliorates metabolic and cardiovascular disorders in a rat model of type 2 diabetes with a high‑fat diet. Mol Med Rep 2018; 18:5784-5790. [PMID: 30387843 DOI: 10.3892/mmr.2018.9607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Meng Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huijuan Fang
- Department of Cadre Ward, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Ye S, Shan XF, Han WQ, Zhang QR, Gao J, Jin AP, Wang Y, Sun CF, Zhang SL. Microparticles from Patients Undergoing Percutaneous Coronary Intervention Impair Vasodilatation by Uncoupling Endothelial Nitric Oxide Synthase. Shock 2018; 48:201-208. [PMID: 28002238 DOI: 10.1097/shk.0000000000000823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Percutaneous coronary interventions (PCIs) save countless acute myocardial infarction (AMI) patients. However, endothelial injury is still an inevitable complication. Circulating microparticles (MPs) play important roles in vascular dysfunction. Whether PCI affects function of MPs remains unclear. METHODS MPs were obtained from AMI patients (n = 38) both preoperatively and 24 h after PCI, and healthy subjects (n = 20). MPs origins were tested by flow cytometry. Rat thoracic aortas were incubated with MPs to determine the effects of MPs on phosphorylation of endothelial nitric oxide synthase (eNOS), caveolin-1 expression, eNOS association with heat shock protein 90 (Hsp90), generation of nitric oxide (NO) and superoxide anion (O2), and endothelial-dependent vasodilatation. RESULTS Compared with healthy subjects, MP concentrations increased in AMI patients. Undergoing PCI had no further effect on MPs concentration, but it results in increased endothelial-derived MPs proportion and decreased platelet-derived MP ratio. MPs from AMI patients decreased eNOS phosphorylation at Ser1177, increased eNOS phosphorylation at T495 and caveolin-1 expression, decreased eNOS association with Hsp90, decreased NO production but increased (O2) generation, damaged endothelial-dependent vasodilatation. All of these effects of MPs were strengthened by PCI. CONCLUSIONS PCI further enhances the vascular injury effect of MPs. Circulating MPs may be a potential therapeutic target for patients undergoing PCI.
Collapse
Affiliation(s)
- Sha Ye
- *Geriatric Vasculocardiology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China †Department of Children's Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, Xinjiang, China ‡Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China §Department of Cardiovascular Medicine, MOE, Ion Channel Disease Laboratory, MOE Key Laboratory of Environment and Genes Related to Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abutair AS, Naser IA, Hamed AT. The Effect of Soluble Fiber Supplementation on Metabolic Syndrome Profile among Newly Diagnosed Type 2 Diabetes Patients. Clin Nutr Res 2018; 7:31-39. [PMID: 29423387 PMCID: PMC5796921 DOI: 10.7762/cnr.2018.7.1.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/19/2022] Open
Abstract
Diets with high fiber content improve most metabolic syndrome (MetS) profile in non-diabetic individuals, but there is scarce information about the role of fiber intake in patients with the MetS and diabetes. The objective of this study is to determine whether soluble fiber supplementation improve MetS profile for 8 weeks of intervention in newly diagnosed type 2 diabetes (T2D) adult patients. After one week of dietary stabilization phase, 36 newly diagnosed T2D patients were stratified to different strata according to sex, age, fasting blood sugar (FBS), and waist circumference (WC). Then they were randomly allocated into 2 groups. The psyllium group (n = 18) received 10.5 g of psyllium daily for 8 weeks. The control group (n = 18) maintained their regular diet for 8 weeks. Soluble fiber supplementation showed significant reduction in the majority of MetS profile; FBS (43.55 mg/dL, p < 0.001), triglyceride (37.89 mg/dL, p < 0.001), total cholesterol (20.32 mg/dL, p < 0.001), systolic blood pressure (7.50 mmHg, p < 0.001), diastolic blood pressure (2.78 mmHg, p = 0.013), and WC (2.54 cm, p < 0.001) in the intervention group compared with the control group after 8 weeks of intervention. The high-density lipoprotein cholesterol was reduced in both groups, but this reduction was insignificant. The improvement in the MetS profile was enhanced by combining psyllium to the normal diet. Consumption of foods containing moderate amounts of these fibers may improve MetS profile in newly diagnosed T2D patients. This study was registered in Current Controlled Trials (PHRC/HC/28/15).
Collapse
Affiliation(s)
- Ayman S Abutair
- Department of Clinical Nutrition Department, Faculty of Applied Medical Science, Al-Azhar University-Gaza, Gaza, Palestine
| | - Ihab A Naser
- Department of Clinical Nutrition Department, Faculty of Applied Medical Science, Al-Azhar University-Gaza, Gaza, Palestine
| | - Amin T Hamed
- Department of Clinical Nutrition Department, Faculty of Applied Medical Science, Al-Azhar University-Gaza, Gaza, Palestine
| |
Collapse
|
27
|
Malakul W, Pengnet S, Kumchoom C, Tunsophon S. Naringin ameliorates endothelial dysfunction in fructose-fed rats. Exp Ther Med 2018; 15:3140-3146. [PMID: 29456717 DOI: 10.3892/etm.2018.5759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.
Collapse
Affiliation(s)
- Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sirinat Pengnet
- Division of Physiology, School of Medical Science, University of Phayao, Phayao 56000, Thailand
| | - Chanon Kumchoom
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
28
|
Zhou G, Holzman C, Luo Z, Margerison C. Maternal serum uric acid levels and blood pressure during pregnancy: A community-based cohort study. Eur J Obstet Gynecol Reprod Biol 2018; 222:64-69. [PMID: 29353133 DOI: 10.1016/j.ejogrb.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Studies find both very low and high serum uric acid (UA) levels are related to oxidative stress and to conditions such as cardiovascular diseases and chronic kidney disease in the general population. Pregnancy studies have focused only on high maternal UA. In present study, we tested whether unusually high and low levels of maternal serum UA are associated with increases in blood pressure (BP) during pregnancy. STUDY DESIGN The Pregnancy Outcomes and Community Health Study enrolled 3019 pregnant women between their 16th-27th week of pregnancy from 52 clinics in 5 Michigan communities (1998-2004). UA levels were measured in maternal blood collected at enrollment from a sub-cohort of 1223 participants. BP was abstracted from prenatal medical records; these analyses used highest recorded diastolic BP (DBP) and its companion systolic BP (SBP). Mean arterial pressure (MAP) was calculated using the formula of (2 × DBP + SBP)/3. Covariates, including maternal race/ethnicity, age at enrollment, education level, medical insurance status, body mass index before pregnancy, parity, smoking during pregnancy, alcohol use during pregnancy, and gestational week at blood collection, were considered as potential confounding variables. Associations between UA levels and BP were evaluated with linear spline or multiple linear regression models. Models' robustness was examined with bootstrap estimation of variance, sensitivity analysis, and 10-fold cross-validation. RESULTS Both DBP and MAP had a J-shaped relationship with maternal UA; the breakpoints (nadirs) were 0.153 and 0.161 mmol/L UA, respectively. For DBP versus UA, adjusted regression coefficient (β) = -95.67 (standard error (SE) = 37.67 and p = 0.01) for the left and adjusted β = 48.95 (SE = 9.56 and p < 0.01) for the right; for MAP versus UA, adjusted β = -58.48 (SE = 31.42 and p = 0.06) for the left and adjusted β = 52.23 (SE = 11.39 and p < 0.01) for the right. Maternal SBP followed a positive linear trend with UA levels (adjusted β = 37.75, SE = 12.93, and p < 0.01). All results were robust. CONCLUSION Extreme high and low maternal serum UA levels may be informative in studying maternal blood pressure during pregnancy.
Collapse
Affiliation(s)
- Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, MI, USA
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, 909 Fee Road, Room B601, East Lansing, MI 48824, USA.
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, 909 Fee Road, Room B601, East Lansing, MI 48824, USA
| | - Claire Margerison
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, 909 Fee Road, Room B601, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Jagadish S, Hemshekhar M, NaveenKumar SK, Sharath Kumar KS, Sundaram MS, Basappa, Girish KS, Rangappa KS. Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress. Toxicol Appl Pharmacol 2017; 334:167-179. [DOI: 10.1016/j.taap.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
30
|
Khayat MT, Nayeem MA. The Role of Adenosine A 2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1720920. [PMID: 28884118 PMCID: PMC5572598 DOI: 10.1155/2017/1720920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical Chemistry, School of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Nayeem
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
31
|
Wang H, Zhou Y, Guo Z, Dong Y, Xu J, Huang H, Liu H, Wang W. Sitagliptin Attenuates Endothelial Dysfunction of Zucker Diabetic Fatty Rats: Implication of the Antiperoxynitrite and Autophagy. J Cardiovasc Pharmacol Ther 2017; 23:66-78. [PMID: 28618859 DOI: 10.1177/1074248417715001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the contributions of sitagliptin to endothelial function in diabetes mellitus were previously reported, the potential mechanisms still remain undefined. Our research was intended to explore the underlying mechanisms of protective effects of sitagliptin treatment on endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male lean nondiabetic Zucker rats were used as control and male obese ZDF rats were randomly divided into ZDF and ZDF + sitagliptin groups. The significant decrease in endothelium-dependent relaxation induced by acetylcholine was observed in mesenteric arteries and thoracic aorta rings of ZDF rats. The administration of sitagliptin restored the vascular function effectively. The morphology study showed severe endothelial injuries in thoracic aortas of ZDF rats, and sitagliptin treatment attenuated these changes. The increased malondialdehyde levels and decreased superoxide dismutase activities in serum of ZDF rats were reversed by sitagliptin treatment. Sitagliptin also increased the expression of endothelial nitric oxide synthase and microtubule-associated protein 1 light chain 3 (LC3) and decreased the expression of inducible nitric oxide synthase, 3-nitrotyrosine, and p62 in ZDF rats. After giving Fe (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride porphyrin pentachloride (FeTMPyP, a peroxynitrite [ONOO-] scavenger) or sitagliptin to high-glucose (30 mmol/L, 48 hours) cultured human umbilical vein endothelial cells (HUVECs), the increased levels of Beclin-1 and lysosome-associated membrane protein type 2 were detected. Both FeTMPyP and sitagliptin also significantly increased the number of mRFP-GFP-LC3 dots per cell, suggesting that autophagic flux was increased in HUVECs. Our study indicated that sitagliptin treatment can improve the endothelium-dependent relaxation and attenuate the endothelial impairment of ZDF rats. The protective effects of sitagliptin are possibly related to antiperoxynitrite and promoting autophagy.
Collapse
Affiliation(s)
- Huanyuan Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Yi Zhou
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Zhiying Guo
- 2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China.,3 Department of Pathophysiology, School of Basic Medical Sciences, Jining Medical University, Jining, China
| | - Yu Dong
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Jiahui Xu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Haixia Huang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
32
|
Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice. Biochem Pharmacol 2017; 136:76-85. [PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 11/30/2022]
Abstract
Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
Collapse
Affiliation(s)
- Wei Chih Ling
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jian Liu
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Hong Kong, China
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Leung SB, Zhang H, Lau CW, Lin ZX. Attenuation of blood pressure in spontaneously hypertensive rats by acupuncture was associated with reduction oxidative stress and improvement from endothelial dysfunction. Chin Med 2016; 11:38. [PMID: 27582785 PMCID: PMC5006281 DOI: 10.1186/s13020-016-0110-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hypertension can be treated effectively by acupuncture; however, the association between acupuncture and endothelial function remains unknown. This study aimed to investigate the effects of acupuncture on endothelial dysfunction and oxidative stress-related parameters in spontaneously hypertensive animals. Methods Eighteen-week-old Wistar–Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were arbitrarily divided into four groups: WKY control (n = 8), SHR control (n = 8), SHR sham-acupuncture (n = 8) and SHR acupuncture (n = 8). The SHR acupuncture group had electroacupuncture for 6 consecutive weeks on acupoints ST36 and LR3. Blood pressure was monitored during the treatment period, and animals were euthanized at the 6th week. Aortas were harvested for determination of angiotensin II levels, NADPH oxidase activity and nitrate/nitrite levels. The level of reactive oxygen species (ROS) was determined by dihydroethidium (DHE) imaging, and functional studies were performed to assess vascular reactivity. Endothelial nitric oxide synthase was measured by Western blot assay. Results Blood pressure at the end of treatment was significantly lower in the SHR acupuncture group (185.0 ± 5.6 mmHg) compared with the SHR sham-acupuncture and the SHR control groups (201.0 ± 5.4 and 197.4 ± 5.9 mmHg, respectively; P < 0.001). Serum angiotensin II level in the SHR control group was significantly higher than in the WKY control group (P < 0.001), while it was significantly attenuated by acupuncture treatment (P = 0.023). DHE staining showed that ROS level was reduced in the aortas (P = 0.0017) and carotid arteries (P = 0.039) of acupuncture-treated SHRs. Biochemical assays showed that acupuncture inhibited the NADPH oxidase activity (P = 0.022) and enhanced antioxidant capacity (P = 0.0039). In functional studies, endothelium-dependent relaxation of aortic rings (P = 0.018) and carotid arteries (P = 0.022) in response to acetylcholine was improved in the SHR acupuncture group. Aortas of SHRs receiving acupuncture also expressed an elevated level of eNOS (P > 0.001) and p-eNOS (P = 0.012) and a reduced nitrotyrosine level (P = 0.0012). The nitrate/nitrite level in aortic tissue was also attenuated after acupuncture (P = 0.0018). Conclusion The effects of acupuncture in treating hypertension were associated with reduced oxidative stress, increased nitric oxide bioavailability and endothelial function in SHRs. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sin Bond Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| |
Collapse
|
34
|
Interactive role of endothelial nitric oxide synthase gene polymorphisms in T2D with CAD and CAD patients of Punjab (North-West India). Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
35
|
Gallo A, Mattina A, Rosenbaum D, Koch E, Paques M, Girerd X. Retinal arteriolar remodeling evaluated with adaptive optics camera: Relationship with blood pressure levels. Ann Cardiol Angeiol (Paris) 2016; 65:203-207. [PMID: 27184511 DOI: 10.1016/j.ancard.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
AIM To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. PATIENTS AND METHODS One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. RESULTS In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). CONCLUSION A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension.
Collapse
Affiliation(s)
- A Gallo
- Preventive Cardiovascular Unit, Institute of Cardiometabolism and Nutrition, Unité de Prévention Cardiovasculaire, Service d'Endocrinologie Métabolisme, Groupe Hospitalier Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne Universités, UPMC Université Paris 06, Inserm 1146,-CNRS 7371, Laboratoire d'imagerie biomédicale, 75013 Paris, France
| | - A Mattina
- Preventive Cardiovascular Unit, Institute of Cardiometabolism and Nutrition, Unité de Prévention Cardiovasculaire, Service d'Endocrinologie Métabolisme, Groupe Hospitalier Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne Universités, UPMC Université Paris 06, Inserm 1146,-CNRS 7371, Laboratoire d'imagerie biomédicale, 75013 Paris, France
| | - D Rosenbaum
- Preventive Cardiovascular Unit, Institute of Cardiometabolism and Nutrition, Unité de Prévention Cardiovasculaire, Service d'Endocrinologie Métabolisme, Groupe Hospitalier Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne Universités, UPMC Université Paris 06, Inserm 1146,-CNRS 7371, Laboratoire d'imagerie biomédicale, 75013 Paris, France; Imaging Core Lab, Institute of Cardiometabolism and Nutrition, ICAN, 75013 Paris, France.
| | - E Koch
- Unité Inserm 968, Institut de la vision - Centre d'Investigation Clinique 503, Centre Hospitalier National des Quinze-Vingts, Assistance publique-Hôpitaux de Paris, 75012 Paris, France
| | - M Paques
- Unité Inserm 968, Institut de la vision - Centre d'Investigation Clinique 503, Centre Hospitalier National des Quinze-Vingts, Assistance publique-Hôpitaux de Paris, 75012 Paris, France
| | - X Girerd
- Preventive Cardiovascular Unit, Institute of Cardiometabolism and Nutrition, Unité de Prévention Cardiovasculaire, Service d'Endocrinologie Métabolisme, Groupe Hospitalier Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
36
|
Abstract
Vascular endothelial cells play a major role in maintaining cardiovascular homeostasis. Endothelial dysfunction, characterized by reduced endothelium-dependent relaxations or accompanied by enhanced endothelium-dependent contractions, is a hallmark of and plays a pivotal role in the pathogenesis of hypertension. Endothelial dysfunction in hypertension has been linked to decreases in nitric oxide (NO) bioavailability, reflecting the impaired generation of NO and/or the enhanced inactivation of NO by reactive oxygen species. Many of these conditions can be improved by glucagon-like peptide 1 (GLP-1), a proglucagon-derived hormone secreted by intestinal endocrine L-type cells, which is rapidly inactivated by an enzyme dipeptidyl peptidase 4 in circulation. On one hand, GLP-1 analogues or dipeptidyl peptidase 4 inhibitors upregulate endothelial nitric oxide synthase expression and increase endothelial nitric oxide synthase phosphorylation, resulting in improved production of NO and thus endothelium-dependent relaxations. On the other hand, GLP-1 and related agents attenuate endothelium-dependent contractions by reducing reactive oxygen species generation and cyclooxygenase-2 expression. GLP-1 elevating agents and GLP-1 receptor agonists improve endothelial function in hypertension, suggesting that GLP-1 signaling could be a therapeutic target in hypertension-related vascular events.
Collapse
|
37
|
Jeong SJ, Han SH, Kim CO, Choi JY, Song YG, Kim JM. Association between human cytomegalovirus antibody levels, and essential hypertension and functional status in elderly Koreans. Geriatr Gerontol Int 2016; 16:21-27. [PMID: 25496508 DOI: 10.1111/ggi.12428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the relationship between human cytomegalovirus (HCMV) antibody status, and hypertension and functional status among elderly Koreans. METHODS Patients aged ≥65 years were prospectively enrolled from March 2011 to February 2012 at a 2000-bed university hospital. We collected data including CD4+ and CD8+ T-lymphocyte count, and functional status by measuring basic activities of daily living and instrumental activities of daily living for all patients. In addition, HCMV immunoglobulin G levels were analyzed using enzyme-linked fluorescent assay. RESULTS During the study period, 103 patients (51 men), who were admitted for treatment of infections or other diseases, were enrolled. Multivariate analysis showed that body mass index and HCMV immunoglobulin G antibody titers were independent factors associated with hypertension in elderly patients (OR 1.347, 95% CI 1.113-1.630, P = 0.002; OR 1.023, 95% CI 1.001-1.047, P = 0.042, respectively). In univariate linear correlations, HCMV antibody levels were positively correlated with systolic blood pressure levels (r = 0.303, P = 0.002), CD8+ T-lymphocyte count (r = 0.313, P = 0.001) and instrumental activities of daily living scores (r = 0.217, P = 0.028). In addition, HCMV immunoglobulin G titers were inversely associated with estimated glomerular filtration rate (r = -0.268, P = 0.006). These four variables remained independently significant in multivariate correlation analysis. CONCLUSION These findings could provide insight into the important role of HCMV in the pathogenesis of essential hypertension and decreased functional status in the elderly.
Collapse
Affiliation(s)
- Su Jin Jeong
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Hoon Han
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang Oh Kim
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Goo Song
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - June Myung Kim
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Teunissen-Beekman KFM, Dopheide J, Geleijnse JM, Bakker SJL, Brink EJ, de Leeuw PW, Schalkwijk CG, van Baak MA. Dietary proteins improve endothelial function under fasting conditions but not in the postprandial state, with no effects on markers of low-grade inflammation. Br J Nutr 2015; 114:1819-28. [PMID: 26400262 DOI: 10.1017/s0007114515003530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endothelial dysfunction (ED) and low-grade inflammation (LGI) have a role in the development of CVD. The two studies reported here explored the effects of dietary proteins and carbohydrates on markers of ED and LGI in overweight/obese individuals with untreated elevated blood pressure. In the first study, fifty-two participants consumed a protein mix or maltodextrin (3×20 g/d) for 4 weeks. Fasting levels and 12 h postprandial responses of markers of ED (soluble intercellular adhesion molecule 1 (sICAM), soluble vascular cell adhesion molecule 1 (sVCAM), soluble endothelial selectin and von Willebrand factor) and markers of LGI (serum amyloid A, C-reactive protein and sICAM) were evaluated before and after intervention. Biomarkers were also combined into mean Z-scores of ED and LGI. The second study compared 4 h postprandial responses of ED and LGI markers in forty-eight participants after ingestion of 0·6 g/kg pea protein, milk protein and egg-white protein. In addition, postprandial responses after maltodextrin intake were compared with a protein mix and sucrose. The first study showed significantly lower fasting ED Z-scores and sICAM after 4 weeks on the high-protein diet (P≤0·02). The postprandial studies found no clear differences of ED and LGI between test meals. However, postprandial sVCAM decreased more after the protein mix compared with maltodextrin in both studies (P≤0·04). In conclusion, dietary protein is beneficial for fasting ED, but not for fasting LGI, after 4 weeks of supplementation. On the basis of Z-scores, postprandial ED and LGI were not differentially affected by protein sources or carbohydrates.
Collapse
Affiliation(s)
| | - Janneke Dopheide
- 1Top Institute Food and Nutrition,6700 AN Wageningen,The Netherlands
| | | | | | - Elizabeth J Brink
- 1Top Institute Food and Nutrition,6700 AN Wageningen,The Netherlands
| | - Peter W de Leeuw
- 5Department of Internal Medicine,Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM),6200 MD Maastricht,The Netherlands
| | - Casper G Schalkwijk
- 5Department of Internal Medicine,Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM),6200 MD Maastricht,The Netherlands
| | | |
Collapse
|
39
|
Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun 2015; 468:832-6. [PMID: 26582714 DOI: 10.1016/j.bbrc.2015.11.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023]
Abstract
Irisin, a newly discovered myokine, has been shown to produce modest weight loss and improve glucose intolerance in mice. The purpose of this study was to investigate the effects of irisin on vascular activity and the mechanisms involved. Experiments were performed on mouse mesenteric arteries. We demonstrated that irisin induced relaxation in mesenteric arteries with or without endothelium in a concentration-dependent manner. It was further demonstrated that the irisin-induced vasorelaxation effects on endothelium-intact mesenteric arteries were reduced by pretreatment with Nω-nitro-L-arginine methyl ester (L-NAME) or 1H-[1, 2, 4] oxadizolo [4, 3-a] quinoxalin-1-one (ODQ). However, pretreatment with indomethacin (INDO), a nonselective cyclooxygenase inhibitor did not modulate irisin-induced relaxation. In addition, the contraction due to extracellular Ca(2+) influx and intracellular Ca(2+) release was also inhibited by irisin. In summary, these results suggested that the endothelium-dependent relaxation of irisin is mediated by the nitric oxide (NO)-guanosine 3', 5'-cyclic phosphate (cGMP)-dependent pathway but not the prostaglandin I2 (PGI2)-cyclic adenosine monophosphate (cAMP)-dependent mechanism. Endothelium-independent relaxation may be depend on inhibiting Ca(2+) influx through blocking VDCCs and intracellular Ca(2+) release through both IP3R and RyR channels.
Collapse
Affiliation(s)
- Miao Jiang
- Experimental Animal Center, The Second Hospital of Shandong University, Jinan 250012, PR China
| | - Fangzhu Wan
- Department of Clinical Medicine, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Fang Wang
- Experimental Animal Center, The Second Hospital of Shandong University, Jinan 250012, PR China
| | - Qi Wu
- Department of Clinical Medicine, School of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
40
|
Wang M, Chen M, Ding Y, Zhu Z, Zhang Y, Wei P, Wang J, Qiao Y, Li L, Li Y, Wen A. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation. Sci Rep 2015; 5:15357. [PMID: 26482008 PMCID: PMC4611516 DOI: 10.1038/srep15357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway.
Collapse
Affiliation(s)
- Mingming Wang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China.,Shaanxi University of Chinese Medicine, Shaanxi, Xian-yang 712046, China
| | - Minchun Chen
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yi Ding
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Zhihui Zhu
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yikai Zhang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Shaanxi, Xian-yang 712046, China
| | - Jingwen Wang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yi Qiao
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Liang Li
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yuwen Li
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Aidong Wen
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| |
Collapse
|
41
|
Tu H, Li H, Wang Y, Niyyati M, Wang Y, Leshin J, Levine M. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. EBioMedicine 2015; 2:1735-50. [PMID: 26870799 PMCID: PMC4740302 DOI: 10.1016/j.ebiom.2015.09.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs) are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA), a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.
Collapse
Key Words
- 3-O-MG, 3-O-methylglucose
- AA, ascorbic acid
- Ascorbic Acid
- DHA, dehydroascorbic acid
- Dehydroascorbic Acid
- Diabetes
- GLUT, facilitated glucose transporter
- Glucose Transport
- Gulo-/-, gulonolactone oxidase knockout mouse unable to synthesize ascorbate
- PBS, phosphate buffered saline
- RBCs, red blood cells
- RIPA, Western blot cell lysis buffer
- Red Blood Cells
- SVCT, sodium-dependent vitamin C transporter
- TCEP, Tris(2-carboxyethyl)phosphine
- WT, wildtype mouse
- β-Spectrin
Collapse
Affiliation(s)
- Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Hongyan Li
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Yu Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Jonathan Leshin
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| |
Collapse
|
42
|
Leung FP, Yung LM, Ngai CY, Cheang WS, Tian XY, Lau CW, Zhang Y, Liu J, Chen ZY, Bian ZX, Yao X, Huang Y. Chronic black tea extract consumption improves endothelial function in ovariectomized rats. Eur J Nutr 2015; 55:1963-72. [PMID: 26276555 PMCID: PMC4949301 DOI: 10.1007/s00394-015-1012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/05/2015] [Indexed: 12/02/2022]
Abstract
Purpose
Menopause escalates the risk of cardiovascular diseases in women. There is an unmet need for better treatment strategy for estrogen-deficiency-related cardiovascular complications. Here we investigated the impact of chronic black tea extract (BT) consumption on cardiovascular function and lipid metabolism using a rat model of estrogen deficiency. Methods Female Sprague–Dawley rats were ovariectomized (OVX) and treated with BT (15 mg/kg/day, 4 weeks; active ingredients: theaflavins) or estrogen (E2) treatment for 4 weeks. Serum was collected for measuring cholesterol, triacylglycerol and estradiol levels. Changes in vascular reactivity were examined. The protein levels of NADPH oxidases were assessed by Western blotting. Reactive oxygen species (ROS) level was measured using dihydroethidium fluorescence imaging. The concentrations of cGMP were measured using ELISA kit. Results Aortic rings from control, BT-treated and E2-treated OVX rats exhibited a greater increase in Phe-induced contraction after inhibition of NO synthase compared with those from OVX rats. ACh-induced endothelium-dependent relaxations were augmented in aortae and renal arteries in BT/E2-treated OVX rats than in OVX rats. BT/E2 treatment improved flow-mediated dilatation in small mesenteric resistance arteries of OVX rats. BT/E2 treatment restored the eNOS phosphorylation level and reversed the up-regulation of NADPH oxidases and ROS overproduction in OVX rat aortae. ACh-stimulated cGMP production was significantly elevated in the aortae from BT- and E2-treated rats compared with those from OVX rats. BT/E2 treatment reduced circulating levels of total cholesterol. Conclusions The present study reveals the novel benefits of chronic BT consumption to reverse endothelial dysfunction and favorably modifying cholesterol profile in a rat model of estrogen deficiency and provides insights into developing BT as beneficial dietary supplements for postmenopausal women.
Collapse
Affiliation(s)
- Fung Ping Leung
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lai Ming Yung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching Yuen Ngai
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wai San Cheang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Zhang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yu Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhao-Xiang Bian
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoqiang Yao
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Liu J, Wang L, Tian XY, Liu L, Wong WT, Zhang Y, Han QB, Ho HM, Wang N, Wong SL, Chen ZY, Yu J, Ng CF, Yao X, Huang Y. Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice. Diabetes 2015; 64:1564-75. [PMID: 25475440 DOI: 10.2337/db14-1391] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022]
Abstract
Heme oxygenase-1 (HO-1) exerts vasoprotective effects. Such benefit in diabetic vasculopathy, however, remains unclear. We hypothesize that bilirubin mediates HO-1-induced vascular benefits in diabetes. Diabetic db/db mice were treated with hemin (HO-1 inducer) for 2 weeks, and aortas were isolated for functional and molecular assays. Nitric oxide (NO) production was measured in cultured endothelial cells. Hemin treatment augmented endothelium-dependent relaxations (EDRs) and elevated Akt and endothelial NO synthase (eNOS) phosphorylation in db/db mouse aortas, which were reversed by the HO-1 inhibitor SnMP or HO-1 silencing virus. Hemin treatment increased serum bilirubin, and ex vivo bilirubin treatment improved relaxations in diabetic mouse aortas, which was reversed by the Akt inhibitor. Biliverdin reductase silencing virus attenuated the effect of hemin. Chronic bilirubin treatment improved EDRs in db/db mouse aortas. Hemin and bilirubin reversed high glucose-induced reductions in Akt and eNOS phosphorylation and NO production. The effect of hemin but not bilirubin was inhibited by biliverdin reductase silencing virus. Furthermore, bilirubin augmented EDRs in renal arteries from diabetic patients. In summary, HO-1-induced restoration of endothelial function in diabetic mice is most likely mediated by bilirubin, which preserves NO bioavailability through the Akt/eNOS/NO cascade, suggesting bilirubin as a potential therapeutic target for clinical intervention of diabetic vasculopathy.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Wing Tak Wong
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| | - Yang Zhang
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hing-Man Ho
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University, Beijing, China
| | - Siu Ling Wong
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Kim S, Kwon J. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4. J Physiol 2015; 593:1873-86. [PMID: 25640761 DOI: 10.1113/jphysiol.2014.287045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 01/31/2023] Open
Abstract
KEY POINTS Thymosin beta 4 (Tβ4 ) attenuates the vascular cellular toxicity induced by advanced glycation end products (AGEs) in human umbilical vein endothelial cells (HUVECs). Tβ4 reduces expression of both the receptor of AGEs (RAGE) and the filamentous actin (F-actin) to globular actin (G-actin) ratio. RAGE expression was regulated by actin cytoskeleton involved in Tβ4 . Tβ4 attenuates the vascular cellular toxicity induced by AGEs via remodelling of the actin cytoskeleton. AGEs attenuate vascular-like tube formation of HUVECs, which is reversed by Tβ4 via remodelling of the actin cytoskeleton. ABSTRACT The receptor of advanced glycation end products (RAGE) is a cell-surface receptor that is a key factor in the pathogenesis of diabetic complications, including vascular disorders. Dysfunction of the actin cytoskeleton contributes to disruption of cell membrane repair in response to various type of endothelial cell damage. However, mechanism underlying RAGE remodelling of the actin cytoskeleton, by which globular actin (G-actin) forms to filamentous actin (F-actin), remains unclear. In this study we examined the role of thymosin beta 4 (Tβ4 ) - which binds to actin, blocks actin polymerization, and maintains the dynamic equilibrium between G-actin and F-actin in human umbilical vein endothelial cells (HUVECs) - in the response to RAGE. Tβ4 increased cell viability and decreased levels of reactive oxygen species in HUVECs incubated with AGEs. Tβ4 reduced the expression of RAGE, consistent with a down-regulation of the F-actin to G-actin ratio. The effect of remodelling of the actin cytoskeleton on RAGE expression was clarified by adding Phalloidin, which stabilizes F-actin. Moreover, small interfering RNA was used to determine whether intrinsic Tβ4 regulates RAGE expression in the actin cytoskeleton. The absence of intrinsic Tβ4 in HUVECs evoked actin cytoskeleton disorder and increased RAGE expression. These findings suggest that regulation of the actin cytoskeleton by Tβ4 plays a pivotal role in the RAGE response to AGEs.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, 561-156, Republic of Korea
| | | |
Collapse
|
45
|
Sharifi AM, Zare B, Keshavarz M, Rahmani M, Zaeefy B, Larijani B. Urinary N-acetyl-β-D-glucosaminidase (NAG) activity in the early detection of diabetic nephropathy. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0325-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats. Biochem Biophys Res Commun 2015; 458:796-801. [PMID: 25686503 DOI: 10.1016/j.bbrc.2015.02.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
Activation of endoplasmic reticulum (ER) stress in endothelial cells leads to increased oxidative stress and often results in cell death, which has been implicated in hypertension. The present study investigated the effects of berberine, a botanical alkaloid purified from Coptidis rhizoma, on ER stress in spontaneously hypertensive rats (SHRs) and the underling mechanism. Isolated carotid arteries from normotensive WKYs and SHRs were suspended in myograph for isometric force measurement. Protein phosphorylations and expressions were determined by Western blotting. Reactive oxygen species (ROS) level was measured by DHE staining. SHR carotid arteries exhibited exaggerated acetylcholine-triggered endothelium-dependent contractions (EDCs) and elevated ROS accumulation compared with WKY arteries. Moreover, Western blot analysis revealed the reduced AMPK phosphorylation, increased eIF2α phosphorylation, and elevated levels of ATF3, ATF6, XBP1 and COX-2 in SHR carotid arteries while these pathological alterations were reversed by 12 h-incubation with berberine. Furthermore, AMPK inhibitor compound C or dominant negative AMPK adenovirus inhibited the effects of berberine on above-mentioned marker proteins and EDCs. More importantly, ROS scavengers, tempol and tiron plus DETCA, or ER stress inhibitors, 4-PBA and TUCDA normalized the elevated levels of ROS and COX-2 expression, and attenuated EDCs in SHR arteries. Taken together, the present results suggest that berberine reduces EDCs likely through activating AMPK, thus inhibiting ER stress and subsequently scavenging ROS leading to COX-2 down-regulation in SHR carotid arteries. The present study thus provides additional insights into the vascular beneficial effects of berberine in hypertension.
Collapse
|
47
|
Wang X, Cheang WS, Yang H, Xiao L, Lai B, Zhang M, Ni J, Luo Z, Zhang Z, Huang Y, Wang N. Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms. Br J Pharmacol 2015; 172:5609-18. [PMID: 25409881 DOI: 10.1111/bph.13021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Nuciferine, a constituent of lotus leaf, is an aromatic ring-containing alkaloid, with antioxidative properties. We hypothesize nuciferine might affect vascular reactivity. This study aimed at determining the effects of nuciferine on vasomotor tone and the underlying mechanism EXPERIMENTAL APPROACH Nuciferine-induced relaxations in rings of rat main mesenteric arteries were measured by wire myographs. Endothelial NOS (eNOS) was determined by immunoblotting. Intracellular NO production in HUVECs and Ca(2+) level in both HUVECs and vascular smooth muscle cells (VSMCs) from rat mesenteric arteries were assessed by fluorescence imaging. KEY RESULTS Nuciferine induced relaxations in arterial segments pre-contracted by KCl or phenylephrine. Nuciferine-elicited arterial relaxations were reduced by removal of endothelium or by pretreatment with the eNOS inhibitor L-NAME or the NO-sensitive guanylyl cyclase inhibitor ODQ. In HUVECs, the phosphorylation of eNOS at Ser(1177) and increase in cytosolic NO level induced by nuciferine were mediated by extracellular Ca(2+) influx. Under endothelium-free conditions, nuciferine attenuated CaCl2-induced contraction in Ca(2+)-free depolarizing medium. In the absence of extracellular calcium, nuciferine relieved the vasoconstriction induced by phenylephrine and the addition of CaCl2. Nuciferine also suppressed Ca(2+) influx in Ca(2+)-free K(+)-containing solution in VSMCs. CONCLUSIONS AND IMPLICATIONS Nuciferine has a vasorelaxant effect via both endothelium-dependent and -independent mechanisms. These results suggest that nuciferine may have a therapeutic effect on vascular diseases associated with aberrant vasoconstriction.
Collapse
Affiliation(s)
- Xinfeng Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wai San Cheang
- Institute of Vascular Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Yang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Baochang Lai
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Meiqian Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiahua Ni
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyu Luo
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Zihui Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu Huang
- Institute of Vascular Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Nanping Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
48
|
Wang Y, Dong J, Liu P, Lau CW, Gao Z, Zhou D, Tang J, Ng CF, Huang Y. Ginsenoside Rb3 attenuates oxidative stress and preserves endothelial function in renal arteries from hypertensive rats. Br J Pharmacol 2015; 171:3171-81. [PMID: 24571453 DOI: 10.1111/bph.12660] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Panax ginseng is commonly used to treat cardiovascular conditions in Oriental countries. This study investigated the mechanisms underlying the vascular benefits of ginsenoside Rb3 (Rb3) in hypertension. EXPERIMENTAL APPROACH Rings of renal arteries were prepared from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats and were cultured ex vivo for 8 h. Contractile responses of the rings were assessed with myograph techniques. Expression of NADPH oxidases was assessed by Western blotting and immunohistochemistry. Reactive oxygen species (ROS) were measured using dihydroethidium fluorescence imaging and production of NO was determined using the fluorescent NO indicator DAF-FM diacetate in human umbilical vein endothelial cells. KEY RESULTS Ex vivo treatment with Rb3 concentration-dependently augmented endothelium-dependent relaxations, suppressed endothelium-dependent contractions and reduced ROS production and expressions of NOX-2, NOX-4 and p67(phox) in arterial rings from SHR. Rb3 treatment also normalized angiotensin II (Ang II)-stimulated elevation in ROS and expression of NOX-2 and NOX-4 in arterial rings from WKY rats. Rb3 inhibited Ang II-induced reduction of NO production and phosphorylation of endothelial NOS in cultures of human umbilical vein endothelial cells. Rb3 also inhibited oxidative stress in renal arterial rings from hypertensive patients or in Ang II-treated arterial rings from normotensive subjects. CONCLUSION AND IMPLICATIONS Ex vivo Rb3 treatment restored impaired endothelial function in arterial rings from hypertensives by reversing over-expression of NADPH oxidases and over-production of ROS, and improved NO bioavailability. Our findings suggest that medicinal plants containing Rb3 could decrease oxidative stress and protect endothelial function in hypertension.
Collapse
Affiliation(s)
- Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gao Z, Zhang H, Liu J, Lau CW, Liu P, Chen ZY, Lee HK, Tipoe GL, Ho HM, Yao X, Huang Y. Cyclooxygenase-2-dependent oxidative stress mediates palmitate-induced impairment of endothelium-dependent relaxations in mouse arteries. Biochem Pharmacol 2014; 91:474-82. [PMID: 25149102 DOI: 10.1016/j.bcp.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 01/06/2023]
Abstract
Palmitic acid, one of the saturated free fatty acids, impairs cardiovascular function as manifested by inducing vascular inflammation, apoptosis and over-production of reactive oxygen species (ROS) although the origin for ROS remains unclear. The present study investigated the cellular mechanisms underlying palmitate-induced impairment of endothelial function. Ex vivo treatment in tissue culture with palmitate concentration-dependently attenuated acetylcholine-induced endothelium-dependent relaxations, up-regulated the expression of cyclooxygenase-2 (COX-2) and elevated superoxide formation in mouse aortic endothelial cells (MAECs) measured by dihydroethidium (DHE) staining and electron paramagnetic resonance (EPR) spectroscopy. Superoxide scavengers, COX-2 inhibitor and thromboxane prostanoid (TP) receptor antagonist, but not COX-1 inhibitor reversed the harmful effects of palmitate. Furthermore, palmitate impaired acetylcholine-induced relaxations and raised superoxide in en face endothelium of aortas only from COX-1(-/-) mice but not from COX-2(-/-) mice. Palmitate increased the production and release of TXB2, a stable thromboxane A2 metabolite in mouse aortas, which was abolished by COX-2 inhibitor. Superoxide scavenger did not affect palmitate-induced up-regulated expression of COX-2 in MAECs. Both real time PCR and luciferase reporter gene assay confirmed COX-2 up-regulation in palmitate-treated MAECs and NF-κB was substantially involved in this up-regulation. The present study provides novel evidence that palmitate up-regulates COX-2 through NF-κB-dependent mechanism and resultant COX-2-associated oxidative stress impairs endothelium-dependent relaxations in mouse aortas.
Collapse
Affiliation(s)
- Zhen Gao
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huina Zhang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Liu
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen Yu Chen
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, China
| | - George L Tipoe
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, China
| | - Hing Man Ho
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoqiang Yao
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|