1
|
Ahire D, Mariasoosai C, Naji-Talakar S, Natesan S, Prasad B. Promiscuity and Quantitative Contribution of UGT2B17 in Drug and Steroid Metabolism Determined by Experimental and Computational Approaches. J Chem Inf Model 2024; 64:483-498. [PMID: 38198666 DOI: 10.1021/acs.jcim.3c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Uridine 5'-diphospho-glulcuronosyltransferase 2B17 (UGT2B17) is important in the metabolism of steroids and orally administered drugs due to its high interindividual variability. However, the structural basis governing the substrate selectivity or inhibition of UGT2B17 remains poorly understood. This study investigated 76 FDA-approved drugs and 20 steroids known to undergo glucuronidation for their metabolism by UGT2B17. Specifically, we assessed the substrate selectivity for UGT2B17 over other UGT enzymes using recombinant human UGT2B17 (rUGT2B17), human intestinal microsomes, and human liver microsomes. The quantitative contribution of intestinal UGT2B17 in the glucuronidation of these compounds was characterized using intestinal microsomes isolated from UGT2B17 expressors and nonexpressors. In addition, a structure-based pharmacophore model for UGT2B17 substrates was built and validated using the studied pool of substrates and nonsubstrates. The results show that UGT2B17 could metabolize 23 out of 96 compounds from various chemical classes, including alcohols and carboxylic acids, particularly in the intestine. Interestingly, amines were less susceptible to UGT2B17 metabolism, though they could inhibit the enzyme. Three main pharmacophoric features of UGT2B17 substrates include (1) the presence of an accessible -OH or -COOH group near His35 residue, (2) a hydrophobic functional group at ∼4.5-5 Å from feature 1, and (3) an aromatic ring ∼5-7 Å from feature 2. Most of the studied compounds inhibited UGT2B17 activity irrespective of their substrate potential, indicating the possibility of multiple mechanisms. These data suggest that UGT2B17 is promiscuous in substrate selectivity and inhibition and has a high potential to produce significant variability in the absorption and disposition of orally administered drugs.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Charles Mariasoosai
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Siavosh Naji-Talakar
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
2
|
Pulya S, Himaja A, Paul M, Adhikari N, Banerjee S, Routholla G, Biswas S, Jha T, Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J Med Chem 2023; 66:12033-12058. [PMID: 37660352 DOI: 10.1021/acs.jmedchem.3c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel pyrazino-hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound 4i exhibited potent HDAC3 inhibition (IC50 = 14 nM) with at least 121-fold selectivity. It demonstrated strong cytotoxicity against triple-negative breast cancer cells (IC50: 0.55 μM for 4T1, 0.74 μM for MDA-MB-231) with least normal cell toxicity. Metabolically stable 4i displayed a superior pharmacokinetic profile. A dose-dependent therapeutic efficacy of 4i was observed in a tumor-bearing mouse model. The biomarker analysis with tumor tissues displayed enhanced acetylation on Ac-H3K9, Ac-H3K27, and Ac-H4K12 compared to Ac-tubulin and Ac-SMC3 indicating HDAC3 selectivity of 4i in vivo. The immunoblotting study with tumor tissue showed upregulation of apoptotic proteins caspase-3, caspase-7, and cytochrome c and the downregulation of proliferation markers Bcl-2, CD44, EGFR, and Ki-67. Compound 4i represents a promising candidate for targeted breast cancer therapy, particularly for cases with triple-negative breast cancer.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
3
|
Ahire D, Heyward S, Prasad B. Intestinal Metabolism of Diclofenac by Polymorphic UGT2B17 Correlates with its Highly Variable Pharmacokinetics and Safety across Populations. Clin Pharmacol Ther 2023; 114:161-172. [PMID: 37042794 PMCID: PMC10330245 DOI: 10.1002/cpt.2907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Although the United States and Europe have shifted to the prescription use of oral diclofenac due to several serious incidences of cardiotoxicity, it is one of the most commonly used over-the-counter (OTC) pain medicines in major parts of the world. We elucidated the quantitative and tissue-specific contribution of uridine diphosphate-glucuronosyltransferases 17 (UGT2B17) in diclofenac metabolism and pharmacokinetics (PK). UGT2B17 is one of most deleted genes in humans with the gene deletion frequency ranging from ~ 20% in White population to 90% in Japanese population. The human intestinal and liver microsomes isolated from the high-UGT2B17 expressing individuals showed 21- and 4-fold greater rate of diclofenac glucuronide (DG) formation than in the null-UGT2B17 carriers, respectively. The greater contribution of intestinal UGT2B17 was confirmed by a strong correlation (R = 0.78, P < 0.001) between UGT2B17 abundance and DG formation in individual intestinal microsomes (n = 14). However, because UGT2B17 is a minor UGT isoform in the liver, DG formation rate correlated better with the expression of UGT2B7. The proteomics-informed physiologically-based pharmacokinetic (PBPK) model explains the reported higher exposure of diclofenac in women consistent with ~ 3-fold lower expression of UGT2B17. Similarly, our in silico predictions also corroborate with the reported higher exposure and lower standard clinical dose of diclofenac in Japanese population. Therefore, variable UGT2B17 mediated metabolism of oral diclofenac is a cause of concern, especially in the developing countries where it is still used as an OTC drug. The ontogeny data of UGTs in human hepatocytes can be utilized in developing PBPK models for predicting PK in the pediatric population.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
4
|
Sharma S, Ahire D, Basit A, Lajoie M, Wang C, Lee MS, Blithe DL, Amory JK, Singh DK, Heyward S, Prasad B. Dimethandrolone, a Potential Male Contraceptive Pill, is Primarily Metabolized by the Highly Polymorphic UDP-Glucuronosyltransferase 2B17 Enzyme in Human Intestine and Liver. Drug Metab Dispos 2022; 50:1493-1500. [PMID: 36184078 PMCID: PMC9720754 DOI: 10.1124/dmd.122.001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Dimethandrolone undecanoate (DMAU), an oral investigational male hormonal contraceptive, is a prodrug that is rapidly converted to its active metabolite, dimethandrolone (DMA). Poor and variable oral bioavailability of DMA after DMAU dosing is a critical challenge to develop it as an oral drug. The objective of our study was to elucidate the mechanisms of variable pharmacokinetics of DMA. We first identified DMA metabolites formed in vitro and in vivo in human hepatocyte incubation and serum samples following oral DMAU administration in men, respectively. The metabolite identification study revealed two metabolites, DMA-glucuronide (DMA-G; major) and the androstenedione analog of DMA (minor), in the hepatocyte incubations. After oral DMAU administration, only DMA-G was detected in serum, which was >100-fold compared with DMA levels, supporting glucuronidation as the major elimination mechanism for DMA. Next, 13 clinically relevant UDP-glucuronosyltransferase (UGT) enzymes were tested for their involvement in DMA-G formation, which revealed a major role of UDP-glucuronosyltransferase 2B17 (UGT2B17) isoform with a smaller contribution of UGT1A9 in DMA-G formation. These data were confirmed by dramatically higher DMA glucuronidation rates (>200- and sevenfold) in the high versus the null UGT2B17-expressing human intestinal and liver microsomes, respectively. Since human UGT2B17 is a highly variable enzyme with a 20%-80% gene deletion frequency, the in vitro data suggest a major role of UGT2B17 polymorphism on the first-pass metabolism of DMA. Further, considering DMA is a selective and sensitive UGT2B17 substrate, it could be used as a clinical probe of UGT2B17 activity. SIGNIFICANCE STATEMENT: Dimethandrolone (DMA) is an active metabolite of dimethandrolone undecanoate (DMAU), an investigational male hormonal contraceptive. Previous studies have indicated poor and inconsistent bioavailability of DMAU following oral administration. This study found that UDP-glucuronosyltransferase 2B17-mediated high intestinal first-pass metabolism is the key mechanism of variable DMA bioavailability.
Collapse
Affiliation(s)
- Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Maria Lajoie
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Christina Wang
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Min S Lee
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Diana L Blithe
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - John K Amory
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Dilip K Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (S.S., D.A., A.B., D.K.S., B.P.); The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California (M.L., C.W.); Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.S.L., D.L.B.); Department of Medicine, University of Washington School of Medicine, Seattle, Washington (J.K.A.); and BioIVT, Halethorpe, Maryland (S.H.)
| |
Collapse
|
5
|
Ho J, Heong V, Peng Yong W, Soo R, Ean Chee C, Wong A, Sundar R, Liang Thian Y, Gopinathan A, Yan Pang M, Koe P, Nathan Jeraj S, Pyar Soe P, Yar Soe M, Tang T, Ng MC, Tai DW, Tan TJ, Xu H, Chang H, Landesman Y, Shah J, Shacham S, Chin Lee S, Tan DS, Cher Goh B, Tan DS. A phase 1 study of the safety, pharmacokinetics and pharmacodynamics of escalating doses followed by dose expansion of the selective inhibitor of nuclear export (SINE) selinexor in Asian patients with advanced or metastatic malignancies. Ther Adv Med Oncol 2022; 14:17588359221087555. [PMID: 35432603 PMCID: PMC9008867 DOI: 10.1177/17588359221087555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: This phase 1 study aims to evaluate the tolerability and the recommended
phase 2 dose of selinexor in Asian patients with advanced or metastatic
malignancies. Experimental Design: A total of 105 patients with advanced malignancies were enrolled from two
sites in Singapore (National University Hospital and the National Cancer
Centre, Singapore) from 24 February 2014 to 14 January 2019. We investigated
four dosing schedules of selinexor in a 3 + 3 dose escalation design with an
additional Phase 1b expansion cohort. Adverse events were graded with the
NCI Common Terminology Criteria for Adverse Events v 4.03. Pharmacodynamic
assessments included nuclear cytoplasmic localization of p27, XPO1 cargo
proteins pre and post selinexor dosing and pharmacokinetic assessments were
conducted at doses between 40 and 60 mg/m2. Results: In our Asian patient cohort, dosing at 40 mg/m2 given 2 out of
3 weeks, was the most tolerable for our patients. At this dose level, grade
3 adverse events included fatigue (8%), hyponatremia (23%), vomiting (5%),
thrombocytopenia (5%), and anaemia (2%). Selinexor had a rapid oral
absorption with median Tmax of 2 h and no PK accumulation after
multiple doses of tested regimens. Complete responses were seen in two
lymphoma patients. Partial responses were noted in three diffuse large B
cell lymphomas, one Hodgkin’s lymphoma and thymic carcinoma patient,
respectively. Conclusion: Selinexor is tolerated by Asian patients at 40 mg/m2 twice a week
given 2 out of 3 weeks. A 1-week drug holiday was needed as our patients
could not tolerate the current approved continuous dosing regimens because
of persistent grade 3 fatigue, anorexia and hyponatremia.
Collapse
Affiliation(s)
- Jingshan Ho
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Valerie Heong
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Wei Peng Yong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Ross Soo
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Andrea Wong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Yee Liang Thian
- Department of Radiology, National University Hospital, Singapore
| | - Anil Gopinathan
- Department of Radiology, National University Hospital, Singapore
| | - Mei Yan Pang
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Priscillia Koe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Santhiay Nathan Jeraj
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Phyu Pyar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Mu Yar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Tiffany Tang
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Matthew C.H. Ng
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - David W.M. Tai
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Tira J.Y. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Hongmei Xu
- Karyopharm Therapeutics, Newton, MA, USA
| | - Hua Chang
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Soo Chin Lee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel S.W. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Boon Cher Goh
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - David S.P. Tan
- Department of Haematology and Oncology, National University Cancer Institute, NUHS Tower Block, Level 7, 1E Kent Ridge Road, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
6
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol 2021; 87:4577-4597. [PMID: 33971031 DOI: 10.1111/bcp.14889] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Singh A, Chang TY, Kaur N, Hsu KC, Yen Y, Lin TE, Lai MJ, Lee SB, Liou JP. CAP rigidification of MS-275 and chidamide leads to enhanced antiproliferative effects mediated through HDAC1, 2 and tubulin polymerization inhibition. Eur J Med Chem 2021; 215:113169. [PMID: 33588178 DOI: 10.1016/j.ejmech.2021.113169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The study focuses on the prudent design and synthesis of anilide type class I HDAC inhibitors employing a functionalized pyrrolo[2,3-d]pyrimidine skeleton as the surface recognition part. Utilization of the bicyclic aromatic ring to fabricate the target compounds was envisioned to confer rigidity to the chemical architecture of MS-275 and chidamide. In-vitro enzymatic and cellular assays led to the identification of compound 7 as a potent inhibitor of HDAC1 and 2 isoform that exerted substantial cell growth inhibitory effects against human breast MDA-MB-231, cervical HeLa, breast MDA-MB-468, colorectal DLD1, and colorectal HCT116 cell lines with an IC50 values of 0.05-0.47 μM, better than MS-275 and chidamide. In addition, the anilide 7 was also endowed with a superior antiproliferative profile than MS275 and chidamide towards the human cutaneous T cell lymphoma (HH and HuT78), leukemia (HL60 and KG-1), and HDACi sensitive/resistant gastric cell lines (YCC11 and YCC3/7). Exhaustive exploration of the construct 7 confirmed it to be a microtubule-targeting agent that could trigger the cell-cycle arrest in mitosis. In pursuit of extracting the benefits of evidenced microtubule-destabilizing activity of the anilide 7, it was further evaluated against non-small-cell lung cancer cell lines as well as the multiple-drug resistant uterine cancer cell line (MES-SA/Dx5) and overwhelmingly positive results in context of inhibitory effects were attained. Furthermore, molecular modelling studies were performed and some key interactions of the anilide 7 with the amino acid residues of the active site of HDAC1 isoform and tubulin were figured out.
Collapse
Affiliation(s)
- Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Ting-Yu Chang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Navdeep Kaur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Yun Yen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taiwan.
| |
Collapse
|
9
|
Zhang H, Basit A, Wolford C, Chen KF, Gaedigk A, Lin YS, Leeder JS, Prasad B. Normalized Testosterone Glucuronide as a Potential Urinary Biomarker for Highly Variable UGT2B17 in Children 7-18 Years. Clin Pharmacol Ther 2020; 107:1149-1158. [PMID: 31900930 DOI: 10.1002/cpt.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase 2B17 (UGT2B17) is a highly variable androgen-metabolizing and drug-metabolizing enzyme. UGT2B17 exhibits a unique ontogeny profile characterized by a dramatic increase in hepatic protein expression from prepubertal age to adulthood. Age, sex, copy number variation (CNV), and single nucleotide polymorphisms only explain 26% of variability in protein expression, highlighting the need for a phenotypic biomarker for predicting interindividual variability in glucuronidation of UGT2B17 substrates. Here, we propose testosterone glucuronide (TG) normalized by androsterone glucuronide (TG/AG) as a urinary UGT2B17 biomarker, and examine the associations among urinary TG/AG and age, sex, and CNV. We performed targeted metabolomics of 12 androgen conjugates with liquid-chromatography tandem mass spectrometry in 63 pediatric subjects ages 7-18 years followed over 7 visits in 3 years. Consistent with the reported developmental trajectory of UGT2B17 protein expression, urinary TG/AG is significantly associated with age, sex, and CNV. In conclusion, TG/AG shows promise as a phenotypic urinary UGT2B17 biomarker.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Abstract
Histone deacetylases (HDACs) are expressed at increased levels in cells of various malignancies, and the use of HDAC inhibitors has improved outcomes in patients with haematological malignancies (T-cell lymphomas and multiple myeloma). However, they are not as effective in solid tumours. Five agents are currently approved under various jurisdictions, namely belinostat, chidamide, panobinostat, romidepsin and vorinostat. These agents are associated with a range of class-related and agent-specific serious and/or severe adverse effects, notably myelosuppression, diarrhoea and various cardiac effects. Among the cardiac effects are ST-T segment abnormalities and QTc interval prolongation of the electrocardiogram, isolated cases of atrial fibrillation and, in rare instances, ventricular tachyarrhythmias. In order to improve the safety profile of this class of drugs as well as their efficacy in indications already approved and to further widen their indications, a large number of newer HDAC inhibitors with varying degrees of HDAC isoform selectivity have been synthesised and are currently under clinical development. Preliminary evidence from early studies suggests that they may be effective in non-haematological cancers as well when used in combination with other therapeutic modalities, but that they too appear to be associated with the above class-related adverse effects. As the database accumulates, the safety, efficacy and risk/benefit of the newer agents and their indications will become clearer.
Collapse
|
11
|
Zhang H, Basit A, Busch D, Yabut K, Bhatt DK, Drozdzik M, Ostrowski M, Li A, Collins C, Oswald S, Prasad B. Quantitative characterization of UDP-glucuronosyltransferase 2B17 in human liver and intestine and its role in testosterone first-pass metabolism. Biochem Pharmacol 2018; 156:32-42. [PMID: 30086285 PMCID: PMC6188809 DOI: 10.1016/j.bcp.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
Protein abundance and activity of UGT2B17, a highly variable drug- and androgen-metabolizing enzyme, were quantified in microsomes, S9 fractions, and primary cells isolated from human liver and intestine by validated LC-MS/MS methods. UGT2B17 protein abundance showed >160-fold variation (mean ± SD, 1.7 ± 2.7 pmol/mg microsomal protein) in adult human liver microsomes (n = 26) and significant correlation (r2 = 0.77, p < 0.001) with testosterone glucuronide (TG) formation. Primary role of UGT2B17 in TG formation compared to UGT2B15 was confirmed by performing activity assays in UGT2B17 gene deletion samples and with a selective UGT2B17 inhibitor, imatinib. Human intestinal microsomes isolated from small intestine (n = 6) showed on average significantly higher protein abundance (7.4 ± 6.6 pmol/mg microsomal protein, p = 0.016) compared to liver microsomes, with an increasing trend towards distal segments of the gastrointestinal (GI) tract. Commercially available pooled microsomes and S9 fractions confirmed greater abundance and activity of UGT2B17 in intestinal fractions compared to liver fractions. To further investigate the quantitative role of UGT2B17 in testosterone metabolism in whole cell system, a targeted metabolomics study was performed in hepatocytes (n = 5) and enterocytes (n = 16). TG was the second most abundant metabolite after androstenedione in both cell systems. Reasonable correlation between UGT2B17 abundance and activity were observed in enterocytes (r2 = 0.69, p = 0.003), but not in hepatocytes. These observational and mechanistic data will be useful in developing physiologically-based pharmacokinetic (PBPK) models for predicting highly-variable first-pass metabolism of testosterone and other UGT2B17 substrates.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Diana Busch
- Department of Clinical Pharmacology, University of Greifswald, Greifswald, Germany
| | - King Yabut
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Albert Li
- In Vitro ADMET Laboratories (IVAL), Columbia, MD, USA
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Stefan Oswald
- Department of Clinical Pharmacology, University of Greifswald, Greifswald, Germany
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Bhatt DK, Basit A, Zhang H, Gaedigk A, Lee SB, Claw KG, Mehrotra A, Chaudhry AS, Pearce RE, Gaedigk R, Broeckel U, Thornton TA, Nickerson DA, Schuetz EG, Amory JK, Leeder JS, Prasad B. Hepatic Abundance and Activity of Androgen- and Drug-Metabolizing Enzyme UGT2B17 Are Associated with Genotype, Age, and Sex. Drug Metab Dispos 2018; 46:888-896. [PMID: 29602798 PMCID: PMC5938891 DOI: 10.1124/dmd.118.080952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.
Collapse
Affiliation(s)
- Deepak Kumar Bhatt
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Abdul Basit
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Haeyoung Zhang
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Andrea Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Seung-Been Lee
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Katrina G Claw
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Aanchal Mehrotra
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Amarjit Singh Chaudhry
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Robin E Pearce
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Roger Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Ulrich Broeckel
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Timothy A Thornton
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Deborah A Nickerson
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Erin G Schuetz
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - John K Amory
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - J Steven Leeder
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Bhagwat Prasad
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| |
Collapse
|
13
|
Moj D, Britz H, Burhenne J, Stewart CF, Egerer G, Haefeli WE, Lehr T. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification. Cancer Chemother Pharmacol 2017; 80:1013-1026. [PMID: 28988277 DOI: 10.1007/s00280-017-3447-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/23/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed at recommending pediatric dosages of the histone deacetylase (HDAC) inhibitor vorinostat and potentially more effective adult dosing regimens than the approved standard dosing regimen of 400 mg/day, using a comprehensive physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling approach. METHODS A PBPK/PD model for vorinostat was developed for predictions in adults and children. It includes the maturation of relevant metabolizing enzymes. The PBPK model was expanded by (1) effect compartments to describe vorinostat concentration-time profiles in peripheral blood mononuclear cells (PBMCs), (2) an indirect response model to predict the HDAC inhibition, and (3) a thrombocyte model to predict the dose-limiting thrombocytopenia. Parameterization of drug and system-specific processes was based on published and unpublished in silico, in vivo, and in vitro data. The PBPK modeling software used was PK-Sim and MoBi. RESULTS The PBPK/PD model suggests dosages of 80 and 230 mg/m2 for children of 0-1 and 1-17 years of age, respectively. In comparison with the approved standard treatment, in silico trials reveal 11 dosing regimens (9 oral, and 2 intravenous infusion rates) increasing the HDAC inhibition by an average of 31%, prolonging the HDAC inhibition by 181%, while only decreasing the circulating thrombocytes to a tolerable 53%. The most promising dosing regimen prolongs the HDAC inhibition by 509%. CONCLUSIONS Thoroughly developed PBPK models enable dosage recommendations in pediatric patients and integrated PBPK/PD models, considering PD biomarkers (e.g., HDAC activity and platelet count), are well suited to guide future efficacy trials by identifying dosing regimens potentially superior to standard dosing regimens.
Collapse
Affiliation(s)
- Daniel Moj
- Department of Pharmacy, Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Hannah Britz
- Department of Pharmacy, Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerlinde Egerer
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Thorsten Lehr
- Department of Pharmacy, Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbruecken, Germany.
| |
Collapse
|
14
|
McClure JJ, Zhang C, Inks ES, Peterson YK, Li J, Chou CJ. Development of Allosteric Hydrazide-Containing Class I Histone Deacetylase Inhibitors for Use in Acute Myeloid Leukemia. J Med Chem 2016; 59:9942-9959. [PMID: 27754681 DOI: 10.1021/acs.jmedchem.6b01385] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the biggest hurdles yet to be overcome for the continued improvement of histone deacetylase (HDAC) inhibitors is finding alternative motifs equipotent to the classic and ubiquitously used hydroxamic acid. The N-hydroxyl group of this motif is highly subject to sulfation/glucoronidation-based inactivation in humans; compounds containing this motif require much higher dosing in clinic to achieve therapeutic concentrations. With the goal of developing a second generation of HDAC inhibitors lacking this hydroxamate, we designed a series of potent and selective class I HDAC inhibitors using a hydrazide motif. These inhibitors are impervious to glucuronidation and demonstrate allosteric inhibition. In vitro and ex vivo characterization of our lead analogues' efficacy, selectivity, and toxicity profiles demonstrate that they possess low nanomolar activity against models of acute myeloid leukemia (AML) and are at least 100-fold more selective for AML than solid immortalized cells such as HEK293 or human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Jesse J McClure
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| | - Cheng Zhang
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| | - Elizabeth S Inks
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| | - Jiaying Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina , Charleston, South Carolina, 280 Calhoun Stret, MSC140 QF307, 29425, United States
| |
Collapse
|
15
|
Goey AK, Sissung TM, Peer CJ, Figg WD. Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics 2016; 17:1807-1815. [PMID: 27767376 DOI: 10.2217/pgs-2016-0113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping.
Collapse
Affiliation(s)
- Andrew Kl Goey
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tristan M Sissung
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Hu DG, Selth LA, Tarulli GA, Meech R, Wijayakumara D, Chanawong A, Russell R, Caldas C, Robinson JLL, Carroll JS, Tilley WD, Mackenzie PI, Hickey TE. Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res 2016; 76:5881-5893. [PMID: 27496708 DOI: 10.1158/0008-5472.can-15-3372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.
Collapse
Affiliation(s)
- Dong G Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Dhilushi Wijayakumara
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Apichaya Chanawong
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Roslin Russell
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Carlos Caldas
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jessica L L Robinson
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jason S Carroll
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Miyauchi E, Tachikawa M, Declèves X, Uchida Y, Bouillot JL, Poitou C, Oppert JM, Mouly S, Bergmann JF, Terasaki T, Scherrmann JM, Lloret-Linares C. Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects. Mol Pharm 2016; 13:2631-40. [DOI: 10.1021/acs.molpharmaceut.6b00085] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Eisuke Miyauchi
- Membrane Transport and Drug Targeting Laboratory,
Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Membrane Transport and Drug Targeting Laboratory,
Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Xavier Declèves
- Inserm, UMR-S 1144 Université Paris Descartes-Paris Diderot, Variabilité de réponse aux psychotropes, Paris F-75010, France
- Pharmacokinetics and Pharmacochemistry Unit, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris F-75014, France
| | - Yasuo Uchida
- Membrane Transport and Drug Targeting Laboratory,
Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jean-Luc Bouillot
- Department of Surgery, Université
Versailles Saint Quentin, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne 92100, France
| | - Christine Poitou
- Institut cardiométabolisme et nutrition
(ICAN), Université Pierre et Marie Curie, Service de Nutrition,
Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris F-75013, France
| | - Jean-Michel Oppert
- Institut cardiométabolisme et nutrition
(ICAN), Université Pierre et Marie Curie, Service de Nutrition,
Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris F-75013, France
| | - Stéphane Mouly
- Inserm, UMR-S 1144 Université Paris Descartes-Paris Diderot, Variabilité de réponse aux psychotropes, Paris F-75010, France
- Department of Internal Medicine, Therapeutic Research
Unit, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Jean-François Bergmann
- Inserm, UMR-S 1144 Université Paris Descartes-Paris Diderot, Variabilité de réponse aux psychotropes, Paris F-75010, France
- Department of Internal Medicine, Therapeutic Research
Unit, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Tetsuya Terasaki
- Membrane Transport and Drug Targeting Laboratory,
Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144 Université Paris Descartes-Paris Diderot, Variabilité de réponse aux psychotropes, Paris F-75010, France
| | - Célia Lloret-Linares
- Inserm, UMR-S 1144 Université Paris Descartes-Paris Diderot, Variabilité de réponse aux psychotropes, Paris F-75010, France
- Department of Internal Medicine, Therapeutic Research
Unit, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| |
Collapse
|
18
|
Afifi S, Michael A, Azimi M, Rodriguez M, Lendvai N, Landgren O. Role of Histone Deacetylase Inhibitors in Relapsed Refractory Multiple Myeloma: A Focus on Vorinostat and Panobinostat. Pharmacotherapy 2015; 35:1173-88. [PMID: 26684557 PMCID: PMC4995883 DOI: 10.1002/phar.1671] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma is a neoplastic plasma cell disorder that is characterized by clonal proliferation of plasma cells in the bone marrow, monoclonal protein in the blood and/or urine, and associated organ dysfunction and biomarkers. There have been multiple recent advances in the relapsed and refractory setting. Major steps forward include the introduction of proteasome inhibitors (bortezomib and carfilzomib) and immunomodulatory drugs (thalidomide, lenalidomide, and pomalidomide) in various combinations. These drugs have changed the management of multiple myeloma and have extended overall survival in the past decade. Established curative therapy is not yet available for patients diagnosed with multiple myeloma, supporting the development of new treatment targets. Histone deacetylase inhibitors have multiple proposed mechanisms of action in the treatment of multiple myeloma. Both vorinostat and panobinostat have demonstrated some activity against multiple myeloma, and due to the benefits reported with panobinostat, the U.S. Food and Drug Administration has recently approved the drug for the treatment of relapsed and refractory multiple myeloma. In this article, we describe the pharmacology, efficacy, and toxicity profile of vorinostat and panobinostat and their possible place in therapy.
Collapse
Affiliation(s)
- Salma Afifi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angela Michael
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahshid Azimi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mabel Rodriguez
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikoletta Lendvai
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
Syn NLX, Yong WP, Lee SC, Goh BC. Genetic factors affecting drug disposition in Asian cancer patients. Expert Opin Drug Metab Toxicol 2015; 11:1879-92. [PMID: 26548636 DOI: 10.1517/17425255.2015.1108964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In the era of genomic medicine, it is increasingly recognized that ethnogeographic differences in drug pharmacology exist between Asian and other populations. This is particularly pertinent to oncology, where drugs forming the backbone of chemotherapy often have narrow therapeutic windows and are frequently dosed close to maximally tolerable levels. AREAS COVERED At the population level, ancestry is important because historical-biogeographical confluences have shaped population genetics and pharmacoethnicity in the Asian race through allelic differentiation and interethnic differences in inheritance patterns of linkage disequilibrium. At the individual level, cis- and trans-acting germline polymorphisms and somatic mutations in genes encoding drug-metabolizing enzymes and transporters act in a multifactorial manner to determine drug disposition phenotype and clinical response in Asian cancer patients. A growing body of evidence also finds that complex genetic interactions and regulation, including a multiplicity of gene control mechanisms, are increasingly implicated in genotype-phenotype correlates than has hitherto been appreciated--potentially serving as the mechanistic links between hits in non-coding regions of genome-wide association studies and drug toxicity. Together, these genetic factors contribute to the clinical heterogeneity of drug disposition in Asian cancer patients. EXPERT OPINION This topic has broad relevance for the optimization and individualization of anticancer strategies in Asians.
Collapse
Affiliation(s)
- Nicholas Li-Xun Syn
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228
| | - Wei-Peng Yong
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599
| | - Soo-Chin Lee
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599
| | - Boon-Cher Goh
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599.,c Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 119077
| |
Collapse
|
20
|
Lin F, Wang S, Zhou Y, Wu C, Zou H, Geng P, Zhang Q, Zhang X. Pharmacokinetic Interaction Study Combining Lapatinib with Vorinostat in Rats. Pharmacology 2015; 95:160-5. [DOI: 10.1159/000380954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/13/2015] [Indexed: 11/19/2022]
|
21
|
Wang LZ, Goh SH, Wong ALA, Thuya WL, Lau JYA, Wan SC, Lee SC, Ho PC, Goh BC. Validation of a rapid and sensitive LC-MS/MS method for determination of exemestane and its metabolites, 17β-hydroxyexemestane and 17β-hydroxyexemestane-17-O-β-D-glucuronide: application to human pharmacokinetics study. PLoS One 2015; 10:e0118553. [PMID: 25793887 PMCID: PMC4368747 DOI: 10.1371/journal.pone.0118553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatographic separation of analytes was achieved using Thermo Fisher BDS Hypersil C18 analytic HPLC column (100 × 2.1 mm, 5 μm). The mobile phase was delivered at a rate of 0.5 mL/min by gradient elution with 0.1 % aqueous formic acid and acetonitrile. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionisation (ESI) and monitored by multiple reaction monitoring (MRM) in positive mode. Mass transitions 297 > 121 m/z, 300 > 121 m/z, 299 > 135 m/z, 302 > 135 m/z, 475 > 281 m/z, and 478 > 284 m/z were monitored for exemestane, exemestane-d3, 17β-dihydroexemestane, 17β-dihydroexemestane-d3, 17β-dihydroexemestane-17-O-β-D-glucuronide, and 17β-dihydroexemestane-17-O-β-D-glucuronide-d3 respectively. The assay demonstrated linear ranges of 0.4 – 40.0 ng/mL, for exemestane; and 0.2 – 15.0 ng/mL, for 17β-dihydroexemestane and 17β-dihydroexemestane-17-O-β-D-glucuronide, with coefficient of determination (r2) of > 0.998. The precision (coefficient of variation) were ≤10.7%, 7.7% and 9.5% and the accuracies ranged from 88.8 to 103.1% for exemestane, 98.5 to 106.1% for 17β-dihydroexemestane and 92.0 to 103.2% for 17β-dihydroexemestane-17-O-β-D-glucuronide. The method was successfully applied to a pharmacokinetics/dynamics study in breast cancer patients receiving exemestane 25mg daily orally. For a representative patient, 20.7% of exemestane in plasma was converted into 17β-dihydroexemestane and 29.0% of 17β-dihydroexemestane was inactivated as 17β-dihydroexemestane-17-O-β-D-glucuronide 24 hours after ingestion of exemestane, suggesting that altered 17-dihydroexemestane glucuronidation may play an important role in determining effect of exemestane against breast cancer cells.
Collapse
Affiliation(s)
- Ling-Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117599, Singapore
- * E-mail: (LZW); (BCG)
| | - Sok-Hwei Goh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Haematology & Oncology, National University Health System, Singapore 119074, Singapore
| | - Win-Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Seow-Ching Wan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Haematology & Oncology, National University Health System, Singapore 119074, Singapore
| | - Paul C. Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117599, Singapore
- Department of Haematology & Oncology, National University Health System, Singapore 119074, Singapore
- * E-mail: (LZW); (BCG)
| |
Collapse
|
22
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
23
|
Falahi F, van Kruchten M, Martinet N, Hospers GAP, Rots MG. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res 2014; 16:412. [PMID: 25410383 PMCID: PMC4303227 DOI: 10.1186/s13058-014-0412-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/11/2014] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys)regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alterations have been associated with various diseases, including breast cancer. Since aberrant epigenetic modifications are potentially reversible, they might represent targets for breast cancer therapy. Indeed, several drugs have been designed to inhibit epigenetic enzymes (epi-drugs), thereby reversing epigenetic modifications. US Food and Drug Administration approval has been obtained for some epi-drugs for hematological malignancies. However, these drugs have had very modest anti-tumor efficacy in phase I and II clinical trials in breast cancer patients as monotherapy. Therefore, current clinical trials focus on the combination of epi-drugs with other therapies to enhance or restore the sensitivity to such therapies. This approach has yielded some promising results in early phase II trials. The disadvantage of epi-drugs, however, is genome-wide effects, which may cause unwanted upregulation of, for example, pro-metastatic genes. Development of gene-targeted epigenetic modifications (epigenetic editing) in breast cancer can provide a novel approach to prevent such unwanted events. In this context, identification of crucial epigenetic modifications regulating key genes in breast cancer is of critical importance. In this review, we first describe aberrant DNA methylation and histone modifications as two important classes of epigenetic mutations in breast cancer. Then we focus on the preclinical and clinical epigenetic-based therapies currently being explored for breast cancer. Finally, we describe epigenetic editing as a promising new approach for possible applications towards more targeted breast cancer treatment.
Collapse
|
24
|
McDonnel SJ, Tell LA, Murphy BG. Pharmacokinetics and pharmacodynamics of suberoylanilide hydroxamic acid in cats. J Vet Pharmacol Ther 2014; 37:196-200. [PMID: 24236915 PMCID: PMC3949138 DOI: 10.1111/jvp.12088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA), or vorinostat, is a histone deacetylase inhibitor approved for use as chemotherapy for lymphoma in humans. The goal of this study was to establish pharmacological parameters of SAHA in cats. Our interest in treating cats with SAHA is twofold: as an anticancer chemotherapeutic and as antilatency therapy for feline retroviral infections. Relying solely on data from studies in other animals would be inappropriate as SAHA is partially metabolized by glucuronidation, which is absent in feline metabolism. SAHA was administered to cats intravenously (2 mg/kg) or orally (250 mg/m², ~17 mg/kg) in a cross-over study design. Clinically, SAHA was well tolerated at these dosages as no abnormalities were noted following administration. The pharmacokinetics of SAHA in cats was found to be similar to that of dogs, but the overall serum drug exposure was much less than that of humans at an equivalent dose. The pharmacodynamic effect of an increase in acetylated histone proteins in blood was detected after both routes of administration. An increased oral dose of 60 mg SAHA/kg administered to one animal resulted in a surprisingly modest increase in peak drug concentration, suggesting possible saturation of absorption kinetics. This study provides a foundation for future studies of the clinical efficacy of SAHA in treating feline disease.
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Tupper Hall, Room 2108, Davis, CA 95616
| | - Brian G Murphy
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616
| |
Collapse
|
25
|
Ma C, Chen HIH, Flores M, Huang Y, Chen Y. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S5. [PMID: 24564956 PMCID: PMC4029357 DOI: 10.1186/1752-0509-7-s5-s5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. METHOD Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. RESULT BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. CONCLUSIONS The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates.
Collapse
Affiliation(s)
- Chifeng Ma
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Hung-I Harry Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
26
|
Iwamoto M, Friedman EJ, Sandhu P, Agrawal NGB, Rubin EH, Wagner JA. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor. Cancer Chemother Pharmacol 2013; 72:493-508. [PMID: 23820962 DOI: 10.1007/s00280-013-2220-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 06/16/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE Vorinostat is a histone deacetylase inhibitor that has demonstrated preclinical activity in numerous cancer models. Clinical activity has been demonstrated in patients with a variety of malignancies. Vorinostat is presently indicated for the treatment of patients with advanced cutaneous T cell lymphoma (CTCL). Clinical investigation is ongoing for therapy of other solid tumors and hematological malignancies either as monotherapy or in combination with other chemotherapeutic agents. This review summarizes the pharmacokinetic properties of vorinostat. METHODS Monotherapy pharmacokinetic data across a number of pharmacokinetic studies were reviewed, and data are presented. In addition, literature review was performed to obtain published Phase I and II pharmacokinetic combination therapy data to identify and characterize potential drug interactions with vorinostat. Pharmacokinetic data in special populations were also reviewed. RESULTS The clinical pharmacology profile of vorinostat is favorable, exhibiting dose-proportional pharmacokinetics and modest food effect. There appear to be no major differences in the pharmacokinetics of vorinostat in special populations, including varying demographics and hepatic dysfunction. Combination therapy pharmacokinetic data indicate that vorinostat has a low propensity for drug interactions. CONCLUSIONS Vorinostat's favorable clinical pharmacology and drug interaction profile aid in the ease of administration of vorinostat for the treatment of advanced CTCL and will be beneficial in continued assessment for other oncologic indications. Although a number of studies have been conducted to elucidate the detailed pharmacokinetic profile of vorinostat, more rigorous assessment of vorinostat pharmacokinetics, including clinical drug interaction studies, will be informative.
Collapse
Affiliation(s)
- Marian Iwamoto
- Department of Project Leadership and Management, Merck Sharp & Dohme Corp. a Subsidiary of Merck & Co., Inc., Whitehouse Station, NJ, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Overexpression of uridine diphospho glucuronosyltransferase 2B17 in high-risk chronic lymphocytic leukemia. Blood 2013; 121:1175-83. [DOI: 10.1182/blood-2012-08-447359] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Uridine diphospho glucuronosyltransferase 2B17 (UGT2B17) is overexpressed in poor prognostic chronic lymphocytic leukemia.
Collapse
|
28
|
Ekström L, Johansson M, Rane A. Tissue distribution and relative gene expression of UDP-glucuronosyltransferases (2B7, 2B15, 2B17) in the human fetus. Drug Metab Dispos 2013; 41:291-5. [PMID: 23223495 DOI: 10.1124/dmd.112.049197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze phase II conjugation reactions and play an important role in the inactivation and elimination of several drugs. It is well known that the UGT activity in fetal livers is low compared with the UGT activity in adult livers. In this study the mRNA expression levels of the three human subfamilies, 2B7, 2B15, and 2B17, were determined in 20 adult and 60 fetal liver tissue specimens. The expression profile in fetal kidneys (N = 43), adrenals (N = 46), and lungs (N = 37) was also determined. All fetal and adult samples were genotyped for the UGT2B17 deletion polymorphism. Adult liver contained 13-36 times higher levels of UGT2B mRNAs as compared with fetal livers. UGT2B7 was most abundant in fetal lungs and kidneys, whereas UGT2B15 and UGT2B17 were predominant in the liver. There was a significant correlation between UGT2B7 expression levels in lungs and kidneys, whereas for the other UGT2Bs no correlation between the different tissues was observed. Fetuses expressing two UGT2B17 alleles (ins/ins) displayed significantly higher levels of UGT2B17 mRNA compared to ins/del fetuses in lungs, whereas in the other tissues no gene dose-effect was observed.
Collapse
Affiliation(s)
- Lena Ekström
- Department Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
29
|
Wang LZ, Ramírez J, Yeo W, Chan MYM, Thuya WL, Lau JYA, Wan SC, Wong ALA, Zee YK, Lim R, Lee SC, Ho PC, Lee HS, Chan A, Ansher S, Ratain MJ, Goh BC. Glucuronidation by UGT1A1 is the dominant pathway of the metabolic disposition of belinostat in liver cancer patients. PLoS One 2013; 8:e54522. [PMID: 23382909 PMCID: PMC3559838 DOI: 10.1371/journal.pone.0054522] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/12/2012] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Belinostat is a hydroxamate class HDAC inhibitor that has demonstrated activity in peripheral T-cell lymphoma and is undergoing clinical trials for non-hematologic malignancies. We studied the pharmacokinetics of belinostat in hepatocellular carcinoma patients to determine the main pathway of metabolism of belinostat. The pharmacokinetics of belinostat in liver cancer patients were characterized by rapid plasma clearance of belinostat with extensive metabolism with more than 4-fold greater relative systemic exposure of major metabolite, belinostat glucuronide than that of belinostat. There was significant interindividual variability of belinostat glucuronidation. The major pathway of metabolism involves UGT1A1-mediated glucuronidation and a good correlation has been identified between belinostat glucuronide formation and glucuronidation of known UGT1A1 substrates. In addition, liver microsomes harboring UGT1A1*28 alleles have lower glucuronidation activity for belinostat compared to those with wildtype UGT1A1. The main metabolic pathway of belinostat is through glucuronidation mediated primarily by UGT1A1, a highly polymorphic enzyme. The clinical significance of this finding remains to be determined. TRIAL REGISTRATION ClinicalTrials.gov NCT00321594.
Collapse
Affiliation(s)
- Ling-Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Jacqueline Ramírez
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Winnie Yeo
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | | | - Win-Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Seow-Ching Wan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Ying-Kiat Zee
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Robert Lim
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Paul C. Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - How-Sung Lee
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Anthony Chan
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | - Sherry Ansher
- Cancer Therapy Evaluation Program, Bethesda, Maryland, United States of America
| | - Mark J. Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| |
Collapse
|
30
|
Fraczek J, Vanhaecke T, Rogiers V. Toxicological and metabolic considerations for histone deacetylase inhibitors. Expert Opin Drug Metab Toxicol 2013; 9:441-57. [PMID: 23286281 DOI: 10.1517/17425255.2013.754011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Vorinostat and romidepsin were the first histone deacetylase (HDAC) inhibitors (HDi) that fulfilled the preclinical promise of anticancer potential in clinical trials. Nevertheless, they merely opened a new chapter in the history of cancer therapy. Demonstration of their antitumor activity was a straightforward task in in vitro setting. Proving their efficacy in vivo was much more difficult, since the effects of an administrated drug strongly depend on its absorption, distribution, metabolism and excretion. AREAS COVERED This article summarizes clinical data on the pharmacokinetic properties of HDi that are currently at more advanced stages of clinical development. Specific attention is paid to the metabolic pathways. Moreover, a comprehensive overview of HDi-related adverse effects is given. EXPERT OPINION At this moment, HDi form one of the most interesting classes of therapeutics, yet their efficacy and safety profiles could still be improved by i) designing better formulations, ii) more extensive characterization of their disposition at the preclinical stage, iii) targeting of individual disease-related deacetylase isoforms and/or their complexes, iv) selecting a target patient population with the highest probability of response based on molecular signatures.
Collapse
Affiliation(s)
- Joanna Fraczek
- VUB, Toxicology, Laarbeeklaan 103, Brussels 1090, Belgium.
| | | | | |
Collapse
|
31
|
Jenkinson C, Petroczi A, Naughton DP. Red wine and component flavonoids inhibit UGT2B17 in vitro. Nutr J 2012; 11:67. [PMID: 22958586 PMCID: PMC3495706 DOI: 10.1186/1475-2891-11-67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on testosterone metabolism. Considering the variety of foodstuffs that contain flavonoids, it is feasible that diet can elevate levels of circulating testosterone through reduction in urinary excretion. These results warrant further investigation and extension to a human trial to delineate the health implications.
Collapse
Affiliation(s)
- Carl Jenkinson
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, London, Surrey, KT1 2EE, UK
| | | | | |
Collapse
|
32
|
Dasari A, Gore L, Messersmith WA, Diab S, Jimeno A, Weekes CD, Lewis KD, Drabkin HA, Flaig TW, Camidge DR. A phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small cell lung cancer. Invest New Drugs 2012; 31:115-25. [DOI: 10.1007/s10637-012-9812-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 01/02/2023]
|