1
|
Zhang XH, Sun QJ, Zhao LC, Chen L, Li W. Traditional Chinese medicine in chronic rhinosinusitis: Mechanisms and postoperative recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156658. [PMID: 40138776 DOI: 10.1016/j.phymed.2025.156658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is inflammation of the sinuses and nasal passages that lasts for >3 months. Its pathogenesis is complex, treatment is difficult, and it has multiple effects on patients. Although surgical treatment can effectively relieve the symptoms, the recurrence rate is high, and there are postoperative complications such as infection. At present, nasal spray hormone, antibiotics and other western drugs are used in clinical treatment, but there are drug dependence and toxic side effects. However, traditional Chinese medicine (TCM) has made remarkable progress in the treatment and promotion of postoperative recovery, guided by its unique TCM theory, and has little toxic and side effects, providing more treatment options for patients. PURPOSE The review aims to elucidate the mechanism of CRS from the aspects of traditional medicine and modern medicine, and evaluate the influence of TCM compound, components of TCM, TCM nasal irrigation, TCM fumigation and other auxiliary treatment methods on CRS, providing a new perspective for the application of TCM in CRS. METHODS We conducted the literature retrieval with PubMed, Web of Science, Google Scholar and CNKI databases in a systematic manner (up to July 2024). The keywords included "sinusitis", "chronic rhinosinusitis", "nasal polyps", "herbal medicine", "medicinal plants", "traditional Chinese medicine", "oxidative stress", "pathogenic microbial", "anatomic structure" and so on. The obtained literatures were comprehensively sorted out. For image creation, Figdraw 2.0 was methodically employed. RESULTS The pathogenesis of CRS involves various interaction mechanisms such as bacterial biofilm formation, oxidative stress injury and impaired ciliary mucosa clearance. It is worth noting that TCM exerts therapeutic effects by targeting the above-mentioned pathological processes. Clinical studies have confirmed that TCM comprehensive therapy can significantly improve sinus symptom score, accelerate postoperative mucosal epithelialization, and promote postoperative rehabilitation of CRS. We also discussed the toxic side effects and clinical applications of related drugs. CONCLUSION In TCM, CRS is classified under the diagnostic category of Bi Yuan. Its pathogenesis is attributed to exogenous invasion of the six climatic pathogens (Liu Yin: wind, cold, summer heat, dampness, dryness, and fire), spleen-stomach qi deficiency, internal damp-heat accumulation, and qi-blood stasis. Guided by TCM principles, therapeutic strategies are individualized through syndrome differentiation, which tailors interventions to the patient's unique clinical manifestations. Therapeutic modalities include oral herbal formulations (e.g., decoctions or granules), acupuncture, and acupoint application. These approaches aim to restore physiological balance by harmonizing yin and yang, resolving meridian obstructions, and enhancing lung qi circulation to alleviate nasal congestion and improve ventilation.
Collapse
Affiliation(s)
- Xi-He Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qing-Jia Sun
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Li-Chun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine. Guiyang 550025, China
| | - Long Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Huang Q, Luan J, Zhou H. Kartagener syndrome with minimal change disease: a case report. J Med Case Rep 2025; 19:165. [PMID: 40197484 PMCID: PMC11978126 DOI: 10.1186/s13256-025-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Kartagener syndrome is characterized by chronic sinusitis, bronchiectasis, and total visceral transposition. While there are few reports of Kartagener syndrome combined with kidney disease, there are none that specifically report Kartagener syndrome in conjunction with minimal change disease. This is the first report of a rare case of Kartagener syndrome with minimal change disease, which presented with the typical triad and was clinically diagnosed. CASE PRESENTATION A 24-year-old Chinese woman was admitted to the hospital with 2 weeks of foamy urine and edema of the eyelid and lower limbs. After admission, the examination indicated nephrotic syndrome and total visceral transposition. Computed tomography imaging revealed sinusitis bronchiectasis, and she was diagnosed with minimal change disease with Kartagener syndrome. A renal biopsy revealed minimal changes. After symptomatic antiinflammatory therapy, the patient was given telmisartan 50 mg orally once daily to reduce urinary protein levels. A total of 1 month after discharge, her 24-h urine protein content was < 1 g, with normal liver function and improved kidney disease. CONCLUSION We describe a rare case of Kartagener syndrome accompanied by glomerular disease and minimal change disease. The patient was treated symptomatically with antiinflammatory agents and will be monitored long term. We believe our findings will provide valuable guidance and reference for the treatment of such cases in the future.
Collapse
Affiliation(s)
- Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110000, Liaoning, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110000, Liaoning, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
3
|
Kim CY, Park B, Jung JY, Kim JH, Nam CM, An J, Won S, Kim YS. Genome wide interaction study of genetic variants associated with lung function decline. Sci Rep 2025; 15:9824. [PMID: 40118907 PMCID: PMC11928451 DOI: 10.1038/s41598-025-93147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
Some genetic variants are associated with lung function decline and chronic obstructive pulmonary disease (COPD), but functional studies are necessary to confirm causality. We investigated the genetic susceptibility-associated lung function decline with or without COPD, using data from a community-based cohort (N = 8554). A genome-wide interaction study was conducted to identify the association between genetic variants and pulmonary function, and the way variants relate to lung impairment in accordance with smoking status and amount was examined. We further used a linear mixed model to examine the association and interaction to time effect. We found annual mean FEV1 declines of 41.7 mL for men and 33.4 mL for women, and the annual rate of decline in FEV1 was the fastest for current smokers. We also found a previously identified locus near FAM13A, the most significant SNPs from the results of two likelihood ratio tests for FEV1/FVC (P = 1.56 × 10-10). These selected SNPs were located in the upstream region of FAM13A on chromosome 4 and had similar minor allele frequencies (MAFs). Furthermore, we found that certain SNPs tended to have lower FEV1/FVC values, and lung function decreased much faster with time interactions. The SNP most associated with lung function decline was the rs75679995 SNP on chromosome 7, and those SNPs located within the TAD of the DNAH11 region and the eQTL of rs9991425 revealed a higher expression of MFAP3L and AADAT genes (P = 2.28 × 10-7 and 2.01 × 10-6, respectively). This is the first study to investigate gene-time interactions in lung function decline as a risk factor for COPD in the Korean population. In addition to replicating previously known signals for FAM13A, we identified two genomic regions (DNAH11, AADAT) that are potentially involved in gene-environment interactions, warranting further investigation to confirm their roles.
Collapse
Affiliation(s)
- Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea
| | - Ji Ye Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Hyeong Kim
- Division of Pulmonology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine and Public Health, Yonsei University College of Medicine, Seoul, Korea
| | - Jaehoon An
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea
- RexSoft Corps, Seoul, South Korea
| | - Sungho Won
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea.
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- RexSoft Corps, Seoul, South Korea.
| | - Young Sam Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Dhakal N, Dahal P. Incidental imaging detection of Kartagener syndrome in a female: A case report. Radiol Case Rep 2025; 20:1517-1521. [PMID: 39807117 PMCID: PMC11727315 DOI: 10.1016/j.radcr.2024.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Kartagener syndrome is a rare ciliopathic genetic disorder characterized by a triad of chronic sinusitis, situs inversus, and bronchiectasis. The underlying pathophysiology involves reduced ciliary motility due to defects in ciliary structure and function within the respiratory tract and fallopian tubes. Diagnosis is typically confirmed through imaging studies such as X-rays, CT scans, and echocardiograms, which reveal the abnormal orientation of the heart and other organs. Treatment depends on the presence of associated conditions, such as congenital heart defects, respiratory infections and appropriate interventions with regular follow-up can help prevent complications. In this case, we present a 32-year-old female with a history of secondary infertility who presented with recurrent cough and fever. A thorough clinical examination was conducted, followed by radiological investigations that revealed chronic sinusitis, bronchiectasis, dextrocardia, and situs inversus totalis. She was subsequently treated with oral antibiotics, mucolytics, and initiated on chest physiotherapy. This case highlights the importance of considering Kartagener syndrome in patients presenting with recurrent respiratory infections and fertility issues.
Collapse
Affiliation(s)
- Natasha Dhakal
- Manmohan Cardiothoracic Vascular and Transplant Center, Kathmandu, Nepal
| | - Prajwal Dahal
- Department of Radiology and Imaging, Grande International Hospital, Kathmandu, Nepal
| |
Collapse
|
5
|
Yang S, Wang X, Gao H, Yuan S. Motile cilia: Key developmental and functional roles in reproductive systems. Andrology 2025. [PMID: 39895399 DOI: 10.1111/andr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Cilia are specialized microtubule-based organelles that extend from the cell surface and are classified into non-motile and motile types. The assembly and function of cilia are regulated by a complex molecular network that enables motile cilia to generate fluid flow across epithelial surfaces through coordinated beating. These motile cilia are found in the respiratory, nervous, and reproductive systems. In males, motile cilia are found in the efferent ducts and facilitate the transport of sperm from the testis to the epididymis. In females, they are mainly found in the oviducts, where they help to transport, nourish and fertilize eggs, and are also present in the endometrial epithelium. MATERIAL-METHODS This review compares the common factors that affect motile cilia in both male and female reproductive tracts, discusses the origin and development of multiciliated cell and cilia within the efferent ducts and oviducts, and enumerates the infertility or related reproductive diseases that may arise due to motile cilia defects. RESULTS-DISCUSSION In males, motile cilia in the efferent ducts create turbulence through their beating, which keeps semen suspended and prevents ductal obstruction. In females, motile cilia are distributed on the epithelia of the oviducts and the endometrium. Specifically, motile cilia in the infundibulum of the oviduct aid in capturing oocytes, while cilia in the isthmus region have been found to bind to sperm heads, facilitating the formation of the sperm reservoir. Several common factors, such as miR-34b/c and miR-449, TAp73, Gemc1, and estrogen, etc., have been shown to play crucial regulatory roles in motile cilia within the efferent ducts and oviducts, thereby further influencing fertility outcomes. CONCLUSIONS Pathogenic mutations that disrupt ciliary function can impair ciliogenesis or alter the structure of sperm flagella, potentially resulting in infertility. Consequently, motile cilia in both the male and female reproductive tracts are crucial for fertility. There are still numerous unresolved mysteries surrounding these cilia that merit further investigation by researchers, as they hold great significance for the clinical diagnosis and treatment of infertility and related reproductive disorders.
Collapse
Affiliation(s)
- Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Gao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Vingerhoets G. The relationship between brain and visceral asymmetry: Evidence from situs inversus in humans. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:47-61. [PMID: 40074416 DOI: 10.1016/b978-0-443-15646-5.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This review examines the relationship between visceral and brain asymmetry and explores whether their alignment observed in some vertebrate species also exists in humans. While the development of visceral and brain asymmetry may have occurred for different reasons, it is possible that the basic mechanisms for left-right differentiation of the visceral system were duplicated in the brain. We describe the main phenotypical anomalies and the general mechanism of left-right differentiation in vertebrates, followed by a systematic review of available human studies on behavioral and brain asymmetry in individuals with reversed visceral organization. The available evidence shows no direct link between human visceral and brain laterality. Most individuals with situs inversus totalis (SIT) show typical population biases for handedness and brain functional asymmetry, although an increased prevalence of atypical hemispheric segregation may be present. Perisylvian brain structural asymmetries also reveal the expected population bias in participants with SIT. However, several independent studies indicate that SIT is associated with a general reversal of the gross morphologic asymmetry of brain torque. Potential differences in brain structural and functional asymmetries between subtypes of situs inversus with ciliary and nonciliary causes remain to be determined.
Collapse
Affiliation(s)
- Guy Vingerhoets
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Rasheed FS, Alelyani RH, Assad MA, Aljehani ND, Alkhonizy SW, Alaqil SN, Aldumkh SH, Alrajhi RS, Jalaluddin RA, Nawwab EA. Aesthetic Surgery in a Patient With Situs Inversus: A Rare Case Report About the Practical Concerns. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6348. [PMID: 39687415 PMCID: PMC11649279 DOI: 10.1097/gox.0000000000006348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
Aesthetic surgery has gained substantial popularity over the last decade due to enormous projections in the media. These procedures have not only attracted Westerners but also the Middle Eastern and Saudi populations. Situs inversus is an extremely rare congenital anomaly with an incidence of 1 in 10,000 live births. Its association with Kartagener syndrome, cardiac anomalies, asplenia, and vertebral column deformities are well documented in the literature. A wide range of procedures have been described for people with situs inversus with special technical considerations, but an aesthetic procedure has never been published for them before this report. We provide a brief report of a 53-year-old woman with a known case of situs inversus who underwent a body contouring procedure.
Collapse
Affiliation(s)
- Faryal S. Rasheed
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Rakan Hamdan Alelyani
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Majad A. Assad
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Nawaf D. Aljehani
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sarah W. Alkhonizy
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sultan N. Alaqil
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Shahad H. Aldumkh
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | - Reem S. Alrajhi
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Eyad A. Nawwab
- From the Department of Plastic Surgery and Burns, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Hirschfeld M, Kovesi TA. First case of primary ciliary dyskinesia in an Alaska Native individual: Evidence supporting the presence of a founder effect. Pediatr Pulmonol 2024; 59:3024-3025. [PMID: 39031818 DOI: 10.1002/ppul.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Affiliation(s)
- Matthew Hirschfeld
- Southcentral Foundation, Alaska Native Medical Center, Anchorage, Alaska, USA
| | - Thomas A Kovesi
- Department of Pediatrics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Raatikainen P, Marjamaa A, Tolppanen H, Karvonen J, Aro A. Single catheter ablation of atrioventricular node in a patient with dextrocardia and permanent atrial fibrillation via peripheral vascular access using remote magnetic navigation: a case report. Eur Heart J Case Rep 2024; 8:ytae510. [PMID: 39430669 PMCID: PMC11487482 DOI: 10.1093/ehjcr/ytae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024]
Abstract
Background Cardiac interventions may be challenging in patients with congenital cardiac abnormalities. This case reports cardiac resynchronization therapy pacemaker (CRT-P) implantation and single catheter ablation of atrioventricular node (AVN) with remote magnetic navigation (RMN) via peripheral vascular access in a patient with Kartagener's syndrome and permanent atrial fibrillation (AF). Case summary A 74-year-old male with situs inversus presented for treatment of permanent AF and severe heart failure. In echocardiography, left ventricular ejection fraction was 30%, and there was severe dyskinesia due to a left bundle branch block. After successful CRT-P implantation, we performed AVN ablation because biventricular (BiV) pacing was <75% despite maximal rate control medication. The ablation catheter was inserted from the right basilic vein, and no other catheters were used. Despite peripheral vascular access, manipulation of the ablation catheter with RMN was easy, and the ablation was successful. After the ablation, BiV pacing instantly increased to 100%, and left ventricular function and symptomatic status improved gradually. Conclusions Cardiac resynchronization therapy pacemaker implantation and RMN-guided single catheter ablation of the AVN in a patient with dextrocardia via peripheral vascular access was effective and safe. The use of RMN and peripheral vascular access may offer important advantages also in other patient groups.
Collapse
Affiliation(s)
- Pekka Raatikainen
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital, Haartmanninkatu 4, FI-00029 HUS, Helsinki, Finland
| | - Annukka Marjamaa
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital, Haartmanninkatu 4, FI-00029 HUS, Helsinki, Finland
| | - Heli Tolppanen
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital, Haartmanninkatu 4, FI-00029 HUS, Helsinki, Finland
| | - Jarkko Karvonen
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital, Haartmanninkatu 4, FI-00029 HUS, Helsinki, Finland
| | - Aapo Aro
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital, Haartmanninkatu 4, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
10
|
Yu K, Chen W, Chen Y, Shen L, Wu B, Zhang Y, Zhou X. De novo and inherited micro-CNV at 16p13.11 in 21 Chinese patients with defective cardiac left-right patterning. Front Genet 2024; 15:1458953. [PMID: 39315310 PMCID: PMC11416941 DOI: 10.3389/fgene.2024.1458953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Copy number changes at Chromosomal 16p13.11 have been implicated in a variety of human diseases including congenital cardiac abnormalities. The clinical correlation of copy number variants (CNVs) in this region with developmental abnormalities remains controversial as most of the patients inherit the duplication from an unaffected parent. Methods We performed CNV analysis on 164 patients with defective left-right (LR) patterning based on whole genome-exome sequencing (WG-ES) followed by multiplex ligation-dependent probe amplification (MLPA) validation. Most cases were accompanied with complex congenital heart disease (CHD). Results CNVs at 16p13.11 were identified in a total of 21 cases, accounting for 12.80% (21/164) evaluated cases. We observed a marked overrepresentation of chromosome 16p13.11 duplications in cases when compared with healthy controls according to literature reports (15/164, 9.14% versus 0.09% in controls). Notably, in two independent family trios, de novo 16p13.11 micro-duplications were identified in two patients with laterality defects and CHD. Moreover, 16p13.11 micro-duplication was segregated with the disease in a family trio containing 2 affected individuals. Notably, five coding genes, NOMO1, PKD1P3, NPIPA1, PDXDC1, and NTAN1, were potentially affected by micro-CNV at 16p13.11 in these patients. Conclusion Our study provides new family-trio based evidences to support 16p13.11 micro-duplications predispose individuals to defective cardiac left-right patterning and laterality disorder.
Collapse
Affiliation(s)
- Kun Yu
- The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Soochow, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, China
| | - Boxuan Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
11
|
Abou Alaiwa MA, Hilkin BM, Price MP, Gansemer ND, Rector MR, Stroik MR, Powers LS, Whitworth KM, Samuel MS, Jain A, Ostedgaard LS, Ernst SE, Philibert W, Boyken LD, Moninger TO, Karp PH, Hornick DB, Sinn PL, Fischer AJ, Pezzulo AA, McCray PB, Meyerholz DK, Zabner J, Prather RS, Welsh MJ, Stoltz DA. Development and Initial Characterization of Pigs with DNAI1 Mutations and Primary Ciliary Dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594822. [PMID: 39229081 PMCID: PMC11370470 DOI: 10.1101/2024.05.22.594822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease.
Collapse
Affiliation(s)
- Mahmoud A. Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Brie M. Hilkin
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Margaret P. Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Michael R. Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Mal R. Stroik
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | | | - Melissa S. Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Akansha Jain
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Winter Philibert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Linda D. Boyken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Phillip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Douglas B. Hornick
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Paul B. McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Randy S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - David A. Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Liu X, Wang H, Zhang Y, Zhang R, Zhang R, Shi X, Pan F, Qiao D, Xin Q, Liu Z, Zhang Y, Li C, Lang Y, Shao L. A novel heterozygous variant of the SALL1 gene with atypical Townes-Brocks syndrome phenotypes in Chinese family. Nephrology (Carlton) 2024; 29:541-546. [PMID: 38584358 DOI: 10.1111/nep.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Townes-Brocks syndrome (TBS) is an autosomal dominant disorder characterised by the triad of anorectal, thumb, and ear malformations. It may also be accompanied by defects in kidney, heart, eyes, hearing, and feet. TBS has been demonstrated to result from heterozygous variants in the SALL1 gene, which encodes zinc finger protein believed to function as a transcriptional repressor. The clinical characteristics of an atypical TBS phenotype patient from a Chinese family are described, with predominant manifestations including external ear dysplasia, unilateral renal hypoplasia with mild renal dysfunction, and hearing impairment. A novel heterozygous variant c.3060T>A (p.Tyr1020*) in exon 2 of the SALL1 gene was identified in this proband. Pyrosequencing of the complementary DNA of the proband revealed that the variant transcript accounted for 48% of the total transcripts in peripheral leukocytes, indicating that this variant transcript has not undergone nonsense-mediated mRNA decay. This variant c.3060T > A is located at the terminal end of exon 2, proximal to the 3' end of the SALL1 gene, and exerts a relatively minor impact on protein function. We suggest that the atypical TBS phenotype observed in the proband may be attributed to the truncated protein retaining partial SALL1 function.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Hong Wang
- Department of Nephrology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yiyin Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ran Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Emergency, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Fengjiao Pan
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Dan Qiao
- Department of Nephrology, Dalian Medical University, Dalian, China
| | - Qing Xin
- Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiying Liu
- Renal Division, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Nephrology, Weifang Medical University, Weifang, China
| | - Changying Li
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yanhua Lang
- Department of Materials, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Leping Shao
- Department of Nephrology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
13
|
Taniguchi Y, Miura K, Shira Y, Fujimaru T, Sohara E, Yamaguchi Y, Hattori M. Primary Cilia Elongation in Early-Onset Polycystic Kidney Disease with 2 Hypomorphic PKD1 Alleles: A Case Report. Kidney Med 2024; 6:100857. [PMID: 39105070 PMCID: PMC11298903 DOI: 10.1016/j.xkme.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Recent studies have described several children with very early-onset polycystic kidney disease (PKD) that mimicked autosomal recessive polycystic kidney disease because of 2 hypomorphic PKD1 gene variants. However, no reports have described pathological changes in the primary cilia in these cases. We analyzed the primary cilia in the kidney tubules of an early elementary school child who had very early-onset PKD and a history of large, echogenic kidneys in utero. There was no family history of autosomal dominant PKD. The patient developed kidney failure and received a living-donor kidney transplant from his father. Genetic analysis revealed compound heterozygous variants in the PKD1 gene: c.3876C>A (p. Phe1292Leu) and c.5957C>T (p. Thr1986Met). These variants were likely pathogenic based on in silico analysis. The absence of kidney cysts in the parents suggested that these variants were hypomorphic alleles. Pathological examination of the patient's excised kidney showed prominent dilatation of the proximal and distal tubules. Immunofluorescence staining for α-tubulin showed pronounced elongation of the primary cilia. These findings suggest that the hypomorphic PKD1 variants expressed in this patient with very early-onset PKD were pathogenic.
Collapse
Affiliation(s)
- Yohei Taniguchi
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Pediatrics, Hyogo Medical University, Hyogo, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yoko Shira
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Sarkar N, Chakravarty R, Mukhopadhyay S. Situs Inversus, a Choledochal Cyst and a Horseshoe Kidney: A Strange Coincidence of Congenital Conditions. Cureus 2024; 16:e66757. [PMID: 39268275 PMCID: PMC11391701 DOI: 10.7759/cureus.66757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Situs inversus is a condition in which abdominal and thoracic organs are laterally transposed. The organs which are supposed to be on the right side of the abdomen are on the left and vice versa. It is a rare congenital condition; however, the exact incidence is difficult to determine as most of the cases go unnoticed until they undergo an imaging study. We report a case of a 30-year-old female presenting with situs inversus in association with a choledochal cyst and a horseshoe kidney. She underwent imaging evaluation for non-specific abdominal pain. Her routine clinical examination revealed a soft abdomen without any tenderness. Routine laboratory tests were within normal limits. Since there was abdominal pain, ultrasonography of the whole abdomen was advised. It revealed the presence of abdominal organs on the opposite side as normally seen. The common bile duct was dilated, and lower poles of the kidneys were fused. The cardiac apex was found to be on the right. It was followed up with a computed tomography scan which confirmed situs inversus. The common bile duct was dilated without any obstructive pathology in the pancreatic head or periampullary region. Lower poles of the kidneys were found to be fused together in front of the retroperitoneal vessels through an isthmus. Based on these findings, a diagnosis of situs inversus in a case of a choledochal cyst and a horseshoe kidney was made. Situs inversus is a rare entity. Its association with choledochal cysts and horseshoe kidneys has never been reported in the literature to the best of our knowledge.
Collapse
|
15
|
Ali I, Ali H, Unar A, Rahim F, Khan K, Dil S, Abbas T, Hussain A, Zeb A, Zubair M, Zhang H, Ma H, Jiang X, Khan MA, Xu B, Shah W, Shi Q. A novel homozygous missense TTC12 variant identified in an infertile Pakistani man with severe oligoasthenoteratozoospermia and primary ciliary dyskinesia. Mol Genet Genomics 2024; 299:69. [PMID: 38992144 DOI: 10.1007/s00438-024-02161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.
Collapse
Affiliation(s)
- Imtiaz Ali
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Haider Ali
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Fazal Rahim
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Khalid Khan
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Sobia Dil
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Tanveer Abbas
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ansar Hussain
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Aurang Zeb
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Muhammad Zubair
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Huan Zhang
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Ma
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaohua Jiang
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Bo Xu
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Wasim Shah
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Qinghua Shi
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
16
|
Al-Mutairi DA, Alsabah BH, Pennekamp P, Omran H. Novel pathogenic variants of DNAH5 associated with clinical and genetic spectra of primary ciliary dyskinesia in an Arab population. Front Genet 2024; 15:1396797. [PMID: 39045318 PMCID: PMC11264286 DOI: 10.3389/fgene.2024.1396797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Primary ciliary dyskinesia (PCD) is caused by the dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. This study aimed to map novel PCD variants and determine their pathogenicity in PCD patients in Kuwait. Methods: Herein, we present five PCD individuals belonging to a cohort of 105 PCD individuals recruited from different hospitals in Kuwait. Genomic DNAs from the family members were analysed to screen for pathogenic PCD variants. Transmission electron microscopy (TEM) and immunofluorescence (IF) analyses were performed on the nasal biopsies to detect specific structural abnormalities within the ciliated cells. Results: Genetic screening and functional analyses confirmed that the five PCD individuals carried novel pathogenic variants of DNAH5 causing PCD in three Arabic families. Of these, one multiplex family with two affected individuals showed two novel homozygous missense variants in DNAH5 causing PCD with situs inversus; another multiplex family with two affected individuals showed two newly identified compound heterozygous variants in DNAH5 causing PCD with situs solitus. In addition, novel heterozygous variants were identified in a child with PCD and situs solitus from a singleton family with unrelated parents. TEM analysis demonstrated the lack of outer dynein arms (ODAs) in all analysed samples, and IF analysis confirmed the absence of the dynein arm component of DNAH5 from the ciliary axoneme. Conclusion: The newly identified pathogenic variants of DNAH5 are associated with PCD as well as variable pulmonary clinical manifestations in Arabic families.
Collapse
Affiliation(s)
- Dalal A. Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
17
|
Hjeij R, Leslie J, Rizk H, Dworniczak B, Olbrich H, Raidt J, Bode SFN, Gardham A, Stals K, Al-Haggar M, Osman E, Crosby A, Eldesoky T, Baple E, Omran H. Biallelic Variants in MNS1 Are Associated with Laterality Defects and Respiratory Involvement. Cells 2024; 13:1017. [PMID: 38920647 PMCID: PMC11202006 DOI: 10.3390/cells13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic MNS1 variants causing situs inversus and male infertility, mirroring the findings in Mns1-/- mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by MNS1-related disorder. Ciliopathy panel testing and whole exome sequencing identified one previously reported and two novel MNS1 variants extending the genotypic spectrum of disease. A broad spectrum of laterality defects including situs inversus totalis and heterotaxia was confirmed. Interestingly, a single affected six-year-old girl homozygous for an MNS1 nonsense variant presented with a history of neonatal respiratory distress syndrome, recurrent respiratory tract infections, chronic rhinitis, and wet cough. Accordingly, immunofluorescence analysis showed the absence of MNS1 from the respiratory epithelial cells of this individual. Two other individuals with hypomorphic variants showed laterality defects and mild respiratory phenotype. This study represents the first observation of heterotaxia and respiratory disease in individuals with biallelic MNS1 variants, an important extension of the phenotype associated with MNS1-related motile ciliopathy disorder.
Collapse
Grants
- HJ 7/1-1, HJ 7/1-3, OM6/7, OM6/8, OM6/10, OM6/14, OM6/16, CRU 326, OM6/11, RA3522/1-1, OL 450/1 Deutsche Forschungsgemeinschaft
- Om2/009/12, Om2/015/16, Om2/010/20 Institute for Interdisciplinary Medicine
Collapse
Affiliation(s)
- Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Joseph Leslie
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
| | - Hoda Rizk
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Bernd Dworniczak
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | | | - Alice Gardham
- North West Thames Regional Genetic Service, North West London Hospitals, London HA1 2UJ, UK;
| | - Karen Stals
- Exeter Genomics Laboratory (NHS South West Genomic Laboratory Hub), Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Mohammad Al-Haggar
- Genetics Unit, Pediatrics Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Engy Osman
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Andrew Crosby
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
| | - Tarek Eldesoky
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Emma Baple
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter EX1 2ED, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| |
Collapse
|
18
|
Kim S, Li L, Lin FC, Stack T, Lamb MM, Mohammad I, Norris M, Klatt-Cromwell C, Thorp BD, Ebert CS, Masters D, Senior BA, Askin FB, Kimple AJ. Histologic characterization of primary ciliary dyskinesia chronic rhinosinusitis. Int Forum Allergy Rhinol 2024; 14:990-994. [PMID: 37997295 DOI: 10.1002/alr.23303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
KEY POINTS We present the largest cohort of structured histopathology reports on primary ciliary dyskinesia-related chronic rhinosinusitis (PCD-CRS). Despite endoscopic differences, PCD-CRS and cystic fibrosis-related chronic rhinosinusitis (CF-CRS) had similar structured histopathology reports. Compared to healthy patients and those with idiopathic chronic rhinosinusitis without nasal polyps, patients with PCD-CRS had an increased neutrophil count.
Collapse
Affiliation(s)
- Sulgi Kim
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lang Li
- Department of Biostatistics, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Taylor Stack
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Meredith M Lamb
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ibtisam Mohammad
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Meghan Norris
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristine Klatt-Cromwell
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian D Thorp
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles S Ebert
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel Masters
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brent A Senior
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Frederic B Askin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Adam J Kimple
- Department of Otolaryngology, Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Carr KA, Moore PE, O'Connor MG. The utility of nasal nitric oxide in the diagnostic evaluation of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:1410-1417. [PMID: 38380959 PMCID: PMC11058016 DOI: 10.1002/ppul.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND There is no gold-standard test for primary ciliary dyskinesia (PCD), rather American Thoracic Society guidelines recommend starting with nasal nitric oxide (nNO) in children ≥5 years old and confirming the diagnosis with genetic testing or ciliary biopsy with transmission electron microscopy (TEM). These guidelines have not been studied in a clinical setting. We present a case series describing the PCD diagnostic process at our pediatric PCD center. METHODS Diagnostic data from 131 patients undergoing PCD consultation were reviewed. RESULTS In all participants ≥ 5 years old and who completed nNO using resistor methodology, the first diagnostic test performed was nNO in 77% (73/95), genetic testing in 14% (13/95), and TEM in <1% (9/95). nNO was the only diagnostic test performed in 75% (55/73) of participants who completed nNO first. Seventy-five percent (55/73) had a single above the cutoff nNO value and PCD was determined to be unlikely in 91% (50/55) without performing additional confirmatory testing. Eleven percent (8/73) had multiple below the cutoff nNO values, with 38% (3/8) being diagnosed with PCD by confirmatory testing and 50% (4/8) with negative confirmatory testing, but being managed as PCD. The genetic testing positivity rate was 50% in participants who completed nNO first and 8% when genetic testing was completed first. CONCLUSION nNO is useful in three situations: an initial above the cutoff nNO value makes PCD unlikely and prevents additional confirmatory testing, repetitively below the cutoff nNO values without positive confirmatory testing suggests a probable PCD diagnosis and the yield of genetic testing is higher when nNO is performed first.
Collapse
Affiliation(s)
- Katherine A Carr
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul E Moore
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael G O'Connor
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Retuerto-Guerrero M, López-Medrano R, de Freitas-González E, Rivero-Lezcano OM. Nontuberculous Mycobacteria, Mucociliary Clearance, and Bronchiectasis. Microorganisms 2024; 12:665. [PMID: 38674609 PMCID: PMC11052484 DOI: 10.3390/microorganisms12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Miriam Retuerto-Guerrero
- Servicio de Reumatología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Ramiro López-Medrano
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Elizabeth de Freitas-González
- Servicio de Neumología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Octavio Miguel Rivero-Lezcano
- Unidad de Investigación, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| |
Collapse
|
21
|
da Costa PDL, Marinho TO, Módolo NSP, Nascimento Junior PD. Primary ciliary dyskinesia: a case of complete Kartagener's syndrome in a patient undergoing cesarean section. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744469. [PMID: 37871774 DOI: 10.1016/j.bjane.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Affiliation(s)
- Paula Daniele Lopes da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina, Departamento de Especialidades Cirúrgicas e Anestesiologia, Botucatu, SP, Brazil.
| | | | - Norma Sueli Pinheiro Módolo
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina, Departamento de Especialidades Cirúrgicas e Anestesiologia, Botucatu, SP, Brazil
| | - Paulo do Nascimento Junior
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina, Departamento de Especialidades Cirúrgicas e Anestesiologia, Botucatu, SP, Brazil
| |
Collapse
|
22
|
Wang H, Ni X, Clark N, Randall K, Boeglin L, Chivukula S, Woo C, DeRosa F, Sun G. Absolute quantitation of human wild-type DNAI1 protein in lung tissue using a nanoLC-PRM-MS-based targeted proteomics approach coupled with immunoprecipitation. Clin Proteomics 2024; 21:8. [PMID: 38311768 PMCID: PMC10840268 DOI: 10.1186/s12014-024-09453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.
Collapse
Affiliation(s)
- Hui Wang
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA.
| | - Xiaoyan Ni
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Nicholas Clark
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | | | - Lianne Boeglin
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | | | - Caroline Woo
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Frank DeRosa
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Gang Sun
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA.
| |
Collapse
|
23
|
Meng X, Xu C, Li J, Qiu B, Luo J, Hong Q, Tong Y, Fang C, Feng Y, Ma R, Shi X, Lin C, Pan C, Zhu X, Yan X, Cong Y. Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia. Nat Commun 2024; 15:362. [PMID: 38191553 PMCID: PMC10774353 DOI: 10.1038/s41467-023-44577-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospinal fluid, however, remain obscure. Here, we present near-atomic resolution cryo-EM structures of mouse RS head-neck complex in both monomer and dimer forms and reveal the intrinsic flexibility of the dimer. We also map the genetic mutations related to primary ciliary dyskinesia and asthenospermia on the head-neck complex. Moreover, we present the cryo-ET and sub-tomogram averaging map of mouse ependymal cilia and build the models for RS1-3, IDAs, and N-DRC. Contrary to the conserved RS structure, our cryo-ET map reveals the lack of IDA-b/c/e and the absence of Tektin filaments within the A-tubule of doublet microtubules in ependymal cilia compared with mammalian respiratory cilia and sperm flagella, further exemplifying the structural diversity of mammalian motile cilia. Our findings shed light on the stepwise mammalian RS assembly mechanism, the coordinated rigid and elastic RS-CP interaction modes beneficial for the regulation of asymmetric ciliary beating, and also facilitate understanding on the etiology of ciliary dyskinesia-related ciliopathies and on the ependymal cilia in the development of hydrocephalus.
Collapse
Affiliation(s)
- Xueming Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cong Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiawei Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yujie Tong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Ma
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Cheng Lin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Pan
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yao Cong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
24
|
STOLTZ DAVIDA. INSIGHTS INTO THE ORIGINS OF CYSTIC FIBROSIS LUNG DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:29-36. [PMID: 39135587 PMCID: PMC11316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.
Collapse
|
25
|
Asseri AA, Shati AA, Asiri IA, Aldosari RH, Al-Amri HA, Alshahrani M, Al-Asmari BG, Alalkami H. Clinical and Genetic Characterization of Patients with Primary Ciliary Dyskinesia in Southwest Saudi Arabia: A Cross Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1684. [PMID: 37892347 PMCID: PMC10605387 DOI: 10.3390/children10101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD, MIM 244400) is an inherited ciliopathy disorder characterized by recurrent sinopulmonary infections, subfertility, and laterality defects. The true incidence of PCD in Saudi Arabia is not known, but it is likely underdiagnosed due to the high prevalence of consanguineous marriages. In this study, we aim to study the clinical and genetic characteristics of PCD patients in the southwestern region of Saudi Arabia to provide guidance to clinicians and researchers studying PCD. METHODS This was a cross-sectional study conducted between 2019 and 2023 in Abha Maternity and Children's Hospital. Twenty-eight patients with clinically diagnosed PCD were recruited. The diagnosis of PCD was confirmed via whole-exome sequencing. RESULTS A total of 28 patients from 20 families were identified and recruited for this study. The median age of patients was 7.5 years (IQR = 3, 13 years). The people of different sexes were evenly distributed, and 18 patients (64%) had neonatal respiratory distress (NRD). The median age of diagnosis was 5.5 years (IQR = 2, 11 years), while the age when the first symptoms appeared was 3 months old (IQR = 1, 6 months). The prevalence of a chronic wet cough, chronic rhinosinusitis, ear infections were 100% (n = 28), 78.6% (n = 22), and 67.9% (19), respectively. The most common gene in our study was DNAH5, which represented 17.9% (five out of twenty-eight) of the cases. Furthermore, the remaining pathogenic variants included: 14.3% with RSPH9 in four individuals (three families), 14.3% with DNAI2 in four individuals (two families), and 10.7% with LRRC56 in three individuals (one family). The most common findings on the chest CT scans were consolidation (seen in all patients), mucus plugging (seen in 95%), and bronchiectasis (seen in 77%). In the patients with bronchiectasis, the most commonly affected lobes were the right lower lobe (88%) and left lower lobe (76%). The patients with PCD and situs inversus were more likely to experience NRD than the patients with PCD and situs solitus. The median PICADAR score in the patients with PCD and situs inversus (median: 11.5; Q1: 10-Q3: 12.5) was significantly higher compared to those with PCD and situs solitus (median: 7.5; Q1: 5.8-Q3: 8) (U = 10.5; p < 0.001). CONCLUSION This study provides preliminary data on the clinical and genetic characteristics of PCD patients in the southwestern region of Saudi Arabia. We found that DNAH5 and RSPH9 genes were the most common genes among the studied population. Furthermore, PCD should be considered for each child with early NRD and laterality defects, and further confirmatory tests are recommended. These findings also highlight the need for greater awareness of the disease in daily clinical practice to facilitate early diagnosis and avoid irreversible lung damage.
Collapse
Affiliation(s)
- Ali Alsuheel Asseri
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Ibrahim A. Asiri
- Departments of Pediatrics, King Khalid University Medical City, Abha 62223, Saudi Arabia;
| | - Reem H. Aldosari
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Hassan A. Al-Amri
- Department of Pediatrics, Khamis Mushayt Children Hospital, Khamis Mushayt 62454, Saudi Arabia;
| | - Mohammed Alshahrani
- Department of Pulmonology, Aseer Central Hospital, Abha 62523, Saudi Arabia;
| | - Badriah G. Al-Asmari
- Department of Pediatrics, King Fahad Military Hospital, Khamis Mushayt 31932, Saudi Arabia;
| | - Haleimah Alalkami
- Department of Pediatrics, Abha Maternity & Children Hospital, Abha 3613, Saudi Arabia;
| |
Collapse
|
26
|
Leel M, Abid M, Fatima K, Sandesh F, Kumar A. Managing Kartagener's Syndrome With Type II Respiratory Failure and Left-Sided Pneumothorax During the COVID-19 Pandemic: A Case Report. Cureus 2023; 15:e44632. [PMID: 37799232 PMCID: PMC10548309 DOI: 10.7759/cureus.44632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2023] [Indexed: 10/07/2023] Open
Abstract
Kartagener's syndrome is an autosomal recessive disorder with symptoms varying from chronic sinusitis to bronchiectasis and situs inversus (a congenital condition in which the visceral organs are located in an opposite location). We describe a rare and complicated case of a 40-year-old female patient who presented to the emergency room with significant chest congestion and Kartagener's syndrome. This case demonstrates the value of individualized and proactive care as well as the challenge of managing this illness, particularly when it coexists with type II respiratory failure related to pneumothorax.
Collapse
Affiliation(s)
- Muhammad Leel
- Infectious Diseases, District Headquarter Hospital, Bhakkar, PAK
| | - Marvi Abid
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Kiran Fatima
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Fnu Sandesh
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Aakash Kumar
- Internal Medicine, Mercy Health - St. Rita's Medical Center, Lima, USA
| |
Collapse
|
27
|
Butt SRR, Shakoor H, Khan TJ, Almaalouli B, Ekhator C, Ansari S, Shaikh N, Shehryar A, Rehman A. A Rare Case of Kartagener Syndrome Presenting with Sinusitis, Situs Inversus, and Bronchiectasis: Emphasizing Early Diagnosis and Management Strategies. Cureus 2023; 15:e41890. [PMID: 37457605 PMCID: PMC10348689 DOI: 10.7759/cureus.41890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Abstract
Primary ciliary dyskinesia (PCDs), a subset of ciliary motility disorders, includes the rare hereditary illness Kartagener syndrome (KS). Sinusitis, situs inversus, and bronchiectasis, brought on by aberrant ciliary activity, are its defining features. We describe a case of an 18-year-old female with a history of recurrent respiratory complaints and chronic sinusitis. Additional testing confirmed the diagnosis of KS by identifying situs inversus, chronic bronchiectasis, and nasal polyps. This instance emphasizes the value of prompt KS diagnosis and treatment to avoid consequences. Supportive pulmonary care, antibiotics, and chest physical therapy are frequently employed, despite the lack of therapeutic standards. To further understand and manage this illness, more research is required. Patients with recurrent respiratory infections and structural lung disease can identify KS early.
Collapse
Affiliation(s)
- Samia Rauf R Butt
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hassan Shakoor
- Internal Medicine, Fauji Foundation Hospital Islamabad, Islamabad, PAK
| | - Tayyaba J Khan
- Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Safa Ansari
- Medicine and Surgery, Karachi Medical and Dental College, Karachi, PAK
| | - Nehal Shaikh
- Department of Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | | | | |
Collapse
|
28
|
Jung R, Choi J, Bae H, Jung DI, Cho KO, Yu D. Siewert-Kartagener's syndrome in a dog. J Vet Sci 2023; 24:e57. [PMID: 37532300 PMCID: PMC10404705 DOI: 10.4142/jvs.23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Siewert-Kartagener's syndrome, a type of primary ciliary dyskinesia, is a complex disease comprising situs inversus, rhinosinusitis, and bronchiectasis. Situs inversus totalis is a condition in which all organs in the thoracic and abdominal cavities are reversed. Furthermore, primary ciliary dyskinesia, an autosomal genetic disease, may coexist with situs inversus totalis. Reports on Siewert-Kartagener's syndrome in veterinary medicine are limited. We report a rare case of primary ciliary dyskinesia with Siewert-Kartagener's syndrome in a dog, concurrently infected with canine distemper virus and type-2 adenovirus. This case highlights that situs inversus totalis can cause primary ciliary dyskinesia, and concurrent infections are possible.
Collapse
Affiliation(s)
- Rankyung Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jihye Choi
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyeona Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Dong-In Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Kyoung-Oh Cho
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea.
| | - DoHyeon Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
29
|
Cui M, Dutcher S, Bayly P, Meacham J. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Proc Natl Acad Sci U S A 2023; 120:e2218951120. [PMID: 37307440 PMCID: PMC10290211 DOI: 10.1073/pnas.2218951120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/18/2023] [Indexed: 06/14/2023] Open
Abstract
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
Collapse
Affiliation(s)
- Mingyang Cui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - J. Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
30
|
Kim DY, Sub YJ, Kim HY, Cho KJ, Choi WI, Choi YJ, Lee MG, Hildebrandt F, Gee HY. LRRC6 regulates biogenesis of motile cilia by aiding FOXJ1 translocation into the nucleus. Cell Commun Signal 2023; 21:142. [PMID: 37328841 PMCID: PMC10273532 DOI: 10.1186/s12964-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND LRRC6 is an assembly factor for dynein arms in the cytoplasm of motile ciliated cells, and when mutated, dynein arm components remained in the cytoplasm. Here, we demonstrate the role of LRRC6 in the active nuclear translocation of FOXJ1, a master regulator for cilia-associated gene transcription. METHODS We generated Lrrc6 knockout (KO) mice, and we investigated the role of LRRC6 on ciliopathy development by using proteomic, transcriptomic, and immunofluorescence analysis. Experiments on mouse basal cell organoids confirmed the biological relevance of our findings. RESULTS The absence of LRRC6 in multi-ciliated cells hinders the assembly of ODA and IDA components of cilia; in this study, we showed that the overall expression of proteins related to cilia decreased as well. Expression of cilia-related transcripts, specifically ODA and IDA components, dynein axonemal assembly factors, radial spokes, and central apparatus was lower in Lrrc6 KO mice than in wild-type mice. We demonstrated that FOXJ1 was present in the cytoplasm and translocated into the nucleus when LRRC6 was expressed and that this process was blocked by INI-43, an importin α inhibitor. CONCLUSIONS Taken together, these results hinted at the LRRC6 transcriptional regulation of cilia-related genes via the nuclear translocation of FOXJ1. Video Abstract.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Yu Jin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyeong Jee Cho
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won Il Choi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yo Jun Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Sodeifian F, Samieefar N, Shahkarami S, Rayzan E, Seyedpour S, Rohlfs M, Klein C, Babaie D, Rezaei N. DNAH11 and a Novel Genetic Variant Associated with Situs Inversus: A Case Report and Review of the Literature. Case Rep Med 2023; 2023:8436715. [PMID: 37153356 PMCID: PMC10154638 DOI: 10.1155/2023/8436715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD), also known as the immotile-cilia syndrome, is a clinically and genetically heterogeneous syndrome. Improper function of the cilia causes impaired mucociliary clearance. Neonatal respiratory distress, rhinosinusitis, recurrent chest infections, wet cough, and otitis media are respiratory presentations of this disease. It could also manifest as infertility in males as well as laterality defects in both sexes, such as situs abnormalities (Kartagener syndrome). During the past decade, numerous pathogenic variants in 40 genes have been identified as the causatives of primary ciliary dyskinesia. DNAH11 (dynein axonemal heavy chain 11) is a gene that is responsible for the production of cilia's protein and encodes the outer dynein arm. Dynein heavy chains are motor proteins of the outer dynein arms and play an essential role in ciliary motility. Case Presentation. A 3-year-old boy, the offspring of consanguineous parents, was referred to the pediatric clinical immunology outpatient department with a history of recurrent respiratory tract infections and periodic fever. Furthermore, on medical examination, situs inversus was recognized. His lab results revealed elevated levels of erythrocyte sedimentation rate (ESR) and C reactive protein (CRP). Serum IgG, IgM, and IgA levels were normal, while IgE levels were elevated. Whole exome sequencing (WES) was performed for the patient. WES demonstrated a novel homozygous nonsense variant in DNAH11 (c.5247G > A; p. Trp1749Ter). CONCLUSION We reported a novel homozygous nonsense variant in DNAH11 in a 3-year-old boy with primary ciliary dyskinesia. Biallelic pathogenic variants in one of the many coding genes involved in the process of ciliogenesis lead to PCD.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatric Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, Massachusetts, USA
| | - Simin Seyedpour
- MD-MPH, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Tehran, Iran
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Delara Babaie
- Department of Allergy and Clinical Immunology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Yap YT, Li W, Huang Q, Zhou Q, Zhang D, Sheng Y, Mladenovic-Lucas L, Yee SP, Orwig KE, Granneman JG, Williams DC, Hess RA, Toure A, Zhang Z. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice. eLife 2023; 12:e79620. [PMID: 37083624 PMCID: PMC10185345 DOI: 10.7554/elife.79620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Wei Li
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Qian Huang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - Qi Zhou
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - David Zhang
- College of William and MaryWilliamsburgUnited States
| | - Yi Sheng
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Ljljiana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North CarolinaChapel HillUnited States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of IllinoisUrbanaUnited States
| | - Aminata Toure
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Physiology and Pathophysiology of Sperm cells, Institute for Advanced BiosciencesGrenobleFrance
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics & Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
33
|
Dil S, Ye J, Ma H, Unar A, Khan I, Ali A, Khan K, Menglei Y, Ma A, Shah B, Khan R, Liu Z, Shi Q. Cornichon protein CNIH4 is not essential for mice gametogenesis and fertility. Dev Biol 2023; 496:15-23. [PMID: 36657507 DOI: 10.1016/j.ydbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cornichon is a functionally conserved transmembrane protein family that generally acts as a cargo-sorting receptor and cycles between the ER and the Golgi. Four Cornichon family members (CNIH1-4) have been identified. The key residues responsible for CNIH1-3 to bind to AMPA receptors are not conserved in CNIH4. Additionally, the function of CNIH1-3 in GPCR signaling is less established, while more established in case of CNIH4 protein that interact with GPCR and control their exportation. Many GPCRs are known for their essential roles in male and female gonad development. But whether CNIH4 plays a role in gametogenesis remains unknown. DESIGN Mice carrying the Cnih4 knockout allele (Cnih4tm1a-/-) were generated by insertion of a LacZ reporter and a polyadenylation site after exon 1. Western blot, Immunofluorescence, computer-aided sperm analysis and other methods were used in the functional analysis. RESULTS We identified that both Cnih4tm1a-/- male and female mice have normal fertility. Though, the sperm count, morphology, and motility of Cnih4tm1a-/- mice were slightly impaired compared to those of wild-type mice, the testes to body weight ratio and testicular histology were similar to those in control mice. Histological examination of Cnih4tm1a-/- ovaries detected follicles from primordial to antral stages and the numbers of follicles at each stage were also comparable to wild-type controls. Normal fertility was noticed after six-month fertility tests. That was likely due to the compensatory role of Chin3, which significantly upregulated in the Cnih4tm1a-/- mice to preserve the fertility role. CONCLUSION Despite CNIH4 showing enriched expression in mouse germ cells, our genetic knockout studies demonstrated that CNIH4 is not essential for gametogenesis and fertility in mice although with a slight reduction in count, motility and morphology of sperm in male mice.
Collapse
Affiliation(s)
- Sobia Dil
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwei Ye
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Ma
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ihsan Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Asim Ali
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China; Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khalid Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yang Menglei
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ao Ma
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Basit Shah
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China; Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ranjha Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China.
| | - Qinghua Shi
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
34
|
Zangpo D, Nakane H, Iino M. Vascular anatomy and their variations in Situs inversus totalis using postmortem computed tomographic angiography. Anat Cell Biol 2023; 56:155-159. [PMID: 36537136 PMCID: PMC9989793 DOI: 10.5115/acb.22.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Studies describing the vascular systems and their variations in Situs inversus totalis (SIT) from a whole-body computed tomographic (CT) angiography perspective are lacking. We report a case of SIT in which postmortem CT angiography (PMCTA) was performed as a part of the forensic death investigation and incidentally detected several vascular variations in it. The PMCTA procedure was performed using the multiphase PMCTA protocol. Almost all major vessels were visualized, indeed in a completely reversed pattern. Contrast mixture flow interruptions were noted in the right coronary arterial branches suggesting possible blockage, upon which autopsy revealed >90% vessel occlusions at several locations. As such the cause of death was due to ischemic heart disease. Anomalous origins of the right internal mammary artery; abnormal left thyrocervical trunk and variations in the drainage of testicular veins were noted. Our findings might be helpful to clinicians and add to the body of literature on SIT.
Collapse
Affiliation(s)
- Dawa Zangpo
- Division of Forensic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hironobu Nakane
- Department of Anatomy, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Morio Iino
- Division of Forensic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
35
|
Duan B, Lv HY, Huang Y, Xu ZM, Chen WX. Deep learning for the screening of primary ciliary dyskinesia based on cranial computed tomography. Front Physiol 2023; 14:1098893. [PMID: 37008008 PMCID: PMC10050729 DOI: 10.3389/fphys.2023.1098893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Objective: To analyze the cranial computed tomography (CT) imaging features of patients with primary ciliary dyskinesia (PCD) who have exudative otitis media (OME) and sinusitis using a deep learning model for early intervention in PCD.Methods: Thirty-two children with PCD diagnosed at the Children’s Hospital of Fudan University, Shanghai, China, between January 2010 and January 2021 who had undergone cranial CT were retrospectively analyzed. Thirty-two children with OME and sinusitis diagnosed using cranial CT formed the control group. Multiple deep learning neural network training models based on PyTorch were built, and the optimal model was trained and selected to observe the differences between the cranial CT images of patients with PCD and those of general patients and to screen patients with PCD.Results: The Swin-Transformer, ConvNeXt, and GoogLeNet training models had optimal results, with an accuracy of approximately 0.94; VGG11, VGG16, VGG19, ResNet 34, and ResNet 50, which are neural network models with fewer layers, achieved relatively strong results; and Transformer and other neural networks with more layers or neural network models with larger receptive fields exhibited a relatively weak performance. A heat map revealed the differences in the sinus, middle ear mastoid, and fourth ventricle between the patients with PCD and the control group. Transfer learning can improve the modeling effect of neural networks.Conclusion: Deep learning-based CT imaging models can accurately screen for PCD and identify differences between the cranial CT images.
Collapse
|
36
|
Faruqi MA, Keshavamurthy S, Hillenbrand KD, Anstead M, Nandavaram S. Bilateral Lung Transplantation in Kartagener’s Syndrome and Situs Inversus. Cureus 2023; 15:e35785. [PMID: 37025726 PMCID: PMC10072235 DOI: 10.7759/cureus.35785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
Kartagener's syndrome (KS) is a genetic disorder and a subgroup of primary ciliary dyskinesia characterized by situs inversus, chronic sinusitis and bronchiectasis. Patients with KS can develop severe bronchiectasis with end-stage lung disease due to recurrent pulmonary infections. Lung transplantation is a treatment option with good outcomes reported in the literature. Lung transplantation in such patients can be technically challenging given the dextrocardia, bronchial asymmetry and anatomical variation of major vascular structures due to situs inversus. We present a case of a 45-year-old male with KS complicated by recurrent infections and chronic respiratory failure, who successfully underwent a bilateral sequential lung transplant (BSLTx). Because of repeated infections and severe bronchiectasis, the patient's quality of life was impaired, and he was oxygen dependent. As a definitive treatment, successful lung transplantation led to a reversal of hypoxic respiratory failure and the patient's symptoms markedly improved, reinforcing data in the literature to consider lung transplantation in this patient population.
Collapse
|
37
|
Ito C, Makino T, Mutoh T, Kikkawa M, Toshimori K. The association of ODF4 with AK1 and AK2 in mice is essential for fertility through its contribution to flagellar shape. Sci Rep 2023; 13:2969. [PMID: 36804949 PMCID: PMC9941515 DOI: 10.1038/s41598-023-28177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
Normal sperm flagellar shape and movement are essential for fertilization. The integral protein outer dense fiber 4 (ODF4) localizes to ODFs, but its function remains unclear. Adenylate kinase (AK) is a phosphotransferase that catalyzes the interconversion and controls the concentration equilibrium of adenine nucleotides. AK shuttles ATP to energy-consuming sites. Here, we report on the relationship of flagellar shape and movement with ODF4, AK1 and AK2 by using Odf4-deletion (Odf4-/-) mice. Soluble ODF4 is coimmunoprecipitated with AK1 and AK2 in Odf4+/+ spermatozoa. ODF4, AK1 and AK2 localize to whole flagella (plasmalemma, mitochondria, ODFs, and residual cytoplasmic droplets (CDs)), principal pieces, and midpieces, respectively. Odf4-/- sperm flagella lose ODF4 and reduce AK1 and AK2 but produce ATP. The flagellum is bent (hairpin flagellum) with a large CD in the midpiece. There is no motility in the midpiece, but the principal piece is motile. Odf4-/- spermatozoa progress backward and fail to ascend in the uterus. Thus, Odf4-/- males are infertile owing to abnormal flagellar shape and movement caused mainly by the loss of ODF4 with AK1 and AK2. This study is supported by the rescue experiment; the abnormalities and male infertility caused by Odf4 deletion were reversed by Odf4 restoration.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Tsukasa Makino
- grid.26999.3d0000 0001 2151 536XDepartment of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tohru Mutoh
- grid.136304.30000 0004 0370 1101Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Masahide Kikkawa
- grid.26999.3d0000 0001 2151 536XDepartment of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
38
|
Munch TN, Hedley PL, Hagen CM, Bækvad-Hansen M, Geller F, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Werge TM, Melbye M, Hougaard DM, Larsen LA, Christensen ST, Christiansen M. The genetic background of hydrocephalus in a population-based cohort: implication of ciliary involvement. Brain Commun 2023; 5:fcad004. [PMID: 36694575 PMCID: PMC9866251 DOI: 10.1093/braincomms/fcad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Hydrocephalus is one of the most common congenital disorders of the central nervous system and often displays psychiatric co-morbidities, in particular autism spectrum disorder. The disease mechanisms behind hydrocephalus are complex and not well understood, but some association with dysfunctional cilia in the brain ventricles and subarachnoid space has been indicated. A better understanding of the genetic aetiology of hydrocephalus, including the role of ciliopathies, may bring insights into a potentially shared genetic aetiology. In this population-based case-cohort study, we, for the first time, investigated variants of postulated hydrocephalus candidate genes. Using these data, we aimed to investigate potential involvement of the ciliome in hydrocephalus and describe genotype-phenotype associations with an autism spectrum disorder. One-hundred and twenty-one hydrocephalus candidate genes were screened in a whole-exome-sequenced sub-cohort of the Lundbeck Foundation Initiative for Integrative Psychiatric Research study, comprising 72 hydrocephalus patients and 4181 background population controls. Candidate genes containing high-impact variants of interest were systematically evaluated for their involvement in ciliary function and an autism spectrum disorder. The median age at diagnosis for the hydrocephalus patients was 0 years (range 0-27 years), the median age at analysis was 22 years (11-35 years), and 70.5% were males. The median age for controls was 18 years (range 11-26 years) and 53.3% were males. Fifty-two putative hydrocephalus-associated variants in 34 genes were identified in 42 patients (58.3%). In hydrocephalus cases, we found increased, but not significant, enrichment of high-impact protein altering variants (odds ratio 1.51, 95% confidence interval 0.92-2.51, P = 0.096), which was driven by a significant enrichment of rare protein truncating variants (odds ratio 2.71, 95% confidence interval 1.17-5.58, P = 0.011). Fourteen of the genes with high-impact variants are part of the ciliome, whereas another six genes affect cilia-dependent processes during neurogenesis. Furthermore, 15 of the 34 genes with high-impact variants and three of eight genes with protein truncating variants were associated with an autism spectrum disorder. Because symptoms of other diseases may be neglected or masked by the hydrocephalus-associated symptoms, we suggest that patients with congenital hydrocephalus undergo clinical genetic assessment with respect to ciliopathies and an autism spectrum disorder. Our results point to the significance of hydrocephalus as a ciliary disease in some cases. Future studies in brain ciliopathies may not only reveal new insights into hydrocephalus but also, brain disease in the broadest sense, given the essential role of cilia in neurodevelopment.
Collapse
Affiliation(s)
- Tina N Munch
- Correspondence to: Tina Nørgaard Munch, MD Associate Professor, Department of Neurosurgery 6031 Copenhagen University Hospital, Inge Lehmanns Vej 6 DK-2100 Copenhagen Ø, Denmark E-mail:
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Brazen Bio, Los Angeles, 90502 CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Center for Genomics and Personalized Medicine, Aarhus University, DK-8000 Aarhus, Denmark,Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0473, Norway,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Department of Biomedical Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
39
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
40
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
41
|
Leslie JS, Hjeij R, Vivante A, Bearce EA, Dyer L, Wang J, Rawlins L, Kennedy J, Ubeyratna N, Fasham J, Irons ZH, Craig SB, Koenig J, George S, Pode-Shakked B, Bolkier Y, Barel O, Mane S, Frederiksen KK, Wenger O, Scott E, Cross HE, Lorentzen E, Norris DP, Anikster Y, Omran H, Grimes DT, Crosby AH, Baple EL. Biallelic DAW1 variants cause a motile ciliopathy characterized by laterality defects and subtle ciliary beating abnormalities. Genet Med 2022; 24:2249-2261. [PMID: 36074124 PMCID: PMC10584193 DOI: 10.1016/j.gim.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.
Collapse
Affiliation(s)
- Joseph S Leslie
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Asaf Vivante
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | | | - Laura Dyer
- MRC Harwell Institute, Harwell Campus, Oxfordshire, Oxford, United Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lettie Rawlins
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Joanna Kennedy
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Nishanka Ubeyratna
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - James Fasham
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Zoe H Irons
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Samuel B Craig
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Julia Koenig
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Sebastian George
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yoav Bolkier
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | - Olivia Wenger
- New Leaf Center Clinic for Special Children, Mt Eaton, OH
| | - Ethan Scott
- New Leaf Center Clinic for Special Children, Mt Eaton, OH
| | - Harold E Cross
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, University of Arizona, Tucson, AZ
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, Oxford, United Kingdom
| | - Yair Anikster
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Daniel T Grimes
- Institute of Molecular Biology, University of Oregon, Eugene, OR.
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom.
| | - Emma L Baple
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom.
| |
Collapse
|
42
|
Chen W, Wang F, Zeng W, Zhang X, Shen L, Zhang Y, Zhou X. Biallelic mutations of TTC12 and TTC21B were identified in Chinese patients with multisystem ciliopathy syndromes. Hum Genomics 2022; 16:48. [PMID: 36273201 PMCID: PMC9587637 DOI: 10.1186/s40246-022-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Abnormalities in cilia ultrastructure and function lead to a range of human phenotypes termed ciliopathies. Many tetratricopeptide repeat domain (TTC) family members have been reported to play critical roles in cilium organization and function.
Results Here, we describe five unrelated family trios with multisystem ciliopathy syndromes, including situs abnormality, complex congenital heart disease, nephronophthisis or neonatal cholestasis. Through whole-exome sequencing and Sanger sequencing confirmation, we identified compound heterozygous mutations of TTC12 and TTC21B in six affected individuals of Chinese origin. These nonsynonymous mutations affected highly conserved residues and were consistently predicted to be pathogenic. Furthermore, ex vivo cDNA amplification demonstrated that homozygous c.1464 + 2 T > C of TTC12 would cause a whole exon 16 skipping. Both mRNA and protein levels of TTC12 were significantly downregulated in the cells derived from the patient carrying TTC12 mutation c.1464 + 2 T > C by real-time qPCR and immunofluorescence assays when compared with two healthy controls. Transmission electron microscopy analysis further identified ultrastructural defects of the inner dynein arms in this patient. Finally, the effect of TTC12 deficiency on cardiac LR patterning was recapitulated by employing a morpholino-mediated knockdown of ttc12 in zebrafish. Conclusions To the best of our knowledge, this is the first study reporting the association between TTC12 variants and ciliopathies in a Chinese population. In addition to nephronophthisis and laterality defects, our findings demonstrated that TTC21B should also be considered a candidate gene for biliary ciliopathy, such as TTC26, which further expands the phenotypic spectrum of TTC21B deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00421-z.
Collapse
Affiliation(s)
- Weicheng Chen
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Feifei Wang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Weijia Zeng
- State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, 200433, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China. .,Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| |
Collapse
|
43
|
Mascibroda LG, Shboul M, Elrod ND, Colleaux L, Hamamy H, Huang KL, Peart N, Singh MK, Lee H, Merriman B, Jodoin JN, Sitaram P, Lee LA, Fathalla R, Al-Rawashdeh B, Ababneh O, El-Khateeb M, Escande-Beillard N, Nelson SF, Wu Y, Tong L, Kenney LJ, Roy S, Russell WK, Amiel J, Reversade B, Wagner EJ. INTS13 variants causing a recessive developmental ciliopathy disrupt assembly of the Integrator complex. Nat Commun 2022; 13:6054. [PMID: 36229431 PMCID: PMC9559116 DOI: 10.1038/s41467-022-33547-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Oral-facial-digital (OFD) syndromes are a heterogeneous group of congenital disorders characterized by malformations of the face and oral cavity, and digit anomalies. Mutations within 12 cilia-related genes have been identified that cause several types of OFD, suggesting that OFDs constitute a subgroup of developmental ciliopathies. Through homozygosity mapping and exome sequencing of two families with variable OFD type 2, we identified distinct germline variants in INTS13, a subunit of the Integrator complex. This multiprotein complex associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. We determined that INTS13 utilizes its C-terminus to bind the Integrator cleavage module, which is disrupted by the identified germline variants p.S652L and p.K668Nfs*9. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Accordingly, its knockdown in Xenopus embryos leads to motile cilia anomalies. Altogether, we show that mutations in INTS13 cause an autosomal recessive ciliopathy, which reveals key interactions between components of the Integrator complex.
Collapse
Affiliation(s)
- Lauren G Mascibroda
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Laurence Colleaux
- Inserm UMR 1163, Institut Imagine, 24 Boulevard du Montparnasse, 75015, Paris, France
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University Hospital, Geneva, Switzerland
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine Dentistry, Rochester, NY, 14642, USA
| | - Natoya Peart
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- 3billion, Inc., Seoul, South Korea
| | - Barry Merriman
- Department of Pathology and Laboratory Medicine, Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeanne N Jodoin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Laura A Lee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raja Fathalla
- National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan
| | - Baeth Al-Rawashdeh
- Faculty of Medicine, Hospital of the University of Jordan, University of Jordan, Amman, Jordan
| | - Osama Ababneh
- Faculty of Medicine, Hospital of the University of Jordan, University of Jordan, Amman, Jordan
| | | | - Nathalie Escande-Beillard
- Department of Medical Genetics, KOÇ University, Istanbul, Turkey
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yixuan Wu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Linda J Kenney
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Department of Paediatrics, School of Medicine, NUS, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, NUS, Singapore, Singapore
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Jeanne Amiel
- Service de Génétique, Institut Imagine, 24 Boulevard du Montparnasse, 75015, Paris, France
| | - Bruno Reversade
- Department of Medical Genetics, KOÇ University, Istanbul, Turkey.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Department of Paediatrics, School of Medicine, NUS, Singapore, Singapore.
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, 137673, Singapore.
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA.
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine Dentistry, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester School of Medicine Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Al-Mutairi DA, Alsabah BH, Alkhaledi BA, Pennekamp P, Omran H. Identification of a novel founder variant in DNAI2 cause primary ciliary dyskinesia in five consanguineous families derived from a single tribe descendant of Arabian Peninsula. Front Genet 2022; 13:1017280. [PMID: 36303540 PMCID: PMC9596166 DOI: 10.3389/fgene.2022.1017280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Primary ciliary dyskinesia (PCD) is caused by dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify disease causing genetic variants for PCD patients in the Kuwaiti population. Methods: A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was analysed for variant screening. Transmission electron microscopy (TEM) and immunofluorescent (IF) analyses were performed on nasal brushings to detect specific structural abnormalities within ciliated cells. Results: All the patients inherited the same founder variant in DNAI2 and exhibited PCD symptoms. TEM analysis demonstrated lack of outer dynein arms (ODA) in all analysed samples. IF analysis confirmed absence of DNAI1, DNAI2, and DNAH5 from the ciliary axoneme. Whole exome sequencing, autozygosity mapping and segregation analysis confirmed that seven patients carry the same homozygous missense variant (DNAI2:c.740G>A; p.Arg247Gln; rs755060592). Conclusion:DNAI2:c.740G>A is the founder variant causing PCD in patients belonging to a particular Arabian tribe which practices consanguineous marriages.
Collapse
Affiliation(s)
- Dalal A. Al-Mutairi
- Department of Pathology, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Dalal A. Al-Mutairi,
| | | | | | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
45
|
Profiling development of abdominal organs in the pig. Sci Rep 2022; 12:16245. [PMID: 36171243 PMCID: PMC9519580 DOI: 10.1038/s41598-022-19960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The pig is an ideal model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Further, advances in CRISPR gene editing have made genetically engineered pigs viable models for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here we describe normal development of the pig abdominal system and show examples of congenital defects that can arise in CRISPR gene edited SAP130 mutant pigs. Normal pigs at different gestational ages from day 20 (D20) to term were examined and the configuration of the abdominal organs was studied using 3D histological reconstructions with episcopic confocal microscopy, magnetic resonance imaging (MRI) and necropsy. This revealed prominent mesonephros, a transient embryonic organ present only during embryogenesis, at D20, while the developing metanephros that will form the permanent kidney are noted at D26. By D64 the mesonephroi are absent and only the metanephroi remain. The formation of the liver and pancreas was observed by D20 and complete by D30 and D35 respectively. The spleen and adrenal glands are first identified at D26 and completed by D42. The developing bowel and the gonads are identified at D20. The bowel appears completely rotated by D42, and testes in the male were descended at D64. This atlas and the methods used are excellent tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development.
Collapse
|
46
|
Hall-Stoodley L, McCoy KS. Biofilm aggregates and the host airway-microbial interface. Front Cell Infect Microbiol 2022; 12:969326. [PMID: 36081767 PMCID: PMC9445362 DOI: 10.3389/fcimb.2022.969326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on Pseudomonas aeruginosa in the context of cystic fibrosis (CF) or on Haemophilus influenzae in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Luanne Hall-Stoodley,
| | - Karen S. McCoy
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
47
|
Wijesekara P, Yadav P, Perkins LA, Stolz DB, Franks JM, Watkins SC, Reinoso Jacome E, Brody SL, Horani A, Xu J, Barati Farimani A, Ren X. Engineering rotating apical-out airway organoid for assessing respiratory cilia motility. iScience 2022; 25:104730. [PMID: 35942088 PMCID: PMC9356180 DOI: 10.1016/j.isci.2022.104730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Motile cilia project from the airway apical surface and directly interface with inhaled external environment. Owing to cilia's nanoscale dimension and high beating frequency, quantitative assessment of their motility remains a sophisticated task. Here we described a robust approach for reproducible engineering of apical-out airway organoid (AOAO) from a defined number of cells. Propelled by exterior-facing cilia beating, the mature AOAO exhibited stable rotational motion when surrounded by Matrigel. We developed a computational framework leveraging computer vision algorithms to quantify AOAO rotation and correlated it with the direct measurement of cilia motility. We further established the feasibility of using AOAO rotation to recapitulate and measure defective cilia motility caused by chemotherapy-induced toxicity and by CCDC39 mutations in cells from patients with primary ciliary dyskinesia. We expect our rotating AOAO model and the associated computational pipeline to offer a generalizable framework to expedite the modeling of and therapeutic development for genetic and environmental ciliopathies.
Collapse
Affiliation(s)
- Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Prakarsh Yadav
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Lydia A. Perkins
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M. Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Reinoso Jacome
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amir Barati Farimani
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Sahu S, Ranganatha R, Batura U, Choubey U, Meghana DR, Menon VR, Parmar MP, Banur A, Raj D, Manjunath H. A Case of Unusual Presentation of Kartagener’s Syndrome in a 22-Year-Old Female Patient. Cureus 2022; 14:e28119. [PMID: 36134054 PMCID: PMC9481334 DOI: 10.7759/cureus.28119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
|
49
|
Yang B, Lei C, Yang D, Lu C, Xu Y, Wang L, Guo T, Wang R, Luo H. Identification of a Novel OFD1 Variant in a Patient with Primary Ciliary Dyskinesia. Pharmgenomics Pers Med 2022; 15:697-704. [PMID: 35847568 PMCID: PMC9285985 DOI: 10.2147/pgpm.s365740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background OFD1 encodes a protein with 1012 amino acids, which is a component of basal bodies and centrioles, essential for cilia biogenesis. OFD1 was reported to be associated with X-chromosome linked dysmorphology syndrome in early studies and recent studies reported a few cases with primary ciliary dyskinesia (PCD) caused by OFD1 deficiency. Case Presentation We report a 31-year-old man who suffered from recurrent respiratory infections with typical manifestations of primary ciliary dyskinesia. In addition to respiratory manifestations, the patient also had situs inversus, obesity, gastroesophageal reflux, and hearing impairment. Clubbing fingers and mild streblomicrodactyly were also observed. Examination Result We performed whole-exome sequencing to identify a novel variant c.2795delA:p.(Lys932Argfs*3) in OFD1. The hemizygous variant was predicted to be likely pathogenic by bioinformatic analysis software and ACMG guideline. High-speed video microscopy (HSVM), transmission electron microscopy (TEM), and immunofluorescence were performed to analyze the respiratory cilia. A high beating frequency and a stiff beating pattern were observed under HSVM, while there were no significant abnormalities in TEM and immunofluorescence. The sperm flagella examinations were also generally normal. Conclusion Our study identified a novel frameshift variant in OFD1 causing PCD, enriched the genetic spectrum of OFD1 variants, and verified that OFD1 mutation can lead to only a PCD characteristic phenotype, while other OFD1-associated syndromic symptoms such as dysmorphic features and renal symptoms were not present.
Collapse
Affiliation(s)
- Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Rongchun Wang; Hong Luo, Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China, Email ;
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
50
|
Biallelic Variants in CCDC39 Gene Lead to Primary Ciliary Dyskinesia and Kartagener Syndrome. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7130555. [PMID: 35795318 PMCID: PMC9251071 DOI: 10.1155/2022/7130555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 01/02/2023]
Abstract
Background Primary ciliary dyskinesia (PCD) is a clinical syndrome characterized by cilia with an abnormal structure or function. Its main clinical manifestations comprise chronic bronchitis, cough, recurrent respiratory infections, situs inversus, and male infertility. Single-gene variants are widely assumed to be the main cause of this rare disease, and more than 40 genes have been described to be associated with its onset. CCDC39 is essential for assembling the inner dynein arms and dynein regulatory complex and is important in cilia motility. CCDC39 variants were reported as a monogenic etiology of PCD. Methods This study investigated two unrelated Chinese patients diagnosed as PCD. The chest computed tomography scan was performed to identify PCD phenotypes of the two probands. Considering the effect of PCD on male fertility, routine semen analysis, sperm morphology examination, and scanning electron microscopy were performed to assess the semen characteristics of male proband in family 2 (F2 II-1), who had a history of infertility. Subsequently, the peripheral blood samples of probands were collected to perform whole-exome sequencing (WES) to explore the possible genetic causes of this disease. Results Whole-exome sequencing revealed a homozygous CCDC39 variant in the female proband of family 1 (F1 II-1: c.286C>T:p.Arg96Ter) and two compound heterozygous CCDC39 variants in the male proband of family 2 (F2 II-1: c.732_733del: p.Ala245PhefsTer18; c.2800_2802dup:p.Val934dup). The two probands showed the typical PCD phenotypes, including chronic bronchitis, recurrent respiratory infections, and situs inversus. The male proband also showed oligoasthenoteratospermia with multiple morphological abnormalities of the sperm flagella. Additionally, CCDC39 protein level was significantly lower in the sperm of male proband than in the sperm from normal controls. Conclusion We identified a homozygous variant reported previously and two compound heterozygous variants of CCDC39 possibly responsible for PCD pathogenesis, expanding the variant spectrum of Chinese PCD, Kartagener syndrome, and morphological abnormalities of the sperm flagella involving CCDC39.
Collapse
|