1
|
McDonald ES, Pan TC, Pant DK, Troester MA, Kossenkov AV, Mankoff DA, Mach RH, Chodosh LA. Ternary Complex Components Responsible for Rapid LDL Internalization as Biomarkers for Breast Cancer Associated with Proliferation and Early Recurrence. CANCER RESEARCH COMMUNICATIONS 2025; 5:226-239. [PMID: 39804138 PMCID: PMC11791746 DOI: 10.1158/2767-9764.crc-23-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/16/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
SIGNIFICANCE This first large-scale analysis of the putative ternary complex responsible for rapid low-density lipoprotein internalization in breast cancer reveals a link between component expression and recurrence, with prognostic implications for identifying patients needing supplemental posttreatment surveillance and/or additional therapeutic approaches.
Collapse
Affiliation(s)
- Elizabeth S. McDonald
- Division of Breast Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dhruv K. Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa A. Troester
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - David A. Mankoff
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Mach
- Radiochemistry, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
3
|
Van Wynendaele M, Thieffry C, Samain L, Pierreux CE, Tyteca D, Marbaix E, Henriet P. Effects of estradiol, progesterone or cAMP on expression of PGRMC1 and progesterone receptor in a xenograft model of human endometrium and in endometrial cell culture. Steroids 2023; 198:109284. [PMID: 37487815 DOI: 10.1016/j.steroids.2023.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Estradiol and progesterone are key regulators of the menstrual cycle. In the human endometrium, progesterone induces morphological changes required for blastocyst implantation. Dysregulated response to progesterone can lead to endometrial pathologies including uterine bleeding and endometriosis. Besides the canonical nuclear progesterone receptor (encoded by the PGR gene), alternative response pathways include Progesterone Receptor Membrane Component 1 (PGRMC1), suspected to be involved in pathogenesis of endometrial diseases. We previously reported the spatiotemporal profile of PGRMC1 expression in the human endometrium along the menstrual cycle, highlighting progressive increase and decrease during the proliferative and secretory phases, respectively. Here we directly addressed its regulation by estradiol and progesterone, with systematic comparison with regulation of PGR expression. We found a direct correlation between expression of both genes during the proliferative and secretory phases in the cycling endometrium, but not during the menstrual phase. In a xenograft model mimicking the cycle phases, estradiol significantly increased and progesterone significantly decreased PGR expression but changes were not significant for PGRMC1. Finally, we did not find any significant effect of the ovarian steroids on expression of PGR or PGRMC1 in primary culture of endometrial stromal cells, except for a small increase in PGR expression by estradiol. Altogether, our experiments do not allow a major advance in our understanding of the mechanisms of cyclic variation of PGRMC1 expression, in particular regarding potential regulation by the ovarian steroids.
Collapse
Affiliation(s)
- Marie Van Wynendaele
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | - Charlotte Thieffry
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Lucie Samain
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Christophe E Pierreux
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | - Etienne Marbaix
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.
| | - Patrick Henriet
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium.
| |
Collapse
|
4
|
Ruan X, Mueck AO. The WHO claims estrogens are 'carcinogenic': is this true? Climacteric 2023; 26:263-270. [PMID: 37068508 DOI: 10.1080/13697137.2023.2196002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Estrogens are in the list of carcinogenic chemicals from the World Health Organization (WHO). However, estrogens require additional factors such as stromal factors or progestogens to increase the ratio of proliferation/apoptosis for initiation of replication errors and consequent mutations to occur. These mutations require at least 5-10 years to develop into clinically detectable cancer, whereby this review is focused on breast cancer. The US National Cancer Institute highlighted a second mechanism of carcinogenicity: certain estrogen metabolites are capable of inducing DNA damage, even in low concentration. They can be assessed in the tissue and circulation. However, those deleterious reactions require excessive unrestricted oxidative cell stress, for example in industrial areas with heavy pollution. We have shown that this can be avoided using transdermal instead of oral estradiol treatment, especially important in smokers. The spectrum of metabolites is also influenced by other exogenous factors such as nutrition, physical activity and certain diseases. Reduction of breast cancer risk as demonstrated in the Women's Health Initiative (WHI) was explained by pro-apoptotic estrogen effects working after a certain 'time gap'. In addition, certain estrogen metabolites are carcinoprotective, if no genetic polymorphisms would impair their beneficial activities. Thus, since additional factors are required for both main pathways of carcinogenicity and because estrogens can even have carcinoprotective effects, we cannot agree with the statement from the WHO.
Collapse
Affiliation(s)
- X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Wang Y, Tahiri H, Yang C, Gu M, Ruan X, Hardy P. Overexpression of miR-181a regulates the Warburg effect in triple-negative breast cancer. Climacteric 2023; 26:64-71. [PMID: 36459490 DOI: 10.1080/13697137.2022.2147821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) is highly aggressive and leads to a poor prognosis. microRNA-181a (miR-181a) exhibits strong antineoplastic effects in many types of cancer. In this study, we examine the responses of human miR-181a-transfected TNBC cells and explore the mechanisms underlying the observed effects. METHODS A series of cellular assays were conducted using cells from the MDA-MB-231 TNBC line to assess the impact of miR-181a overexpression. The extracellular acidification rate, lactate production and glucose uptake were evaluated as a measure of aerobic glycolysis (i.e. the Warburg effect). The expressions of glycolysis-related gene were analyzed. RESULTS Viability, migration and survival of miR-181a-transfected MDA-MB-231 cells were all significantly reduced. miR-181a inhibited glycolysis in TNBC cells by reducing the rates of glucose uptake and lactate production and a substantial downregulation of factors known to contribute to the Warburg effect, including the serine/threonine kinase, AKT3, hypoxia-inducible factor-1α (HIF-1α) and progesterone receptor membrane component 1 (PGRMC1). CONCLUSION Our results demonstrate that miR-181a may regulate glycolysis in MDA-MB-231 TNBC cells, potentially via interference with components of the AKT3-HIF-1α and PGRMC1 pathways. These results suggest that miR-181a might be developed as a therapeutic agent for use in antineoplastic regimens directed at TNBC and PGRMC1-overexpressing breast cancers.
Collapse
Affiliation(s)
- Y Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - H Tahiri
- Department of Pediatrics, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, University of Montréal, Montréal, QC, Canada
| | - C Yang
- Department of Pediatrics, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, University of Montréal, Montréal, QC, Canada
| | - M Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - P Hardy
- Department of Pediatrics, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
McGuire MR, Espenshade PJ. PGRMC1: An enigmatic heme-binding protein. Pharmacol Ther 2023; 241:108326. [PMID: 36463977 PMCID: PMC9839567 DOI: 10.1016/j.pharmthera.2022.108326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a heme-binding protein that has been implicated in a wide range of cell and tissue functions, including cytochromes P450 activity, heme homeostasis, cancer, female reproduction, and protein quality control. Despite an extensive body of literature, a relative lack of mechanistic insight means that how PGRMC1 functions in these different aspects of biology is largely unknown. This review provides an overview of the PGRMC1 literature, highlighting what information is rigorously supported by experimental evidence and where additional investigation is warranted. The central role of PGRMC1 in supporting cytochrome P450 activity is discussed at length. Building on existing models of PGRMC1 function, a speculative model is proposed using the reviewed literature in which PGRMC1 functions as a heme chaperone to shuttle heme from its site of synthesis in the mitochondrion to other subcellular compartments. By spotlighting knowledge gaps, this review will motivate investigators to better understand this enigmatic protein.
Collapse
Affiliation(s)
- Meredith R McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Physiology 107B, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Check JH, Check DL. The role of progesterone and the progesterone receptor in cancer: progress in the last 5 years. Expert Rev Endocrinol Metab 2023; 18:5-18. [PMID: 36647582 DOI: 10.1080/17446651.2023.2166487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Patients with various advanced cancers devoid of nuclear progesterone receptors (nPR) have demonstrated increased quality and length of life when treated with the PR modulator mifepristone, which likely works by interacting with membrane PRs (mPR). AREAS COVERED Two immunomodulatory proteins are discussed that seem to play a role in cancers that proliferate whether the malignant tumor is positive or negative for the nPR. These two proteins are the progesterone receptor membrane component-1 (PGRMC-1) and the progesterone-induced blocking factor (PIBF). Both PGRMC-1 and the parent form of PIBF foster increased tumor aggressiveness, whereas splice variants of the 90 kDa form of PIBF inhibit immune response against cancer cells. EXPERT OPINION The marked clinical improvement following 200-300 mg of mifepristone is likely related to blocking PIBF. In the low dosage used, mifepristone likely acts as an agonist for PGRMC-1 protein. Mifepristone may be less effective for cancers positive for the nPR because the nPR may be protective and blocking it may have detrimental effects. Based on this hypothetical model, the development of other potential treatment options to provide even greater efficacy for treating cancer are discussed.
Collapse
Affiliation(s)
- Jerome H Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| | - Diane L Check
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| |
Collapse
|
8
|
Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022; 12:830894. [PMID: 35847875 PMCID: PMC9280148 DOI: 10.3389/fonc.2022.830894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
The immunohistochemical definition of estrogen/progesterone receptors dictates endocrine feasibility in the treatment course of breast cancer. Characterized by the deficiency of estrogen receptor α, ERα-negative breast cancers are dissociated from any endocrine regimens in the routine clinical setting, triple-negative breast cancer in particular. However, the stereotype was challenged by triple-negative breast cancers’ retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action and the carcinogenic signaling program previously underscored was gradually recognized along with the increasing investigation. In parallel, the overlooked endocrine-responsiveness in ERα-negative breast cancers attracted attention and supplied fresh insight into the therapeutic strategy in an ERα-independent manner. This review elaborates on the genomic and non-genomic steroid hormone actions and endocrine-related signals in triple-negative breast cancers attached to the hormone insensitivity label. We also shed light on the non-canonical mechanism detected in common hormone agents to showcase their pleiotropic effects.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese medicine, Beijing, China
| | | | - Jianrong Sun
- School of Clinical Medicine. Beijing University of Chinese Medicine, Beijing, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minkai Ma
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Fourth Central Hospital, Baoding, China
| | - Liqun Jia
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia,
| |
Collapse
|
9
|
Ruan X, Mueck AO. Primary choice of estrogen and progestogen as components for HRT: a clinical pharmacological view. Climacteric 2022; 25:443-452. [PMID: 35638518 DOI: 10.1080/13697137.2022.2073811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prescribing hormone replacement therapy (HRT) requires consideration of the selection of its two components, the estrogen and the progestogen. In terms of the estrogen, the decision is mainly whether to use estradiol (E2) or conjugated equine estrogens (CEE). These are the components needed to efficiently treat climacteric symptoms or/and prevent osteoporosis, currently the only labeled indications. There is still controversy regarding the adequate dosages comparing E2 and CEE; however, the consensus is that the differences in the efficacy of E2 and CEE are not a real issue. Therefore, other criteria have to be used. The first reason to add the progestogen is to avoid the development of endometrial cancer (i.e. to achieve 'endometrial safety'). Any available 'fixed-combined' HRT preparation has to be tested for sufficient endometrial efficacy, because the first question the health authorities ask before product registration relates to endometrial safety. We can generally rely on the endometrial safety of these fixed-combined products. However, it could be that we want to use 'free' combinations, which are necessary if we use transdermal E2 (patches, gel, spray), but also to individualize schedules, for example when treating bleeding problems. The question here is how to attain knowledge about the endometrial efficacy of the different progestogens and how to monitor therapy. We will try to answer these two questions from a 'clinical pharmacology' point of view, as a discipline which preferably considers pharmacological properties, but also relating to clinical practice, to achieve individualized therapy with optimal efficacy, best tolerability and minimal risks.
Collapse
Affiliation(s)
- X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.,Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.,Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Ruan X, Mueck AO. Optimizing menopausal hormone therapy: for treatment and prevention, menstrual regulation, and reduction of possible risks. GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
11
|
Zhang L, Ruan X, Gu M, Mueck AO. E2 + norethisterone promotes the PI3K-AKT pathway via PGRMC1 to induce breast cancer cell proliferation. Climacteric 2022; 25:467-475. [PMID: 35137666 DOI: 10.1080/13697137.2022.2029837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to find evidence that progesterone receptor membrane component 1 (PGRMC1) promotes estradiol (E2) + norethisterone (NET)-induced breast cancer proliferation through activation of the phosphatidylinositol-3-kinase (PI3K)-AKT pathway. METHODS PGRMC1-mediated breast cancer cellular proliferation and phosphorylation of PGRMC1 were studied using wild-type (hemagglutinin [HA]-tagged) MCF-7 cells, which were stably transfected with expression vector containing HA (MCF-7-HA cells), PGRMC1 (MCF-7-PGRMC1 cells) and Ser181 point mutated PGRMC1 (MCF-7-PGRMC1-S181A cells). Bioinformatics, cell proliferation, western blot, isobaric tags for relative and absolute quantitation (iTRAQ)-based RNA sequencing, real-time quantitative polymerase chain reaction (RT-qPCR) and cell cycle in vitro assays were performed to indicate the function of PGRMC1 and its possible mechanisms in breast cancer. RESULTS NET + E2 elicited a significant proliferation in MCF-7-Vec at 10-6 M and 10-10 M, respectively. MCF-7-PGRMC1 did increase the phosphorylation of AKT or ERK, which can be blocked by treatment with casein kinase 2 (CK2) inhibitor quinalizarin or in MCF-7-PGRMC1-S181A cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the PI3K-AKT pathway is upregulated in MCF-7-PGRMC1 cells. Importantly, upregulation of the PI3K-AKT pathway mainly through promotion of cell cycle regulation strongly promoted cell proliferation in MCF-7-PGRMC1 cells. CONCLUSIONS CK2 is involved in phosphorylation of PGRMC1 at S181. The mechanism for the action of PGRMC1 for mediating proliferative progestogen effects obviously starts with promotion cell cycle regulation, and then activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- L Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| | - M Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Zinovkin DA, Lyzikova YA, Nadyrov EA, Petrenyov DR, Yuzugulen J, Pranjol MZI. Gamma-ray irradiation modulates PGRMC1 expression and the number of CD56+ and FoxP3+ cells in the tumor microenvironment of endometrial endometrioid adenocarcinoma. Radiat Oncol J 2022; 39:324-333. [PMID: 34986554 PMCID: PMC8743460 DOI: 10.3857/roj.2021.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME). Materials and Methods According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox’s regression. Results We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients’ group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed. Conclusion Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.
Collapse
Affiliation(s)
| | | | | | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
13
|
Lee SK, Kweon YC, Lee AR, Lee YY, Park CY. Metastasis enhancer PGRMC1 boosts store-operated Ca2+ entry by uncoiling Ca2+ sensor STIM1 for focal adhesion turnover and actomyosin formation. Cell Rep 2022; 38:110281. [DOI: 10.1016/j.celrep.2021.110281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
|
14
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
15
|
Check JH, Check DL. A Hypothetical Model Suggesting Some Possible Ways That the Progesterone Receptor May Be Involved in Cancer Proliferation. Int J Mol Sci 2021; 22:ijms222212351. [PMID: 34830233 PMCID: PMC8621132 DOI: 10.3390/ijms222212351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer and the fetal-placental semi-allograft share certain characteristics, e.g., rapid proliferation, the capacity to invade normal tissue, and, related to the presence of antigens foreign to the host, the need to evade immune surveillance. Many present-day methods to treat cancer use drugs that can block a key molecule that is important for one or more of these characteristics and thus reduce side effects. The ideal molecule would be one that is essential for both the survival of the fetus and malignant tumor, but not needed for normal cells. There is a potential suitable candidate, the progesterone induced blocking factor (PIBF). The parent 90 kilodalton (kDa) form seems to be required for cell-cycle regulation, required by both the fetal-placental unit and malignant tumors. The parent form may be converted to splice variants that help both the fetus and tumors escape immune surveillance, especially in the fetal and tumor microenvironment. Evidence suggests that membrane progesterone receptors are involved in PIBF production, and indeed there has been anecdotal evidence that progesterone receptor antagonists, e.g., mifepristone, can significantly improve longevity and quality of life, with few side effects.
Collapse
Affiliation(s)
- Jerome H. Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology & Infertility, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Institute for Reproductive Hormonal Disorders, P.C., Mt. Laurel, NJ 08054, USA;
- Correspondence: ; Tel.: +1-215-635-4156; Fax: +1-215-635-2304
| | - Diane L. Check
- Cooper Institute for Reproductive Hormonal Disorders, P.C., Mt. Laurel, NJ 08054, USA;
| |
Collapse
|
16
|
Bai Y, Ludescher M, Poschmann G, Stühler K, Wyrich M, Oles J, Franken A, Rivandi M, Abramova A, Reinhardt F, Ruckhäberle E, Niederacher D, Fehm T, Cahill MA, Stamm N, Neubauer H. PGRMC1 Promotes Progestin-Dependent Proliferation of Breast Cancer Cells by Binding Prohibitins Resulting in Activation of ERα Signaling. Cancers (Basel) 2021; 13:cancers13225635. [PMID: 34830790 PMCID: PMC8615993 DOI: 10.3390/cancers13225635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Combined menopausal hormone therapy is associated with increased breast cancer risk in postmenopausal women. In our previous studies, progesterone receptor membrane component 1 (PGRMC1) was shown to play a role in progestins’ elicitation of enhanced proliferation of breast cancer cells. Here we describe a potential mechanism by which PGRMC1 contributes to breast cancer progression via interaction with prohibitins, inhibiting their function as transcriptional repressors. This facilitates estrogen receptor alpha (ERα) transcriptional activity and enhances oncogenic signaling upon treatment with certain progestins, including norethisterone and dydrogesterone. Our data underline the contribution of PGRMC1 to especially hormone receptor positive breast cancer pathogenesis and demonstrate the need for further studies to understand its role in cancer. Abstract In previous studies, we reported that progesterone receptor membrane component 1 (PGRMC1) is implicated in progestin signaling and possibly associated with increased breast cancer risk upon combined hormone replacement therapy. To gain mechanistic insight, we searched for potential PGRMC1 interaction partners upon progestin treatment by co-immunoprecipitation and mass spectrometry. The interactions with the identified partners were further characterized with respect to PGRMC1 phosphorylation status and with emphasis on the crosstalk between PGRMC1 and estrogen receptor α (ERα). We report that PGRMC1 overexpression resulted in increased proliferation of hormone receptor positive breast cancer cell lines upon treatment with a subgroup of progestins including norethisterone and dydrogesterone that promote PGRMC1-phosphorylation on S181. The ERα modulators prohibitin-1 (PHB1) and prohibitin-2 (PHB2) interact with PGRMC1 in dependency on S181-phosphorylation upon treatment with the same progestins. Moreover, increased interaction between PGRMC1 and PHBs correlated with decreased binding of PHBs to ERα and subsequent ERα activation. Inhibition of either PGRMC1 or ERα abolished this effect. In summary, we provide strong evidence that activated PGRMC1 associates with PHBs, competitively removing them from ERα, which then can develop its transcriptional activities on target genes. This study emphasizes the role of PGRMC1 in a key breast cancer signaling pathway which may provide a new avenue to target hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yingxue Bai
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Marina Ludescher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Gereon Poschmann
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Martine Wyrich
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Julia Oles
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Florian Reinhardt
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Michael A. Cahill
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| |
Collapse
|
17
|
Xu X, Ruan X, Zhang Y, Cai G, Ju R, Yang Y, Cheng J, Gu M. Comprehensive Analysis of the Implication of PGRMC1 in Triple-Negative Breast Cancer. Front Bioeng Biotechnol 2021; 9:714030. [PMID: 34746100 PMCID: PMC8569863 DOI: 10.3389/fbioe.2021.714030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
TNBC represents the most malignant subtype of breast cancer with heterogenicity and poor prognosis. PGRMC1 has been reported to predict worse prognosis and correlate with MHT mediated signal transduction in breast cancer, whereas its involvement in TNBC remains poorly explored. The purpose of the study was to explore the roles of PGRMC1 in TNBC. Bioinformatic approaches were performed to analyzed the expression of PGRMC1 among different subtypes of breast cancers using RNA-seq data from the TCGA, METABRIC and GEO databases. PGRMC1 mRNA expression and survival in breast cancer were analyzed. Furthermore, we analyzed the expression of PGRMC1 in TNBC by single cell RNA-seq data and immunohistochemistry. The expression of PGRMC1 in TNBC group was significantly higher compared with that of Luminal subtypes, especially in the epithelia cells, which was further proved by IHC at protein level. Better overall survival (p = 0.027) was observed in the patients with lower expression of PGRMC1. Different states of hormone and Her2 receptors contributed to the distinct functions of PGRMC1. In TNBC, PGRMC1 might play an important role in mitochondrial functions. In summary, this study revealed the correlation between PGRMC1 expression and its clinical significance in TNBC, probably through mitochondria-associated pathway, which may provide new ideas for prognosis and therapy of TNBC.
Collapse
Affiliation(s)
- Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ying Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Guiju Cai
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
18
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
19
|
Shi Y, Zheng W, Ruan X, Wei Y. Simultaneous detection of CA15-3 and PGRMC1 on a microfluidic chip for early diagnosis of breast cancer. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1968896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, National Center for Nanoscience and Technology, Beijing, China
| | - Wenfu Zheng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, National Center for Nanoscience and Technology, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
20
|
Abstract
Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors. Steroids can also bind integral membrane proteins, such as the G protein-coupled estrogen receptor. Membrane estrogen and progestin receptors have been cloned and characterized in vitro and influence the development and function of many organ systems. Membrane androgen receptors were cloned and characterized in vitro, but their function as androgen receptors in vivo is unresolved. We review the identity and function of membrane proteins that bind estrogens, progestins, and androgens. We discuss evidence that membrane glucocorticoid and mineralocorticoid receptors exist, and whether glucocorticoid and mineralocorticoid nuclear receptors act at the cell membrane. In many cases, integral membrane steroid receptors act independently of nuclear steroid receptors, even though they may share a ligand.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Daniel A Gorelick, PhD, One Baylor Plaza, Alkek Building N1317.07, Houston, TX, 77030-3411, USA.
| |
Collapse
|
21
|
Pedroza DA, Ramirez M, Rajamanickam V, Subramani R, Margolis V, Gurbuz T, Estrada A, Lakshmanaswamy R. miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer. Front Oncol 2021; 11:710337. [PMID: 34350123 PMCID: PMC8327780 DOI: 10.3389/fonc.2021.710337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs. Methods To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions. Results KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (CCND1 and YWHAZ) which are highly genetically altered are also associated with poorer overall survival. Conclusions Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Matthew Ramirez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Victoria Margolis
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Tugba Gurbuz
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Adriana Estrada
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
22
|
Cai G, Wang Y, Houda T, Yang C, Wang L, Gu M, Mueck A, Croteau S, Ruan X, Hardy P. MicroRNA-181a suppresses norethisterone-promoted tumorigenesis of breast epithelial MCF10A cells through the PGRMC1/EGFR-PI3K/Akt/mTOR signaling pathway. Transl Oncol 2021; 14:101068. [PMID: 33730679 PMCID: PMC7974027 DOI: 10.1016/j.tranon.2021.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Research suggests that hormone replacement therapy may increase the risk of breast cancer, and progestins such as norethisterone (NET) play a key role in this phenomenon. We have demonstrated that microRNA-181a (miR-181a) suppresses NET-promoted breast cancer cell survival. Nonetheless, the effects of NET and miR-181a on the tumorigenesis of human breast epithelial cells have not yet been elaborated. METHODS Assays of cell viability, proliferation, migration, apoptosis, and colony formation were performed to investigate the pro-tumorigenesis effect of NET and the effects of miR-181a on human breast epithelial MCF10A cells. The expressions of cell-proliferation-related genes and apoptotic factors were analyzed by quantitative RT-PCR and Western blot in MCF10A cells treated with NET and miR-181a. RESULTS NET significantly increased MCF10A cell viability, proliferation, migration, and colony formation, but reduced cellular apoptosis. In addition, NET increased the expression of progesterone receptor membrane component 1 (PGRMC1), EGFR, B-cell lymphoma 2, cyclin D1, and proliferating cell nuclear antigen, but decreased the expression of pro-apoptosis factors, such as Bax, caspase-7, and caspase-9. Overexpression of miR-181a strongly inhibited the effects of NET on MCF10A cells and abrogated NET-stimulated PGRMC1, EGFR, and mTOR expression. CONCLUSIONS Activation of the PGRMC1/EGFR-PI3K/Akt/mTOR signaling pathway is the primary mechanism underlying the pro-tumorigenesis effects of NET on human breast epithelial MCF10A cells. Additionally, miR-181a can suppress the effects of NET on these cells. These data suggest a therapeutic potential for miR-181a in reducing or preventing the risk of breast cancer in hormone replacement therapy using NET.
Collapse
Affiliation(s)
- Guiju Cai
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada; Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuejiao Wang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada; Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tahiri Houda
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada
| | - Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada
| | - Lijuan Wang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada; Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Muqing Gu
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada; Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Alfred Mueck
- University Women's Hospital and Research Centre for Women's Health, Department of Women's Health, University of Tübingen, D-72076 Tübingen, Germany
| | - Stephane Croteau
- Departments of Medicine, Pediatrics, Pharmacology, and Physiology, University of Montréal, Canada
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, Canada; Departments of Medicine, Pediatrics, Pharmacology, and Physiology, University of Montréal, Canada.
| |
Collapse
|
23
|
Pedroza DA, Subramani R, Tiula K, Do A, Rashiraj N, Galvez A, Chatterjee A, Bencomo A, Rivera S, Lakshmanaswamy R. Crosstalk between progesterone receptor membrane component 1 and estrogen receptor α promotes breast cancer cell proliferation. J Transl Med 2021; 101:733-744. [PMID: 33903732 DOI: 10.1038/s41374-021-00594-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022] Open
Abstract
Progesterone (P4) and estradiol (E2) have been shown to stimulate and regulate breast cancer proliferation via classical nuclear receptor signaling through progesterone receptor (PR) and estrogen receptor α (ERα), respectively. However, the basis of communication between PR/ERα and membrane receptors remains largely unknown. Here, we aim to identify classical and nonclassical endocrine signaling mechanisms that can alter cell proliferation through a possible crosstalk between PR, ERα, and progesterone receptor membrane component 1 (PGRMC1), a membrane receptor frequently observed in breast cancer cells. While P4 and E2 treatment increased cell proliferation of ER+/PR+/PGRMC1 overexpressing breast cancer cells, silencing ERα and PR or treatment with selective estrogen receptor modulator (SERM) tamoxifen, or (PR-antagonist) RU-486 decreased cell proliferation. All four treatments rapidly altered PGRMC1 mRNA levels and protein expression. Furthermore, P4 and E2 treatments rapidly activated EGFR a known interacting partner of PGRMC1 and its downstream signaling. Interestingly, downregulation of ERα by tamoxifen and ERα silencing decreased the expression levels of PGRMC1 with no repercussions to PR expression. Strikingly PGRMC1 silencing decreased ERα expression irrespective of PR. METABRIC and TCGA datasets further demonstrated that PGRMC1 expression was comparable to that of ERα in Luminal A and B breast cancers. Targeting of PR, ERα, and PGRMC1 confirmed that a crosstalk between classical and nonclassical signaling mechanisms exists in ER+ breast cancer cells that could enhance the growth of ER+/PR+/PGRMC1 overexpressing tumors.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Kira Tiula
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Anthony Do
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Navya Rashiraj
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Animesh Chatterjee
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Servando Rivera
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
24
|
Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G, Yon JM, Lee MS, Lee GS, An BS, Shin HJ, Woo DC, Baek IJ, Hong EJ. Loss of PGRMC1 Delays the Progression of Hepatocellular Carcinoma via Suppression of Pro-Inflammatory Immune Responses. Cancers (Basel) 2021; 13:cancers13102438. [PMID: 34069911 PMCID: PMC8157610 DOI: 10.3390/cancers13102438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Progesterone receptor membrane component 1 (PGRMC1) and epidermal growth factor receptor (EGFR) are highly expressed in various cancers. Here, we first analyzed two sets of clinical data and found that the levels of PGRMC1 and EGFR in hepatocellular carcinomas (HCCs) were both inversely correlated with the survival of HCC patients. Accordingly, by using a carcinogen-induced mouse model of HCC, we found that Pgrmc1 knockout suppressed HCC development and extended the lifespan of HCC-bearing mice. In the acute setting of high-dose carcinogen administration, Pgrmc1 knockout was associated with increases in hepatic necrosis and decreases in the production of the pro-inflammatory cytokine IL-6. Indeed, silencing of Pgrmc1 in murine macrophages suppressed IL-6 production and NF-κB activity, and this process was significantly mediated by EGFR. Our study shows that Pgrmc1 affects the development of HCCs by regulating the EGFR-mediated inflammatory responses. Pgrmc1 may serve as a biomarker and a therapeutic target of HCC. Abstract Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.
Collapse
Affiliation(s)
- Sang R. Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jong Geol Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jun H. Heo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jihoon Ryu
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Globinna Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jung-Min Yon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Myeong Sup Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam 50463, Korea;
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Dong-Cheol Woo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - In-Jeoung Baek
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| |
Collapse
|
25
|
Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with breast tumor characteristics and comparison with known tumor markers. ACTA ACUST UNITED AC 2020; 27:183-193. [PMID: 31876619 DOI: 10.1097/gme.0000000000001436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Progesterone receptor membrane component-1 (PGRMC1) expressed in breast cancer tissue has been suggested to predict a worse prognosis. The aim of this study was to assess for the first time if blood concentrations of PGRMC1 are also associated with receptor status, tumor diameter, grading, and lymphatic status. The second aim was comparison with known tumor markers. METHODS A total of 372 women, including 278 patients with invasive breast cancer, 65 with benign breast disease, and 29 healthy women (control), were recruited. PGRMC1 blood concentrations were measured by a recently developed enzyme-linked immunosorbant assay, and were correlated to predictive tumor characteristics and compared with serum carcinoembryonic antigen (CEA), CA125, and CA153. RESULTS PGRMC1 levels in the cancer group were significantly higher than in the control and benign group and increased with higher cancer stages (P < 0.05). PGRMC1 concentrations in the estrogen receptor (ER)+/progesterone receptor (PR)+ group were higher than in the ER-/PR- group, related to larger tumor diameter and the presence of lymph node metastasis (P < 0.05). Multivariable linear regression analysis was used to control the confounding factors. Tumor diameter, lymphatic metastasis, and ER (but not PR) were positively associated with PGRMC1 (P < 0.05). The receiver-operating characteristic curve (ROC) analysis was used to assess area under the curve (AUC). AUC was 87.9% for stages III+IV and 80.8% for stages I+II (P < 0.01). ROC did not find significant effects on AUC for CA125, only significant for CEA and CA153 for stages III+IV. CONCLUSION As PGRMC1 levels are positively associated with breast tumor characteristics known to predict a worse diagnosis, PGRMC1 may be valuable as a new tumor marker, and superior to CEA, C125, and CA153. Because of the positive association with ER-expression, PGRMC1 may interact with this receptor.
Collapse
|
26
|
Mifepristone Treatment Promotes Testicular Leydig Cell Tumor Progression in Transgenic Mice. Cancers (Basel) 2020; 12:cancers12113263. [PMID: 33158280 PMCID: PMC7694279 DOI: 10.3390/cancers12113263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recently, the antiprogestin activity of selective progesterone receptor (PR) modulator mifepristone (MF) has proven unsuccessful as a potential anti-cancer agent in various clinical trials. Herein, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on the proliferation of two Leydig tumor cell lines. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Only the abundant membrane Pgrmc1 expression was found in LCTs, but no other classical Pgr or nonclassical membrane PRs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Our findings provide novel information that the use of MF as an anti-cancer agent should be considered with caution due to its potential PGRMC1 tumor-promoting pathway activation in cancers. Abstract The selective progesterone receptor modulator mifepristone (MF) may act as a potent antiproliferative agent in different steroid-dependent cancers due to its strong antagonistic effect on the nuclear progesterone receptor (PGR). Hereby, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on LCT (BLTK-1 and mLTC-1) cell proliferation. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Traceable/absent classical Pgr or nonclassical membrane PRs α, β, γ and Pgrmc2, but abundant membrane Pgrmc1 expression, was found in LCTs. MF did not activate glucocorticoid or androgen receptors in LCTs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Accordingly, MF and P4 induced PGRMC1 translocation into the nucleus and thereby stimulated the release of TGFβ1 in LCT cells. MF and P4 treatments upregulated Tgfbr1, Tgfbr2, and Alk1 expression and stimulated TGFβ1 release in LCT cells. Our findings provide novel mechanistic insights into the action of MF as a membrane PR agonist that promotes LCT growth through PGRMC1 and the alternative TGFβ1 signaling pathway.
Collapse
|
27
|
Cai G, Ruan X, Gu M, Zhao Y, Wang Y, Mueck AO. PGRMC1 in animal breast cancer tissue and blood is associated with increased tumor growth with norethisterone in contrast to progesterone and dydrogesterone: four-arm randomized placebo-controlled xenograft study. Gynecol Endocrinol 2020; 36:1024-1027. [PMID: 32208774 DOI: 10.1080/09513590.2020.1742689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is mediating strong breast cancer cell proliferation induced by certain synthetic progestogens which we have shown within already published in vitro studies. Aim was now to use an animal model, to compare tumor growth using progesterone and its isomer dydrogesterone with norethisterone, which elicited in our in vitro studies the strongest proliferating effect. For the first time, we wanted to investigate if growth can be correlated both with blood concentrations and tissue expression of PGRMC1 to identify if PGRMC1 could be a new tumor marker. Prospective, randomized, blinded, placebo-controlled four-arm study (45-50 days); PGRMC1-transfected or empty-vector T47D- and MCF7-xenotransplants were each treated with estradiol (E2) +placebo; E2 + progesterone; E2 + norethisterone; E2 + dydrogesterone; blood PGRMC1 assessed by a novel ELISA, tissue expression by immunohistochemistry. PGRMC1-transfected tumors further increased with E2 + norethisterone but not with E2-dydrogesterone or E2-progesterone. In both PGRMC1-xenograft groups (T47D, MCF7) with E2/norethisterone, the blood concentrations and tissue expression of PGRMC1 were higher than in all other 14 groups (p < .05), with positive significant correlation between blood PGRMCI concentrations and tissue PGRMC1 expression. In the presence of PGRMC1, certain progestogens could increase the growth of breast tumor, which now also should be tested in clinical studies.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dydrogesterone/pharmacology
- Female
- Heterografts
- Humans
- MCF-7 Cells
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/blood
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Membrane Proteins/blood
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Norethindrone/pharmacology
- Placebos
- Progesterone/pharmacology
- Random Allocation
- Receptors, Progesterone/blood
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Guiju Cai
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- University Women's Hospital and Research Centre for Women's Health, Department of Women's Health, University of Tuebingen, Tuebingen, Germany
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yue Zhao
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Alfred O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- University Women's Hospital and Research Centre for Women's Health, Department of Women's Health, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:7641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
Affiliation(s)
| | | | | | - Pedro C. Redondo
- Department of Physiology (PHYCELL Group) of Veterinary Faculty and Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (C.C.); (G.M.S.); (J.A.R.)
| |
Collapse
|
29
|
Pedroza DA, Rajamanickam V, Subramani R, Bencomo A, Galvez A, Lakshmanaswamy R. Progesterone receptor membrane component 1 promotes the growth of breast cancers by altering the phosphoproteome and augmenting EGFR/PI3K/AKT signalling. Br J Cancer 2020; 123:1326-1335. [PMID: 32704174 PMCID: PMC7553958 DOI: 10.1038/s41416-020-0992-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased expression of the progesterone receptor membrane component 1 (PGRMC1) has been linked to multiple cancers, including breast cancer. Despite being a regulatory receptor and a potential therapeutic target, the oncogenic potential of PGRMC1 has not been studied. METHODS The impact of PGRMC1 on breast cancer growth and progression was studied following chemical inhibition and alteration of PGRMC1 expression, and evaluated by using online-based gene expression datasets of human breast cancer tissue. MTS, flow cytometry, qPCR, Western blotting, confocal microscopy and phosphoproteome analysis were performed. RESULTS We observed higher PGRMC1 levels in both ER-positive ZR-75-1 and TNBC MDA-MB-468 cells. Both chemical inhibition and silencing decreased cell proliferation, induced cell-cycle arrest, promoted apoptosis and reduced the migratory and invasive capabilities of ZR-75-1 and MDA-MB-468 cells. Further, phosphoproteome analysis demonstrated an overall decrease in activation of proteins involved in PI3K/AKT/mTOR and EGFR signalling pathways. In contrast, overexpression of PGRMC1 in non-malignant MCF10A cells resulted in increased cell proliferation, and enhanced activity of PI3K/AKT/mTOR and EGFR signalling pathways. CONCLUSIONS Our data demonstrate that PGRMC1 plays a prominent role in regulating the growth of cancer cells by altering the PI3K/AKT/mTOR and EGFR signalling mechanisms in both ER-positive and TNBC cells.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, 97213, USA
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Alejandra Bencomo
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Adriana Galvez
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
30
|
Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) 2020; 12:cancers12092440. [PMID: 32867363 PMCID: PMC7563480 DOI: 10.3390/cancers12092440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Much emphasis is placed on estrogen (E2) and estrogen receptor (ER) signaling as most research is focused on understanding E2 and ER’s ability to enhance proliferative signals in breast cancers. Progesterone (P4) is important for normal mammary gland development, function and menstrual control. However, P4 and its receptors (PRs) in breast cancer etiology continue to be understudied and its role in breast cancer remains controversial. The Women’s Health Initiative (WHI) clinical trial clearly demonstrated the importance of progestogens in breast cancer development. P4 has historically been associated with classical-signaling through nuclear receptors, however non-classical P4 signaling via membrane receptors has been described. Progestogens have the ability to bind to nuclear and membrane receptors and studies have demonstrated that both can promote breast cancer cell proliferation and breast tumor growth. In this review, we attempt to understand the classical and non-classical signaling role of P4 in breast cancers because both nuclear and membrane receptors could become viable therapeutic options for breast cancer patients.
Collapse
|
31
|
Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res 2020; 22:75. [PMID: 32660617 PMCID: PMC7359014 DOI: 10.1186/s13058-020-01312-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Background PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. Methods The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. Results Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. Conclusion PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Collapse
|
32
|
Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with PGRMC1 expression in breast tumour tissue and with clinical breast tumour characteristics. Maturitas 2020; 140:64-71. [PMID: 32972637 DOI: 10.1016/j.maturitas.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Progesterone receptor membrane component-1 (PGRMC1) in breast cancer tissue has been suggested to predict a worse prognosis. The aim of this study was to assess for the first time whether PGRMC1 expressed in cancer tissue is associated with PGRMC1 blood concentrations and whether both are correlated with clinical tumour characteristics known to predict a worse outcome. METHODS In total, 201 patients with invasive breast cancer and 65 with benign breast disease (control group) were recruited. PGRMC1 blood concentrations were measured by a recently developed ELISA, PGRMC1 in breast cancer tissue was assessed by immunohistochemistry, and the correlation between the two was calculated. Receiver-operating characteristic (ROC) curve analysis was used to assess area under the curve (AUC). Furthermore, PGRMC1 was correlated with tumour characteristics such as tumour diameter, tumour grade and metastatic status, and with known blood tumour markers. RESULTS AUC for the breast cancer group was 0.713, which was significantly higher than in the control group (p < 0.01). Blood PGRMC1 concentrations had a strong (positive) correlation with tissue PGRMC1 expression (p < 0.01) but were not associated with serum tumour markers CEA, CA125, CA153 and TPS. Tissue PGRMC1, ER and cancer stage were positively associated with blood PGRMC1 (p < 0.05). CONCLUSIONS As PGRMC1 expression levels in cancer tissue were significantly correlated with PGRMC1 in blood, and because concentrations in blood were also positively associated with breast tumour characteristics known to predict a worse prognosis, PGRMC1 may be valuable as a new tumour marker and may be superior to known tumour markers such as CEA, CA125, CA153 and TPS.
Collapse
|
33
|
Thejer BM, Adhikary PP, Kaur A, Teakel SL, Van Oosterum A, Seth I, Pajic M, Hannan KM, Pavy M, Poh P, Jazayeri JA, Zaw T, Pascovici D, Ludescher M, Pawlak M, Cassano JC, Turnbull L, Jazayeri M, James AC, Coorey CP, Roberts TL, Kinder SJ, Hannan RD, Patrick E, Molloy MP, New EJ, Fehm TN, Neubauer H, Goldys EM, Weston LA, Cahill MA. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 2020; 21:24. [PMID: 32245408 PMCID: PMC7119165 DOI: 10.1186/s12860-020-00256-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Department of Biology, College of Science, University of Wasit, Wasit, 00964, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Present address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Present address: School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ishith Seth
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, 2010, NSW, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Megan Pavy
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Perlita Poh
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770, Reutlingen, Germany
| | - Juan C Cassano
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Present address: GE Healthcare Life Sciences, Issaquah, WA, 98027, USA
| | - Mitra Jazayeri
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander C James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Craig P Coorey
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | | | - Ross D Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Kolling Institute, The University of Sydney, St Leonards (Sydney), NSW, 2064, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
34
|
Lin Y, Higashisaka K, Shintani T, Maki A, Hanamuro S, Haga Y, Maeda S, Tsujino H, Nagano K, Fujio Y, Tsutsumi Y. Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci Rep 2020; 10:4748. [PMID: 32179851 PMCID: PMC7076038 DOI: 10.1038/s41598-020-61727-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 11/29/2022] Open
Abstract
In non-small-cell lung cancer, mutation of epidermal growth factor receptor (EGFR) stimulates cell proliferation and survival. EGFR tyrosine kinase inhibitors (EGFR-TKIs) such as erlotinib are used as first-line therapy with drastic and immediate effectiveness. However, the disease eventually progresses in most cases within a few years due to the development of drug resistance. Here, we explored the role of progesterone membrane component 1 (PGRMC1) in acquired resistance to erlotinib and addressed the molecular mechanism of EGFR-TKI resistance induced by PGRMC1. The erlotinib-sensitive cell line PC9 (derived from non-small-cell lung cancer) and the erlotinib-resistant cell line PC9/ER were used. In proteomic and immunoblotting analyses, the PGRMC1 level was higher in PC9/ER cells than in PC9 cells. WST-8 assay revealed that inhibition of PGRMC1 by siRNA or AG-205, which alters the spectroscopic properties of the PGRMC1-heme complex, in PC9/ER cells increased the sensitivity to erlotinib, and overexpression of PGRMC1 in PC9 cells reduced their susceptibility to erlotinib. In the presence of erlotinib, immunoprecipitation assay showed that AG-205 suppressed the interaction between EGFR and PGRMC1 in PC9/ER cells. AG-205 decreased the expression of β-catenin, accompanied by up-regulation of IκBα (also known as NFKBIA). Furthermore, AG-205 reduced the expression of β-TrCP (also known as BTRC), suggesting that PGRMC1 enhanced the crosstalk between NF-κB (also known as NFKB) signaling and Wnt/β-catenin signaling in an erlotinib-dependent manner. Finally, treatment with the Wnt/β-catenin inhibitor XAV939 enhanced the sensitivity of PC9/ER cells to erlotinib. These results suggest that PGRMC1 conferred resistance to erlotinib through binding with EGFR in PC9/ER cells, initiating crosstalk between the Wnt/β-catenin and NF-κB pathways.
Collapse
Affiliation(s)
- Ying Lin
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuya Shintani
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Advanced Research of Medical and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayaka Maki
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sachiyo Hanamuro
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Haga
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Maeda
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Advanced Research of Medical and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Tsujino
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuya Nagano
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Fujio
- Advanced Research of Medical and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
35
|
Mueck AO, Ruan X. Will estradiol/progesterone capsules for oral use become the best choice for menopausal hormone therapy? Climacteric 2019; 22:535-537. [PMID: 31612748 DOI: 10.1080/13697137.2019.1663625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A O Mueck
- Department of Women's Health, University of Tuebingen , Tuebingen , Germany.,Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - X Ruan
- Department of Women's Health, University of Tuebingen , Tuebingen , Germany.,Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
36
|
Ruan X, Gu M, Cai G, Zhao Y, Wang L, Li X, Mueck AO. Progestogens and PGRMC1-dependent breast cancer tumor growth: An in-vitro and xenograft study. Maturitas 2019; 123:1-8. [DOI: 10.1016/j.maturitas.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
37
|
Li X, Ruan X, Gu M, Mueck AO. PGRMC1 can trigger estrogen-dependent proliferation of breast cancer cells: estradiol vs. equilin vs. ethinylestradiol. Climacteric 2019; 22:483-488. [PMID: 30862292 DOI: 10.1080/13697137.2019.1582624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Previous studies have shown that progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer tissue can predict a worse prognosis for breast cancer patients. Moreover, we demonstrated that PGRMC1 can increase the proliferation of progestogens. However, the role of PGRMC1 in terms of estrogen-induced proliferation and comparing different estrogens is still unclear. Methods: Non-transfected and PGRMC1-transfected T-47D cells were stimulated with estradiol (E2), with equilin (EQ), or with ethinylestradiol (EE) at 1, 10, and 100 nmol/l. Increase of proliferation was compared with a control (without estrogens) and with the estrogen-induced stimulation in empty vector cells vs. PGRMC1-transfected cells. Results: The empty vector cells showed significant proliferation (12-15%) with all three estrogens only at the highest concentration, with no relevant differences between the estrogens. PGRMC1-transfected cells showed about three-fold higher proliferation (29-66%), whereby E2 elicited the strongest and EE the lowest proliferating effects, significantly lower compared to E2 and also compared to EQ. No significant differences were seen between E2 and EQ. Conclusions: PGRMC1 increases strongly the estrogen-dependent breast cell proliferation. The proliferating effects of EE may be lower compared to E2 and EQ. This could have importance in comparing hormone therapy and contraception. Thus, PGRMC1 not only could predict the risk using progestogens but also of different estrogens.
Collapse
Affiliation(s)
- X Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| | - M Gu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
38
|
Ruan X, Mueck AO. The choice of progestogen for HRT in menopausal women: breast cancer risk is a major issue. Horm Mol Biol Clin Investig 2018; 37:hmbci-2018-0019. [PMID: 30120909 DOI: 10.1515/hmbci-2018-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 11/15/2022]
Abstract
Doctors and patients fear the risk of breast cancer when using hormone replacement therapy (HRT). This review focuses on the choice of progestogen for HRT in menopausal. The Women's Health Initiative (WHI) has been the only large double-blind placebo-controlled study testing the risk of breast cancer (BC) using HRT. No increased risk using estrogen (E)-only was seen, there was a significant decrease in mortality due to BC after the use of HRT which persisted during the recent 18-year follow-up of the WHI. In contrast in the combined arm the risk increased. In about 20 observational studies using mostly medroxyprogesterone acetate (MPA) or estradiol-norethisterone acetate (NETA) an increased BC-risk was observed comparable with the WHI. Only for natural progestogen, progesterone and for dydrogesterone (retro-isomer of progesterone) was no increased risk seen for up to 5-8 years, when compared directly with other progestogens, but for longer treatment an increased risk cannot be excluded. In contrast, the mortality due to BC after use of E-only and combined HRT decreased in about a dozen observational studies, and was very recently confirmed in a Finnish study evaluating 490,000 women using estradiol (E2) plus different progestogens. There have been already more than 70 studies evaluating the risk of BC during HRT, and still there are many open questions. Therefore, this review covers our own and other experimental research which could answer important questions. Experimental research has demonstrated that certain synthetic progestogens, but not progesterone and to some extent also not dydrogesterone, can accelerate the proliferation of breast cancer cells in vitro and in animal studies via special cell membrane components which we recently also detected in patients with BC, and we found differences comparing all available synthetic progestogens. Derived from these mechanisms future research may provide screening for patients at risk and predict the prognosis of possible BC.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,University Hospitals of Tübingen, Department of Women's Health, Tübingen, Germany
| | - Alfred O Mueck
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,University Hospitals of Tübingen, Department of Women's Health, Tübingen, Germany
| |
Collapse
|
39
|
Gu M, Wang L, Yang C, Li X, Jia C, Croteau S, Ruan X, Hardy P. Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth. Maturitas 2018; 114:60-66. [DOI: 10.1016/j.maturitas.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/16/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022]
|
40
|
Seeger H, Ruan X, Neubauer H, Brucker S, Mueck AO. Membrane-initiated effects of Serelys ® on proliferation and apoptosis of human breast cancer cells. Gynecol Endocrinol 2018; 34:353-356. [PMID: 29179606 DOI: 10.1080/09513590.2017.1407751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Herbal extracts used for the alleviation of postmenopausal symptoms might have a lower risk of breast cancer development than hormone therapy. Serelys® is a product composed of purified pollen cytoplasm extracts. Recent experimental data revealed that estrogens might trigger a further proliferative effect on breast cancer cells via the progesterone receptor membrane component-1 (PGRMC1) in addition to the proliferative effect via intracellularly located receptors. MCF-7 and T47D cells were stably transfected with PGRMC1. Different concentrations of the extract alone and in combination with fixed concentrations of estradiol or a growth factor mixture were tested. Proliferation of treated cells was determined by the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide (MTT)-test and apoptosis was determined using a Cell Death Detection ELISA kit (CDD). Serelys® was neutral in the cell lines transfected or not transfected with PGRMC1. It was also neutral in combination with estradiol or growth factors in terms of cell proliferation and cell apoptosis. Thus in contrast to hormone therapy Serelys® appears to trigger no further breast cancer risk when applied in the post menopause to women, who do or do not overexpress PGRMC1. Overall Serelys® may be an effective alternative for alleviating postmenopausal symptoms without increasing breast cancer risk.
Collapse
Affiliation(s)
- Harald Seeger
- a Department of Women's Health , Women's Health Research Institute , Tuebingen , Germany
| | - Xiangyan Ruan
- a Department of Women's Health , Women's Health Research Institute , Tuebingen , Germany
- b Beijing Obstetrics and Gynecology Hospital , Capital Medical University , Beijing , China
| | - Hans Neubauer
- c Department of Obstetrics and Gynecology , University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf , Dsseldorf , Germany
| | - Sara Brucker
- a Department of Women's Health , Women's Health Research Institute , Tuebingen , Germany
| | - Alfred O Mueck
- a Department of Women's Health , Women's Health Research Institute , Tuebingen , Germany
- b Beijing Obstetrics and Gynecology Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
41
|
The presence of a membrane-bound progesterone receptor induces growth of breast cancer with norethisterone but not with progesterone: A xenograft model. Maturitas 2017; 102:26-33. [DOI: 10.1016/j.maturitas.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
|
42
|
Ryu CS, Klein K, Zanger UM. Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions - Focus on Interactions with Cytochromes P450. Front Pharmacol 2017; 8:159. [PMID: 28396637 PMCID: PMC5366339 DOI: 10.3389/fphar.2017.00159] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Membrane-associated progesterone receptors (MAPR) are a group of four rather small, partially homologous proteins, which share a similar non-covalent heme-binding domain that is related to cytochrome b5, a well-known functional interaction partner of microsomal cytochrome P450 (CYP) monooxygenase systems. Apart from their structural similarities the four proteins progesterone membrane component 1 (PGRMC1, also referred to as IZA, sigma-2 receptor, Dap1), PGRMC2, neudesin (NENF) and neuferricin (CYB5D2) display surprisingly divergent and multifunctional physiological properties related to cholesterol/steroid biosynthesis, drug metabolism and response, iron homeostasis, heme trafficking, energy metabolism, autophagy, apoptosis, cell cycle regulation, cell migration, neural functions, and tumorigenesis and cancer progression. The purpose of this mini-review is to briefly summarize the structural and functional properties of MAPRs with particular focus on their interactions with the CYP system. For PGRMC1, originally identified as a non-canonical progesterone-binding protein that mediates some immediate non-genomic actions of progesterone, available evidence indicates mainly activating interactions with steroidogenic CYPs including CYP11A1, CYP21A2, CYP17, CYP19, CYP51A1, and CYP61A1, while interactions with drug metabolizing CYPs including CYP2C2, CYP2C8, CYP2C9, CYP2E1, and CYP3A4 were either ineffective or slightly inhibitory. For the other MAPRs the evidence is so far less conclusive. We also point out that experimental limitations question some of the previous conclusions. Use of appropriate model systems should help to further clarify the true impact of these proteins on CYP-mediated metabolic pathways.
Collapse
Affiliation(s)
- Chang S Ryu
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| | - Kathrin Klein
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| | - Ulrich M Zanger
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| |
Collapse
|
43
|
Transdermales Östradiol und Progesteron. GYNAKOLOGISCHE ENDOKRINOLOGIE 2017. [DOI: 10.1007/s10304-016-0109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|