1
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
2
|
The influence of estradiol and progesterone on neurocognition during three phases of the menstrual cycle: Modulating factors. Behav Brain Res 2022; 417:113593. [PMID: 34560130 DOI: 10.1016/j.bbr.2021.113593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Estradiol is an ovarian steroid hormone that peaks shortly before ovulation and significantly affects various brain regions and neurotransmitter systems, with similar and differential effects with progesterone, another ovarian hormone. Studies investigating the neurocognitive processes during the menstrual cycle have focused on the early follicular phase (EFP) characterized by low estradiol and progesterone levels and the mid-luteal phase (MLP) with high estradiol and progesterone levels. However, most studies have failed to include the ovulatory phase, characterized by high estradiol and low progesterone levels. Given the various hormonal changes in the menstrual cycle, we revisited studies suggesting that the menstrual cycle did not affect verbal and spatial abilities and observed that many contain mixed results. Comparing these studies makes it possible to identify relevant modulating factors, such as sample size, participant age, accurate selection of days for testing, asymmetrical practice effects, genetic polymorphisms, and task difficulty. More robust findings are related to improved mental rotation capacity during EFP with challenging tasks and differences in brain activation among menstrual cycle phases during the execution of spatial and verbal tasks. During MLP, less robust findings were observed, possibly modulated by the complex effects of the two hormones on the brain. In conclusion, we propose that it is crucial to include all three menstrual cycle phases and consider these modulating factors to avoid confounding findings.
Collapse
|
3
|
Moreira Andraschko M, de Carvalho MT, Cardoso Martins Pires H, de Deus HD, Martí Castelló C, de Menezes LB, Brolo Martins D, Pacheco Miguel M. Melatonin attenuates glucocorticoid effect induced by medroxyprogesterone acetate in rats. Gen Comp Endocrinol 2022; 316:113959. [PMID: 34861281 DOI: 10.1016/j.ygcen.2021.113959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Medroxyprogesterone acetate (MPA) acts on glucocorticoid receptors and, when it is in excess, can cause clinical disorders comparable to hyperadrenocorticism. Melatonin (MEL) is a hormone with potent antioxidant and anti-glucocorticoid activity and it can be beneficial in the excessive activation of glucocorticoid receptors. To evaluate the protective effects of MEL on the glucocorticoid effect of MPA, 34 male Wistar rats were randomized into four groups: CON (control), MEL, MPA, and MPA + MEL. The animals were treated for 28 days, by subcutaneous injection. At the high dose that we used, the MPA caused effects compatible with an excessive activation of glucocorticoid receptors, resulting on a reduction in adrenal size, less weight gain, lower final body weight and feeding efficiency, and fewer lymphocytes compared with the control group. In addition, there was an increase in abdominal fat, cholesterol, very-low-density lipoprotein (VLDL), triglycerides, erythrocytes, hemoglobin, hematocrit, and hepatic vacuolization. We concluded that MEL was effective reducing the mean values of total cholesterol, high-density lipoprotein (HDL), urea, VLDL, triglycerides, hepatic microvacuolization and abdominal fat/weight in rats treated with MPA. These findings indicate that MEL attenuates the harmful effects of MPA.
Collapse
Affiliation(s)
| | - Mara Taís de Carvalho
- Mestre e Pós-graduanda em Ciência Animal, Nível doutorado, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Brazil
| | | | | | - Carla Martí Castelló
- Mestre e Pós-graduanda em Ciência Animal, Nível doutorado, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Brazil
| | - Liliana Borges de Menezes
- Programa de Pós Graduação em Ciência Animal da Escola de Veterinária e Zootecnia e Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil
| | - Danieli Brolo Martins
- Programa de Pós Graduação em Ciência Animal da Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Brazil
| | - Marina Pacheco Miguel
- Programa de Pós Graduação em Ciência Animal da Escola de Veterinária e Zootecnia e Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil.
| |
Collapse
|
4
|
Marful A, Paolieri D, Bernal A. Sex, menstrual cycle, and hormonal contraceptives influences on global-local processing. Psychoneuroendocrinology 2021; 134:105430. [PMID: 34637917 DOI: 10.1016/j.psyneuen.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
The effect of sex hormones on global-local tasks has rarely been studied, offering, when done, conflicting results possibly modulated by the congruency between hierarchical stimuli, and by the attentional demands. Here, we examined the global advantage (GA) effect in men (with high testosterone levels), women in the mid-luteal phase (with high levels of estradiol and progesterone), in the ovulatory phase (with high estradiol but low progesterone levels); and in the early follicular phase and with hormonal contraceptive (HC) use (with low sex hormone levels). The level of processing (global-local), the congruency (congruent vs. incongruent), and attentional demands (divided vs. selective) were manipulated. The divided-incongruent condition was sensible to estradiol and progesterone levels and, in this condition, mid-luteal women performed more locally while men performed more globally. The selective-incongruent condition was sensible to the testosterone level and, in this condition, men were faster. The HC group showed a congruency effect in the GA reaction times (RTs) during both, divided and selective conditions. Finally, the GA RTs of the ovulatory group differed from the early follicular and mid-luteal groups only in the congruent-selective condition, but the performance was not related with sex hormone levels. This result is interpreted in relation with the brain effects of estradiol in the absence but not in the presence of progesterone. Thus, sex, menstrual cycle, HC, task difficulty and sex hormones seem to modulate performance in the global-local task. These factors represent an important source of variability in studies focused on the processing of hierarchical stimuli and allow apparently inconsistent data to be explained.
Collapse
Affiliation(s)
- A Marful
- Department of Experimental Psychology, University of Granada, Spain; Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - D Paolieri
- Department of Experimental Psychology, University of Granada, Spain; Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - A Bernal
- Department of Psychobiology, University of Granada, Spain; Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
5
|
Medroxyprogesterone opposes estradiol-induced renal damage in midlife ovariectomized Long Evans rats. ACTA ACUST UNITED AC 2021; 27:1411-1419. [PMID: 33109993 DOI: 10.1097/gme.0000000000001675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Our laboratory previously published that long-term administration of estradiol (E2) was detrimental to the kidneys of midlife ovariectomized Long Evans rats, contrasting clinical studies in showing that menopausal hormone therapy is associated with decreased albuminuria. However, it is unknown whether this renal benefit was due to estrogen and/or the combination with progestogen. Therefore, the objective of the current study was to determine the impact of medroxyprogesterone (MPA) on E2-mediated renal damage using a rodent model. METHODS Female Long Evans retired breeders underwent ovariectomy at 11 months of age and were treated for 40 days with subcutaneous E2, E2+MPA or vehicle at doses mimicking that of menopausal hormone therapy (N = 5-7 per group). Systolic blood pressure was measured along with indices of renal damage and function to investigate the impact of MPA on E2-mediated renal outcomes. Renal estrogen receptor alpha and G protein-coupled estrogen receptor transcript copy numbers were measured in all treatment groups through droplet digital PCR. RESULTS Middle-aged female Long Evans rats displayed spontaneous hypertension with similar systolic blood pressures and heart weights between groups. Even though blood pressure was comparable, E2 reduced glomerular filtration rate and increased proteinuria indicating pressure-independent renal damage. Coadministration with MPA prevented E2-induced glomerular filtration rate impairment and proteinuria by promoting renal hypertrophy and preventing renal interstitial fibrosis. Both E2 and E2+MPA reduced renal estrogen receptor alpha (ERα) and increased renal G protein-coupled estrogen receptor mRNA, but neither ERα nor ERß protein was different between groups. CONCLUSION MPA was protective against E2-induced renal damage and dysfunction in middle-aged female Long Evans rats. Assessing the impact of hormone therapy on renal outcomes may be an important clinical factor when considering treatment options for postmenopausal women.
Collapse
|
6
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
7
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
8
|
Taylor CM, Pritschet L, Yu S, Jacobs EG. Applying a Women's Health Lens to the Study of the Aging Brain. Front Hum Neurosci 2019; 13:224. [PMID: 31333434 PMCID: PMC6625223 DOI: 10.3389/fnhum.2019.00224] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 11/15/2022] Open
Abstract
A major challenge in neuroscience is to understand what happens to a brain as it ages. Such insights could make it possible to distinguish between individuals who will undergo typical aging and those at risk for neurodegenerative disease. Over the last quarter century, thousands of human brain imaging studies have probed the neural basis of age-related cognitive decline. "Aging" studies generally enroll adults over the age of 65, a historical precedent rooted in the average age of retirement. A consequence of this research tradition is that it overlooks one of the most significant neuroendocrine changes in a woman's life: the transition to menopause. The menopausal transition is marked by an overall decline in ovarian sex steroid production-up to 90% in the case of estradiol-a dramatic endocrine change that impacts multiple biological systems, including the brain. Despite sex differences in the risk for dementia, the influence that biological sex and sex hormones have on the aging brain is historically understudied, leaving a critical gap in our understanding of the aging process. In this Perspective article, we highlight the influence that endocrine factors have on the aging brain. We devote particular attention to the neural and cognitive changes that unfold in the middle decade of life, as a function of reproductive aging. We then consider emerging evidence from animal and human studies that other endocrine factors occurring earlier in life (e.g., pregnancy, hormonal birth control use) also shape the aging process. Applying a women's health lens to the study of the aging brain will advance knowledge of the neuroendocrine basis of cognitive aging and ensure that men and women get the full benefit of our research efforts.
Collapse
Affiliation(s)
- Caitlin M. Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- The Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
9
|
Sorokina AM, Saul M, Goncalves TM, Gogola JV, Majdak P, Rodriguez-Zas SL, Rhodes JS. Striatal transcriptome of a mouse model of ADHD reveals a pattern of synaptic remodeling. PLoS One 2018; 13:e0201553. [PMID: 30110355 PMCID: PMC6093675 DOI: 10.1371/journal.pone.0201553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the prevalence and high heritability of Attention-Deficit/Hyperactivity Disorder (ADHD), genetic etiology remains elusive. Clinical evidence points in part to reduced function of the striatum, but which specific genes are differentially expressed and how they sculpt striatal physiology to predispose ADHD are not well understood. As an exploratory tool, a polygenic mouse model of ADHD was recently developed through selective breeding for high home cage activity. Relative to the Control line, the High-Active line displays hyperactivity and motor impulsivity which are ameliorated with amphetamine. This study compared gene expression in the striatum between Control and High-Active mice to develop a coherent hypothesis for how genes might affect striatal physiology and predispose ADHD-like symptoms. To this end, striatal transcriptomes of High-Active and Control mice were analyzed after mice were treated with saline or amphetamines. The pseudogene Gm6180 for n-cofilin (Cfl1) displayed 20-fold higher expression in High-Active mice corresponding with reduced Cfl1 expression suggesting synaptic actin dysregulation. Latrophilin 3 (Lphn3), which is associated with ADHD in human populations and is involved in synapse structure, and its ligand fibronectin leucine rich transmembrane protein 3 (Flrt3), were downregulated in High-Active mice. Multiple genes were altered in High-Active mice in a manner predicted to downregulate the canonical Wnt pathway. A smaller and different set of genes including glyoxalase (Glo1) were differentially regulated in High-Active as compared to Control in response to amphetamine. Together, results suggest genes involved in excitatory synapse regulation and maintenance are downregulated in ADHD-like mice. Consistent with the molecular prediction, stereological analysis of the striatum from a separate set of mice processed for imunohistochemical detection of synaptophysin revealed approximately a 46% reduction in synaptophysin immunoreactivity in High-Active relative to Control. Results provide a new set of molecular targets related to synapse maintenance for the next generation of ADHD medicines.
Collapse
Affiliation(s)
- Anastasia M. Sorokina
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Michael Saul
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Tassia M. Goncalves
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Joseph V. Gogola
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Department of Psychology, University of Chicago, Chicago, Illinois, United States of America
| | - Petra Majdak
- The Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Justin S. Rhodes
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- The Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
10
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
11
|
Kougias DG, Hankosky ER, Gulley JM, Juraska JM. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats. Physiol Behav 2016; 170:93-99. [PMID: 28038406 DOI: 10.1016/j.physbeh.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/03/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats.
Collapse
Affiliation(s)
- Daniel G Kougias
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Emily R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA.
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Janice M Juraska
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
12
|
Drzewiecki CM, Willing J, Juraska JM. Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: A role for pubertal onset. Synapse 2016; 70:361-8. [PMID: 27103097 DOI: 10.1002/syn.21909] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 12/24/2022]
Abstract
Adolescence is a unique period of development, marked by maturation of the prefrontal cortex (PFC), a region important for executive functioning. During this time, the human PFC decreases in overall volume and thickness. Likewise in adolescent rodents, losses of neurons, dendrites, dendritic spines and neurotransmitter receptors have been documented within the medial prefrontal cortex (mPFC), sometimes with sex and layer specificity. However, changes in the number of synapses during this time have not been examined. In the present study, we stereologically quantified the number of synaptophysin-immunoreactive boutons in the male and female rat mPFC across multiple time points from the juvenile period through adulthood (postnatal days (P) 25, 35, 45, 60 and 90). In females, there was a significant decrease in synaptophysin boutons between P35 and P45, coinciding with the onset of puberty. In males, there was no significant main effect of age on synaptophysin boutons; however, in both males and females, pubertal onset was associated with significant synaptic losses. These results suggest that puberty is a critical period for synaptic pruning within the rat mPFC, potentially contributing to maturation of adolescent executive function. Synapse 70:361-368, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, Illinois, 61820
| | - Jari Willing
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, Illinois, 61820
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, Illinois, 61820.,Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, Illinois, 61820
| |
Collapse
|
13
|
Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol Aging 2016; 40:78-85. [PMID: 26973106 DOI: 10.1016/j.neurobiolaging.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a supplement commonly used to maintain muscle in elderly and clinical populations, has been unexplored in the aging brain. In both healthy aging humans and rat models, there are cognitive deficits associated with age-related dendritic shrinkage within the prefrontal cortex. The present study explores the effects of relatively short- and long-term (7 and 31 weeks) oral HMB supplementation starting at 12 months of age in male and female rats on the dendritic tree of layer 5 pyramidal neurons in the medial prefrontal cortex. Since female rats continue to secrete ovarian hormones after reaching reproductive senescence, middle-aged female rats were ovariectomized to model humans. As expected, there were fewer spines and a retraction of dendritic material in the apical and basilar trees in old age controls of both sexes compared with their middle-aged counterparts. However, these losses did not occur in the HMB-treated rats in either dendrites or the total number of dendritic spines. Thus, HMB forestalled the effects of aging on the dendritic tree of this population of neurons.
Collapse
|
14
|
Sinclair EB, Culbert KM, Gradl DR, Richardson KA, Klump KL, Sisk CL. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats. Physiol Behav 2015; 152:249-56. [PMID: 26459117 DOI: 10.1016/j.physbeh.2015.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward.
Collapse
Affiliation(s)
- Elaine B Sinclair
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, United States.
| | - Kristen M Culbert
- Department of Psychology, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-5030, United States
| | - Dana R Gradl
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, United States
| | - Kimberlei A Richardson
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, NW Suite 3408, Washington, DC 20059, United States
| | - Kelly L Klump
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, United States
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, United States
| |
Collapse
|
15
|
Hongpaisan J, Xu C, Sen A, Nelson TJ, Alkon DL. PKC activation during training restores mushroom spine synapses and memory in the aged rat. Neurobiol Dis 2013; 55:44-62. [DOI: 10.1016/j.nbd.2013.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/24/2023] Open
|
16
|
Chisholm NC, Juraska JM. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model. Brain Res 2013; 1514:40-9. [PMID: 23419893 DOI: 10.1016/j.brainres.2013.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/18/2022]
Abstract
Whether hormone treatment alters brain structure or has beneficial effects on cognition during aging has recently become a topic of debate. Although previous research has indicated that hormone treatment benefits memory in menopausal women, several newer studies have shown no effect or detrimental effects. These inconsistencies emphasize the need to evaluate the role of hormones in protecting against age-related cognitive decline in an animal model. Importantly, many studies investigating the effects of estrogen and progesterone on cognition and related brain regions have used young adult animals, which respond differently than aged animals. However, when only the studies that have examined the effects of hormone treatment in an aging model are reviewed, there are still varied behavioral and neural outcomes. This article reviews some of the important factors that can influence the behavioral and neural outcomes of hormone treatment including the type of estrogen administered, whether or not estrogen is combined with progesterone and if so, the type of progesterone used, as well as the route, mode, and length of treatment. How these factors influence cognitive outcomes highlights the importance of study design and avoiding generalizations from a small number of studies. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana - Champaign, Champaign, IL 61820, USA.
| | | |
Collapse
|
17
|
Chisholm NC, Kim T, Juraska JM. Males, but not females, lose tyrosine hydroxylase fibers in the medial prefrontal cortex and are impaired on a delayed alternation task during aging. Behav Brain Res 2013; 243:239-46. [PMID: 23327742 DOI: 10.1016/j.bbr.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
The structure of the prefrontal cortex (PFC) is particularly vulnerable to the effects of aging, and behaviors mediated by the PFC are impaired during aging in both humans and animals. In male rats, behavioral deficits have been correlated with a decrease in dopaminergic functioning. However, studies have found that anatomical changes associated with aging are sexually dimorphic, with males experiencing greater age-related loss than females. The present study investigated the effects of sex and aging on performance of a delayed alternation t-maze, a task mediated by the medial prefrontal cortex (mPFC), and on tyrosine hydroxylase (TH) immunoreactivity in this brain region using adult (7 months) and aged (21 months) male and female F344 rats. There was a sex by age interaction in performance of the delayed alternation task such that adult males performed better than aged males, but aged females were not different than adult females. Adult males performed better than adult females across all delays; however, this sex difference was reversed during aging and aged males performed worse than aged females. In addition, TH immunoreactivity decreased during aging in layers 2/3 in the male, but not female mPFC. Thus females were less sensitive to the effects of aging on the prefrontal dopaminergic system and on performance of a delayed alternation task. These effects may be due to decreases in testosterone in aging males, as well as the protective effects of ovarian hormones, which continue to be secreted after cessation of the estrous cycle in aging females.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | | | | |
Collapse
|
18
|
Chisholm NC, Packard AR, Koss WA, Juraska JM. The effects of long-term treatment with estradiol and medroxyprogesterone acetate on tyrosine hydroxylase fibers and neuron number in the medial prefrontal cortex of aged female rats. Endocrinology 2012; 153:4874-82. [PMID: 22903611 PMCID: PMC3512004 DOI: 10.1210/en.2012-1412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Menopausal women often initiate hormone treatment to alleviate the symptoms of menopause. Research suggests that these treatments also affect cognition, and studies in young animals indicate that hormone treatment can alter several neuroanatomical measures. However, very little is known about the effects of long-term hormone treatment on the aging female brain. This study investigated the effects of hormone treatment on neuron number and tyrosine hydroxylase (TH) in the rat medial prefrontal cortex (mPFC). Female Long Evans rats were ovariectomized at middle age (12-13 months) and placed in one of four groups: no replacement (NR) (n = 12), 17β-estradiol (E(2)) (n = 12), E(2) and progesterone (n = 7), or E(2) and medroxyprogesterone acetate (MPA) (n = 10). Animals were euthanized at 20 months, and the brains were Nissl stained; a subset was immunostained for TH [NR (n = 5); E(2) (n = 6); E(2) + MPA (n = 4); E(2) + progesterone (n = 6)]. E(2) was administered through the drinking water, and progestagens were administered via pellets inserted at the nape of the neck. Neuron number and TH fiber density were quantified in the mPFC. Hormone treatment did not alter neuron number. Treatment with E(2) and MPA resulted in greater TH densities than NR in layer 1 (P < 0.05). In layers 2/3, animals receiving E(2) had greater TH densities than NR animals (P < 0.01). These results indicate that long-term hormone treatments alter dopaminergic fibers and potentially the functioning of the aging mPFC.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| | | | | | | |
Collapse
|