1
|
Anton-Păduraru DT, Mindru DE, Stănescu RS, Trofin F, Cobuz C, Cobuz M, Sur LM, Petroaie A, Slănină AM, Manole M, Bocec AS, Cosmescu A. Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic's Hidden Complication. CHILDREN (BASEL, SWITZERLAND) 2025; 12:482. [PMID: 40310144 PMCID: PMC12026447 DOI: 10.3390/children12040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND/OBJECTIVES One of the metabolic complications of obesity is known as Metabolic Syndrome (MetS). This narrative review aims to synthesize current research on MetS in young populations, identify knowledge gaps, and guide future studies and funding priorities. It provides evidence-based insights into screening, diagnosis, and treatment, offering practical guidance for healthcare professionals. METHODS A comprehensive search of the literature was conducted to identify relevant studies on obesity in MetS in PubMed and Google Academic electronic database. The search was performed using a combination of "obesity", "complications", "metabolic syndrome", "children", and "adolescents" keywords. Studies were selected based on predefined inclusion and exclusion criteria to ensure relevance and methodological rigor. RESULTS The lack of universally accepted diagnostic criteria for MetS in children has led to inconsistencies in its definition across medical literature. Irrespective of the chosen diagnostic approach, the prevalence of MetS in children and adolescents has exhibited a concurrent rise with the increasing rates of obesity in this age group. The pathophysiology of MetS remains incompletely understood, with ongoing discussions on the interplay of genetic, epigenetic, environmental, dietary, and lifestyle factors. Screening for MetS is recommended for overweight and obese children. CONCLUSIONS Establishing global, consensus-driven criteria that account for ethnicity, gender, and age would enhance diagnostic accuracy and treatment approaches. The prevention of excessive weight among children and adolescents stands as a paramount objective within modern society's healthcare system. Considering the complexity of the disease and the treatment, the team must be multidisciplinary.
Collapse
Affiliation(s)
- Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.); (A.S.B.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Dana Elena Mindru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.); (A.S.B.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Raluca Stefania Stănescu
- Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Felicia Trofin
- Microbiology—Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “Sf. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Claudiu Cobuz
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania;
| | - Maricela Cobuz
- “Sfântul Ioan cel Nou” Emergency County Clinical Hospital, 720224 Suceava, Romania;
| | - Lucia Maria Sur
- Department of Child and Mother, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Antoneta Petroaie
- Family Medicine—Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.P.); (A.M.S.); (M.M.); (A.C.)
| | - Ana Maria Slănină
- Family Medicine—Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.P.); (A.M.S.); (M.M.); (A.C.)
| | - Mihaela Manole
- Family Medicine—Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.P.); (A.M.S.); (M.M.); (A.C.)
| | - Ana Simona Bocec
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.); (A.S.B.)
| | - Adriana Cosmescu
- Family Medicine—Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.P.); (A.M.S.); (M.M.); (A.C.)
| |
Collapse
|
2
|
Celik MN, Yesildemir O. Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure. Curr Nutr Rep 2025; 14:14. [PMID: 39775248 PMCID: PMC11706864 DOI: 10.1007/s13668-024-00604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Endocrine disruptors (EDs) can mimic or interfere with hormones in the body, leading to non-communicable diseases, such as obesity, diabetes, and metabolic syndrome. Susceptibility to EDs increases during prenatal and postnatal life, a critical time window. This review aims to summarize the latest evidence on the relation of early life exposure to some EDs with obesity and the other metabolic disorders. RECENT FINDINGS: There is increasing evidence that early life exposure to EDs may impair adipogenesis by increasing the number and size of adipocytes, thereby increasing susceptibility to obesity in childhood. It is stated that exposure to EDs during the prenatal and postnatal period may raise the risk of type 2 diabetes in adulthood by disrupting glucose, lipid, and insulin homeostasis in the offspring. They can also accelerate the development of type 1 diabetes through various mechanisms, like immunomodulation, gut microbiota, and vitamin D pathways. There is a growing understanding that ED exposure during critical stages of life could play an important role in the development of obesity and metabolic disorders. We suggest setting national goals, global standards, and policies to reduce environmental exposure to pregnant and lactating women, and babies, considered sensitive populations.
Collapse
Affiliation(s)
- Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey.
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
3
|
Fortunato-Silva J, de Rezende LP, Ferreira-Neto ML, Bispo-da-Silva LB, Balbi APC. Intrauterine exposure to a high-fat diet, with different levels of lipids, and its gastrointestinal repercussions: a model of fetal programming in rats. J Dev Orig Health Dis 2024; 15:e33. [PMID: 39711030 DOI: 10.1017/s2040174424000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
It is known that adverse stimuli, such as altered diets during pregnancy and lactation, can result in deleterious effects on the progeny. The aim of this study was to evaluate the possible gastrointestinal repercussions in the offspring of Wistar rats exposed to high-fat diets. Pregnant rats were divided into three groups: normolipidic diet (3.5% lipids), a diet containing 28% lipids, and a diet with 40% lipids. Body weight and food, water, daily caloric, and macronutrient intake were evaluated in the pregnant rats. Structural and functional gastrointestinal parameters were assessed in 30-day-old male pups. Depending on the lipid content of the maternal diet, the pups may exhibit gastric mucosal thickening, an increase in the relative weight of the small intestine, a reduction in the jejunal and ileal mucosa, and a decrease in the total thickness of the ileum. Additionally, there may be a reduction in the number of villi per area in these organs and a thinning of the muscular layer in the large intestine. The structural changes induced by the maternal high-fat diet seem to reduce the stomach's sensitivity to ethanol-induced ulcers, which is the only functional alteration observed. Therefore, the offspring of dams exposed to high-fat diets during pregnancy and lactation exhibits impaired gastrointestinal development, with alterations depending on dietary fat content and specific gastrointestinal regions. Structural changes did not always result in functional abnormalities and, in some cases, appeared protective. The long-term consequences of the observed morphological alterations require further investigation.
Collapse
Affiliation(s)
- Jéssica Fortunato-Silva
- Program in Applied Structural and Cellular Biology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Lívia Prometti de Rezende
- Program in Applied Structural and Cellular Biology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Luiz Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Borges Bispo-da-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Paula Coelho Balbi
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
4
|
Ross MG, Coca KP, Rocha ACL, Camargo BTS, de Castro LS, Horta BL, Desai M. Composition of Breast Milk in Women with Obesity. J Clin Med 2024; 13:6947. [PMID: 39598091 PMCID: PMC11594640 DOI: 10.3390/jcm13226947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Among US breastfeeding women, those with obesity have significantly increased breast milk fat and caloric content from foremilk to hindmilk, with a 4-fold increase in fat content from the first to last milk sample. In view of different dietary norms and nutritional standards, we sought to evaluate the relationship between maternal BMI with breast milk fat and calorie content in women from Brazil, a low-middle-income country. Methods: Women who delivered singleton-term neonates were recruited from the Ana Abrao Breastfeeding Center (AABC) and Human Milk Bank at the Federal University of Sao Paulo, Brazil. These women were then studied at 7-8 weeks postpartum. Women were grouped by BMI categories of nonobese (NonOB; BMI 18.5-29.9) and obese (OB; BMI ≥ 30). A breast pump was applied, and milk samples were obtained continuously in 10 mL aliquots from foremilk to hindmilk; samples were analyzed for macronutrients and lipids, and maternal blood was analyzed for serum lipids and glucose. Results: As compared to NonOB women, those with OB had significantly higher milk fat in the mid (4.9 ± 0.3 vs. 3.9 ± 0.2) and last hindmilk (6.6 ± 0.4 vs. 5.5 ± 0.3) samples, though not in the first foremilk sample, as compared to NonOB women. In both NonOB and OB subjects, milk caloric and fat content increased 1.5 to 2-fold from foremilk to hindmilk, with the average milk caloric value being 11% greater in OB women. Protein content was significantly increased in all three milk samples (first, middle, and last) in women with OB. Conclusions: Although the value of breastfeeding remains clear, these findings may have significant implications for infant nutrition and excessive infant weight gain in women with OB.
Collapse
Affiliation(s)
- Michael G. Ross
- The Lundquist Institute at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Kelly P. Coca
- Paulista School of Nursing, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil;
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Ana Carolina Lavio Rocha
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Bárbara Tideman Sartório Camargo
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Luciola Sant’Anna de Castro
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Bernardo L. Horta
- School of Medicine, Universidade Federal de Pelotas (UFPel), Pelotas 96010-610, RS, Brazil;
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| |
Collapse
|
5
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
6
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Qian S, Zhang C, Tang Y, Dai M, He Z, Ma H, Wang L, Yang Q, Liu Y, Xu W, Zhang Z, Tang QQ. A single-cell sequence analysis of mouse subcutaneous white adipose tissue reveals dynamic changes during weaning. Commun Biol 2024; 7:787. [PMID: 38951550 PMCID: PMC11217364 DOI: 10.1038/s42003-024-06448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFβ ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.
Collapse
Affiliation(s)
- Shuwen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengyuan Dai
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihui He
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linyuan Wang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiqi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Oken E, Calafat AM, Hauser R, Braun JM. Associations of parental preconception and maternal pregnancy urinary phthalate biomarker and bisphenol-a concentrations with child eating behaviors. Int J Hyg Environ Health 2024; 257:114334. [PMID: 38350281 PMCID: PMC10939723 DOI: 10.1016/j.ijheh.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Eating behaviors are controlled by the neuroendocrine system. Whether endocrine disrupting chemicals have the potential to affect eating behaviors has not been widely studied in humans. We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate biomarker and bisphenol-A (BPA) concentrations were associated with children's eating behaviors. METHODS We used data from mother-father-child triads in the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-13 years whose parent(s) previously enrolled in a fertility clinic-based prospective preconception study. We quantified urinary concentrations of 11 phthalate metabolites and BPA in parents' urine samples collected preconceptionally and during pregnancy. Parents rated children's eating behavior using the Child Eating Behavior Questionnaire (CEBQ). Using multivariable linear regression, accounting for correlation among twins, we estimated covariate-adjusted associations of urinary phthalate biomarkers and BPA concentrations with CEBQ subscale scores. RESULTS This analysis included 195 children (30 sets of twins), 160 mothers and 97 fathers; children were predominantly non-Hispanic white (84%) and 53% were male. Paternal and maternal preconception monobenzyl phthalate (MBzP) concentrations and maternal preconception mono-n-butyl phthalate (MnBP) were positively associated with emotional overeating, food responsiveness, and desire to drink scores in children (β's= 0.11 [95% CI: 0.01, 0.20]-0.21 [95% CI: 0.10, 0.31] per loge unit increase in phthalate biomarker concentration). Paternal preconception BPA concentrations were inversely associated with scores on food approaching scales. Maternal pregnancy MnBP, mono-isobutyl phthalate (MiBP) and MBzP concentrations were associated with increased emotional undereating scores. Maternal pregnancy monocarboxy-isononyl phthalate concentrations were related to decreased food avoiding subscale scores. CONCLUSIONS In this cohort, higher maternal and paternal preconception urinary concentrations of some phthalate biomarkers were associated with increased food approaching behavior scores and decreased food avoiding behavior scores, which could lead to increased adiposity in children.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
9
|
Niebrzydowska-Tatus M, Pełech A, Bień K, Rekowska AK, Domańska A, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Trojnar M. Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry. Int J Mol Sci 2024; 25:3759. [PMID: 38612572 PMCID: PMC11011445 DOI: 10.3390/ijms25073759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Fetal programming is a process initiated by intrauterine conditions, leaving a lasting impact on the offspring's health, whether they manifest immediately or later in life. It is believed that children born to mothers with gestational diabetes mellitus (GDM) and excessive gestational weight gain (EGWG) may be at an increased risk of developing type 2 diabetes mellitus (T2DM) and obesity later in their adult lives. Substance P is a neurotransmitter associated with obesity development and impairment of insulin signaling. Dysregulation of substance P could lead to several pregnancy pathologies, such as preeclampsia and preterm birth. Our study aimed to compare substance P concentrations in serum and umbilical cord blood in patients with GDM, EGWG, and healthy women with a family history of gestational weight gain. Substance P levels in umbilical cord blood were significantly higher in the GDM group compared to the EGWG and control groups. Substance P levels in serum and umbilical cord blood were positively correlated in all groups and the GDM group. A very interesting direction for future research is the relationship between the concentration of substance P in newborns of diabetic mothers and the occurrence of respiratory distress syndrome as a complication of impaired surfactant synthesis. To our knowledge, it is the first study assessing substance P concentration in GDM and EGWG patients.
Collapse
Affiliation(s)
- Magdalena Niebrzydowska-Tatus
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Aleksandra Pełech
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Katarzyna Bień
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Anna K. Rekowska
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Aleksandra Domańska
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Bożena Leszczyńska-Gorzelak
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Marcin Trojnar
- Chair and Department of Internal Diseases, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
10
|
Apolinário LF, Silva AT, Rosa AP, Oliveira CDS, Lira C, Guerra JPCDS, Friedrich JF, Rosa LQ, Chelegão R, Botelho SDCC, Sinhorin VDG, de Oliveira JC, Velloso NA. Supplementation of the maternal diet with Brazil nut ( Bertholletia excelsa H.B.K.) prevents cognitive impairment in the offspring of obese mothers. J Dev Orig Health Dis 2023; 14:795-804. [PMID: 38345286 DOI: 10.1017/s2040174424000023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Maternal obesity may trigger long-term neurodevelopmental disorders in offspring. Considering the benefits of the Brazil nut (Bertholletia excelsa H.B.K.), a rich source of nutrients such as selenium, this study aimed to evaluate its effect on the behavior of obese rat offspring and its relationship with oxidative stress. From 60 days of age until weaning, female Wistar rats were fed a high-fat diet (mHF) or an HF diet supplemented with 5% Brazil nut (mHF/BN), while control mothers (mCTL) were fed a standard diet or a standard diet supplemented with 5% Brazil nut (mBN). Male pups received a standard diet throughout life and, at 30 and 90 days old, were subjected to behavioral tasks to evaluate anxiety and cognition. Biochemical evaluations were performed at 90 days of age. No alterations were observed in the anxiety behavior of the offspring. However, the offspring of the mHF group (oHF) exhibited impaired short-term memory at 30 and 90 days of age and impaired long-term memory at 30 days. Short-term memory impairment was prevented by Brazil nuts in young rats (30 days). While the serum selenium concentration was reduced in the oHF group, the serum catalase concentration was reduced in all groups, without changes in lipid peroxidation or protein carbonylation. Brazil nut maternal diet supplementation prevented short- and long-term cognitive impairment in the offspring, which may be related to the selenium levels.
Collapse
Affiliation(s)
- Lilian Fioravanso Apolinário
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | - Amanda Tais Silva
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | - Andrielli Pompermayer Rosa
- Laboratórios Integrados de Pesquisas Químicas, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | - Cleber da Silva Oliveira
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | - Cleberson Lira
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | | | - Júlia Furtado Friedrich
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | - Letícia Queiroz Rosa
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| | | | | | | | - Júlio Cezar de Oliveira
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
- Grupo de Pesquisa Programação Perinatal de Doenças Metabólicas, conceito DOHaD, Laboratório de Doenças Metabólicas e Cardiovasculares, Núcleo de Pesquisa e Apoio Didático em Saúde, Sinop, MT, Brazil
| | - Nádia Aléssio Velloso
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
- Núcleo de Pesquisa e Apoio Didático em Saúde, Universidade Federal de Mato Grosso (UFMT), Sinop, MT, Brazil
| |
Collapse
|
11
|
Vass RA, Mikó É, Gál C, Kőszegi T, Vass CI, Bokor S, Molnár D, Funke S, Kovács K, Bódis J, Ertl T. The Effect of Holder Pasteurization and Different Variants on Breast Milk Antioxidants. Antioxidants (Basel) 2023; 12:1857. [PMID: 37891936 PMCID: PMC10604438 DOI: 10.3390/antiox12101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND After birth, breast milk (BM) is a known essential source of antioxidants for infants. We analyzed the non-enzymatic total antioxidant capacity (TAC), oxygen radical absorbance capacity (ORAC), and glutathione, calcium, transferrin, and total protein levels of human breast milk before and after Holder pasteurization (HoP). METHODS The collected donor BM samples were pasteurized with HoP. RESULTS HoP decreased TAC (-12.6%), ORAC (-12.1%), transferrin (-98.3%), and total protein (-21.4%) levels; HoP did not influence the glutathione concentration, and it increased the total calcium (+25.5%) concentration. Mothers who gave birth via Cesarean section had significantly lower TAC in their BM. TAC and glutathione levels were elevated in the BM of mothers over the age of 30. BM produced in the summer had higher glutathione and calcium levels compared to BM produced in the winter. The glutathione concentration in term milk samples was significantly higher in the first two months of lactation compared to the period between the third and sixth months. The transferrin level of BM for female infants was significantly higher than the BM for boys, and mothers with a BMI above 30 had increased transferrin in their samples. CONCLUSIONS Antioxidant levels in human milk are influenced by numerous factors. Environmental and maternal factors, the postpartum age at breast milk collection, and Holder pasteurization of the milk influence the antioxidant intake of the infant.
Collapse
Affiliation(s)
- Réka Anna Vass
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Obstetrics and Gynecology, Magyar Imre Hospital, 8400 Ajka, Hungary
| | - Éva Mikó
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Microbiology, Medical School University of Pécs, 7624 Pécs, Hungary
| | - Csenge Gál
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kőszegi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Medical School University of Pécs, 7624 Pécs, Hungary
| | - Csaba I Vass
- Obstetrics and Gynecology, Magyar Imre Hospital, 8400 Ajka, Hungary
| | - Szilvia Bokor
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Pediatrics, Medical School University of Pécs, 7624 Pécs, Hungary
| | - Dénes Molnár
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Pediatrics, Medical School University of Pécs, 7624 Pécs, Hungary
| | - Simone Funke
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Kálmán Kovács
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - József Bódis
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, 7624 Pécs, Hungary
| | - Tibor Ertl
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Sulyok E, Farkas B, Bodis J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants (Basel) 2023; 12:1354. [PMID: 37507894 PMCID: PMC10376205 DOI: 10.3390/antiox12071354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Based on epidemiological observations Barker et al. put forward the hypothesis/concept that an adverse intrauterine environment (involving an insufficient nutrient supply, chronic hypoxia, stress, and toxic substances) is an important risk factor for the development of chronic diseases later in life. The fetus responds to the unfavorable environment with adaptive reactions, which ensure survival in the short run, but at the expense of initiating pathological processes leading to adult diseases. In this review, the major mechanisms (including telomere dysfunction, epigenetic modifications, and cardiovascular-renal-endocrine-metabolic reactions) will be outlined, with a particular emphasis on the role of oxidative stress in the fetal origin of adult diseases.
Collapse
Affiliation(s)
- Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Balint Farkas
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
14
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
15
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
16
|
Strobel KM, Kafali SG, Shih SF, Artura AM, Masamed R, Elashoff D, Wu HH, Calkins KL. Pregnancies complicated by gestational diabetes and fetal growth restriction: an analysis of maternal and fetal body composition using magnetic resonance imaging. J Perinatol 2023; 43:44-51. [PMID: 36319757 PMCID: PMC9840659 DOI: 10.1038/s41372-022-01549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Maternal body composition may influence fetal body composition. OBJECTIVE The objective of this pilot study was to investigate the relationship between maternal and fetal body composition. METHODS Three pregnant women cohorts were studied: healthy, gestational diabetes (GDM), and fetal growth restriction (FGR). Maternal body composition (visceral adipose tissue volume (VAT), subcutaneous adipose tissue volume (SAT), pancreatic and hepatic proton-density fat fraction (PDFF) and fetal body composition (abdominal SAT and hepatic PDFF) were measured using MRI between 30 to 36 weeks gestation. RESULTS Compared to healthy and FGR fetuses, GDM fetuses had greater hepatic PDFF (5.2 [4.2, 5.5]% vs. 3.2 [3, 3.3]% vs. 1.9 [1.4, 3.7]%, p = 0.004). Fetal hepatic PDFF was associated with maternal SAT (r = 0.47, p = 0.02), VAT (r = 0.62, p = 0.002), and pancreatic PDFF (r = 0.54, p = 0.008). When controlling for maternal SAT, GDM increased fetal hepatic PDFF by 0.9 ([0.51, 1.3], p = 0.001). CONCLUSION In this study, maternal SAT, VAT, and GDM status were positively associated with fetal hepatic PDFF.
Collapse
Affiliation(s)
- Katie M. Strobel
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sevgi Gokce Kafali
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H. Wu
- Department of Medicine, Biostatistics and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kara L. Calkins
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
18
|
Bichteler A, Barton JM, Lumeng JC, Gershoff ET. Patterns of Childhood Body Mass Index Percentile Gains as Predictors of Adolescent Body Mass Index, Waist Circumference, and Blood Pressure. Acad Pediatr 2022; 22:769-776. [PMID: 34861461 PMCID: PMC9156720 DOI: 10.1016/j.acap.2021.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine whether patterns of body mass index (BMI) percentile gains across childhood predict BMI percentile, overweight and obesity, waist circumference, and elevated or prehypertensive blood pressure at age 15. METHODS Trained technicians in the Study of Early Child Care and Youth Development assessed children's weight and height from birth to 15 years and waist circumference and blood pressure at age 15 (n = 1132). Children's BMI percentile trajectories from age 2 to age 13 along with 28 demographic and social covariates were used to predict BMI percentile, waist circumference, overweight, obesity, and elevated or prehypertensive blood pressure. Linear and logistic regressions were used to predict BMI percentile, overweight, obesity, waist circumference, and elevated or prehypertensive blood pressure. RESULTS Children were classified into one"?>1 of 4four"?> BMI percentile trajectories: "low stable" (28.4%), "low-to-high" (11.8%), "median stable" (29.0%), and "high rising" (30.7%). Children in trajectory classes characterized by persistent above average BMI percentile or by periods of rapid BMI percentile gains were more likely than their peers to experience poor weight and elevated or prehypertensive outcomes in adolescence. Trajectory class membership explained substantially more variance in adolescent health outcomes than demographic covariates alone. Estimated maternal BMI was a key independent predictor of adolescent outcomes. CONCLUSIONS Different patterns of BMI percentile gains, namely those with rapid gains or persistently above average BMI percentile, from ages 2 to 13 predicted weight, waist circumference, and elevated or prehypertensive blood pressure at age 15, above and beyond demographic and social characteristics.
Collapse
Affiliation(s)
- Anne Bichteler
- Department of Human Development and Family Sciences, University of Texas at Austin (A Bichteler and ET Gershoff), Austin, Tex
| | - Jennifer M Barton
- Family Resiliency Center, University of Illinois at Urbana-Champaign (JM Barton), Urbana, Ill.
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School (JC Lumeng), Ann Arbor, Mich; Department of Nutritional Sciences, University of Michigan School of Public Health (JC Lumeng), Ann Arbor, Mich
| | - Elizabeth T Gershoff
- Department of Human Development and Family Sciences, University of Texas at Austin (A Bichteler and ET Gershoff), Austin, Tex
| |
Collapse
|
19
|
Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on the Hippocampus Proteome in a Porcine Model. Antioxidants (Basel) 2022; 11:antiox11061135. [PMID: 35740029 PMCID: PMC9219860 DOI: 10.3390/antiox11061135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Supplementation of a mother’s diet with antioxidants such as hydroxytyrosol (HTX) has been proposed to ameliorate the adverse phenotypes of foetuses affected by intrauterine growth restriction (IUGR). Our previous studies showed, in a porcine model of IUGR, an effect of maternal HTX supplementation on the neurotransmitter profile of several brain areas and the morphology of the hippocampus in 100 days old foetuses. The present study analyzed the impact of maternal HTX supplementation on the hippocampus proteome at this foetal age by TMT10plex labelling. Eleven differentially abundant proteins were identified by comparing both conditions, and eight of them downregulated and three upregulated in the HTX-treated group. The downregulated proteins were mainly involved in protein synthesis and RNA metabolism and may explain the differences in neuron differentiation in the HTX-treated group. The upregulated proteins were related to cell detoxification and could represent a potential mechanism to explain the neuroprotective effect of HTX.
Collapse
|
20
|
Xu W, Song Z, Wang W, Li X, Yan P, Shi T, Fu C, Liu X. Effects of in ovo feeding of t10,c12-conjugated linoleic acid on hepatic lipid metabolism and subcutaneous adipose tissue deposition in newly hatched broiler chicks. Poult Sci 2022; 101:101797. [PMID: 35358926 PMCID: PMC8968647 DOI: 10.1016/j.psj.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate whether in ovo feeding of t10,c12-conjugated linoleic acid (CLA) could regulate hepatic lipid metabolism and decrease lipid accumulation in newly hatched chicks. Three hundred and sixty fertilely specific pathogen-free hatching eggs were selected and randomly divided into 6 groups. On embryonic day 11 of incubation (E11), 0, 1.5, 3.0, 4.5, 6.0, or 7.5 mg t10,c12-CLA were injected into the eggs. The results indicated that in ovo feeding of t10,c12-CLA significantly decreased the subcutaneous adipose tissue (SAT) mass and the relative SAT weight of newly hatched chicks in linear and quadratic manners (P < 0.05). In liver, the levels of triglycerides were reduced linearly and quadratically and total cholesterol were reduced quadratically as the dose of t10,c12-CLA increased (P < 0.05). Meanwhile, the hepatic carnitine palmitoyltransferase-1a (CPT1a) content and polyunsaturated fatty acid proportion were increased quadratically in t10,c12-CLA groups (P < 0.05), accompanied by the decrease of malondialdehyde level and the increase of glutathione peroxidase and total antioxidant capacity activities (P < 0.05). In addition, in ovo feeding of t10,c12-CLA decreased the mRNA expression levels of fatty acid synthase, acetyl-CoA carboxylase 1 in linear and quadratic manners (P < 0.05), and decreased the mRNA expression of adipose triacylglyceride lipase and stearoyl-CoA desaturase significantly in liver (P < 0.05), accompanied by upregulating the mRNA expression of CPT1a quadratically and AMP-activated protein kinase α linearly and quadratically (P < 0.05). In SAT, the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1c were decreased linearly and quadratically (P < 0.05), and the expression of PPARα and CPT1a genes were increased linearly and quadratically as the dose of t10,c12-CLA increased (P < 0.05). In conclusion, our findings demonstrate that in ovo feeding of t10,c12-CLA alleviates lipid accumulation in newly hatched chicks by suppressing fatty acid synthesis and stimulating lipolysis in the liver and inhibiting adipocyte differentiation in subcutaneous adipose tissue.
Collapse
|
21
|
Prenatal Education Intervention for Increasing Knowledge and Changing Attitude Toward Offspring Obesity Risk Factors. J Perinat Educ 2022; 31:94-103. [PMID: 35386491 PMCID: PMC8970135 DOI: 10.1891/jpe-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This pre- and post-test quasi-experimental design study pilot tested an educational intervention designed to increase knowledge of and change attitudes toward prenatal factors that increase risk of childhood offspring obesity in 36 pregnant women. Educational intervention content included monitoring blood glucose, gestational weight gain in pregnancy, healthy lifestyle choices, and breastfeeding. Education intervention delivery method included: Verbal, written, and video. Participants’ knowledge improved after the intervention for most topics (p = .03–.000). Their attitude score also differed before and after intervention (p = .002). Video delivery mode was the most useful, attractive, and most helpful method. This study showed an education intervention could potentially increase pregnant women’s knowledge and attitudes toward offspring obesity risk factors.
Collapse
|
22
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
23
|
Oxidative Stress Profile of Mothers and Their Offspring after Maternal Consumption of High-Fat Diet in Rodents: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9073859. [PMID: 34868458 PMCID: PMC8636978 DOI: 10.1155/2021/9073859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Maternal exposure to the high-fat diet (HFD) during gestation or lactation can be harmful to both a mother and offspring. The aim of this systematic review was to identify and evaluate the studies with animal models (rodents) that were exposed to the high-fat diet during pregnancy and/or lactation period to investigate oxidative stress and lipid and liver enzyme profile of mothers and their offspring. The electronic search was performed in the PUBMED (Public/Publisher MEDLINE), EMBASE (Ovid), and Web of Science databases. Data from 77 studies were included for qualitative analysis, and of these, 13 studies were included for meta-analysis by using a random effects model. The pooled analysis revealed higher malondialdehyde levels in offspring of high-fat diet groups. Furthermore, the pooled analysis showed increased reactive oxygen species and lower superoxide dismutase and catalase in offspring of mothers exposed to high-fat diet during pregnancy and/or lactation. Despite significant heterogeneity, the systematic review shows oxidative stress in offspring induced by maternal HFD.
Collapse
|
24
|
Zhang L, Shi Q, Sun Y. FoxO1 Regulates Neuropeptide Y and Pro-opiomelanocortin in the Hypothalamus of Rat Offspring Small for Gestational Age. Reprod Sci 2021; 29:173-183. [PMID: 34767244 DOI: 10.1007/s43032-021-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/13/2021] [Indexed: 10/19/2022]
Abstract
Adulthood obesity, diabetes, and metabolic diseases are associated with small for gestational age (SGA) newborns. This association could be related to abnormal appetite signaling pathways in the hypothalamus. This study investigated the appetite regulation by the hypothalamus of SGA newborns by establishing an SGA rat model and culturing SGA neural progenitor cells (NPCs) in vitro. Models of SGA were established by maternal food restriction embryonic day 10 (E10). At E18, postpartum day 1 (P1), and P5, hypothalamic neural precursor cells (NPCs) of offspring were cultured in vitro. Immunofluorescence, Western blot (WB), and qRT-PCR were used to assess NPY, POMC, and FoxO1 expression levels. The effects on mRNA expression of the FoxO1-specific inhibitor AS1842856 were examined. The results indicated that compared with controls, NPY was higher, and POMC was lower at embryonic day 18 (E18), postpartum day 1 (P1), and P5. The proliferation and migration of NPCs in the third ventricle of SGA hypothalami were lower than in controls. After treatment with the FoxO1 inhibitor AS1842856, the differences in the mRNA expression of NPY and POMC between the two groups disappeared. NPY and POMC mRNA levels in the SGA group treated with AS1842856 were not significantly different compared with the control group without AS1842856 treatment. In conclusion, SGA pups showed an increase in appetite-promoting NPY and a decrease in appetite-reducing POMC, probably contributing to adulthood weight gain, obesity, and endocrine disorders.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, No.99 Long Cheng Street, Taiyuan, 030032, People's Republic of China
| | - Qingyun Shi
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yao Jia Yuan Road,Chao Yang District, Beijing, 100026, People's Republic of China.
| | - Yiyao Sun
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Shanxi Medical University, No.3690 He Dong East Street, Yuncheng, 044000, People's Republic of China
| |
Collapse
|
25
|
Bintoro DA, Nareswari I. The Role of Electroacupuncture in the Regulation of Appetite-Controlling Hormone and Inflammatory Response in Obesity. Med Acupunct 2021; 33:264-268. [PMID: 34471444 PMCID: PMC8403175 DOI: 10.1089/acu.2020.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Obesity, a condition with serious complications, needs special attention. It is a complex and multifactorial problem and regulation of calorie balance involving various humoral and central factors is the main key for managing obesity. In addition, there is an increase in various proinflammatory cytokines and an increase in oxidative stress. There is a need to discover a useful therapy for obesity management. The goal of this review was to examine the literature on electroacupuncture (EA) as a potential therapy. Methods: This review explores the literature on EA, which has proven to be effective for inducing weight loss in experimental human and animal studies. Both continuous and dense-disperse EA waves have their own roles in hormone regulation of obesity using ST 25, CV 9, CV 12, CV 4, SP 6, ST 36, and ST 44; this is discussed the associated mechanism related to this is through suppression of various orexigenic peptides, enhancement of anorexigenic peptides, suppression of inflammatory factors, and improvement in the balance of pro-oxidants and antioxidants. Conclusions: The absence of another definitive therapy for obesity and EA's minimal side-effects make it a potential therapy for managing obesity.
Collapse
Affiliation(s)
- Dinda Aniela Bintoro
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| | - Irma Nareswari
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| |
Collapse
|
26
|
Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on Brain Neurochemistry and Development in a Porcine Model. Antioxidants (Basel) 2021; 10:antiox10060884. [PMID: 34073097 PMCID: PMC8227239 DOI: 10.3390/antiox10060884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022] Open
Abstract
Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.
Collapse
|
27
|
Human Milk Exosomal MicroRNA: Associations with Maternal Overweight/Obesity and Infant Body Composition at 1 Month of Life. Nutrients 2021; 13:nu13041091. [PMID: 33801634 PMCID: PMC8066780 DOI: 10.3390/nu13041091] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Among all the body fluids, breast milk is one of the richest sources of microRNAs (miRNAs). MiRNAs packaged within the milk exosomes are bioavailable to breastfeeding infants. The role of miRNAs in determining infant growth and the impact of maternal overweight/obesity on human milk (HM) miRNAs is poorly understood. The objectives of this study were to examine the impact of maternal overweight/obesity on select miRNAs (miR-148a, miR-30b, miR-29a, miR-29b, miR-let-7a and miR-32) involved in adipogenesis and glucose metabolism and to examine the relationship of these miRNAs with measures of infant body composition in the first 6 months of life. Milk samples were collected from a cohort of 60 mothers (30 normal-weight [NW] and 30 overweight [OW]/obese [OB]) at 1-month and a subset of 48 of these at 3 months of lactation. Relative abundance of miRNA was determined using real-time PCR. The associations between the miRNAs of interest and infant weight and body composition at one, three, and six months were examined after adjusting for infant gestational age, birth weight, and sex. The abundance of miR-148a and miR-30b was lower by 30% and 42%, respectively, in the OW/OB group than in the NW group at 1 month. miR-148a was negatively associated with infant weight, fat mass, and fat free mass, while miR-30b was positively associated with infant weight, percent body fat, and fat mass at 1 month. Maternal obesity is negatively associated with the content of select miRNAs in human milk. An association of specific miRNAs with infant body composition was observed during the first month of life, suggesting a potential role in the infant's adaptation to enteral nutrition.
Collapse
|
28
|
Akhaphong B, Gregg B, Kumusoglu D, Jo S, Singer K, Scheys J, DelProposto J, Lumeng C, Bernal-Mizrachi E, Alejandro EU. Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice. Front Endocrinol (Lausanne) 2021; 12:780300. [PMID: 35111136 PMCID: PMC8801938 DOI: 10.3389/fendo.2021.780300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 01/31/2023] Open
Abstract
The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring's metabolic heath trajectory. In the present study, we determined the long-term metabolic outcomes on adult male and female offspring of dams fed with HFD during pregnancy. C57BL/6J dams were fed either Ctrl or 60% Kcal HFD for 4 weeks before and throughout pregnancy, and we tested glucose homeostasis in the adult offspring. Both Ctrl and HFD-dams displayed increased weight during pregnancy, but HFD-dams gained more weight than Ctrl-dams. Litter size and offspring birthweight were not different between HFD-dams or Ctrl-dams. A significant reduction in random blood glucose was evident in newborns from HFD-dams compared to Ctrl-dams. Islet morphology and alpha-cell fraction were normal but a reduction in beta-cell fraction was observed in newborns from HFD-dams compared to Ctrl-dams. During adulthood, male offspring of HFD-dams displayed comparable glucose tolerance under normal chow. Male offspring re-challenged with HFD displayed glucose intolerance transiently. Adult female offspring of HFD-dams demonstrated normal glucose tolerance but displayed increased insulin resistance relative to controls under normal chow diet. Moreover, adult female offspring of HFD-dams displayed increased insulin secretion in response to high-glucose treatment, but beta-cell mass were comparable between groups. Together, these data show that maternal HFD at pre-conception and during gestation predisposes the female offspring to insulin resistance in adulthood.
Collapse
Affiliation(s)
- Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Joshua Scheys
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Jennifer DelProposto
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carey Lumeng
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- Diabetes, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Miami VA Healthcare System and Division Endocrinology, Metabolism and Diabetes, University of Miami, Miami, FL, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| |
Collapse
|
29
|
Kulhanek D, Weigel R, Paulsen ME. Maternal High-Fat-High-Carbohydrate Diet-Induced Obesity Is Associated with Increased Appetite in Peripubertal Male but Not Female C57Bl/6J Mice. Nutrients 2020; 12:E2919. [PMID: 32987812 PMCID: PMC7598591 DOI: 10.3390/nu12102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-induced maternal obesity might play a critical role in altering hypothalamic development, predisposing the offspring to obesity and metabolic disease later in life. The objective of this study was to describe both phenotypic and molecular sex differences in peripubertal offspring energy homeostasis, using a mouse model of maternal obesity induced by a high-fat-high-carbohydrate (HFHC) diet. We report that males, not females, exposed to a maternal HFHC diet had increased energy intake. Males exposed to a maternal HFHC diet had a 15% increased meal size and a 46% increased frequency, compared to the control (CON) males, without a change in energy expenditure. CON and HFHC offspring did not differ in body weight, composition, or plasma metabolic profile. HFHC diet caused decreased hypothalamic glucocorticoid expression, which was further decreased in males compared to females. Maternal weight, maternal caloric intake, and male offspring meal frequency were inversely correlated with offspring hypothalamic insulin receptor (IR) expression. There was a significant interaction between maternal-diet exposure and sex in hypothalamic IR. Based on our preclinical data, we suggest that interventions focusing on normalizing maternal nutrition might be considered to attenuate nutritional influences on obesity programming and curb the continuing rise in obesity rates.
Collapse
Affiliation(s)
| | | | - Megan E. Paulsen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.K.); (R.W.)
| |
Collapse
|
30
|
Shapiro ALB, Moore BF, Sutton B, Wilkening G, Stence N, Dabelea D, Tregellas JR. In Utero Exposure to Maternal Overweight or Obesity is Associated with Altered Offspring Brain Function in Middle Childhood. Obesity (Silver Spring) 2020; 28:1718-1725. [PMID: 32772475 PMCID: PMC7483843 DOI: 10.1002/oby.22908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The impact of in utero exposure to maternal overweight and obesity on offspring metabolic health is well documented. Neurodevelopmental outcomes among these children are, however, less well studied. To address this gap, the current study investigated brain function among 4- to 6-year-old children exposed to maternal overweight or obesity during gestation compared with that of children born to mothers with healthy BMI in pregnancy. METHODS Resting-state functional magnetic resonance imaging was used to study neuronal activity and connectivity during a passive viewing task (movie) among 101 typically developing children enrolled in the Healthy Start study, a longitudinal prebirth cohort in Colorado. RESULTS Forty-nine children (48%) were exposed to maternal overweight or obesity in utero (mean age = 5 years, SD = 0.9). Children born to mothers with overweight or obesity demonstrated hyperactivity in the left posterior cingulate cortex and hypoactivity in the dorsal anterior cingulate and the supplementary motor area (P < 0.05 for all). Children born to mothers with overweight or obesity also showed ubiquitously weaker brain connectivity (P < 0.05 for all). CONCLUSIONS These novel results suggest altered brain function among children exposed to maternal overweight and obesity in utero.
Collapse
Affiliation(s)
- Allison L B Shapiro
- Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brianna F Moore
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Austin, Austin, Texas, USA
| | - Brianne Sutton
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Greta Wilkening
- Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas Stence
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dana Dabelea
- Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Research Service, Denver Veteran's Administration Medical Center, Aurora, Colorado, USA
| |
Collapse
|
31
|
Liffner S, Nedstrand E, Bladh M, Rodriguez-Martinez H, Hammar M, Sydsjö G. Birth characteristics in men with infertility. Reprod Biomed Online 2020; 41:455-463. [PMID: 32600947 DOI: 10.1016/j.rbmo.2020.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
RESEARCH QUESTION Are low birth weight, prematurity, being born small for gestational age, or both, associated with a higher risk of male factor infertility in adulthood? DESIGN Retrospective study of a clinical sample of 892 men, diagnosed with an infertility factor (male, female, combined or unexplained) together with their female partner at a University Hospital clinic in Sweden between 2005 and 2010. Data on birth weight and gestational age at birth were retrieved from the Swedish Medical Birth Register. The distribution of non-optimal birth characteristics in relation to infertility factor was described. A control group was created consisting of two men for each index man, born in Sweden in the same year as each index men, as well as a reference group consisting of all men born in Sweden the same years. RESULTS The likelihood of having been born small for gestational age was almost fivefold higher in men with male factor infertility than in men with unexplained infertility (OR 4.84, 95% CI 1.32 to 17.80). Men with male factor infertility were more often born with non-optimal birth characteristics than the control group (14.8% versus 8.5%; P = 0.010) and the reference group (14.8% versus 11.4%; P < 0.001). Men with azoospermia were more often born with non-optimal birth characteristics, compared with men without azoospermia (21.3% versus 12.1%; P = 0.038). CONCLUSIONS The results suggest an association between intrauterine growth restriction and male factor infertility in adulthood.
Collapse
Affiliation(s)
- Susanne Liffner
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden.
| | - Elizabeth Nedstrand
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden
| | - Marie Bladh
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden
| | - Heriberto Rodriguez-Martinez
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden
| | - Mats Hammar
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden
| | - Gunilla Sydsjö
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 85, Sweden
| |
Collapse
|
32
|
Kim H, Kim JH, Zuo G, Lim SS. Anti-obesity effect of Melandrium firmum Rohrbach extract in 3T3-L1 cells and high-fat diet-induced obese C57BL/6N mice. Food Sci Nutr 2020; 8:2251-2261. [PMID: 32405382 PMCID: PMC7215215 DOI: 10.1002/fsn3.1466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we first investigated the influence of Melandrium firmum Rohrbach (MF) on the accumulation of lipid content in 3T3-L1 cells and in vitro results showed that MF extraction suppressed the differentiation of 3T3-L1 pre-adipocytes in a concentration-dependent manner without showing cytotoxicity. Hence, we studied the effects of MF on preventing obesity in C57BL/6N mice. The results showed that MF decreased food efficiency ratio, body weight, epididymal adipose and hepatic tissue weight, hepatic lipid metabolites, and triacylglycerol and cholesterol serum levels, when compared with the high-fat diet group. Moreover, MF significantly inhibited the expression of genes related to adipogenesis, such as PPAR-γ, C/EBP-α, and aP2, and those related to lipogenesis, such as SREBP-1c, FAS, SCD-1, and CD36 in epididymal adipose and liver tissues. These anti-adipogenic and anti-lipogenic effects of MF suggest that it could be used as a food including potential functional ingredient to prevent high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Hyun‐Yong Kim
- Department of Food Science and NutritionHallym UniversityChuncheonKorea
| | - Ju Hee Kim
- Institute of Natural MedicineHallym UniversityChuncheonKorea
| | - Guanglei Zuo
- Department of Food Science and NutritionHallym UniversityChuncheonKorea
| | - Soon Sung Lim
- Department of Food Science and NutritionHallym UniversityChuncheonKorea
- Institute of Natural MedicineHallym UniversityChuncheonKorea
- Institute of Korean NutritionHallym UniversityChuncheonKorea
| |
Collapse
|
33
|
Harasymowicz NS, Choi YR, Wu CL, Iannucci L, Tang R, Guilak F. Intergenerational Transmission of Diet-Induced Obesity, Metabolic Imbalance, and Osteoarthritis in Mice. Arthritis Rheumatol 2020; 72:632-644. [PMID: 31646754 DOI: 10.1002/art.41147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Obesity and osteoarthritis (OA) are 2 major public health issues affecting millions of people worldwide. Whereas parental obesity affects the predisposition to diseases such as cancer or diabetes in children, transgenerational influences on musculoskeletal conditions such as OA are poorly understood. This study was undertaken to assess the intergenerational effects of a parental/grandparental high-fat diet on the metabolic and skeletal phenotype, systemic inflammation, and predisposition to OA in 2 generations of offspring in mice. METHODS Metabolic phenotype and predisposition to OA were investigated in the first and second (F1 and F2) generations of offspring (n = 10-16 mice per sex per diet) bred from mice fed a high-fat diet (HFD) or a low-fat control diet. OA was induced by destabilizing the medial meniscus. OA, synovitis, and adipose tissue inflammation were determined histologically, while bone changes were measured using micro-computed tomography. Serum and synovial cytokines were measured by multiplex assay. RESULTS Parental high-fat feeding showed an intergenerational effect, with inheritance of increased weight gain (up to 19% in the F1 generation and 9% in F2), metabolic imbalance, and injury-induced OA in at least 2 generations of mice, despite the fact that the offspring were fed the low-fat diet. Strikingly, both F1 and F2 female mice showed an increased predisposition to injury-induced OA (48% higher predisposition in F1 and 19% in F2 female mice fed the HFD) and developed bone microarchitectural changes that were attributable to parental and grandparental high-fat feeding. CONCLUSION The results of this study reveal a detrimental effect of parental HFD and obesity on the musculoskeletal integrity of 2 generations of offspring, indicating the importance of further investigation of these effects. An improved understanding of the mechanisms involved in the transmissibility of diet-induced changes through multiple generations may help in the development of future therapies that would target the effects of obesity on OA and related conditions.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri
| | - Yun-Rak Choi
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri, and Yonsei University College of Medicine, Seoul, South Korea
| | - Chia-Lung Wu
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri
| | - Leanne Iannucci
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri
| | - Ruhang Tang
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri
| | - Farshid Guilak
- Washington University in St. Louis and Shriners Hospitals for Children, St. Louis, Missouri
| |
Collapse
|
34
|
Abstract
Worldwide obesity is increasing at an alarming rate in children and adolescents, with the consequent emergence of co-morbidities. Moreover, the maternal environment during pregnancy plays an important role in obesity, contributing to transgenerational transmission of the same and metabolic dysfunction. White adipose tissue represents a prime target of metabolic programming induced by maternal milieu. In this article, we review adipose tissue physiology and development, as well as maternal influences during the perinatal period that may lead to obesity in early postnatal life and adulthood. First, we describe the adipose tissue cell composition, distribution and hormonal action, together with the evidence of hormonal factors participating in fetal/postnatal programming. Subsequently, we describe the critical periods of adipose tissue development and the relationship of gestational and early postnatal life with healthy fetal adipose tissue expansion. Furthermore, we discuss the evidence showing that adipose tissue is an important target for nutritional, hormonal and epigenetic signals to modulate fetal growth. Finally, we describe nutritional, hormonal, epigenetic and microbiome changes observed in maternal obesity, and whether their disruption alters fetal growth and adiposity. The presented evidence supports the developmental origins of health and disease concept, which proposes that the homeostatic system is affected during gestational and postnatal development, impeding the ability to regulate body weight after birth, thereby resulting in adult obesity. Consequently, we anticipate that promoting a healthy early-life programming of adipose tissue and increasing the knowledge of the mechanisms by which maternal factors affect the health of future generations may offer novel strategies for explaining and addressing worldwide health problems such as obesity.
Collapse
|
35
|
Nascimento IBD, Fleig R, Souza MLRD, Silva JC. Physical exercise and metformin in gestational obesity and prevention on gestational diabetes mellitus: a systematic review. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2020. [DOI: 10.1590/1806-93042020000100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract Objectives: identify the action of metformin and physical activities to reduce weight gain and prevent mellitus diabetes in obese pregnant women. Methods: the electronic search was performed in PubMed / MEDLINE, LILACS, Web of Science, Scopus and Cochrane library databases between 2008 and 2018. The selection took place between April and July 2018, through the descriptors "pregnancy, obesity, metformin, treatment, exercise". A protocol was programmed and consecutively a selective research on the inclusion / exclusion phase. The "PICO" strategy was used. Population: obese pregnant women. Intervention: physical exercises and metformin. Control: The main indicator established was therapeutic outcomes with physical activity and metformin. Outcome of interest: body weight control. Results: by selecting the database, 3,983 articles were identified on the topic of interest. After selecting and eligibility, only 16 scientific studies were selected, of which 81.25% were clinical trials related to diet programs, physical activity, metformin use and possible outcomes, 18.75% were prospective cohort on causes of obesity in gestation and its association with gestational mellitus diabetes and preventive therapies. The study pointed out the possibility of adapting physical therapy programs with the correct metformin dosage for a greater control in gestational weight gain. However, there is a need for greater awareness and changes in habits for obese woman during the gestational period. Conclusions: the drug presents similarity to physical activity by activating AMPK and may be added to treatments that propose changes in pregnant women’s lifestyle to reduce weight gain and prevent gestational diabetes mellitus with a better understanding of the optimal dosage. Thus, the study suggests the use of metformin is not only for the prevention and the intercurrence of gestational diabetes mellitus, but a strictly careful investigation allowing its use to non-diabetic obese pregnant women.
Collapse
Affiliation(s)
| | - Raquel Fleig
- Universidade do Estado de Santa Catarina, Brasil
| | | | | |
Collapse
|
36
|
Onuzulu CD, Rotimi OA, Rotimi SO. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:309-325. [PMID: 31271561 DOI: 10.1515/reveh-2018-0059] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwakemi Anuoluwapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
37
|
Sun J, Mei H, Xie S, Wu L, Wang Y, Mei W, Zhang J. The interactive effect of pre-pregnancy overweight and obesity and hypertensive disorders of pregnancy on the weight status in infancy. Sci Rep 2019; 9:15960. [PMID: 31685839 PMCID: PMC6828655 DOI: 10.1038/s41598-019-52140-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023] Open
Abstract
We aimed to assess whether hypertensive disorders of pregnancy (HDP) could modify the effect of pre-pregnancy overweight or obesity (OWO) on the risk of offspring high body mass index (BMI) in infancy. A total of 3,765 mother-child pairs were recruited from two Chinese birth cohorts. BMI ≥ 85th percentile, based on World Health Organization criteria, was defined as a high BMI for the risk of developing severe obesity in later life. Logistic regression analysis was used to assess the combined effects and multiplicative interactions of pre-pregnancy OWO + HDP on offspring high BMI. Relative excess risk due to interaction (RERI) or attributable proportion (AP) was used to estimate additive interactions. RERI > 0 or AP > 0 indicates a significant additive interaction. Compared with the non-OWO and normal blood pressure group, the combination of OWO + HDP was positively associated with offspring high BMI at 12 months of age [OR 3.10 (95%CI 1.59, 6.04)], with 51% of the effects attributed to an additive interaction [AP 0.51 (95%CI 0.13, 0.89)]. An interactive effect was found between the pre-pregnancy OWO + HDP and offspring high BMI in infancy. Interventions to control pre-pregnancy OWO and HDP are important to prevent obesity and associated adverse outcomes in offspring.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Hong Mei
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Rd., Wuhan, 430016, Hubei, China
| | - Shuixian Xie
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Lisha Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Yulong Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Wenhua Mei
- Department of Information, Zhuhai Public Hospital Authority, 351 East Meihua Rd., Zhuhai, 519000, Guangdong, China.
- Department of Epidemiology, Jinan University, 601 Huangpuxi Rd., Guangzhou, 510632, Guangdong, China.
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China.
| |
Collapse
|
38
|
The loss of ERE-dependent ERα signaling potentiates the effects of maternal high-fat diet on energy homeostasis in female offspring fed an obesogenic diet. J Dev Orig Health Dis 2019; 11:285-296. [PMID: 31543088 DOI: 10.1017/s2040174419000515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal high-fat diet (HFD) alters hypothalamic programming and disrupts offspring energy homeostasis in rodents. We previously reported that the loss of ERα signaling partially blocks the effects of maternal HFD in female offspring fed a standard chow diet. In a companion study, we determined if the effects of maternal HFD were magnified by an adult obesogenic diet in our transgenic mouse models. Heterozygous ERα knockout (wild-type (WT)/KO) dams were fed a control breeder chow diet (25% fat) or a semipurified HFD (45% fat) 4 weeks prior to mating with heterozygous males (WT/KO or WT/ knockin) to produce WT, ERα KO, or ERα knockin/knockout (KIKO) (no estrogen response element (ERE) binding) female offspring, which were fed HFD for 20 weeks. Maternal HFD potentiated the effects of adult HFD on KIKO and KO body weight due to increased adiposity and decreased activity. Maternal HFD also produced KIKO females that exhibit KO-like insulin intolerance and impaired glucose homeostasis. Maternal HFD increased plasma interleukin 6 and monocyte chemoattractant protein 1 levels and G6pc and Pepck liver expression only in WT mice. Insulin and tumor necrosis factor α levels were higher in KO offspring from HFD-fed dams. Arcuate and liver expression of Esr1 was altered in KIKO and WT, respectively. These data suggest that loss of ERE-dependent ERα signaling, and not total ERα signaling, sensitizes females to the deleterious influence of maternal HFD on offspring energy and glucose potentially through the control of peripheral inflammation and hypothalamic and liver gene expression. Future studies will interrogate the tissue-specific mechanisms of maternal HFD programming through ERα signaling.
Collapse
|
39
|
Maternal folic acid supplementation does not counteract the deleterious impact of prenatal exposure to environmental pollutants on lipid homeostasis in male rat descendants. J Dev Orig Health Dis 2019; 11:427-437. [DOI: 10.1017/s2040174419000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractPrenatal exposure to persistent organic pollutants (POPs) has been associated with the development of metabolic syndrome-related diseases in offspring. According to epidemiological studies, father’s transmission of environmental effects in addition to mother’s can influence offspring health. Moreover, maternal prenatal dietary folic acid (FA) may beneficially impact offspring health. The objective is to investigate whether prenatal FA supplementation can overcome the deleterious effects of prenatal exposure to POPs on lipid homeostasis and inflammation in three generations of male rat descendants through the paternal lineage. Female Sprague-Dawley rats (F0) were exposed to a POPs mixture (or corn oil) +/− FA supplementation for 9 weeks before and during gestation. F1 and F2 males were mated with untreated females. Plasma and hepatic lipids were measured in F1, F2, and F3 males after 12-h fast. Gene expression of inflammatory cytokines was determined by qPCR in epididymal adipose tissue. In F1 males, prenatal POPs exposure increased plasma lipids at 14 weeks old and hepatic lipids at 28 weeks old and prenatal FA supplementation decreased plasma total cholesterol at 14 weeks old. Prenatal POPs exposure decreased plasma triglycerides at 14 weeks old in F2 males. No change was observed in inflammatory markers. Our results show an impact of the paternal lineage on lipid homeostasis in rats up to the F2 male generation. FA supplementation of the F0 diet, regardless of POPs exposure, lowered plasma cholesterol in F1 males but failed to attenuate the deleterious effects of prenatal POPs exposure on plasma and hepatic lipids in F1 males.
Collapse
|
40
|
Nehme PA, Amaral F, Lowden A, Skene DJ, Cipolla-Neto J, Moreno CRC. Reduced melatonin synthesis in pregnant night workers: Metabolic implications for offspring. Med Hypotheses 2019; 132:109353. [PMID: 31421432 DOI: 10.1016/j.mehy.2019.109353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Several novel animal studies have shown that intrauterine metabolic programming can be modified in the event of reduced melatonin synthesis during pregnancy, leading to glucose intolerance and insulin resistance in the offspring. It is therefore postulated that female night workers when pregnant may expose the offspring to unwanted health threats. This may be explained by the fact that melatonin is essential for regulating energy metabolism and can influence reproductive activity. Moreover, the circadian misalignment caused by shift work affects fertility and the fetus, increasing the risk of miscarriage, premature birth and low birth weight, phenomena observed in night workers. Thus, we hypothesize that light-induced melatonin suppression as a result of night work may alter intrauterine metabolic programming in pregnant women, potentially leading to metabolic disorders in their offspring.
Collapse
Affiliation(s)
- P A Nehme
- School of Public Health, University of São Paulo, Brazil
| | - F Amaral
- Department of Physiology, Federal University of São Paulo, Brazil
| | - A Lowden
- Stress Research Institute, University of Stockholm, Sweden
| | - D J Skene
- Faculty of Health and Medical Sciences, University of Surrey, UK
| | - J Cipolla-Neto
- Department of Physiology and Biophysics Neurobiology Lab, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - C R C Moreno
- School of Public Health, University of São Paulo, Brazil; Stress Research Institute, University of Stockholm, Sweden.
| |
Collapse
|
41
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs. J Cell Physiol 2019; 235:349-363. [DOI: 10.1002/jcp.28974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
42
|
Lee YQ, Beckett EL, Sculley DV, Rae KM, Collins CE, Pringle KG. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. Am J Physiol Renal Physiol 2019; 316:F1227-F1235. [DOI: 10.1152/ajprenal.00082.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maternal undernutrition during pregnancy is prevalent across the globe, and the origins of many chronic diseases can be traced back to in utero conditions. This systematic review considers the current evidence in animal models regarding the relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function. CINAHL, Cochrane, EMBASE, MEDLINE, and Scopus were searched to November 2017. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles were screened by two independent reviewers. Twenty-eight studies met the inclusion criteria: 16 studies were on rats, 9 on sheep, 2 on baboons, and 1 on goats. The majority of the rat studies had maternal global nutrient restriction during pregnancy at 50% of ad libitum while restriction for sheep and baboon studies ranged from 50% to 75%. Because of the heterogeneity of outcome measures and the large variation in the age of offspring at followup, no meta-analysis was possible. Common outcome measures included kidney weight, nephron number, glomerular size, glomerular filtration rate, and creatinine clearance. To date, there have been no studies assessing kidney function in large animal models. Most studies were rated as having a high or unknown risk of bias. The current body of evidence in animals suggests that exposure to maternal global nutrient restriction during pregnancy has detrimental effects on offspring kidney structure and function, such as lower kidney weight, lower nephron endowment, larger glomerular size, and lower glomerular filtration rate. Further long-term followup of studies in large animal models investigating kidney function through to adulthood are warranted.
Collapse
Affiliation(s)
- Yu Qi Lee
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Emma L. Beckett
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dean V. Sculley
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kym M. Rae
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
- Department of Rural Health, University of Newcastle, Tamworth, New South Wales, Australia
- Priority Research Center for Generational Health and Aging, University of Newcastle, Newcastle, New South Wales, Australia
| | - Clare E. Collins
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kirsty G. Pringle
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
| |
Collapse
|
43
|
Costa TC, Moura FH, Souza RO, Lopes MM, Fontes MMS, Serão NVL, Sanglard LP, Du M, Gionbelli MP, Duarte MS. Effect of maternal feed restriction in dairy goats at different stages of gestation on skeletal muscle development and energy metabolism of kids at the time of births. Anim Reprod Sci 2019; 206:46-59. [PMID: 31104948 DOI: 10.1016/j.anireprosci.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 05/10/2019] [Indexed: 01/13/2023]
Abstract
The aim was to determine effects of maternal feed restriction in dairy goats at gestational different stages on skeletal muscle development and energy metabolism in kids at birth. Six pregnant goats were fed 50% of total digestible nutrients (TDN) and crude protein (CP) (NRC, 2007) recommendations in the first half of gestation and then fed to 100% of the recommendations in the second half of gestation (treatment R-M). In the other group, eight pregnant goats were fed 100% of TDN and CP in the first half of gestation and 50% of a restricted diet the second half of gestation (treatment M-R). Birth weight, blood glucose concentration, muscle fiber number, and size of kids at birth were not affected by maternal feed restriction. The mRNA and protein abundance of myogenic, adipogenic and fibrogenic markers were not affected (P > 0.05) by maternal diet. With regard to values for variables in kid energy metabolism, mRNA abundance of the glycolic enzyme HKII was less (P = 0.03) in the M-R group. In conclusion, maternal feed restriction in the first or second half of gestation had no affect mRNA abundance on myogenic, adipogenic, and fibrogenic markers nor were there changes in skeletal muscle mesenchymal stem cell population of kids at the time of birth. There, however, may be detrimental effects on energy metabolism by reducing HKII gene expression in skeletal muscle of dairy goat kids at the time of birth.
Collapse
Affiliation(s)
- Thaís C Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Felipe H Moura
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ranyeri O Souza
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mariana M Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marta M S Fontes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, USA
| | | | - Min Du
- Department of Animal Science, Washington State University, Pullman, USA
| | - Mateus P Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Brazil
| | - Marcio S Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
44
|
Amatruda M, Ippolito G, Vizzuso S, Vizzari G, Banderali G, Verduci E. Epigenetic Effects of n-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome. Int J Mol Sci 2019; 20:2118. [PMID: 31035722 PMCID: PMC6539774 DOI: 10.3390/ijms20092118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Childhood obesity represents an important public health issue worldwide and is strongly linked to metabolic alterations such as hypertension, insulin resistance, and dyslipidemia. The constellation of these conditions is commonly known as Metabolic Syndrome (MetS). Metabolic syndrome is not just a simple cluster of metabolic complications due to excess of adipose tissue, but is considered a risk factor for cardiovascular diseases. Evidence from several human and animal studies suggests that environmental and nutritional exposure during pregnancy may affect the newborn development and future health through epigenetic changes, playing a potential role in determining obesity and obesity-related complications. Understanding how nutritional epigenetic mechanisms contribute to the "transgenerational risk" for obesity and metabolic dysfunction is crucial in order to develop early prevention strategies for children's health. Nutrigenetics is the science that studies the role of nutrients in gene expression. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) are known for their health benefits, especially in relation to their ability to modulate inflammation and improve some obesity-associated comorbidities, mainly by decreasing plasma triglycerides. Recent nutrigenetic research is focusing on the potential role of LCPUFAs in influencing epigenetic markers. In this review, we present the most recent updates about the possible interaction between n-3 LCPUFAs and epigenetic pathways in metabolic syndrome. Literature from MEDLINE® and the Cochrane database between May 2005 and December 2018 has been scanned.
Collapse
Affiliation(s)
- Matilde Amatruda
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giulio Ippolito
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Sara Vizzuso
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giulia Vizzari
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giuseppe Banderali
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| |
Collapse
|
45
|
Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APDA, Miguel PM, Lupinsky D, Dalmaz C, Silveira PP. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav 2019; 204:336-346. [PMID: 30880239 DOI: 10.1016/j.physbeh.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Recent studies have implicated a role for impulsivity in the altered eating behaviors and the increased risk for obesity consistently associated with intrauterine growth restriction (IUGR). Changes in dopamine transmission within prefrontal areas are believed to contribute to these adverse outcomes. Here we investigated the impulsive behavior toward a delayed reward and evaluated dopamine levels and its receptors in the medial prefrontal (mPFC) and orbitofrontal (OFC) cortex of female adult rats exposed to IUGR. From day 10 of pregnancy and until birth, Sprague-Dawley dams received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, all pups were adopted by Adlib mothers, generating the groups Adlib/Adlib (control) and FR/Adlib (intrauterine growth-restricted). Adult impulsive behavior was evaluated using a Tolerance to Delay of Reward Task. In vivo dopamine responses to sweet food intake were measured by voltammetry, and D1, D2 and DAT levels were accessed by Western Blot. Animals from FR group showed a pronounced aversion to delayed rewards. DA response to sweet food was found to be blunted in the mPFC of FR animals, whereas in the OFC, the DA levels appear to be unaffected by reward consumption. Moreover, FR animals presented reduced D1 receptors in the OFC and a later increase in the mPFC D2 levels. These findings suggest that IUGR female rats are more impulsive and that the associated mechanism involves changes in the dopamine signaling in both the mPFC and OFC.
Collapse
Affiliation(s)
- Márcio Bonesso Alves
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Daniela Pereira Laureano
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania Diniz Machado
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Maidana Miguel
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Lupinsky
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| |
Collapse
|
46
|
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, Chifiriuc MC. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr 2019; 6:21. [PMID: 30931309 PMCID: PMC6424913 DOI: 10.3389/fnut.2019.00021] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela G Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Natalia Cucu
- Fundeni Clinical Institute, Bucharest, Romania.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
47
|
Wang LH, Huang W, Wei D, Ding DG, Liu YR, Wang JJ, Zhou ZY. Mechanisms of Acupuncture Therapy for Simple Obesity: An Evidence-Based Review of Clinical and Animal Studies on Simple Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5796381. [PMID: 30854010 PMCID: PMC6378065 DOI: 10.1155/2019/5796381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Simple obesity is a worldwide epidemic associated with rapidly growing morbidity and mortality which imposes an enormous burden on individual and public health. As a part of Traditional Chinese Medicine (TCM), acupuncture has shown the positive efficacy in the management of simple obesity. In this article, we comprehensively review the clinical and animal studies that demonstrated the potential mechanisms of acupuncture treatment for simple obesity. Clinical studies suggested that acupuncture regulates endocrine system, promotes digestion, attenuates oxidative stress, and modulates relevant molecules of metabolism in patients of simple obesity. Evidence from laboratory indicated that acupuncture regulates lipid metabolism, modulates inflammatory responses, and promotes white adipose tissue browning. Acupuncture also suppresses appetite through regulating appetite regulatory hormones and the downstream signaling pathway. The evidence from clinical and animal studies indicates that acupuncture induces multifaceted regulation through complex mechanisms and moreover a single factor may not be enough to explain the beneficial effects against simple obesity.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Dan Wei
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - De-Guang Ding
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
48
|
D'Adamo E, Castorani V, Nobili V. The Liver in Children With Metabolic Syndrome. Front Endocrinol (Lausanne) 2019; 10:514. [PMID: 31428049 PMCID: PMC6687849 DOI: 10.3389/fendo.2019.00514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as an emerging health risk in obese children and adolescents. NAFLD represents a wide spectrum of liver conditions, ranging from asymptomatic steatosis to steatohepatitis. The growing prevalence of fatty liver disease in children is associated with an increased risk of metabolic and cardiovascular complications. NAFLD is considered the hepatic manifestation of Metabolic Syndrome (MetS) and several lines of evidence have reported that children with NAFLD present one or more features of MetS. The pathogenetic mechanisms explaining the interrelationships between fatty liver disease and MetS are not clearly understood. Altough central obesity and insulin resistance seem to represent the core of the pathophysiology in both diseases, genetic susceptibility and enviromental triggers are emerging as crucial components promoting the development of NAFLD and MetS in children. In the present review we have identified and summarizied studies discussing current pathogenetic data of the association between NAFLD and MetS in children.
Collapse
Affiliation(s)
- Ebe D'Adamo
- Department of Neonatology, University of Chieti, Chieti, Italy
- *Correspondence: Ebe D'Adamo
| | | | - Valerio Nobili
- Department of Pediatrics, University “La Sapienza”, Rome, Italy
- Hepatology, Gastroenterology and Nutrition Unit, IRCCS “Bambino Gesù” Children's Hospital, Rome, Italy
| |
Collapse
|
49
|
WITHDRAWN: Birth characteristics in men with infertility. Reprod Biomed Online 2018. [DOI: 10.1016/j.rbmo.2018.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Khaliq H, Juming Z, Ke-Mei P. The Physiological Role of Boron on Health. Biol Trace Elem Res 2018; 186:31-51. [PMID: 29546541 DOI: 10.1007/s12011-018-1284-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhong Juming
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peng Ke-Mei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|