1
|
Desouky DA, Nosair NA, Salama MK, El-Magd MA, Desouky MA, Sherif DE. PCSK9 and its relationship with HMGB1, TLR4, and TNFα in non-statin and statin-treated coronary artery disease patients. Mol Cell Biochem 2025; 480:2935-2949. [PMID: 39541017 DOI: 10.1007/s11010-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Despite statin use in coronary artery disease (CAD), significant risk remains, potentially due to increased proprotein convertase subtilisin/kexin-type 9 (PCSK9) production, which raises LDL-C levels and induces inflammation. The exact relationship between PCSK9, inflammatory markers like TNFα, TLR4, CRP, and HMGB1, and monocyte subsets is poorly understood. This study aimed to explore these relationships in non-statin and statin-taking CAD patients. This case-control study included 91 controls and 91 stable CAD patients, divided into no-statin (NS, n = 25), low-dose statin (LDS, n = 25), and high-dose statin (HDS, n = 41) groups. Serum levels of LDL-C, CRP, PCSK9, TLR4, HMGB1, and TNFα were measured. Monocyte subsets were classified using flow cytometry into classical monocytes (CM), intermediate monocytes (IM), and non-classical monocytes (NCM). CAD patients showed elevated PCSK9, LDL-C, and inflammatory markers compared to controls. Statin groups (LDS, HDS) had lower LDL-C and inflammatory markers but higher PCSK9 than the NS group, with the HDS group showing the lowest LDL-C and inflammatory markers but the highest PCSK9. In the NS group, PCSK9 positively correlated with inflammatory markers (HMGB1, TNFα, TLR4, CRP) and monocyte subsets (IM%, NCM%). In the total statin group (LDS + HDS), PCSK9 negatively correlated with HMGB1, TLR4, and NCM%, for each, respectively, and positively with CM%. Multivariable linear regression showed significant associations between PCSK9 and HMGB1, NCM%, and IM% in the NS group, and HMGB1, NCM%, and TLR4 in the total statin group. In conclusion, we recommend combining PCSK9 inhibitors with statins in high-risk CAD patients. This may enhance statin efficacy, reduce LDL-C, and inhibit the TLR4/NF-кB inflammatory pathway, decreasing atherosclerotic inflammation.
Collapse
Affiliation(s)
- Dina A Desouky
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt.
| | - Nahla A Nosair
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohamed K Salama
- Department of Cardiovascular, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | | | - Dalia E Sherif
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| |
Collapse
|
2
|
Bea AM, González-Guerrero A, Cenarro A, Lamiquiz-Moneo I, Climent E, Jarauta E, Gracia-Rubio I, Benaiges D, Laclaustra M, Tejedor T, Pedro-Botet J, Civeira F, Marco-Benedí V. Association of HDL cholesterol with all-cause and cardiovascular mortality in primary hypercholesterolemia. Atherosclerosis 2025; 400:118617. [PMID: 39368903 DOI: 10.1016/j.atherosclerosis.2024.118617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND AND AIMS Recent reports have shown that subjects with high high-density lipoprotein cholesterol (HDLc) levels are paradoxically at increased risk for all-cause and cardiovascular mortality. The aim was to study the association of HDLc concentration with mortality in subjects with high cholesterol. METHODS We analyzed total mortality, cardiovascular mortality, and non-cardiovascular mortality in a cohort of 2992 subjects with primary hypercholesterolemia, who were followed for 10.2 years (range 1-25 years), with a total of 30,602 subject-years of follow-up. RESULTS During follow-up, 168 subjects died, with 52 (13.7 %), 105 (4.80 %), and 11 (2.60 %) in the low, normal, and high HDLc groups, respectively (p < 0.001). The risk of death was 2.89 times higher (95 % confidence interval (CI), 1.50-5.57, p < 0.001) in subjects in the low HDLc group compared to those in the high HDLc group and 1.48 times higher (95 % CI 0.80-2.76, p = 0.214) in the normal HDLc group compared to the high HDLc group. However, HDLc concentration and HDLc groups based on HDLc concentration were not independently associated with mortality in Cox regression analysis. Cardiovascular and non-cardiovascular mortalities showed similar results. CONCLUSIONS All types of mortality were lower in subjects with primary hypercholesterolemia and with high HDLc in univariate analysis. Elevated HDLc was not associated with total, cardiovascular, and non-cardiovascular mortality when adjusted for major cardiovascular risk factors.
Collapse
Affiliation(s)
- Ana M Bea
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain
| | - Anton González-Guerrero
- School of Medicine, Universitat Autónoma de Barcelona/Universitat Pompeu Fabre, Barcelona, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
| | - Itziar Lamiquiz-Moneo
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| | - Elisenda Climent
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital Del Mar, Barcelona, Spain
| | - Estibaliz Jarauta
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| | - Irene Gracia-Rubio
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| | - David Benaiges
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital Del Mar, Barcelona, Spain
| | - Martín Laclaustra
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Tejedor
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Pedro-Botet
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital Del Mar, Barcelona, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain.
| | - Victoria Marco-Benedí
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Spain; Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Wu WC, Wu PY, Lee MF, Chang CM, Chan CY, Huang CY. A meta-analysis of the association between RBP4 rs3758539 genotype and metabolic syndrome factors. Diabetes Obes Metab 2024; 26:2839-2849. [PMID: 38637979 DOI: 10.1111/dom.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
AIM To explore the link between the RBP4 rs3758539 genotype and metabolic syndrome risk factors and whether the impact of this genetic variation displays any potential race discrepancy. MATERIALS AND METHODS This meta-analysis followed the PRISMA guidelines and was registered with PROSPERO (registration no. CRD42023407999). PubMed, Web of Science, Embase, Cochrane Library, Google Scholar, Airiti Library and CINAHL databases were used for the study search until October 2023. We evaluated the methodological quality using the Joanna Briggs Institute checklist and determined the correlation using a random-effects meta-analysis. RESULTS The results indicated that individuals with the rs3758539 GA/AA genotype had a higher risk profile, including lower high-density lipoprotein levels [correlation: -0.045, 95% confidence interval (CI): -0.080 to -0.009, p = .015, I2 = 46.9%] and higher body mass index (correlation: 0.117, 95% CI: 0.036-0.197, p = .005, I2 = 82.0%), body fat (correlation: 0.098, 95% CI: 0.004-0.191, p = .041, I2 = 64.0%), and low-density lipoprotein levels (correlation: 0.074, 95% CI: 0.010-0.139, p = .024, I2 = 0%), of developing metabolic syndrome than those with the GG genotype. The subgroup analysis maintained a significantly positive correlation between the rs3758539 GA/AA genotype and body mass index (correlation: 0.163, 95% CI: 0.031-0.289, p = .016, I2 = 88.9%) but a negative correlation with high-density lipoprotein levels (correlation: -0.047, 95% CI: -0.087 to -0.006, p = .025, I2 = 65.7%) in the Asian group only. CONCLUSION The current meta-analysis supports a significant link between the RBP4 rs3758539 GA/AA genotype and the metabolic syndrome.
Collapse
Affiliation(s)
- Wen-Chieh Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Pei-Yu Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chin-Ming Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Yi Chan
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Davis SR, Azene ZN, Tonkin AM, Woods RL, McNeil JJ, Islam RM. Higher testosterone is associated with higher HDL-cholesterol and lower triglyceride concentrations in older women: an observational study. Climacteric 2024; 27:282-288. [PMID: 38345304 PMCID: PMC11196127 DOI: 10.1080/13697137.2024.2310530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/20/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This study aimed to determine whether concentrations of testosterone and its main precursor after menopause, dehydroepiandrosterone (DHEA), are associated with lipoproteins and other lipids in community-dwelling older women. METHODS The Sex Hormones in Older Women (SHOW) study was an observational study of 6358 Australian women, aged at least 70 years, with no prior major adverse cardiovascular event who had sex hormones measured by liquid chromatography-tandem mass spectrometry. Associations between hormones and lipids were examined using multilinear regression adjusted for potential confounders. RESULTS The cross-sectional analyses included 3231 participants, median age 74.0 (interquartile range 71.7-77.9) years. Compared with concentrations in the lowest quartile (Q1), testosterone concentrations in the highest quartiles (Q3 and Q4) were positively associated with high-density lipoprotein cholesterol (HDL-C) (p = 0.002 and p < 0.001, respectively) while Q4 testosterone concentrations were positively associated with total cholesterol (p = 0.038). Q2, Q3 and Q4 testosterone concentrations were significantly inversely associated with triglycerides (TG) (p = 0.024, p = 0.003 and p < 0.001, respectively). For DHEA, Q4 concentrations was positively associated with non-HDL-C (p = 0.024). CONCLUSIONS In older women, higher endogenous testosterone concentrations are significantly associated with higher HDL-C and lower TG, indicating a less atherogenic profile. These findings suggest a neutral, or potentially protective, cardiovascular disease effect of testosterone in older women.
Collapse
Affiliation(s)
- Susan R Davis
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
- Department of Endocrinology and Diabetes, Alfred Health, Melbourne, Victoria Australia 3004
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| | - Zelalem N Azene
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| | - Andrew M Tonkin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| | - Rakibul M Islam
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 3004
| |
Collapse
|
5
|
Reese JA, Roman MJ, Deen JF, Ali T, Cole SA, Devereux RB, Fretts AM, Howard WJ, Lee ET, Malloy K, Umans JG, Zhang Y. Dyslipidemia in American Indian Adolescents and Young Adults: Strong Heart Family Study. J Am Heart Assoc 2024; 13:e031741. [PMID: 38445515 PMCID: PMC11010025 DOI: 10.1161/jaha.123.031741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND Although many studies on the association between dyslipidemia and cardiovascular disease (CVD) exist in older adults, data on the association among adolescents and young adults living with disproportionate burden of cardiometabolic disorders are scarce. METHODS AND RESULTS The SHFS (Strong Heart Family Study) is a multicenter, family-based, prospective cohort study of CVD in an American Indian populations, including 12 communities in central Arizona, southwestern Oklahoma, and the Dakotas. We evaluated SHFS participants, who were 15 to 39 years old at the baseline examination in 2001 to 2003 (n=1440). Lipids were measured after a 12-hour fast. We used carotid ultrasounds to detect plaque at baseline and follow-up in 2006 to 2009 (median follow-up=5.5 years). We identified incident CVD events through 2020 with a median follow-up of 18.5 years. We used shared frailty proportional hazards models to assess the association between dyslipidemia and subclinical or clinical CVD, while controlling for covariates. Baseline dyslipidemia prevalence was 55.2%, 73.6%, and 78.0% for participants 15 to 19, 20 to 29, and 30 to 39 years old, respectively. Approximately 2.8% had low-density lipoprotein cholesterol ≥160 mg/dL, which is higher than the recommended threshold for lifestyle or medical interventions in young adults of 20 to 39 years old. During follow-up, 9.9% had incident plaque (109/1104 plaque-free participants with baseline and follow-up ultrasounds), 11.0% had plaque progression (128/1165 with both baseline and follow-up ultrasounds), and 9% had incident CVD (127/1416 CVD-free participants at baseline). Plaque incidence and progression were higher in participants with total cholesterol ≥200 mg/dL, low-density lipoprotein cholesterol ≥160 mg/dL, or non-high-density lipoprotein cholesterol ≥130 mg/dL, while controlling for covariates. CVD risk was independently associated with low-density lipoprotein cholesterol ≥160 mg/dL. CONCLUSIONS Dyslipidemia is a modifiable risk factor that is associated with both subclinical and clinical CVD, even among the younger American Indian population who have unexpectedly high rates of significant CVD events. Therefore, this population is likely to benefit from a variety of evidence-based interventions including screening, educational, lifestyle, and guideline-directed medical therapy at an early age.
Collapse
Affiliation(s)
- Jessica A. Reese
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | | | - Jason F. Deen
- Departments of Pediatrics and MedicineUniversity of WashingtonSeattleWAUSA
| | - Tauqeer Ali
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Shelley A. Cole
- Population HealthTexas Biomedical Research InstituteSan AntonioTXUSA
| | | | | | - Wm. James Howard
- Georgetown‐Howard Universities Center for Clinical and Translational ScienceWashingtonDCUSA
| | - Elisa T. Lee
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Kimberly Malloy
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Jason G. Umans
- MedStar Health Research InstituteHyattsvilleMDUSA
- Georgetown‐Howard Universities Center for Clinical and Translational ScienceWashingtonDCUSA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
6
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
7
|
Andraski AB, Sacks FM, Aikawa M, Singh SA. Understanding HDL Metabolism and Biology Through In Vivo Tracer Kinetics. Arterioscler Thromb Vasc Biol 2024; 44:76-88. [PMID: 38031838 PMCID: PMC10842918 DOI: 10.1161/atvbaha.123.319742] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins. Tracer-dependent kinetic studies are an invaluable tool to study HDL-mediated reverse cholesterol transport and overall HDL metabolism in humans when a cardiovascular disease therapy is investigated. Unfortunately, HDL cholesterol-raising therapies have not been successful at reducing cardiovascular events suggesting an incomplete picture of HDL biology. However, as HDL tracer studies have evolved from radioactive isotope- to stable isotope-based strategies that in turn are reliant on mass spectrometry technologies, the complexity of the HDL proteome and its metabolism can be more readily addressed. In this review, we outline the motivations, timelines, advantages, and disadvantages of the various tracer kinetics strategies. We also feature the metabolic properties of select HDL proteins known to regulate reverse cholesterol transport, which in turn underscore that HDL lipoproteins comprise a heterogeneous particle population whose distinct protein constituents and kinetics likely determine its function and potential contribution to cholesterol clearance.
Collapse
Affiliation(s)
- Allison B. Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Zoulek S, Shriver J, Kaur N, Kuznicki B, Brandt EJ. Comparison of virtual vs face-to-face medical nutrition therapy in patients with hyperlipidemia. J Clin Lipidol 2024; 18:e44-e49. [PMID: 38040539 DOI: 10.1016/j.jacl.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023]
Abstract
Since the COVID-19 pandemic, utilization of telemedicine visits has increased. The outcomes of virtual compared to face-to-face (F2F) visits for treating hyperlipidemia are uncharacterized. This observational study compared pre- to post-visit change in lipid markers between 41 virtual and 151 F2F visits with a registered dietitian nutritionist at the University of Michigan Preventive Cardiology program from 3/31/2019-9/31/2022. Total cholesterol (TC), high-density lipoprotein (HDL), and triglycerides (TG) were collected pre- and post-visit with a median 33 days between collections. Low-density lipoprotein (LDL-C) was calculated using the Sampson equation. We used paired T-tests to evaluate mean change in lipid markers for each visit type between pre and post timepoints, and linear regression to compare virtual to F2F visits. There was a significant decrease in TC, LDL-C, and non-HDL-C for both visit types. There was no significant difference in mean change in lipid markers between virtual and F2F visits. Telehealth is a promising strategy for increasing access to medical nutrition therapy.
Collapse
Affiliation(s)
- Shannon Zoulek
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.
| | - Jackson Shriver
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Navkiranjot Kaur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Beverly Kuznicki
- Department of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Eric J Brandt
- Department of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Islam MT, Samad Talha MTU, Shafiq SS, Mazumder T, Gupta RD, Siraj MS. Prevalence, pattern, and correlates of dyslipidemia in Bangladeshi individuals. J Clin Lipidol 2023; 17:788-799. [PMID: 37743185 DOI: 10.1016/j.jacl.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The burden of dyslipidemia in Bangladesh remains inadequately characterized. OBJECTIVES To determine and describe the prevalence and pattern of dyslipidemia and its associated risk factors among an adult Bangladeshi population. DESIGN Population-based, cross-sectional study. Participants were adults living in all eight administrative divisions of Bangladesh. The total sample size was 7084 (53.1 % women, 46.9% urban residents). Primary outcome measures were triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the use of lipid lowering medication. In addition, control of LDL-C and control of non high-density lipoprotein cholesterol (non-HDL-C) were investigated. RESULTS The overall dyslipidemia prevalence was 76.7%, with 35.7% showing a high TG level, 18.5% showing a high LDL-C level, 63.8% showing a low HDL-C level, and 7.2% of the participants showing all three lipid abnormalities. Sylhet division had the highest prevalence (83.8%) of overall dyslipidemia, while Rangpur had the lowest prevalence (69.3%). The control of LDL-C (<50 mg/dL) and non-HDL-C (<80 mg/dL) among adults with a previous history of atherosclerotic cardiovascular diseases (ASCVD) were 5.1% and 6.9% respectively. The regression models showed that male sex and age 45-59 years were significant predictors of overall dyslipidemia. Both smokers and smokeless tobacco users were significant factors for overall dyslipidemia and high TG. A high waist-hip ratio was associated with overall dyslipidemia and all other subtypes of dyslipidemia. CONCLUSION The high prevalence of dyslipidemia in Bangladesh necessitates lifestyle interventions to prevent and control this cardiovascular risk factor.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Murdoch Business School (Dr Islam), Murdoch University, Perth, WA-6150, Australia.
| | - Md Taqbir Us Samad Talha
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| | - Sabit Saad Shafiq
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| | - Tapas Mazumder
- Health Research Institute (Dr Mazumder), Faculty of Health, University of Canberra, Canberra, ACT-2617, Australia
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics (Dr Gupta), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Md Shahjahan Siraj
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| |
Collapse
|
10
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The exogenous lipoprotein pathway starts with the incorporation of dietary lipids into chylomicrons in the intestine. Chylomicron triglycerides are metabolized in muscle and adipose tissue and chylomicron remnants are formed, which are removed by the liver. The endogenous lipoprotein pathway begins in the liver with the formation of very low-density lipoprotein particles (VLDL). VLDL triglycerides are metabolized in muscle and adipose tissue forming intermediate-density lipoprotein (IDL), which may be taken up by the liver or further metabolized to low-density lipoprotein (LDL). Reverse cholesterol transport begins with the formation of nascent high-density lipoprotein (HDL) by the liver and intestine that acquire cholesterol from cells resulting in mature HDL. The HDL then transports the cholesterol to the liver either directly or indirectly by transferring the cholesterol to VLDL or LDL.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Department of Medicine, University of California-San Francisco, San Francisco, California, 94117, USA.
| |
Collapse
|
12
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
13
|
Manubolu VS, Verghese D, Lakshmanan S, Alalawi L, Kinninger A, Bitar JA, Calicchio F, Ahmad K, Ghanem A, Javier DA, Mangaoang C, Flores F, Dailing C, Roy SK, Budoff MJ. Coronary computed tomography angiography evaluation of plaque morphology and its relationship to HDL and total cholesterol to HDL ratio. J Clin Lipidol 2022; 16:715-724. [DOI: 10.1016/j.jacl.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
|
14
|
Manickam R, Tur J, Badole SL, Chapalamadugu KC, Sinha P, Wang Z, Russ DW, Brotto M, Tipparaju SM. Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle 2022; 13:1177-1196. [PMID: 35060352 PMCID: PMC8977983 DOI: 10.1002/jcsm.12887] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme in NAD salvage pathway is decreased in metabolic diseases, and its precise role in skeletal muscle function is not known. We tested the hypothesis, Nampt activation by P7C3 (3,6-dibromo-α-[(phenylamino)methyl]-9H-carbazol-9-ethanol) ameliorates diabetes and muscle function. METHODS We assessed the functional, morphometric, biochemical, and molecular effects of P7C3 treatment in skeletal muscle of type 2 diabetic (db/db) mice. Nampt+/- mice were utilized to test the specificity of P7C3. RESULTS Insulin resistance increased 1.6-fold in diabetic mice compared with wild-type mice and after 4 weeks treatment with P7C3 rescued diabetes (P < 0.05). In the db-P7C3 mice fasting blood glucose levels decreased to 0.96-fold compared with C57Bl/6J wild-type naïve control mice. The insulin and glucose tolerance tests blood glucose levels were decreased to 0.6-fold and 0.54-folds, respectively, at 120 min along with an increase in insulin secretion (1.76-fold) and pancreatic β-cells (3.92-fold) in db-P7C3 mice. The fore-limb and hind-limb grip strengths were increased to 1.13-fold and 1.17-fold, respectively, together with a 14.2-fold increase in voluntary running wheel distance in db-P7C3 mice. P7C3 treatment resulted in a 1.4-fold and 7.1-fold increase in medium-sized and larger-sized myofibres cross-sectional area, with a concomitant 0.5-fold decrease in smaller-sized myofibres of tibialis anterior (TA) muscle. The transmission electron microscopy images also displayed a 1.67-fold increase in myofibre diameter of extensor digitorum longus muscle along with 2.9-fold decrease in mitochondrial area in db-P7C3 mice compared with db-Veh mice. The number of SDH positive myofibres were increased to 1.74-fold in db-P7C3 TA muscles. The gastrocnemius and TA muscles displayed a decrease in slow oxidative myosin heavy chain type1 (MyHC1) myofibres expression (0.46-fold) and immunostaining (6.4-fold), respectively. qPCR analysis displayed a 2.9-fold and 1.3-fold increase in Pdk4 and Cpt1, and 0.55-fold and 0.59-fold decrease in Fgf21 and 16S in db-P7C3 mice. There was also a 3.3-fold and 1.9-fold increase in Fabp1 and CD36 in db-Veh mice. RNA-seq differential gene expression volcano plot displayed 1415 genes to be up-regulated and 1726 genes down-regulated (P < 0.05) in db-P7C3 mice. There was 1.02-fold increase in serum HDL, and 0.9-fold decrease in low-density lipoprotein/very low-density lipoprotein ratio in db-P7C3 mice. Lipid profiling of gastrocnemius muscle displayed a decrease in inflammatory lipid mediators n-6; AA (0.83-fold), and n-3; DHA (0.69-fold) and EPA (0.81-fold), and a 0.66-fold decrease in endocannabinoid 2-AG and 2.0-fold increase in AEA in db-P7C3 mice. CONCLUSIONS Overall, we demonstrate that P7C3 activates Nampt, improves type 2 diabetes and skeletal muscle function in db/db mice.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jared Tur
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Puja Sinha
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - David W Russ
- School of Physical Therapy and Rehabilitation Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
15
|
Tokgözoğlu L, Libby P. The dawn of a new era of targeted lipid-lowering therapies. Eur Heart J 2022; 43:3198-3208. [PMID: 35051271 PMCID: PMC9448630 DOI: 10.1093/eurheartj/ehab841] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid risk factors for cardiovascular disease depend in part on lifestyle, but optimum control of lipids often demands additional measures. Low-density lipoprotein (LDL) doubtless contributes causally to atherosclerosis. Recent human genetic findings have substantiated a number of novel targets for lipid-lowering therapy including apolipoprotein C-III, angiopoietin-like protein 3 and 4, apolipoprotein V, and ATP citrate lyase. These discoveries coupled with advances in biotechnology development afford new avenues for management of LDL and other aspects of lipid risk. Beyond LDL, new treatments targeting triglyceride-rich lipoproteins and lipoprotein(a) have become available and have entered clinical development. Biological and RNA-directed agents have joined traditional small-molecule approaches, which themselves have undergone considerable refinement. Innovative targeting strategies have increased efficacy of some of these novel interventions and markedly improved their tolerability. Gene-editing approaches have appeared on the horizon of lipid management. This article reviews this progress offering insight into novel biological and therapeutic discoveries, and places them into a practical patient care perspective.
Collapse
Affiliation(s)
- Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Sıhhiye, Ankara 06100, Turkey
| | - Peter Libby
- Corresponding author. Tel: +1 617 525 4383, Fax: +1 617 525 4400,
| |
Collapse
|
16
|
Lee CK, Liao CW, Meng SW, Wu WK, Chiang JY, Wu MS. Lipids and Lipoproteins in Health and Disease: Focus on Targeting Atherosclerosis. Biomedicines 2021; 9:biomedicines9080985. [PMID: 34440189 PMCID: PMC8393881 DOI: 10.3390/biomedicines9080985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in pharmacotherapy, intervention devices and techniques, residual cardiovascular risks still cause a large burden on public health. Whilst most guidelines encourage achieving target levels of specific lipids and lipoproteins to reduce these risks, increasing evidence has shown that molecular modification of these lipoproteins also has a critical impact on their atherogenicity. Modification of low-density lipoprotein (LDL) by oxidation, glycation, peroxidation, apolipoprotein C-III adhesion, and the small dense subtype largely augment its atherogenicity. Post-translational modification by oxidation, carbamylation, glycation, and imbalance of molecular components can reduce the capacity of high-density lipoprotein (HDL) for reverse cholesterol transport. Elevated levels of triglycerides (TGs), apolipoprotein C-III and lipoprotein(a), and a decreased level of apolipoprotein A-I are closely associated with atherosclerotic cardiovascular disease. Pharmacotherapies aimed at reducing TGs, lipoprotein(a), and apolipoprotein C-III, and enhancing apolipoprotein A-1 are undergoing trials, and promising preliminary results have been reported. In this review, we aim to update the evidence on modifications of major lipid and lipoprotein components, including LDL, HDL, TG, apolipoprotein, and lipoprotein(a). We also discuss examples of translating findings from basic research to potential therapeutic targets for drug development.
Collapse
Affiliation(s)
- Chih-Kuo Lee
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Che-Wei Liao
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Shih-Wei Meng
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Wei-Kai Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jiun-Yang Chiang
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| | - Ming-Shiang Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| |
Collapse
|
17
|
Giammanco A, Noto D, Barbagallo CM, Nardi E, Caldarella R, Ciaccio M, Averna MR, Cefalù AB. Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life (Basel) 2021; 11:581. [PMID: 34207236 PMCID: PMC8235218 DOI: 10.3390/life11060581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy, alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL), apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase (EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular diseases and possible treatment options.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Carlo Maria Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Emilio Nardi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Rosalia Caldarella
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Marcello Ciaccio
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Maurizio Rocco Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| |
Collapse
|
18
|
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592:524-533. [PMID: 33883728 DOI: 10.1038/s41586-021-03392-8] [Citation(s) in RCA: 1303] [Impact Index Per Article: 325.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis-such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress-have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the 'vulnerable plaque' concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Gkolfinopoulou C, Soukou F, Dafnis I, Kellici TF, Sanoudou D, Mavromoustakos T, Stratikos E, Chroni A. Structure-function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk. Cell Mol Life Sci 2021; 78:1523-1544. [PMID: 32666307 PMCID: PMC11072781 DOI: 10.1007/s00018-020-03583-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Apolipoprotein A-I/genetics
- Apolipoprotein A-I/metabolism
- Apolipoprotein A-I/ultrastructure
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Cell Movement/genetics
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Cholesterol, HDL/ultrastructure
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Disease Risk Factors
- Humans
- Ketocholesterols/genetics
- Ketocholesterols/metabolism
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/ultrastructure
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Mutant Proteins/ultrastructure
- Mutation/genetics
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Structure-Activity Relationship
- Thermodynamics
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Faye Soukou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Tahsin F Kellici
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
20
|
Gibson CM, Kastelein JJP, Phillips AT, Aylward PE, Yee MK, Tendera M, Nicholls SJ, Pocock S, Goodman SG, Alexander JH, Lincoff AM, Bode C, Duffy D, Heise M, Berman G, Mears SJ, Tricoci P, Deckelbaum LI, Steg PG, Ridker P, Mehran R. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): A phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am Heart J 2021; 231:121-127. [PMID: 33065120 DOI: 10.1016/j.ahj.2020.10.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (MI) patients remain at high risk for recurrent events. Cholesterol efflux, mediated by apolipoprotein A-I, removes excess cholesterol from atherosclerotic plaque and transports it to the liver for excretion. Impaired cholesterol efflux is associated with higher cardiovascular (CV) event rates among both patients with stable coronary artery disease and recent MI. CSL112, a novel intravenous formulation of apolipoprotein A-I (human) derived from human plasma, increases cholesterol efflux capacity. AEGIS-II is a phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group trial investigating the efficacy and safety of CSL112 compared to placebo among high-risk acute MI participants. Eligibility criteria include age ≥ 18 years with type 1 (spontaneous) MI, evidence of multivessel stable coronary artery disease, and presence of diabetes requiring pharmacotherapy, or ≥2 of the following: age ≥ 65 years, prior MI, or peripheral artery disease. A target sample of 17,400 participants will be randomized 1:1 to receive 4 weekly infusions of CSL112 6 g or placebo, initiated prior to or on the day of discharge and within 5 days of first medical contact. The primary outcome is the time to first occurrence of the composite of CV death, MI, or stroke through 90 days. Key secondary outcomes include the total number of hospitalizations for coronary, cerebral, or peripheral ischemia through 90 days and time to first occurrence of the composite primary outcome through 180 and 365 days. AEGIS-II will be the first trial to formally test whether enhancing cholesterol efflux can reduce the rate of recurrent major adverse CV events.
Collapse
Affiliation(s)
- C Michael Gibson
- From PERFUSE Study Group, Cardiovascular Division, Departments of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Adam T Phillips
- From PERFUSE Study Group, Cardiovascular Division, Departments of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Philip E Aylward
- South Australian Health and Medical Research Institute, Flinders University and Medical Centre, Adelaide, Australia
| | - Megan K Yee
- From PERFUSE Study Group, Cardiovascular Division, Departments of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Michal Tendera
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Stuart Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shaun G Goodman
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, and St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John H Alexander
- Duke Clinical Research Institute, Cardiovascular Division, Department of Medicine, Duke University Health, Durham, NC
| | - A Michael Lincoff
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH
| | - Christoph Bode
- Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Gail Berman
- Paratek Pharmaceuticals, King of Prussia, PA
| | | | - Pierluigi Tricoci
- Duke Clinical Research Institute, Cardiovascular Division, Department of Medicine, Duke University Health, Durham, NC; CSL Behring, LLC, King of Prussia, PA
| | | | - P Gabriel Steg
- Assistance Publique-Hopitaux de Paris, and Université de Paris, Paris, France
| | - Paul Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
21
|
Puppione DL, Tran DP, Zenaidee MA, Charugundla S, Whitelegge JP, Buffenstein R. Naked Mole-Rat, a Rodent with an Apolipoprotein A-I Dimer. Lipids 2020; 56:269-278. [PMID: 33336429 DOI: 10.1002/lipd.12286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/28/2023]
Abstract
A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A-I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodent apoA-I genes, it was discovered that the naked mole-rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA-I with cysteine at residues 173 (apoA-I Milano) or at 151 (apoA-I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA-I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA-I has been found with a cysteine in its sequence. In addition, the encoded naked mole-rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole-rat apoA-I having an unexpected neutral pI value, whereas other mammalian apoA-I have negative pI values. To verify these sequence differences and to determine if the N-terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA-I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.
Collapse
Affiliation(s)
- Don L Puppione
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Denise P Tran
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Muhammad A Zenaidee
- The Molecular Biology Institute, Boyer Hall, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarada Charugundla
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane & Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies and Department of Physiology, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX, USA.,Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| |
Collapse
|
22
|
Wang Y, Xiao S, Zhou S, Zhang R, Liu H, Lin Y, Yu P. High Glucose Aggravates Cholesterol Accumulation in Glomerular Endothelial Cells Through the LXRs/LncRNAOR13C9/ABCA1 Regulatory Network. Front Physiol 2020; 11:552483. [PMID: 33192550 PMCID: PMC7604427 DOI: 10.3389/fphys.2020.552483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The underlying mechanisms by which diabetes and dyslipidemia contribute to diabetic nephropathy (DN) are not fully understood. In this study, we aimed to investigate the role of high glucose (HG) on intracellular cholesterol accumulation in glomerular endothelial cells (GEnCs) and its potential mechanism. METHODS Oil red O staining, RT-qPCR, Western blotting, and immunocytofluorescence analyses were used to determine cholesterol accumulation and the expressions of LXRs and ABCA1 in GEnCs under high cholesterol (HC) and/or HG conditions, and the effect of these treatments was compared to that of low glucose without adding cholesterol. LncRNA microarrays were used to identify a long non-coding RNA (LncRNA OR13C9), of which levels increased in cells treated with the LXR agonist, GW3965. Fluorescence in situ hybridization (FISH) was conducted to confirm subcellular localization of LncOR13C9 and a bioinformatics analysis was used to identify competing endogenous RNA (ceRNA) regulatory networks between LncOR13C9 and microRNA-23a-5p (miR-23a-5p). Gain and loss of function, rescue assay approaches, and dual-luciferase reporter assay were conducted to study interactions between LncOR13C9, miR-23a-5p, and ABCA1. RESULTS We showed that HG could decrease the response ability of GEnCs to cholesterol load, specifically that HG could downregulate LXRs expression in GEnCs under cholesterol load and that the decrease in LXRs expression suppressed ABCA1 expression and increased cholesterol accumulation. We focused on the targets of LXRs and identified a long non-coding RNA (LncOR13C9) that was downregulated in GEnCs grown in HG and HC conditions, compared with that grown in HC conditions. We speculated that LncRNAOR13C9 was important for LXRs to increase cholesterol efflux via ABCA1 under HC. Furthermore, using gain of function, loss of function, and rescue assay approaches, we showed that LncOR13C9 could regulate ABCA1 by inhibiting the action of miR-23a-5p in the LXR pathway. Furthermore, dual-luciferase reporter assay was conducted to study the interaction of LncOR13C9 with miR-23a-5p. CONCLUSION Overall, our study identified the LXRs/LncOR13C9/miR23A-5p/ABCA1 regulatory network in GEnCs, which may be helpful to better understand the effect of HG on cholesterol accumulation in GEnCs under cholesterol load and to explore new therapeutic tools for the management of DN patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Holme SAN, Sigsgaard T, Holme JA, Holst GJ. Effects of particulate matter on atherosclerosis: a link via high-density lipoprotein (HDL) functionality? Part Fibre Toxicol 2020; 17:36. [PMID: 32753036 PMCID: PMC7409402 DOI: 10.1186/s12989-020-00367-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Exposure to air pollution has been associated with adverse effects on human health, and ultimately increased morbidity and mortality. This is predominantly due to hazardous effects on the cardiovascular system. Exposure to particulate matter (PM) is considered to be responsible for the most severe effects. MAIN BODY Here we summarize current knowledge from existing epidemiological, clinical and animal studies on the influence of PM exposure on high-density lipoprotein (HDL) functionality and the potential initiation and progression of atherosclerosis. We highlight experimental studies that bring support to the causality and point to possible mechanistic links. Recent studies indicate that the functional properties of HDL are more important than the levels per se. Fine (PM2.5-0.1) and ultrafine (UFP) PM are composed of chemicals as well as biological elements that are redox-active and may trigger pro-inflammatory responses. Experimental studies indicate that these properties and responses may promote HDL dysfunction via oxidative pathways. By affecting protein and lipid components of the HDL particle, its anti-atherosclerotic characteristics including cholesterol efflux capacity, as well as other anti-oxidative and anti-inflammatory features might be impaired. CONCLUSION Current literature suggests that PM promotes HDL dysfunction via oxidative pathways. However, as relatively few studies so far have evaluated the impact of particulate air pollution on HDL functionality, more human epidemiological as well as experimental studies are needed to strengthen any possible causal relationship and determine any relevance to atherosclerosis.
Collapse
Affiliation(s)
- Siri A N Holme
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Research Unit of Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Jørn A Holme
- Department of Environmental Health, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gitte Juel Holst
- Research Unit of Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Human Insulin Growth Factor 2 mRNA Binding Protein 2 Increases MicroRNA 33a/b Inhibition of Liver ABCA1 Expression and Alters Low-Density Apolipoprotein Levels in Mice. Mol Cell Biol 2020; 40:MCB.00058-20. [PMID: 32482798 DOI: 10.1128/mcb.00058-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have linked IGF2BP2 single-nucleotide polymorphisms (SNPs) with type 2 diabetes (T2D). Mice overexpressing mIGF2BP2 have elevated cholesterol levels when fed a diet that induces hepatic steatosis. These and other studies suggest an important role for insulin growth factor 2 mRNA binding protein 2 (IGF2BP2) in the initiation and progression of several metabolic disorders. The ATPase binding cassette protein ABCA1 initiates nascent high-density apolipoprotein (HDL) biogenesis by transferring phospholipid and cholesterol to delipidated apolipoprotein AI (ApoAI). Individuals with mutational ablation of ABCA1 have Tangier disease, which is characterized by a complete loss of HDL. MicroRNA 33a and 33b (miR-33a/b) bind to the 3' untranslated region (UTR) of ABCA1 and repress its posttranscriptional gene expression. Here, we show that IGF2BP2 works together with miR-33a/b in repressing ABCA1 expression. Our data suggest that IGF2BP2 is an accessory protein of the argonaute (AGO2)-miR-33a/b-RISC complex, as it directly binds to miR-33a/b, AGO2, and the 3' UTR of ABCA1 Finally, we show that mice overexpressing human IGF2BP2 have decreased ABCA1 expression, increased low-density lipoprotein-cholesterol (LDL-C) and cholesterol blood levels, and elevated SREBP-dependent signaling. Our data support the hypothesis that IGF2BP2 has an important role in maintaining lipid homeostasis through its modulation of ABCA1 expression, as its overexpression or loss leads to dyslipidemia.
Collapse
|
25
|
Lakshmanan S, Shekar C, Kinninger A, Dahal S, Onuegbu A, Cai AN, Hamal S, Birudaraju D, Cherukuri L, Flores F, Dailing C, Roy SK, Bhatt DL, Nelson JR, Budoff MJ. Association of high-density lipoprotein levels with baseline coronary plaque volumes by coronary CTA in the EVAPORATE trial. Atherosclerosis 2020; 305:34-41. [PMID: 32615321 DOI: 10.1016/j.atherosclerosis.2020.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Dyslipidemia with elevated triglycerides (TGL) and low high-density lipoprotein cholesterol (HDL-C) predicts residual cardiovascular risk, despite goal LDL-C levels and optimal statin therapy. Coronary plaque characterization by CCTA can provide mechanistic understanding of coronary artery disease and associated prognosis. The role of HDL-C in the pathogenesis of atherosclerosis is not well understood in statin-treated patients with elevated TGL. We sought to examine the association of HDL-C levels with baseline coronary plaque volumes, namely total plaque (TP) and total non-calcified plaque (TNCP) volumes by CCTA in participants enrolled in the EVAPORATE trial. METHODS We analyzed 80 participants who were enrolled in the trial. Linear regression analysis as a univariate and multivariate model adjusted for significant cardiovascular risk factors was performed to evaluate independent association of HDL-C and baseline coronary plaque volumes. In an exploratory analysis, stratified by sex, we compared the association of serum HDL-C levels with baseline coronary plaque volumes in males and females. RESULTS Mean (SD) age of participants (n = 80) was 57.1 (8.6) years and 43% were male. Median (Inter Quartile Range/IQR) log-TNCP volume was 83.0 (0.1-7.3) mm3 and median (IQR) log-TP volume was 144.8 (0.1-7.1) mm3. After adjustment for relevant clinical covariates including age, gender, BMI, hypertension, diabetes, past smoking and baseline TGL levels, increasing levels of HDL-C remain independently associated with lower baseline log-TNCP volumes (β: 0.043 ± 0.021, p = 0.042) and baseline log-TP volumes (β: 0.046 ± 0.022, p = 0.035) on CCTA. On stratifying by sex in a multivariable regression analysis, HDL-C levels were inversely associated with baseline log-TNCP volumes (β: 0.066 ± 0.026, p = 0.018) and log-TP volumes (β: 0.077 ± 0.025, p = 0.004) in females, but not in males (log-TNCP volumes β: 0.038 ± 0.034, p = 0.282) and log-TP volumes (β: -0.033 ± 0.036, p = 0.364). CONCLUSIONS In a cohort of statin treated patients with known atherosclerosis and residually elevated TGL, there was a significant inverse relationship between HDL-C levels and baseline coronary plaque, TP and TNCP volumes on CCTA. Our findings provide more detailed mechanistic evidence regarding the protective role of HDL-C in coronary atherosclerosis in a high-risk cohort. Further investigation to evaluate the interaction of HDL-C levels and coronary plaque volumes on differential CVD risk in statin-treated patients with elevated TGL levels is warranted.
Collapse
Affiliation(s)
- Suvasini Lakshmanan
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | | | - April Kinninger
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Suraj Dahal
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Afiachukwu Onuegbu
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Andrew N Cai
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Sajad Hamal
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Divya Birudaraju
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Lavanya Cherukuri
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Ferdinand Flores
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Christopher Dailing
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Sion K Roy
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John R Nelson
- Department of Cardiology, California Cardiovascular Institute, Fresno, CA, USA
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
26
|
Gupta M, Blumenthal C, Chatterjee S, Bandyopadhyay D, Jain V, Lavie CJ, Virani SS, Ray KK, Aronow WS, Ghosh RK. Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs 2020; 29:611-622. [PMID: 32363959 DOI: 10.1080/13543784.2020.1764937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Recent years have brought significant developments in lipid and atherosclerosis research. Although statins are a cornerstone in hyperlipidemia management, new non-statin therapies have had an impact. The reduction of low-density lipoprotein cholesterol (LDL-C) further translates into the lowering of cardiovascular mortality. Additionally, lipid research has progressed beyond LDL-C reduction and this has brought triglyceride (TG) and other apoprotein-B containing lipids into focus. AREAS COVERED Inclisiran and pemafibrate, with expected approval soon, come under the spotlight. We discuss other therapeutics such as lomitapide, mipomersen, volanesorsen, and evinacumab and newly approved non-statin-based therapies such as ezetimibe, icosapent ethyl (IPE), and bempedoic acid. EXPERT OPINION New options now exist for the prevention of atherosclerosis in patients that are not optimized on statin therapy. Multiple guidelines endorse ezetimibe, PCSK9 inhibitors, bempedoic, and IPE as add-on therapy. Recently approved bempedoic acid/ezetimibe combination might gain popularity among clinicians. Inclisiran and pemafibrate show promise in the reduction of LDL-C and TG, respectively, and results are pending in cardiovascular outcome trials. Combination strategies could improve outcomes, but the challenge will be balancing cost and selecting the correct patient population for each treatment modality to maximize benefit with the fewest medications.
Collapse
Affiliation(s)
- Manasvi Gupta
- Department of Internal Medicine, University of Connecticut , Hartford, CT, USA
| | - Colin Blumenthal
- Department of Internal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | | | - Dhrubajyoti Bandyopadhyay
- Department of Internal Medicine, Mount Sinai St Luke's Roosevelt Hospital, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Vardhmaan Jain
- Department of Internal Medicine, Cleveland Clinic , Cleveland, OH, USA
| | - Carl J Lavie
- Ochsner Clinical School, John Ochsner Heart and Vascular Institute, The University of Queensland School of Medicine , New Orleans, LA, USA
| | - Salim S Virani
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center and Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine , Houston, TX, USA
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, London, UK
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College , New York, USA
| | - Raktim K Ghosh
- MedStar Heart and Vascular Institute, Union Memorial Hospital , Baltimore, MD, USA
| |
Collapse
|
27
|
Okala SG, Sise EA, Sosseh F, Prentice AM, Woollett LA, Moore SE. Maternal plasma lipid levels across pregnancy and the risks of small-for-gestational age and low birth weight: a cohort study from rural Gambia. BMC Pregnancy Childbirth 2020; 20:153. [PMID: 32164563 PMCID: PMC7068879 DOI: 10.1186/s12884-020-2834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Sub-optimal maternal lipid levels during pregnancy may be implicated in the pathophysiological mechanisms leading to low birth weight (LBW) and small-for-gestational-age (SGA). We aimed to determine whether maternal lipid levels across pregnancy were associated with birth weight and the risks of LBW and SGA in rural Gambia. Methods This secondary analysis of the ENID trial involved 573 pregnant women with term deliveries. Plasma levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and triglycerides (TG) were analyzed at enrolment (mean (SD) = 13.9 (3.3) weeks gestation), 20 and 30 weeks gestation as continuous variables and percentile groups. Regression models with adjustment for confounders were used to examine associations between gestational lipid levels and birth weight and the risks of LBW (birth weight < 2500 g) and SGA (<10th percentile INTERGROWTH-21ST for birth weight). Results There were 7.9% LBW and 32.5% SGA infants. At enrolment, every unit increase in HDL-c was associated with a 2.7% (P = 0.011) reduction in relative risk of LBW. At 20 weeks gestation, every unit increase in TC levels was associated with a 1.3% reduction in relative risk of LBW (P = 0.002). Low (<10th percentile) HDL-c at enrolment or at 20 weeks gestation was associated with a 2.6 (P = 0.007) and 3.0 (P = 0.003) times greater risk of LBW, respectively, compared with referent (10th─90th) HDL-c. High (>90th percentile) LDL-c at 30 weeks gestation was associated with a 55% lower risk of SGA compared with referent LDL-c (P = 0.017). Increased levels of TC (β = 1.3, P = 0.027) at 20 weeks gestation and of TC (β = 1.2, P = 0.006) and LDL-c (β = 1.5, P = 0.002) at 30 weeks gestation were all associated with higher birth weight. Conclusions In rural Gambia, lipid levels during pregnancy were associated with infant birth weight and the risks of LBW and SGA. Associations varied by lipid class and changed across pregnancy, indicating an adaptive process by which maternal lipids may influence fetal growth and birth outcomes. Trial registration This trial was registered as ISRCTN49285450 on: 12/11/2009.
Collapse
Affiliation(s)
- Sandra G Okala
- Department of Women and Children's Health, King's College London, London, SE1 7EH, UK
| | - Ebrima A Sise
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatou Sosseh
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, SE1 7EH, UK. .,MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
28
|
Gkolfinopoulou C, Bourtsala A, Chroni A. Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158593. [PMID: 31863971 DOI: 10.1016/j.bbalip.2019.158593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Bourtsala
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
29
|
Salek M, Clark CCT, Taghizadeh M, Jafarnejad S. N-3 fatty acids as preventive and therapeutic agents in attenuating PCOS complications. EXCLI JOURNAL 2019; 18:558-575. [PMID: 31611740 PMCID: PMC6785778 DOI: 10.17179/excli2019-1534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
To our knowledge, in spite of several trials exploring the beneficial effect of n-3 polyunsaturated fatty acids (PUFA) on polycystic ovary syndrome (PCOS), no comprehensive evidence has investigated the effects of n-3 PUFA consumption on PCOS complications. Therefore, our aim was to conduct a review to investigate the possible effect and related mechanisms. A comprehensive systematic search was conducted in Embase, MEDLINE/PubMed, Google Scholar, and SCOPUS, to identify studies investigating n-3 fatty acids as a preventative or therapeutic agent for the attenuation of PCOS complications. Subsequently, the impact of omega-3 on PCOS, omega-3 and inflammation, omega-3 and insulin resistance, omega-3 and adipokines, omega-3 and lipid metabolism, omega-3 and endothelial function and omega-3 and hormonal factors were discussed. There are multiple mechanisms by which n-3 PUFAs may exert their beneficial effects on PCOS, including anti-obesity, glycemic and hormonal hemostasis, anti-inflammatory, regulation of adipokine production and enhancement of endothelial function.N-3 PUFAs are a promising agent in relieving complications associated with PCOS. Although most of the studies in patients with PCOS reported an improvement in most complications after administration of omega-3 supplements, there is a distinct dearth of studies investigating the dietary intake of these types of fatty acids. Moreover, favorable effects regarding the improvement of dyslipidemia, regulation of adipokines, regulation of hormonal factors and enhancement of endothelial function are limited. Therefore, more trials are warranted to investigate palatable mechanisms for clarifying the metabolic and hormonal effects of these agents in PCOS.
Collapse
Affiliation(s)
- Mina Salek
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
30
|
Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. Biofactors 2019; 45:725-739. [PMID: 31301192 DOI: 10.1002/biof.1541] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
Lipoproteins are the complexes of different lipids and proteins, which are devoted to the transport and clearance of lipids or lipid-related molecules in the circulation. Lipoproteins have been found to play a crucial role in brain function and may influence myelination process. Among lipoproteins, high-density lipoproteins (HDLs) and their major protein component, apoA-I, are directly involved in cholesterol efflux in the brain. It has been suggested that inadequate or dysfunctional brain HDLs may contribute to cerebrovascular dysfunctions, neurodegeneration, or neurovascular instability. HDL deficiency could also promote cognitive decline through impacting on atherosclerotic risk. The focus of this review is to discuss knowledge on HDL dysregulation in neurological disorders. A better understanding on how changes in cellular HDL and apolipoprotein homeostasis affect central nervous system function may provide promising novel avenues for the treatment of specific HDL-related neurological disorders.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Hassan K, Mohydin B, Fawwad A, Waris N, Iqbal S, Jawaid M. Predicting the risk of atherosclerotic cardiovascular disease (ASCVD) in Pakistani population. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
High-Density Lipoprotein Functionality as a New Pharmacological Target on Cardiovascular Disease: Unifying Mechanism That Explains High-Density Lipoprotein Protection Toward the Progression of Atherosclerosis. J Cardiovasc Pharmacol 2019. [PMID: 29528874 DOI: 10.1097/fjc.0000000000000573] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of the atherosclerotic plaque that is characterized by the accumulation of abnormal amounts of cholesterol-loaded macrophages in the artery wall is mediated by both inflammatory events and alterations of lipid/lipoprotein metabolism. Reverse transport of cholesterol opposes the formation and development of atherosclerotic plaque by promoting high density lipoprotein (HDL)-mediated removal of cholesterol from peripheral macrophages and its delivery back to the liver for excretion into the bile. Although an inverse association between HDL plasma levels and the risk of cardiovascular disease (CVD) has been demonstrated over the years, several studies have recently shown that the antiatherogenic functions of HDL seem to be mediated by their functionality, not always associated with their plasma concentrations. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux, may offer a better prediction of CVD than HDL levels alone. In agreement with this idea, it has recently been shown that the assessment of serum cholesterol efflux capacity (CEC), as a metric of HDL functionality, may represent a predictor of atherosclerosis extent in humans. The purpose of this narrative review is to summarize the current evidence concerning the role of cholesterol efflux capacity that is important for evaluating CVD risk, focusing on pharmacological evidences and its relationship with inflammation. We conclude that HDL therapeutics are a promising area of investigation but strategies for identifying efficacy must move beyond the idea of simply raising static HDL-cholesterol levels and toward methods of measuring the dynamics of HDL particle remodeling and the generation of lipid-free apolipoprotein A-I (apoA-I). In this way, apoA-I, unlike mature HDL, can promote the greatest extent of cholesterol efflux relieving cellular cholesterol toxicity and the inflammation it causes.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The last 40 years of clinical research in interventional cardiology were extraordinarily innovative. This article will review the most promising up and coming interventional cardiovascular therapies, with a primary focus on the treatment of coronary artery disease. RECENT FINDINGS From the first stent, to the first transcatheter aortic valve implantation (TAVI), and the left appendage closure technique, percutaneous interventions revolutionized the treatment of multiple diseases and dramatically improved the prognosis of many patients. While these advances have decreased the risk of mortality in some patients (such as ST-elevation myocardial infarction), 15% of acute coronary syndrome (ACS) patients still experience recurrent ischemic events within the first year, challenging us to develop new pharmaceutical targets and new devices. The continued emergence of data supporting inflammation as a risk factor and pharmacologic target as well as data supporting the importance of cholesterol efflux have identified novel therapeutic targets that may play a major role in the improvement of prognosis of patients with coronary artery disease. In addition, novel medical devices are being developed to allow even earlier detection of acute cardiac events and to support high-risk percutaneous coronary interventions. Advances in computing and the ability to analyze large datasets will allow us to use artificial intelligence to augment the clinician patient experience, both in and out of the catheterization laboratory, with live procedural guidance as well as pre- and post-operative prognostication tools.
Collapse
|
34
|
Gibson CM, Kerneis M, Yee MK, Daaboul Y, Korjian S, Mehr AP, Tricoci P, Alexander JH, Kastelein JJ, Mehran R, Bode C, Lewis BS, Mehta R, Duffy D, Feaster J, Halabi M, Angiolillo DJ, Duerschmied D, Ophuis TO, Merkely B. The CSL112-2001 trial: Safety and tolerability of multiple doses of CSL112 (apolipoprotein A-I [human]), an intravenous formulation of plasma-derived apolipoprotein A-I, among subjects with moderate renal impairment after acute myocardial infarction. Am Heart J 2019; 208:81-90. [PMID: 30580130 DOI: 10.1016/j.ahj.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND CSL112 (apolipoprotein A-I [human]) is a plasma-derived apolipoprotein A-I developed for early reduction of cardiovascular risk following an acute myocardial infarction (AMI). The safety of CSL112 among AMI subjects with moderate, stage 3 chronic kidney disease (CKD) is unknown. METHODS CSL112_2001, a multicenter, placebo-controlled, parallel-group, double-blind, randomized phase 2 trial, enrolled patients with moderate CKD within 7 days following AMI. Enrollment was stratified on the basis of estimated glomerular filtration rate and presence of diabetes requiring treatment. Patients were randomized in a 2:1 ratio to receive 4 weekly infusions of CSL112 6 g or placebo. The co-primary safety end points were renal serious adverse events (SAEs) and acute kidney injury, defined as an increase ≥26.5 μmol/L in baseline serum creatinine for more than 24 hours, during the treatment period. RESULTS A total of 83 patients were randomized (55 CSL112 vs 28 placebo). No increase in renal SAEs was observed in the CSL112 group compared with placebo (CSL112 = 1 [1.9%], placebo = 4 [14.3%]). Similarly, no increase in acute kidney injury events was observed (CSL112 = 2 [4.0%], placebo = 4 [14.3%]). Rates of other SAEs were similar between groups. CSL112 administration resulted in increases in ApoA-I and cholesterol efflux similar to those observed in patients with AMI and normal renal function or stage 2 CKD enrolled in the ApoA-I Event Reducing in Ischemic Syndromes I trial. CONCLUSIONS These results demonstrate the acceptable safety of the 6-g dose of CSL112 among AMI subjects with moderate stage 3 CKD and support inclusion of these patients in a phase 3 cardiovascular outcomes trial powered to assess efficacy.
Collapse
|
35
|
Hennessy EJ, van Solingen C, Scacalossi KR, Ouimet M, Afonso MS, Prins J, Koelwyn GJ, Sharma M, Ramkhelawon B, Carpenter S, Busch A, Chernogubova E, Matic LP, Hedin U, Maegdefessel L, Caffrey BE, Hussein MA, Ricci EP, Temel RE, Garabedian MJ, Berger JS, Vickers KC, Kanke M, Sethupathy P, Teupser D, Holdt LM, Moore KJ. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat Metab 2019; 1:98-110. [PMID: 31410392 PMCID: PMC6691505 DOI: 10.1038/s42255-018-0004-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA (CHROME), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.
Collapse
Affiliation(s)
- Elizabeth J. Hennessy
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kaitlyn R. Scacalossi
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Milessa S. Afonso
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Jurrien Prins
- Department of Internal Medicine (Nephrology), Einthoven
Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center,
Leiden, The Netherlands
| | - Graeme J. Koelwyn
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Monika Sharma
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology,
University of California, Santa Cruz, California, USA
| | - Albert Busch
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Maryem A. Hussein
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Emiliano P. Ricci
- INSERM U1111, Centre International de Recherche en
Infectiologie, Ecole Normale Supérieure de Lyon, Université de Lyon,
Lyon, France
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, University of
Kentucky, Lexington, Kentucky, USA
| | - Michael J. Garabedian
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical
Center, Nashville, Tenessee, USA
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Daniel Teupser
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lesca M. Holdt
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
Haas MJ, Jurado-Flores M, Hammoud R, Plazarte G, Onstead-Haas L, Wong NC, Mooradian AD. Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sci 2018; 208:102-110. [DOI: 10.1016/j.lfs.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
|
37
|
Cao J, Xu Y, Li F, Shang L, Fan D, Yu H. Protein markers of dysfunctional HDL in scavenger receptor class B type I deficient mice. J Transl Med 2018; 16:155. [PMID: 29879989 PMCID: PMC5992774 DOI: 10.1186/s12967-018-1502-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022] Open
Abstract
Background Scavenger receptor class B type I (SR-BI) plays a key role in high density lipoproteins (HDL) metabolism. SR-BI deficiency in mice results in enhanced susceptibility to atherosclerosis with abnormal large, cholesterol enriched, and functional impaired HDL. This study was to characterize the protein markers of dysfunctional HDL in SR-BI deficient (SR-BI−/−) mice and to test if the defective of HDL might be affected by probucol treatment. Methods Shotgun proteomics and 2-D gel electrophoresis were performed to examine the profile of HDL protein and distribution of HDL particles isolated from SR-BI−/− mice. HDL’s cell-function, paraoxonase 1 (PON1) and myeloperoxidase activity were assessed. The mice were treated with 1.2 mg/g/day probucol for 6 weeks and the impact on HDL protein markers was analyzed. The differential proteins were quantified by Western blotting. Results The relative amount of protein in SR-BI−/− HDL was decreased by about 25% compared to that in HDL from wild type (WT) mice. Compared to WT HDL, relative protein abundance of representative apoAI and PON1 in SR-BI−/− HDL were significantly reduced, whereas acute-phase protein serum amyloid A (SAA) and apoAIV, proteinase inhibitor proteins α-1-antitrypsin (A1AT) were increased. The distribution of plasma apoAI-containing HDL particles in SR-BI−/− mice was also dramatically altered, although plasma apoAI level was no difference. The protein alterations were accompanied with dysfunction of SR-BI−/− HDL, evidenced by impaired cholesterol homeostasis in macrophages, and reduced anti-oxidative and anti-inflammatory effects. Probucol treatment of SR-BI−/− mice could restored the relative contents of critical proteins including apoAI, PON1, SAA, apoAIV and A1AT on HDL, and improve HDL dysfunction despite decreased HDL-C level. Conclusion SR-BI deficiency leading to dysfunctional HDL is closely related to alteration of HDL protein, suggesting that identification of apoAI, PON1, SAA, apoAIV, and A1AT may serve as the valuable protein markers for diagnosis and therapeutics of dysfunctional HDL-related metabolic diseases. Electronic supplementary material The online version of this article (10.1186/s12967-018-1502-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Feifei Li
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Liang Shang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-206, Wuhan, 430071, China.
| |
Collapse
|
38
|
Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease. PLoS One 2018; 13:e0193782. [PMID: 29505607 PMCID: PMC5837105 DOI: 10.1371/journal.pone.0193782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/17/2018] [Indexed: 02/07/2023] Open
Abstract
High density lipoprotein (HDL) cholesterol levels and cholesterol efflux capacity (CEC) are inversely correlated with coronary artery disease (CAD) risk. Myeloperoxidase (MPO) derived oxidants and HDL proteome changes are implicated in HDL dysfunction in subjects with CAD in the United States; however, the effect of MPO on HDL function and HDL proteome in ethnic Chinese population is unknown. We recruited four matched ethnic Chinese groups (20 patients each): subjects with 1) low HDL levels (HDL levels in men <40mg/dL and women <50mg/dL) and non-CAD (identified by coronary angiography or cardiac CT angiography); 2) low HDL and CAD; 3) high HDL (men >50mg/dL; women >60mg/dL) with no CAD; and 4) high HDL with CAD. Serum cytokines, serum MPO levels, serum CEC, MPO-oxidized HDL tyrosine moieties, and HDL proteome were assessed by mass spectrometry individually in the four groups. The cytokines, MPO levels, and HDL proteome profiles were not significantly different between the four groups. As expected, CEC was depressed in the entire CAD group but more specifically in the CAD low-HDL group. HDL of CAD subjects had significantly higher 3-nitrotyrosine than non-CAD subjects, but the MPO-specific 3-chlorotyrosine was unchanged; CEC in the CAD low-HDL group did not correlate with either HDL 3-chlorotyrosine or 3-nitrotyrosine levels. Neither 3-chlorotyrosine, which is MPO-specific, nor 3-nitrotyrosine generated from MPO or other reactive nitrogen species was associated with CEC. MPO mediated oxidative stress and HDL proteome composition changes are not the primary cause HDL dysfunction in Chinese subjects with CAD. These studies highlight ethnic differences in HDL dysfunction between United States and Chinese cohorts raising possibility of unique pathways of HDL dysfunction in this cohort.
Collapse
|
39
|
Gille A, D'Andrea D, Tortorici MA, Hartel G, Wright SD. CSL112 (Apolipoprotein A-I [Human]) Enhances Cholesterol Efflux Similarly in Healthy Individuals and Stable Atherosclerotic Disease Patients. Arterioscler Thromb Vasc Biol 2018; 38:953-963. [PMID: 29437574 PMCID: PMC5895137 DOI: 10.1161/atvbaha.118.310538] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/24/2018] [Indexed: 02/02/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— CSL112 (apolipoprotein A-I [apoA-I; human]) is a novel formulation of apoA-I in development for reduction of early recurrent cardiovascular events after acute myocardial infarction. Cholesterol efflux capacity (CEC) is a marker of high-density lipoprotein (HDL) function that is strongly correlated with incident cardiovascular disease. Impaired CEC has been observed in patients with coronary heart disease. Here, we determined whether infused apoA-I improves CEC when administered to patients with stable atherosclerotic disease versus healthy volunteers. Approach and Results— Measurements of apoA-I, HDL unesterified cholesterol, HDL esterified cholesterol, pre–β1-HDL, and CEC were determined in samples from patients with stable atherosclerotic disease before and after intravenous administration of CSL112. These measures were compared with 2 prior studies in healthy volunteers for differences in CEC at baseline and after CSL112 infusion. Patients with stable atherosclerotic disease exhibited significantly lower ATP-binding cassette transporter 1–mediated CEC at baseline (P<0.0001) despite slightly higher apoA-I levels when compared with healthy individuals (2 phase 1 studies pooled; P≤0.05), suggesting impaired HDL function. However, no differences were observed in apoA-I pharmacokinetics or in pre–β1-HDL (P=0.5) or CEC (P=0.1) after infusion of CSL112. Similar elevation in CEC was observed in patients with low or high baseline HDL function (based on tertiles of apoA-I–normalized CEC; P=0.1242). These observations were extended and confirmed using cholesterol esterification as an additional measure. Conclusions— CSL112 shows comparable, strong, and immediate effects on CEC despite underlying cardiovascular disease. CSL112 is, therefore, a promising novel therapy for lowering the burden of atherosclerosis and reducing the risk of recurrent cardiovascular events.
Collapse
Affiliation(s)
- Andreas Gille
- From the CSL Limited, Parkville, Australia (A.G.); CSL Behring, King of Prussia, PA (D.D., M.A.T., S.D.W.); and QIMR Berghofer Medical Research Institute, Brisbane City, Australia (G.H.).
| | - Denise D'Andrea
- From the CSL Limited, Parkville, Australia (A.G.); CSL Behring, King of Prussia, PA (D.D., M.A.T., S.D.W.); and QIMR Berghofer Medical Research Institute, Brisbane City, Australia (G.H.)
| | - Michael A Tortorici
- From the CSL Limited, Parkville, Australia (A.G.); CSL Behring, King of Prussia, PA (D.D., M.A.T., S.D.W.); and QIMR Berghofer Medical Research Institute, Brisbane City, Australia (G.H.)
| | - Gunter Hartel
- From the CSL Limited, Parkville, Australia (A.G.); CSL Behring, King of Prussia, PA (D.D., M.A.T., S.D.W.); and QIMR Berghofer Medical Research Institute, Brisbane City, Australia (G.H.)
| | - Samuel D Wright
- From the CSL Limited, Parkville, Australia (A.G.); CSL Behring, King of Prussia, PA (D.D., M.A.T., S.D.W.); and QIMR Berghofer Medical Research Institute, Brisbane City, Australia (G.H.)
| |
Collapse
|
40
|
Pizzini A, Lunger L, Demetz E, Hilbe R, Weiss G, Ebenbichler C, Tancevski I. The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review. Nutrients 2017; 9:nu9101099. [PMID: 28984832 PMCID: PMC5691715 DOI: 10.3390/nu9101099] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/31/2023] Open
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular disease have been studied extensively. However, it remains unclear to what extent n-3 PUFAs may impact Reverse Cholesterol Transport (RCT). RCT describes a mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. The aim of this review is to summarize the literature and to provide an updated overview of the effects of n-3 PUFAs on key players in RCT, including apoliprotein AI (apoA-I), ATP-binding cassette transporter A1 (ABCA1), ABCG1, apoE, scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr), cholesterol 7 alpha-hydroxylase (CYP7A1) and ABCG5/G8. Based on current knowledge, we conclude that n-3 PUFAs may beneficially affect RCT, mainly by influencing high-density lipoprotein (HDL) remodeling and by promoting hepatobiliary sterol excretion.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Lukas Lunger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Egon Demetz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Christoph Ebenbichler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
41
|
Yang LY, Yu CG, Wang XH, Yuan SS, Zhang LJ, Lang JN, Zhao D, Feng YM. Angiopoietin-Like Protein 4 Is a High-Density Lipoprotein (HDL) Component for HDL Metabolism and Function in Nondiabetic Participants and Type-2 Diabetic Patients. J Am Heart Assoc 2017. [PMID: 28645936 PMCID: PMC5669195 DOI: 10.1161/jaha.117.005973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background ANGPTL4 (angiopoietin‐like protein 4) is a LPL (lipoprotein lipase) inhibitor and is present in high‐density lipoprotein (HDL). However, it is not defined whether ANGPTL4 in HDLs could affect HDL metabolism and function in type 2 diabetes mellitus (T2DM). Methods and Results ANGPTL4 levels in the circulation and HDLs were quantified in nondiabetic participants (n=201, 68.7% females) and T2DM patients (n=185, 66.5% females). HDLs were isolated from nondiabetic controls and T2DM patients to assess cholesterol efflux or subjected to endothelial lipase (EL)‐overexpressed HEK293 cells for EL hydrolysis in vitro. The association between ANGPTL4 in HDLs and HDL components and function was analyzed in nondiabetic participants or diabetic patients, respectively. Plasma or HDLs of ANGPTL4+/+ and ANGPTL4−/− mice was subjected for cholesterol efflux or EL hydrolysis, respectively. ANGPTL4 levels in the plasma and HDLs were 1.7‐ and 2.0‐fold higher in T2DM patients than nondiabetic controls, respectively (P<0.0001). Multivariable analysis demonstrated that per 1 doubling increase of ANGPTL4 levels in HDLs, the changes amounted to +0.27% cholesterol efflux (P=0.03), +0.06 μg/mL apolipoprotein A‐I (P=0.09) and −9.41 μg/L serum amyloid A (P=0.02) in nondiabetic controls. In T2DM patients, the corresponding estimates were −0.06% cholesterol efflux (P=0.10), −0.06 μg/mL apolipoprotein A‐I (P=0.38), and +3.64 μg/L serum amyloid A (P=0.72). HDLs isolated from ANGPTL4−/− mice showed accelerated hydrolysis by EL and reduced cholesterol efflux compared with ANGPTL4+/+ littermates. Conclusions Physically, ANGPTL4 in HDLs protected HDLs from hydrolysis. Resulting from increased circulating ANGPTL4 levels in T2DM, ANGPTL4 levels in HDLs were elevated but with compromised inhibitory effect on EL, leading to increased HDL hydrolysis and dysfunction.
Collapse
Affiliation(s)
- Long-Yan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Cai-Guo Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Xu-Hong Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Li-Jie Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Jia-Nan Lang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
43
|
Ram TP, Fomison-Nurse I, Gandhi S, Coffey S, Saxena P, Galvin I, Bunton R, Williams MJ, Lamberts RR, Katare R. The diagnostic sensitivity of circulating cardio-enriched microRNAs is increased after normalization of high-density lipoprotein levels. Int J Cardiol 2017; 236:498-500. [DOI: 10.1016/j.ijcard.2017.01.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/15/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
44
|
Cukier AMO, Therond P, Didichenko SA, Guillas I, Chapman MJ, Wright SD, Kontush A. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:890-900. [PMID: 28529180 DOI: 10.1016/j.bbalip.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
Abstract
AIMS High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. METHODS Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. RESULTS rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. CONCLUSIONS Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.
Collapse
Affiliation(s)
- Alexandre M O Cukier
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - Patrice Therond
- AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; Lip(Sys)(2) Athérosclérose: homéostasie et trafic du cholestérol des macrophages, University Paris-Sud, University Paris-Saclay, 92296 Châtenay-Malabry. France
| | | | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | | | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France.
| |
Collapse
|
45
|
März W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, Parhofer KG, von Eckardstein A, Landmesser U, Laufs U. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 2017; 106:663-675. [PMID: 28342064 PMCID: PMC5565659 DOI: 10.1007/s00392-017-1106-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
Background While several lines of evidence prove that elevated concentrations of low-density lipoproteins (LDL) causally contribute to the development of atherosclerosis and its clinical consequences, high-density lipoproteins are still widely believed to exert atheroprotective effects. Hence, HDL cholesterol (HDL-C) is in general still considered as “good cholesterol”. Recent research, however, suggests that this might not always be the case and that a fundamental reassessment of the clinical significance of HDL-C is warranted. Method This review article is based on a selective literature review. Results In individuals without a history of cardiovascular events, low concentrations of HDL-C are inversely associated with the risk of future cardiovascular events. This relationship may, however, not apply to patients with metabolic disorders or manifest cardiovascular disease. The classical function of HDL is to mobilise cholesterol from extrahepatic tissues for delivery to the liver for excretion. These roles in cholesterol metabolism as well as many other biological functions of HDL particles are dependent on the number as well as protein and lipid composition of HDL particles. They are poorly reflected by the HDL-C concentration. HDL can even exert negative vascular effects, if its composition is pathologically altered. High serum HDL-C is therefore no longer regarded protective. In line with this, recent pharmacological approaches to raise HDL-C concentration have not been able to show reductions of cardiovascular outcomes. Conclusion In contrast to LDL cholesterol (LDL-C), HDL-C correlates with cardiovascular risk only in healthy individuals. The calculation of the ratio of LDL-C to HDL-C is not useful for all patients. Low HDL-C should prompt examination of additional metabolic and inflammatory pathologies. An increase in HDL-C through lifestyle change (smoking cessation, physical exercise) has positive effects and is recommended. However, HDL-C is currently not a valid target for drug therapy.
Collapse
Affiliation(s)
- Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetelogie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany.,Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria.,Synlab Akademie, synlab Holding Deutschland GmbH, Mannheim und Augsburg, Augsburg, Germany
| | - Marcus E Kleber
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetelogie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany.,Institut für Ernährungswissenschaften, Friedrich Schiller Universität Jena, Jena, Germany
| | - Hubert Scharnagl
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria
| | - Timotheus Speer
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany
| | - Stephen Zewinger
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany
| | - Andreas Ritsch
- Klinik für Innere Medizin, Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Klaus G Parhofer
- Medizinische Klinik II, Klinikum der Universität München, 81377, Munich, Germany
| | | | | | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, IMED, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany.
| |
Collapse
|
46
|
Maillet A, Desormais I, Rivière AB, Aboyans V, Lacroix P, Mirault T, Messas E, Bataille V, Constans J, Boulon C. Peripheral Atheromatous Arterial Disease in the Young: Risk Factors, Clinical Features, and Prognosis From the COPART Cohort. Angiology 2017; 68:893-898. [DOI: 10.1177/0003319717699501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe the cardiovascular risk factors, clinical presentation, and prognosis in a comparative study of patients with peripheral artery disease (PAD) from the Cohorte des Patients ARTériopathes (COPART) cohort, which includes patients hospitalized for PAD in France. Among the 2514 patients included in the cohort, 189 had PAD before or at the age of 50 years and 2325 had it after. Young patients with PAD had diabetes less frequently (34% vs 46%, P < .001), were more frequent active smokers (58% vs 23%, P < 0.001), had lower high-density lipoprotein cholesterol (HDL-C; 41 ± 14 vs 44 ± 15 mg/dL, P = .026), and had a less frequent family and personal history of coronary heart disease. In a subset of 59 patients whose lipoprotein (a) (Lp(a)) was measured, the Lp(a) levels were higher in the young patients than in the older ones (89.7 mg/dL [9.7-151.3] vs 19.9 mg/dL [3.0-207.9], P = .004). Survival and amputation-free survival was 2.2 times higher (1.5-3.2, P < .001) in the young after 1 year. The onset of PAD before 50 years was associated with active smoking, low HDL-C, high Lp(a), and lower mortality.
Collapse
Affiliation(s)
- Alexandre Maillet
- Médecine vasculaire, Hôpital St Andre, Bordeaux, France
- Bordeaux University, Bordeaux, France
| | | | - Alessandra Bura Rivière
- Service de Médecine Vasculaire, CHU Toulouse, Toulouse, France
- StromaLab UMR 5273/INSERM U1031, Toulouse, France
- Université de Toulouse III, Toulouse, France
| | - Victor Aboyans
- Service de Cardiologie, Hôpital Universitaire Dupuytren, Limoges, France
| | | | - Tristan Mirault
- Department of Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP, Paris Descartes University, Sorbonne Paris Cite, Paris, France
| | - Emmanuel Messas
- Department of Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP, Paris Descartes University, Sorbonne Paris Cite, Paris, France
| | | | - Joël Constans
- Médecine vasculaire, Hôpital St Andre, Bordeaux, France
- Bordeaux University, Bordeaux, France
| | - Carine Boulon
- Médecine vasculaire, Hôpital St Andre, Bordeaux, France
- Bordeaux University, Bordeaux, France
| |
Collapse
|
47
|
Martínez-Torres J, Correa-Bautista JE, González-Ruíz K, Vivas A, Triana-Reina HR, Prieto-Benavidez DH, Carrillo HA, Ramos-Sepúlveda JA, Villa-González E, García-Hermoso A, Ramírez-Vélez R. A Cross-Sectional Study of the Prevalence of Metabolic Syndrome and Associated Factors in Colombian Collegiate Students: The FUPRECOL-Adults Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E233. [PMID: 28264459 PMCID: PMC5369069 DOI: 10.3390/ijerph14030233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is one of the major public health problems worldwide. The objective of the present study is to investigate the prevalence and the associated variables of MetS in Colombian collegiate students. This cross-sectional study included a total of 890 (52% women) healthy collegiate students (21.3 ± 3.2 years old). The prevalence of MetS was determined by the definition provided by the International Diabetes Federation (IDF). We further examined associations between the prevalence of MetS and related factors, such as age, gender, anthropometric and body composition, weight status, and nutrition profile. The overall prevalence of MetS was 6.0% (95% CI = 4.5% to 7.6%), and it was higher in men than women. The most prevalent components were low high-density lipoprotein cholesterol, high triglyceride levels, waist circumference, and blood pressure levels. The predisposing factors for having a MetS included: being male, over 23 years old, overweight or obese, and having an unhealthy waist-to-height ratio. In conclusion, the occurrence of MetS in young adults is substantial. These findings may be relevant to health promotion efforts for collegiate students in order to develop prospective studies and screening for young adults, which will aid in targeted intervention development to decrease cardiometabolic risk factors.
Collapse
Affiliation(s)
- Javier Martínez-Torres
- Grupo GICAEDS, Facultad de Cultura Física, Deporte y Recreación, Universidad Santo Tomás, Bogotá DC 110311, Colombia.
| | - Jorge Enrique Correa-Bautista
- Centro de Estudios para la Medición de la Actividad Física «CEMA», Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá DC 111221, Colombia.
| | - Katherine González-Ruíz
- Grupo de Ejercicio Físico y Deportes, Vicerrectoría de Investigaciones, Universidad Manuela Beltrán, Bogotá DC 110231, Colombia.
| | - Andrés Vivas
- Grupo de Ejercicio Físico y Deportes, Vicerrectoría de Investigaciones, Universidad Manuela Beltrán, Bogotá DC 110231, Colombia.
| | - Héctor Reynaldo Triana-Reina
- Grupo GRINDER, Programa de Educación Física y Deportes, Universidad del Valle, Santiago de Cali DC 760010, Colombia.
| | - Daniel Humberto Prieto-Benavidez
- Centro de Estudios para la Medición de la Actividad Física «CEMA», Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá DC 111221, Colombia.
| | - Hugo Alejandro Carrillo
- Grupo GRINDER, Programa de Educación Física y Deportes, Universidad del Valle, Santiago de Cali DC 760010, Colombia.
| | - Jeison Alexander Ramos-Sepúlveda
- Facultad de Educación a Distancia y Virtual, Institución Universitaria Antonio José Camacho, Santiago de Cali DC 760010, Colombia.
| | - Emilio Villa-González
- Department of Education Sciences, University of Almería, Almería DC 04120, Spain.
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Department of Physical Education and Sport, School of Sport Sciences, University of Granada, Granada DC 18010, Spain.
| | - Antonio García-Hermoso
- Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, USACH, Santiago DC 9160030, Chile.
| | - Robinson Ramírez-Vélez
- Centro de Estudios para la Medición de la Actividad Física «CEMA», Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá DC 111221, Colombia.
| |
Collapse
|
48
|
Selmer R, Igland J, Ariansen I, Tverdal A, Njølstad I, Furu K, Tell GS, Klemsdal TO. NORRISK 2: A Norwegian risk model for acute cerebral stroke and myocardial infarction. Eur J Prev Cardiol 2017; 24:773-782. [PMID: 28206819 DOI: 10.1177/2047487317693949] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Guidelines for the prevention of cardiovascular disease recommend the estimation of an individual's total risk. We have developed a new model for the prediction of the 10-year risk of incident acute myocardial infarction or cerebral stroke based on Norwegian data, NORRISK 2. Design The model was based on 10-year follow-up of a large population-based cohort (CONOR) through linkage to the CVDNOR project, a database of cardiovascular disease hospital discharge diagnoses and mortality in Norway in 1994-2009. Methods We used the Fine and Gray regression model to estimate the 10-year risk adjusting for competing risk. The model population consisted of participants in 1994-1999 and the external validation population of participants in 2000-2003. We validated the model by area under the receiver operating characteristic curves, calibration plots and analyses of sensitivity and specificity. Results The model population consisted of 31,445 men and 35,267 women aged 40-79 years with 3658 endpoints in men and 2459 in women. The external validation population consisted of 19,980 men and 19,309 women, of whom 1858 men and 874 women had an endpoint during follow-up. The area under the curve was 0.79 (0.79-0.80) in men and 0.84 (0.83-0.85) in women in the model population and was slightly lower in the external validation population. Calibration plots showed good agreement between observed and predicted risk. The sum of sensitivity and specificity was greatest around the suggested risk thresholds. Conclusion The NORRISK 2 model showed good validity in an external dataset and will be a valuable tool to guide decisions about preventive interventions in people without known previous cardiovascular disease.
Collapse
Affiliation(s)
| | - Jannicke Igland
- 2 Department of Global Public Health and Primary Care, University of Bergen, Norway
| | | | | | | | - Kari Furu
- 1 Norwegian Institute of Public Health, Norway
| | - Grethe S Tell
- 1 Norwegian Institute of Public Health, Norway.,2 Department of Global Public Health and Primary Care, University of Bergen, Norway
| | - Tor Ole Klemsdal
- 4 Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Norway
| |
Collapse
|
49
|
Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017; 6. [PMID: 28169829 PMCID: PMC5323040 DOI: 10.7554/elife.23355] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI:http://dx.doi.org/10.7554/eLife.23355.001
Collapse
Affiliation(s)
- Rima S Chakrabarti
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sally A Ingham
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Julia Kozlitina
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Austin Gay
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
50
|
Leeper NJ, Park SM, Smith BR. High-Density Lipoprotein Nanoparticle Imaging in Atherosclerotic Vascular Disease. JACC Basic Transl Sci 2017; 2:98-100. [PMID: 30167557 PMCID: PMC6113536 DOI: 10.1016/j.jacbts.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
Nanoparticles promise to advance the field of cardiovascular theranostics. However, their sustained and targeted delivery remains an important obstacle. The body synthesizes some "natural" nanoparticles, including high-density lipoprotein (HDL), which may home to the atherosclerotic plaque and promote cholesterol efflux. In a recent article published in JACC: Cardiovascular Imaging, investigators generated modified, radiolabeled HDL nanoparticles and confirmed they accumulated in atherosclerotic lesions from several different species. These approaches hold promise for the noninvasive diagnosis of vulnerable plaque and in the stratification of patients in whom HDL-mimetic therapy may have a clinical benefit.
Collapse
Affiliation(s)
| | - Seung-Min Park
- Department of Radiology, Stanford University, Stanford, California
| | | |
Collapse
|