1
|
Inoue H, Toriyama K, Takahira N, Murakami S, Miyamoto H, Suzuki T, Shiraishi A. Association between Moraxella keratitis and advanced glycation end products. Sci Rep 2024; 14:8024. [PMID: 38580798 PMCID: PMC10997605 DOI: 10.1038/s41598-024-58659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Diabetes mellitus is recognized as a major predisposing factor for Moraxella keratitis. However, how diabetes mellitus contributes to Moraxella keratitis remains unclear. In this study, we examined Moraxella keratitis; based on the findings, we investigated the impact of advanced glycation end products (AGEs) deposition in the cornea of individuals with diabetic mellitus on the adhesion of Moraxella isolates to the cornea. A retrospective analysis of 27 culture-proven cases of Moraxella keratitis at Ehime University Hospital (March 2006 to February 2022) was performed. Moraxella isolates were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the patients, 30.4% had diabetes mellitus and 22.2% had the predominant ocular condition of using steroid eye drops. The species identified were Moraxella nonliquefaciens in 59.3% and Moraxella lacunata in 40.7% of patients. To investigate the underlying mechanisms, we assessed the effects of M. nonliquefaciens adherence to simian virus 40-immortalized human corneal epithelial cells (HCECs) with or without AGEs. The results demonstrated the number of M. nonliquefaciens adhering to HCECs was significantly increased by adding AGEs compared with that in controls (p < 0.01). Furthermore, in the corneas of streptozotocin-induced diabetic C57BL/6 mice treated with or without pyridoxamine, an AGE inhibitor, the number of M. nonliquefaciens adhering to the corneas of diabetic mice was significantly reduced by pyridoxamine treatment (p < 0.05). In conclusion, the development of Moraxella keratitis may be significantly influenced by the deposition of AGEs on the corneal epithelium of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Hidenori Inoue
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Koji Toriyama
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoko Takahira
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shinobu Murakami
- Clinical Laboratory Division, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hitoshi Miyamoto
- Clinical Laboratory Division, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University Graduate School of Medicine, 6-11-1, Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Morya AK, Ramesh PV, Kaur K, Gurnani B, Heda A, Bhatia K, Sinha A. Diabetes more than retinopathy, it's effect on the anterior segment of eye. World J Clin Cases 2023; 11:3736-3749. [PMID: 37383113 PMCID: PMC10294174 DOI: 10.12998/wjcc.v11.i16.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
Diabetes mellitus (DM) is one of the chronic metabolic noncommunicable diseases that has attained worldwide epidemics. It threatens healthy life around the globe, with mild-to-severe secondary complications and leads to significant illness including nephropathy, neuropathy, retinopathy, and macrovascular abnormalities including peripheral vasculopathy, and ischaemic heart disease. Research into diabetic retinopathy (DR), which affects one-third of persons with diabetes, has made considerable strides in recent years. In addition, it can lead to several anterior segment complications such as glaucoma, cataract, cornea, conjunctiva, lacrimal glands and other ocular surface diseases. Uncontrolled DM also caused gradual damage to corneal nerves and epithelial cells, which raises the likelihood of anterior segment diseases including corneal ulcers, dry eye disease, and chronic epithelial abnormalities. Although DR and other associated ocular complications are well-known, the complexity of its aetiology and diagnosis makes therapeutic intervention challenging. Strict glycaemic control, early detection and regular screening, and meticulous management is the key to halting the progression of the disease. In this review manuscript, we aim to provide an in-depth understanding of the broad spectrum of diabetic complications in the anterior segment of the ocular tissues and illustrate the progression of diabetes and its pathophysiology, epidemiology, and prospective therapeutic targets. This first such review article will highlight the role of diagnosing and treating patients with a plethora of anterior segment diseases associated with diabetes, which are often neglected.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma and Research, Mahathma Eye Hospital Private Limited, Tennur, Trichy 620001, Tamil Nadu, India
| | - Kirandeep Kaur
- Pediatric Ophthalmology and Strabismus, Sadguru Netra Chikitsalaya, Sadguru Seva Sangh Trust, Janaki-Kund, Chitrakoot 485334, Madhya Pradesh, India
| | - Bharat Gurnani
- Cornea and Refractive Services, Sadguru Netra Chikitsalaya, Sadguru Seva Sangh Trust, Janaki- Kund, Chitrakoot 485334, Madhya Pradesh, India
| | - Aarti Heda
- Department of Ophthalmology, National Institute of Ophthalmology, Pune 411000, Maharashtra, India
| | - Karan Bhatia
- Department of Ophthalmology, Manaktala Eye and Maternity Home, Meerut 250001, Uttar Pradesh, India
| | - Aprajita Sinha
- Department of Ophthalmology, Worcestershire Acute Hospital, Worcestershire 01601, United Kingdom
| |
Collapse
|
3
|
Fang X, Lian H, Bi S, Liu S, Yuan X, Liao C. Roles of pattern recognition receptors in response to fungal keratitis. Life Sci 2022; 307:120881. [PMID: 35963303 DOI: 10.1016/j.lfs.2022.120881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Fungal keratitis is one of the leading causes of blindness worldwide, which has become an increasingly serious threat to public ocular health, but no effective treatment strategies are available now. Pattern recognition receptors (PRRs) of the innate immune system are the first line of host defense against fungal infections. They could recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger an array of inflammatory responses. Over the last decades, research has resulted in significant progress regarding the roles of PRRs in fungal keratitis. This review will highlight the importance of several pattern recognition receptors (C-type lectin-like receptors, Toll-like receptors, and NOD-like receptors) in regulating the innate immunity under fungal keratitis and describe the crosstalk and collaboration in PRRs contributing to disease pathology. Meanwhile, some potential therapy-based PRRs against corneal fungal infections are discussed.
Collapse
Affiliation(s)
- Xiaolong Fang
- The School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Lian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Ophthalmology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyong Yuan
- The School of Medicine, Nankai University, Tianjin 300071, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
D'Andrea L, Montorio D, Concilio M, Giordano M, Cennamo G, Costagliola C. Anterior Segment-Optical Coherence Tomography and Diabetic Retinopathy: could it be an Early Biomarker? Photodiagnosis Photodyn Ther 2022; 39:102995. [PMID: 35788084 DOI: 10.1016/j.pdpdt.2022.102995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION To measure the corneal thickness (CT), corneal epithelial thickness (CET), and corneal stromal thickness (CST) in patients affected by type 2 diabetes mellitus with good glycemic control and without any signs of diabetic retinopathy using anterior-segment optical coherence tomography (AS-OCT). METHODS 60 eyes of 30 diabetic patients and 60 normal eyes of 30 healthy subjects underwent AS-OCT, evaluation of best-corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp biomicroscopy, tear film breakup time (TBUT), Schirmer I test and fundus examination. The CT, CET, and CST maps generated corresponded to a 6-mm diameter area of the cornea that was divided into 17 sectors. We compared the CT, CET, and the CST of each sector obtained in the diabetic group with those obtained in the control group. RESULTS No significant difference in terms of age, gender, BCVA, IOP, TBUT, and Schirmer I test between the two study groups was observed. The CT, CET, and CST in the central section were significantly thickened in diabetic patients than in controls (p<0.001). Also, each paracentral and midperipheral sector was significantly increased in patients compared to controls (p<0.05). CONCLUSIONS The evaluation of the CT, CET, and CST by AS-OCT could be a valid and non-invasive biomarker in patients affected by diabetes mellitus, useful in early diagnosis of diabetic retinopathy.
Collapse
Affiliation(s)
- Luca D'Andrea
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Daniela Montorio
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Marina Concilio
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Mariapaola Giordano
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Gilda Cennamo
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy; Public Health Department, University of Naples Federico II, Naples, Italy.
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
5
|
Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, Xue J, Wei C, Xie L. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci 2022; 18:809-825. [PMID: 35002527 PMCID: PMC8741862 DOI: 10.7150/ijbs.63219] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/27/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic keratopathy (DK) is an important diabetic complication at the ocular surface. Chronic low-grade inflammation mediated by the NLRP3 inflammasome promotes pathogenesis of diabetes and its complications. However, the effect of the NLRP3 inflammasome on DK pathogenesis remains elusive. Wild-type (WT) and Nlrp3 knockout (KO) C57 mice were used to establish a type I diabetes model by intraperitoneal injection of streptozotocin. The effect of the NLRP3 inflammasome on diabetic corneal wound healing and never regeneration was examined by a corneal epithelial abrasion model. Western blot, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and pharmacological treatment were performed to investigate the regulatory mechanism of advanced glycation end products (AGEs) on NLRP3 inflammasome activation and corneal wound healing in vivo. The cultured mouse corneal epithelial cells (TKE2) were used to evaluate the effect and mechanism of AGEs on NLRP3 inflammasome activation in vitro. We revealed that NLRP3 inflammasome-mediated inflammation and pyroptosis contributed to DK pathogenesis. Under physiological conditions, the NLRP3 inflammasome was required for corneal wound healing and nerve regeneration. However, under a diabetic scenario, sustained activation of the NLRP3 inflammasome resulted in postponed corneal wound healing and impaired nerve regeneration. Mechanistically, the accumulated AGEs promoted hyperactivation of the NLRP3 inflammasome through ROS production. Moreover, genetically and pharmacologically blocking the AGEs/ROS/NLRP3 inflammasome axis significantly expedited diabetic corneal epithelial wound closure and nerve regeneration. Our results revealed that AGEs-induced hyperactivation of the NLRP3 inflammasome resulted in delayed diabetic corneal wound healing and impaired nerve regeneration, which further highlighted the NLRP3 inflammasome as a promising target for DK treatment.
Collapse
Affiliation(s)
- Luqin Wan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Huifeng Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Junfa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
7
|
Hwang SB, Park JH, Park JY, Kang SS, Chung HS, Lee H, Kim JY, Tchah H. Anti-inflammatory and anti-apoptotic effects of N-acetylcysteine in diabetic rat corneal epithelium. Int J Ophthalmol 2021; 14:1805-1812. [PMID: 34926192 DOI: 10.18240/ijo.2021.12.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To characterize the anti-inflammatory and anti-apoptotic effects of N-acetylcysteine (NAC) in streptozotocin (STZ)-induced diabetic rat corneal epithelium and human corneal epithelial cells (HCECs) exposed to a high-glucose environment. METHODS HCECs were incubated in 0, 5, 50 mmol/L glucose medium, or 50 mmol/L glucose medium with NAC for 24h. Diabetes was induced in rats by intraperitoneal injection of 65 mg/kg STZ and some of these rats were topically administered NAC to corneas with 3 mice per group. We characterized receptor for advanced glycation end-products (RAGE) expression using immunofluorescence, and interleukin (IL)-1β and cleaved caspase-3 (CCAP-3) expression using immunohistochemistry. Circulating tumor necrosis factor (TNF)-α concentration was measured by ELISA and cleaved poly-ADP ribose polymerase (PARP) concentration was quantified by Western blotting. Apoptotic cells were detected using TUNEL assay and annexin V and propidium iodide staining. RESULTS Diabetic rats had higher expression of RAGE (2.46±0.13 fold), IL-1β, and CCAP-3 in apoptotic cells of their corneas than control rats. The expression of RAGE (1.83±0.11 fold), IL-1β, and CCAP-3, and the number of apoptotic cells, were reduced by topical NAC treatment. HCECs incubated in 50 mmol/L glucose medium showed high concentrations of TNF-α (310±2.00 pg/mL) and cleaved PARP (7.43±0.56 fold), and more extensive apoptosis than cells in 50 mmol/L glucose medium. However, the addition of NAC reduced the concentrations of TNF-α (153.67±2.31 pg/mL) and cleaved PARP (5.55±0.31 fold) and the number of apoptotic cells. CONCLUSION NAC inhibits inflammation and apoptosis in the corneas of diabetic rats and HCECs maintained in a high-glucose environment.
Collapse
Affiliation(s)
- Sae-Byeok Hwang
- Research Institute of Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea.,Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jin Hyoung Park
- Research Institute of Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea.,Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea
| | - Ji-Yun Park
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Soon-Suk Kang
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Hun Lee
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae Yong Kim
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
8
|
The Corneal Changes in Diabetic Patients. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diabetes mellitus (DM) represents a systemic disorder which afects different organs. Ocular complications of the DM are the worldwide leading cause of blindness. The most common complications are diabetic retinopathy, diabetic cataract, neovascular glaucoma. Recently many investigations point out that DM can cause comlications at ocular surface as well. Condition such as decreased corneal sensitivity, dry eye or neurotrophic corneal ulceraction are the main clinical manifestations of the diabetic keratopathy (DK). Untreated, these conditions can lead to serious visual acuity decrease. Pathological processes, based on chronic inflammation, due to chronic hyperglycemia, are the main step in the process of DK development. Adequate treatment of the main disease - DM is an imperative in maintaining the healthy cornea without subjective sensations of diabetic patients.
Collapse
|
9
|
Gong JH, Dong JY, Xie T, Zhao Q, Lu SL. Different therapeutic effects between diabetic and non-diabetic adipose stem cells in diabetic wound healing. J Wound Care 2021; 30:S14-S23. [PMID: 33856928 DOI: 10.12968/jowc.2021.30.sup4.s14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to investigate how adipose tissue-derived stem cells (ASCs) from diabetic and from non-diabetic rats affect wound healing in different microenvironments. METHOD The two types of ASC-rich cells were distinguished by characteristic surface antigen detection. The ASC-rich cells were transplanted into the wounds of diabetic and non-diabetic rats. Wound healing rates were compared and the healing process in the wound margin sections was used to determine how ASC-rich cells affect wound healing in different microenvironments. RESULTS ASC density was decreased in diabetic rats. The generation time of ASC-rich cells from diabetic rats (d-ASC-rich cells) was longer than that of ASC-rich cells from non-diabetic rats. The number of pre-apoptotic cells in the third generation (passage 3) of d-ASC-rich cells was higher than that among the ASC-rich cells from non-diabetic rats. CD31 and CD34 expression was higher in d-ASC-rich cells than in ASC-rich cells from non-diabetic rats, whereas CD44 and CD105 expression was lower than that in ASC-rich cells from non-diabetic rats. Transplantation of ASC-rich cells from non-diabetic rats promoted wound healing in both non-diabetic and diabetic rats. In contrast, d-ASC-rich cells and enriched nuclear cells only promoted wound healing in non-diabetic rats. ASC-rich cell transplantation promoted greater tissue regeneration than d-ASC-rich cell transplantation. CONCLUSION ASC-rich cells promoted wound healing in diabetic and non-diabetic rats. ASC density was lower in the adipose tissue of diabetic rats compared with non-diabetic rats. d-ASC-rich cells did not promote wound healing in diabetic rats, suggesting that caution is warranted regarding the clinical use of diabetic adipose stem cell transplantation for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jia-Hong Gong
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Yun Dong
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xie
- Shanghai 9th people's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingnan Zhao
- University of Texas MD Anderson Cancer Center, Houston, Texas 77054, US
| | - Shu-Liang Lu
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Huang X, Wang L, Meng M, Zhang S, Pham TTH, Jiang L, Chen L, Li Y, Zhou X, Qin L, Wu X, Zou C, Huang R. Extract of Averrhoacarambola L. (Oxalidaceae) roots ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. Biomed Pharmacother 2020; 121:109516. [DOI: 10.1016/j.biopha.2019.109516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
|
12
|
Zhao H, He Y, Ren YR, Chen BH. Corneal alteration and pathogenesis in diabetes mellitus. Int J Ophthalmol 2019; 12:1939-1950. [PMID: 31850180 DOI: 10.18240/ijo.2019.12.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of diabetes mellitus (DM) and its complications have increased considerably worldwide. Diabetic keratopathy is the major complication of the cornea characterized by delayed corneal wound healing, decreasing corneal epithelial sensitivity, and recurrent corneal ulcers. There is accumulating evidence that diabetic keratopathy is correlated with the hyperglycemic state. Different corneal components may produce different alterations under hyperglycemia. In addition, diabetic nerve alteration may become a novel biomarker of early-stage DM. Abnormalities of the corneal nerve plexus have been associated with diabetic inflammatory states. There is rapidly growing evidence based on investigations of diabetic corneal nerves through in vivo confocal microscopy. Understanding the molecular pathogenesis caused by hyperglycemia may assist in the identification of novel biomarkers, as well as therapeutic targets for early treatment. This review mainly summarizes recent findings on corneal alteration and pathogenesis in DM.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yan He
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yue-Rong Ren
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Bai-Hua Chen
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| |
Collapse
|
13
|
An Update on Corneal Biomechanics and Architecture in Diabetes. J Ophthalmol 2019; 2019:7645352. [PMID: 31275634 PMCID: PMC6589322 DOI: 10.1155/2019/7645352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
In the last decade, we have witnessed substantial progress in our understanding of corneal biomechanics and architecture. It is well known that diabetes is a systemic metabolic disease that causes chronic progressive damage in the main organs of the human body, including the eyeball. Although the main and most widely recognized ocular effect of diabetes is on the retina, the structure of the cornea (the outermost and transparent tissue of the eye) can also be affected by the poor glycemic control characterizing diabetes. The different corneal structures (epithelium, stroma, and endothelium) are affected by specific complications of diabetes. The development of new noninvasive diagnostic technologies has provided a better understanding of corneal tissue modifications. The objective of this review is to describe the advances in the knowledge of the corneal alterations that diabetes can induce.
Collapse
|
14
|
Bejarano E, Taylor A. Too sweet: Problems of protein glycation in the eye. Exp Eye Res 2019; 178:255-262. [PMID: 30145354 PMCID: PMC8351608 DOI: 10.1016/j.exer.2018.08.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023]
Abstract
Laboratory and epidemiological data indicate that high blood sugar levels and/or consuming high glycemia diets are linked to multiple age-related diseases, including age-related macular degeneration, cataract, Parkinson's disease, Alzheimer's disease, diabetic retinopathy, and, apparently glaucoma. High concentrations of blood sugar and perturbations of the systems that regulate blood sugar lead to the accumulation of advanced-glycation end products (AGEs). AGEs are toxic compounds that are formed from the combination of sugars and their metabolites with biomolecules in a non-enzymatic biochemical reaction called glycation. In vitro and in vivo data indicate that high sugar consumption is associated with accumulation of AGEs in a variety of human tissues. Hyperglycemia, along with an oxidative environment and limited cell proliferation in many ocular tissues, encourages formation and precludes dilution of AGEs and associated damage by cell division. These circumstances make many eye tissues vulnerable to glycation-derived damage. Here, we summarize research regarding glycation-induced ocular tissue dysfunction and its contribution to the onset and development of eye disorders. We also discuss how management of carbohydrate nutrition may provide a low-cost way to ameliorate the progression of AGEs-related diseases, including age related macular degeneration and some cataracts, as they do for cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA.
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Kumar N, Pop-Busui R, Musch DC, Reed DM, Momont AC, Hussain M, Raval N, Moroi SE, Shtein R. Central Corneal Thickness Increase Due to Stromal Thickening With Diabetic Peripheral Neuropathy Severity. Cornea 2018; 37:1138-1142. [PMID: 29923859 PMCID: PMC6081252 DOI: 10.1097/ico.0000000000001668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the relationship between central corneal thickness (CCT) and diabetes disease severity among patients with diabetic peripheral neuropathy (DPN) compared with controls. METHODS In this cross-sectional study, 34 participants were examined. DPN status was assessed by clinical examination, nerve conduction studies, and quantitative sensory testing. All participants underwent comprehensive eye examination that included intraocular pressure measured by Goldmann applanation tonometry. CCT was measured by ultrasound pachymetry, and the thickness of corneal layers was assessed by corneal confocal microscopy. Association of CCT and DPN was examined using ANOVA. RESULTS Among the 34 participants, there were 9 controls, 16 patients with mild DPN, and 9 patients with severe DPN. CCT was significantly increased in the DPN groups compared with controls (P = 0.0003). Mean CCT among controls was 552.7 ± 29.2 μm compared with 583.4 ± 25.0 μm in the mild DPN group and 613.3 ± 28.8 μm in the severe DPN group. In addition, stromal thickness differed significantly between the 3 study groups (P = 0.045). Mean stromal thickness among controls was 439.5 ± 23.5 μm compared with 478.9 ± 37.5 μm in the mild DPN group and 494.5 ± 39.1 μm in the severe DPN group. CONCLUSIONS This study demonstrates that CCT increases with DPN severity because of an increase in stromal thickness. CCT increase associated with DPN has important clinical implications including glaucoma progression, keratoconus susceptibility, and intraocular pressure assessment and should be accounted for when evaluating patients with diabetes.
Collapse
Affiliation(s)
- Navasuja Kumar
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - David C. Musch
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - David M. Reed
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Anna C. Momont
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
- Currently at Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, University Station Clinic, Madison, WI 53705, USA
| | - Munira Hussain
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Nilesh Raval
- Wayne State University School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Roni Shtein
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
16
|
Ma J, Wang Y, Wei P, Jhanji V. Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol 2018; 63:851-861. [PMID: 29857022 DOI: 10.1016/j.survophthal.2018.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that alterations in corneal biomechanical properties are associated with corneal pathologies, particularly corneal ectasia. Moreover, these alterations may have implications with regard to the outcomes of therapeutic modalities and corneal refractive surgeries. We address corneal anatomy and its relevance to corneal biomechanical characteristics, as well as ocular and systemic conditions associated with changes in corneal biomechanics.
Collapse
Affiliation(s)
- Jiaonan Ma
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Naikai University, Tianjin Medical University, Tianjin, China.
| | - Pinghui Wei
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Naikai University, Tianjin Medical University, Tianjin, China
| | - Vishal Jhanji
- UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Bikbova G, Oshitari T, Baba T, Bikbov M, Yamamoto S. Diabetic corneal neuropathy: clinical perspectives. Clin Ophthalmol 2018; 12:981-987. [PMID: 29872257 PMCID: PMC5973365 DOI: 10.2147/opth.s145266] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diabetic keratopathy is characterized by impaired innervation of the cornea that leads to decreased sensitivity, with resultant difficulties with epithelial wound healing. These difficulties in wound healing put patients at risk for ocular complications such as surface irregularities, corneal infections, and stromal opacification. Pathological changes in corneal innervations in diabetic patients are an important early indicator of diabetic neuropathy. The decrease in corneal sensitivity is strongly correlated with the duration of diabetes as well as the severity of the neuropathy. This review presents recent findings in assessing the ocular surface as well as the recent therapeutic strategies for optimal management of individuals with diabetes who are susceptible to developing diabetic neuropathy.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan.,Cornea and Refractive Surgery Department, Ufa Eye Research Institute, Ufa, Russia
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mukharram Bikbov
- Cornea and Refractive Surgery Department, Ufa Eye Research Institute, Ufa, Russia
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
18
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|
19
|
A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes 2017; 7:e251. [PMID: 28319106 PMCID: PMC5380897 DOI: 10.1038/nutd.2017.4] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is associated with extensive morbidity and mortality in any human community. It is well understood that the burden of diabetes is attributed to chronic progressive damage in major end-organs, but it is underappreciated that the most superficial and transparent organ affected by diabetes is the cornea. Different corneal components (epithelium, nerves, immune cells and endothelium) underpin specific systemic complications of diabetes. Just as diabetic retinopathy is a marker of more generalized microvascular disease, corneal nerve changes can predict peripheral and autonomic neuropathy, providing a window of opportunity for early treatment. In addition, alterations of immune cells in corneas suggest an inflammatory component in diabetic complications. Furthermore, impaired corneal epithelial wound healing may also imply more widespread disease. The non-invasiveness and improvement in imaging technology facilitates the emergence of new screening tools. Systemic control of diabetes can improve ocular surface health, possibly aided by anti-inflammatory and vasoprotective agents.
Collapse
|
20
|
Pérez‐Rico C, Gutiérrez‐Ortíz C, González‐Mesa A, Zandueta AM, Moreno‐Salgueiro A, Germain F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol 2015; 93:e193-8. [PMID: 25270375 DOI: 10.1111/aos.12530] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Diabetes mellitus (DM) affects corneal biomechanical parameters. We compared analyses using ORA (Ocular response analyser) and Corvis ST to determine the influence of disease duration, hyperglycaemia and haemoglobin A1c (HbA1c) levels on these parameters. METHODS This observational, cross-sectional, observer-masked study assessed one eye of 94 consecutive DM patients and 41 healthy subjects. Two DM groups were analysed: the uncontrolled DM group (n = 54) (HbA1c ≥ 7%) and the controlled DM group (n = 40) (HbA1c < 7%). Central corneal thickness (CCT) was measured by ultrasonic pachymetry and intraocular pressure (IOP) by Goldmann applanation tonometry. ORA and Corvis ST analyses were performed to evaluate the changes. RESULTS Most of the Corvis ST parameters [Deformation amplitude (DA), A1 and A2 times, A1 velocity] in the uncontrolled DM group eyes were found to be significantly different to controls and controlled DM group eyes (p = 0.005, p = 0.001, p < 0.0001, p = 0.002, respectively). DA on the Corvis ST was correlated with blood glucose concentration (p = 0.004) and HbA1c percentage (p = 0.002). ORA corneal hysteresis was significantly lower in diabetic patients with elevated HbA1c than in control subjects (p = 0.001) and was affected by disease duration (p = 0.037), whereas the corneal resistance factor remained unaltered. CONCLUSIONS A poor glucose control in DM affects corneal biomechanics measured by ORA and Corvis ST, which may cause high IOP measurements independent of CCT. The measurement of the corneal biomechanics should be taken into consideration in the clinical practice.
Collapse
Affiliation(s)
- Consuelo Pérez‐Rico
- Department of Ophthalmology University Hospital Principe de Asturias University of Alcalá Alcalá de Henares Madrid Spain
| | - Consuelo Gutiérrez‐Ortíz
- Department of Ophthalmology University Hospital Principe de Asturias University of Alcalá Alcalá de Henares Madrid Spain
| | - Ana González‐Mesa
- Department of Ophthalmology University Hospital Principe de Asturias University of Alcalá Alcalá de Henares Madrid Spain
| | - Asunción M. Zandueta
- Department of Ophthalmology University Hospital Principe de Asturias University of Alcalá Alcalá de Henares Madrid Spain
| | - Agustín Moreno‐Salgueiro
- Department of Ophthalmology University Hospital Principe de Asturias University of Alcalá Alcalá de Henares Madrid Spain
| | - Francisco Germain
- Department of Physiology School of Medicine University of Alcalá Alcalá de Henares Madrid Spain
| |
Collapse
|
21
|
|
22
|
Ziegler D, Papanas N, Zhivov A, Allgeier S, Winter K, Ziegler I, Brüggemann J, Strom A, Peschel S, Köhler B, Stachs O, Guthoff RF, Roden M. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63:2454-63. [PMID: 24574045 DOI: 10.2337/db13-1819] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We sought to determine whether early nerve damage may be detected by corneal confocal microscopy (CCM), skin biopsy, and neurophysiological tests in 86 recently diagnosed type 2 diabetic patients compared with 48 control subjects. CCM analysis using novel algorithms to reconstruct nerve fiber images was performed for all fibers and major nerve fibers (MNF) only. Intraepidermal nerve fiber density (IENFD) was assessed in skin specimens. Neurophysiological measures included nerve conduction studies (NCS), quantitative sensory testing (QST), and cardiovascular autonomic function tests (AFTs). Compared with control subjects, diabetic patients exhibited significantly reduced corneal nerve fiber length (CNFL-MNF), fiber density (CNFD-MNF), branch density (CNBD-MNF), connecting points (CNCP), IENFD, NCS, QST, and AFTs. CNFD-MNF and IENFD were reduced below the 2.5th percentile in 21% and 14% of the diabetic patients, respectively. However, the vast majority of patients with abnormal CNFD showed concomitantly normal IENFD and vice versa. In conclusion, CCM and skin biopsy both detect nerve fiber loss in recently diagnosed type 2 diabetes, but largely in different patients, suggesting a patchy manifestation pattern of small fiber neuropathy. Concomitant NCS impairment points to an early parallel involvement of small and large fibers, but the precise temporal sequence should be clarified in prospective studies.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, GermanyDepartment of Endocrinology and Diabetology, University Hospital, Düsseldorf, Germany
| | - Nikolaos Papanas
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Andrey Zhivov
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Stephan Allgeier
- Institute for Applied Computer Science and Automation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Karsten Winter
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Iris Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Jutta Brüggemann
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Sabine Peschel
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Bernd Köhler
- Institute for Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Oliver Stachs
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Rudolf F Guthoff
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, GermanyDepartment of Endocrinology and Diabetology, University Hospital, Düsseldorf, Germany
| | | |
Collapse
|
23
|
Shi L, Chen H, Yu X, Wu X. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation. Mol Cell Biochem 2013; 383:253-9. [DOI: 10.1007/s11010-013-1773-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/02/2013] [Indexed: 01/27/2023]
|
24
|
Yang H, Kim GD, Park HR, Park YS. Comparative mRNA and microRNA expression profiling of methylglyoxal-exposed human endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One 2013; 8:e66781. [PMID: 23776698 PMCID: PMC3680386 DOI: 10.1371/journal.pone.0066781] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023] Open
Abstract
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
26
|
Animal models of diabetes mellitus for islet transplantation. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:256707. [PMID: 23346100 PMCID: PMC3546491 DOI: 10.1155/2012/256707] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 01/09/2023]
Abstract
Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.
Collapse
|