1
|
Liu J, Jiang E, Kim H, Moon J, Yoon HJ, Yoon KC. Beneficial Effect of Rebamipide Eye Drops on Blue Light-Induced Oxidative Damage in the Ocular Surface. J Ocul Pharmacol Ther 2025. [PMID: 40293740 DOI: 10.1089/jop.2024.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Purpose: We evaluated the capacity of rebamipide (REB) to alleviate corneal epithelial damage induced via blue light (BL) exposure. Methods: Eight-week-old C57BL/6 mice were exposed to BL (410 nm, 100 J) twice daily for 10 days. The mice were randomly divided into 5 groups: 1 untreated and 4 groups receiving BL exposure ± different topical treatments: BL exposure alone, carboxymethylcellulose, 5% N-acetylcysteine, and REB. Reactive oxygen species (ROS) levels were assessed, and Bcl-2-associated X protein (BAX) protein was analyzed. Apoptotic cells were detected, inflammatory cytokine levels [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)] were measured using enzyme-linked immunosorbent assay (ELISA), and histopathological changes in the cornea were evaluated using hematoxylin and eosin (H&E) staining. Results: The REB group demonstrated significantly lower BL exposure-induced ROS levels (P < 0.01) and BAX expression (P < 0.01) than the BL group. The number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells were lower in the REB group than in the BL group (P < 0.01). Furthermore, ELISA analysis revealed significantly reduced TNF-α and IL-6 levels in the REB group relative to BL group levels (P < 0.01). Hematoxylin and eosin staining showed preservation of corneal epithelial thickness. Conclusions: Rebamipide alleviated BL-induced oxidative damage to ocular surfaces by reducing ROS levels, inhibiting apoptosis, and suppressing inflammatory cytokine expression.
Collapse
Affiliation(s)
- Jingting Liu
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| | - Enying Jiang
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| | - Hyunjee Kim
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| | - Jayoung Moon
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Hospital, Dong-Gu, Republic of Korea
| |
Collapse
|
2
|
Aljarousha M, Alghamdi WM, Che Azemin MZ, Mahmud M. Epidemiology of ocular surface symptoms and their association with stress levels among the Gazan population in crowded shelters during the 2023 Israel war. Cont Lens Anterior Eye 2025:102403. [PMID: 40102140 DOI: 10.1016/j.clae.2025.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE To investigate the status of ocular surface symptoms and their relationship to stress levels among the Gazan population during the 2023 Israel-Hamas War. METHODS This cross-sectional study involved stratified sampling of participants from the four Gaza districts in Palestine. Individuals aged 18 years or older completed the Arab Ocular Surface Disease Index (Arab-OSDI) questionnaire and the Perceived Stress Scale (PSS-10) to assess stress levels. RESULTS A total of 426 participants (238 males and 188 females) completed the Arabic versions of the OSDI and PSS-10 questionnaires. The mean Arab-OSDI score was 21, with 40.6 % of participants scoring ≥23, the threshold for moderate to severe DED symptoms. Participants with moderate or high perceived stress levels had significantly higher mean Arab-OSDI scores than individuals with low stress levels (p = 0.029). Logistic regression analysis identified age over 50 years, and the high PSS as significant factors associated with Arab-OSDI scores ≥13 (p < 0.05). CONCLUSION The findings indicate a high prevalence of dry eye symptoms among the Gazan population during the Israel-Hamas war in 2023, with moderate to high perceived stress levels significantly associated with these symptoms.
Collapse
Affiliation(s)
- Mohammed Aljarousha
- Department of Optometry, Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Waleed M Alghamdi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia; School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Mohd Zulfaezal Che Azemin
- Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Marliana Mahmud
- Department of Optometry, Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Bonelli F, Campestre F, Lasagni Vitar RM, Demirsoy IH, Fonteyne P, Ferrari G. Aprepitant Restores Corneal Sensitivity and Reduces Pain in DED. Transl Vis Sci Technol 2024; 13:9. [PMID: 38345550 PMCID: PMC10866158 DOI: 10.1167/tvst.13.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose This study aims to assess the efficacy of two aprepitant formulations (X1 and X2), in a preclinical model of dry eye disease (DED) induced by benzalkonium chloride (BAK). Methods Two aprepitant formulations were tested on 7 to 8-week-old male mice for their efficacy. In vivo corneal fluorescein staining assessed epithelial damage as the primary end point on days 0, 3, 5, 7, 9, 12, and 14 using slit-lamp microscopy. The DED model was induced with 0.2% BAK twice daily for the first week and once daily for the next week. Mice were randomly assigned to 5 treatment groups: Aprepitant X1 (n = 10) and X2 (n = 10) formulation, 2 mg/mL dexamethasone (n = 10), control vehicle X (n = 10), 0.2% hyaluronic acid (n = 10), or no treatment (n = 10). Eye wiping, phenol red, and Cochet Bonnet tests assessed ocular pain, tear fluid secretion, and nerve function. After 7 days, the mice were euthanized to quantify leukocyte infiltration and corneal nerve density. Results Topical aprepitant X1 reduced BAK-induced corneal damage and pain compared to gel vehicle X (P = 0.007) and dexamethasone (P = 0.021). Aprepitant X1 and X2 improved corneal sensitivity versus gel vehicle X and dexamethasone (P < 0.001). Aprepitant X1 reduced leukocyte infiltration (P < 0.05) and enhanced corneal nerve density (P < 0.001). Tear fluid secretion remained statistically unchanged in both the X1 and X2 groups. Conclusions Aprepitant formulation X1 reduced pain, improved corneal sensitivity and nerve density, ameliorated epitheliopathy, and reduced leukocyte infiltration in male mouse corneas. Translational Relevance Aprepitant emerges as a safe, promising therapeutic prospect for the amelioration of DED's associated symptoms.
Collapse
Affiliation(s)
- Filippo Bonelli
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology–Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Fabiola Campestre
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ibrahim Halil Demirsoy
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Huang B, Zhang N, Qiu X, Zeng R, Wang S, Hua M, Li Q, Nan K, Lin S. Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation. J Control Release 2024; 365:1-15. [PMID: 37972763 DOI: 10.1016/j.jconrel.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder mutually promoted by reactive oxygen species (ROS) and ocular surface inflammation. NLRP3 is the key regulator for inducing ocular surface inflammation in DED. However, the mechanism by which ROS influences the bio-effects of NLRP3, and the consequent development of DED, largely remains elusive. In the present study, we uncovered that robust ROS can oxidate mitochondrial DNA (ox-mtDNA) along with loss of mitochondria compaction causing the cytosolic release of ox-mtDNA and subsequent co-localization with cytosolic NLRP3, which can promote the activation of NLRP3 inflammasome and stimulate NLRP3-mediated inflammation. Visomitin (also known as SkQ1), a mitochondria-targeted anti-oxidant, could reverse such a process by in situ scavenging of mitochondrial ROS. To effectively deliver SkQ1, we further developed a novel mitochondria-targeted SkQ1 nanoparticle (SkQ1 NP) using a charge-driven self-assembly strategy. Compared with free SkQ1, SkQ1 NPs exhibited significantly higher cytosolic- and mitochondrial-ROS scavenging activity (1.7 and 1.9 times compared to levels of the free SkQ1 group), thus exerting a better in vitro protective effect against H2O2-induced cell death in human corneal epithelial cells (HCECs). After topical administration, SkQ1 NPs significantly reduced in vivo mtDNA oxidation, while suppressing the expressions of NLRP3, Caspase-1, and IL-1β, which consequently resulted in better therapeutic effects against DED. Results suggested that by efficiently scavenging mitochondrial ROS, SkQ1 NPs could in situ inhibit DED-induced mtDNA oxidation, thus blocking the interaction of ox-mtDNA and NLRP3; this, in turn, suppressed NLRP3 inflammasome activation and NLRP3-mediated inflammatory signaling. Results suggested that SkQ1 NPs have great potential as a new treatment for DED.
Collapse
Affiliation(s)
- Baoshan Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Na Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; First Affiliated Hospital of Northwestern University, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Xi'an 710002, China
| | - Xinying Qiu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Zeng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuimiao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengxia Hua
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Sen Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
7
|
Bai Y, Zhang K, Cao X, Chen P. Aquaporins in lacrimal glands and their role in dry eye disease. Exp Eye Res 2023; 236:109676. [PMID: 37827442 DOI: 10.1016/j.exer.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Aging is the most important known risk factor for dry eye is aging, which is associated with changes in the structure and function of the lacrimal gland (LG) and characterized by atrophy, duct blocking lymphocyte infiltration, and reduced protein secretion. Aquaporins (AQP) have been proposed as a potential producer of exocrine gland fluids since exocrine secretion depends on the mobility of water. Therefore, the main topics of this review will be the expression, localization, and function of AQPs in LG. In addition, we review the mechanisms of fluid transport in exocrine gland fluid secretion and discuss the potential role of AQPs in dry eye.
Collapse
Affiliation(s)
- Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xin Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, Shandong Province, China.
| |
Collapse
|
8
|
Wu CY, Song DF, Lu TH, Chen ZJ, Tsai SM, Liu YJ, Chang HH, Lin DPC. Klotho Null Mutation Indirectly Leads to Age-Related Lacrimal Gland Degeneration in Mutant Mice. BIOLOGY 2023; 12:1328. [PMID: 37887038 PMCID: PMC10604155 DOI: 10.3390/biology12101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The Klotho null mutation is known to lead to accelerated aging in many organs, but its effects on tear secretion and lacrimal gland (LG) senescence have not been addressed. This study investigated whether the Klotho null mutation would lead to a dry eye status and the outcome of LG without Klotho function. The Klotho (-/-) mutant mice showed reduced LG size and tear volume on the 8th week, as compared to their littermates (+/+, +/-). Hematoxylin-Eosin and Masson's trichrome staining were performed to determine morphological changes and collagen deposition. Traits of LG aging, including acinar atrophy, thickened capsules, and more collagen depositions, were observed. Immunohistochemical detections for Klotho, α-SMA, MDA, 8-OHdG, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), MMP-2, MMP-9, and FGF-23 were performed and compared among the three genotypes (+/+, +/-, -/-) at 6 and 8 weeks of age for mechanism analyses. Unexpectedly, the Klotho protein was not detected in the LG of all the three genotypes, indicating indirect effects from the Klotho null mutation. Further analyses showed abundant MDA and 8-OHdG detected in the Klotho (-/-) LG on the 8th week, indicating elevated oxidative stress. In addition, both sympathetic and parasympathetic neural transducing activities, as represented by TH and VIP expression, respectively, and α-SMA were increased in LGs with Klotho mutations. Furthermore, MMP-2 and MMP-9 expression were elevated, with FGF-23 expression being decreased on the 8th week in the Klotho (-/-) LG. In conclusion, characteristics of age-related LG degeneration were found in the Klotho null mutant mice. These traits support the use of Klotho mutant mice as a model of age-related dry eye disease.
Collapse
Affiliation(s)
- Chun-Yen Wu
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Da-Fong Song
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Tsung-Han Lu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Zhi-Jia Chen
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Su-Min Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Ya-Jing Liu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
9
|
Lin Y, Zhang Y, Shi K, Wu H, Ou S. Advances in clinical examination of lacrimal gland. Front Med (Lausanne) 2023; 10:1257209. [PMID: 37720501 PMCID: PMC10501785 DOI: 10.3389/fmed.2023.1257209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
In humans, the lacrimal gland is located in the socket of the frontal bone above the outer orbital area. As an essential part of the eye surface, the gland is fixed to the orbital periosteum by connective tissue. The lacrimal gland passes through the outer tendon membrane, which divides the gland into larger orbital and minor eyelid glands. The lacrimal glands are the main contributors to tear film. They secrete electrolytes, proteins, and water to help nourish and protect the eye's surface. Furthermore, clinically, lacrimal glands are associated with a variety of inflammatory reactions and immune factors and are also vulnerable sites for tumors. Changes in tear gland morphology or secretory function affect tear film stability and tear secretion quality. Various technological devices have been developed and applied to lacrimal glands. This article systematically reviewed the clinical examination of the lacrimal gland to help inform personalized strategies for the diagnosis of lacrimal gland-related diseases.
Collapse
Affiliation(s)
- Yuan Lin
- Xiamen Eye Center of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Diseases, Xiamen, Fujian, China
| | - Yujie Zhang
- Xiamen Eye Center of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Diseases, Xiamen, Fujian, China
| | - Ke Shi
- Xiamen Eye Center of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Diseases, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Diseases, Xiamen, Fujian, China
| | - Shangkun Ou
- Xiamen Eye Center of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface and Corneal Diseases, Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Diseases, Xiamen, Fujian, China
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Jiang D, Xu W, Peng F, Sun Y, Pan C, Yu J, Zheng Q, Chen W. Tunneling nanotubes-based intercellular mitochondrial trafficking as a novel therapeutic target in dry eye. Exp Eye Res 2023; 232:109497. [PMID: 37169281 DOI: 10.1016/j.exer.2023.109497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Cell-to-cell mitochondria transfer via tunneling nanotubes (TNTs) has recently been revealed as a spontaneous way to protect damaged cells. Previously, we have reported mesenchymal stem cells (MSCs) can rescue retinal ganglion cell and corneal epithelium through intercellular mitochondrial trafficking. Mitochondrial damage and oxidative stress in corneal epithelial cells are vital in dry eye disease (DED). However, whether intercellular mitochondrial transfer is involved in the pathological and repair process of DED is currently unknown. Therefore, in this study, we designed a coculture system to evaluate the role of intercellular mitochondrial transfer between human corneal epithelial cells (CEC) in DED. In addition, we successfully discovered the ROCK inhibitor, Y-27632 as an intensifier to improve the efficiency of intercellular mitochondrial transport. As expected, the enhanced mitochondrial transfer promotes the regeneration of CECs. Moreover, through further exploration of mechanisms, it was demonstrated that F-actin-mediated cell morphological changes and cytoskeletal remodeling may be potential mechanisms for Y-27632 to induce mitochondrial metastasis. In conclusion, we established a new method for cell repair in DED that healthy CEC offered mitochondria to damaged CEC, providing a new insight into the cellular mechanism of corneal epithelium homeostatic regenerative therapeutics in DED.
Collapse
Affiliation(s)
- Dan Jiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangli Peng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yining Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chengjie Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinjie Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
11
|
Zhao M, Yu Y, Ying GS, Asbell PA, Bunya VY, Dry Eye Assessment and Management Study Research Group. Age Associations with Dry Eye Clinical Signs and Symptoms in the Dry Eye Assessment and Management (DREAM) Study. OPHTHALMOLOGY SCIENCE 2023; 3:100270. [PMID: 36846104 PMCID: PMC9950493 DOI: 10.1016/j.xops.2023.100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Purpose To evaluate how increasing age is associated with dry eye disease (DED) signs and symptoms in the Dry Eye Assessment and Management (DREAM) study. This study was undertaken to better understand how DED signs and symptoms differ across decades of life with goals to help assess detection and treatment of DED. Design Secondary analysis of the DREAM study. Subjects One hundred twenty, 140, 185, and 90 participants aged < 50, 50 to 59, 60 to 69, and ≥ 70 years, respectively. Methods We performed a secondary analysis of data from the DREAM study, a multicenter randomized clinical trial, to evaluate the effect of omega-3 fatty acid supplementation for the treatment of DED. At baseline, 6 months, and 12 months follow-up, participants underwent an assessment of DED symptoms and signs using Ocular Surface Disease Index, Brief Pain Inventory, tear break-up time (TBUT) (in seconds), Schirmer test with anesthesia (mm/5 minutes), conjunctival staining, corneal staining, meibomian gland dysfunction evaluation, and tear osmolarity (mOsm/l). Multivariable generalized linear regression models were used to compare DED symptoms and signs across the 4 age groups among all participants and by sex. Main Outcome Measures Scores of DED symptoms, individual signs, and composite scores of DED signs. Results Among 535 patients with DED, increasing age was significantly associated with worse TBUT (P = 0.01), corneal staining (P < 0.001), a composite severity score of DED signs (P = 0.007), and tear osmolarity (P = 0.001). Similar significant differences were found across 4 age groups of 334 women in TBUT, corneal staining score, composite severity score of DED signs, and tear osmolarity (all P < 0.05) but not in men. Conclusion We found that corneal staining, TBUT, tear osmolarity, and a composite severity score of DED signs were significantly more severe with increasing age in women but not in men; worsening symptoms did not increase with increasing age. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Megan Zhao
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yinxi Yu
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gui-shuang Ying
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Penny A. Asbell
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Vatinee Y. Bunya
- Correspondence: Vatinee Y. Bunya, MD, MSCE, Scheie Eye Institute, 51 N 39th St, Philadelphia, PA 19104.
| | | |
Collapse
|
12
|
Ghosh AK, Čėsna R, Neverauskas D, Žiniauskaitė A, Iqbal S, Eby JM, Ragauskas S, Kaja S. Dietary Alcohol Consumption Elicits Corneal Toxicity Through the Generation of Cellular Oxidative Stress. J Ocul Pharmacol Ther 2023; 39:303-316. [PMID: 37253141 PMCID: PMC10398733 DOI: 10.1089/jop.2022.0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose: Clinical data suggest that alcohol use is associated with the development of signs and symptoms of dry eye disease. However, preclinical data investigating ocular toxicity after dietary alcohol consumption are lacking. In this study, we investigated the effects of alcohol on the ocular surface, in human corneal epithelial cells (HCE-T) in vitro and in C57BL/6JRj mice in vivo. Methods: HCE-T were exposed to clinically relevant doses of ethanol. To determine the effects of dietary alcohol consumption in vivo, wild-type mice were administered the Lieber-DeCarli liquid diet (5% vol/vol ethanol or isocaloric control) for 10 days ad libitum. Corneal fluorescein staining was performed to assess ocular surface damage. Histopathological and gene expression studies were performed on cornea and lacrimal gland tissue. Results: Sublethal doses of ethanol (0.01%-0.5%) resulted in a dose-dependent increase of cellular oxidative stress in corneal epithelial cells and a significant increase in NFE2L2 and downstream antioxidant gene expression, as well as an increase in NFκB signaling; short-term exposure (0.5%, 4 h) triggered significant corneal epithelial cell barrier breakdown. Exposure to the alcohol-containing diet caused a 3-fold increase in corneal fluorescein staining, with no effect on tear volumes. Corneal thickness was significantly reduced in the alcohol diet group, and corneal tissue revealed dysregulated antioxidant and NFκB signaling. Our data provide the first published evidence that alcohol exposure causes ocular toxicity in mice. Conclusions: Our results are consistent with clinical studies linking past alcohol consumption to signs of ocular surface disease.
Collapse
Affiliation(s)
- Anita K. Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Research & Development Division, Experimentica Ltd., Forest Park, Illinois, USA
| | - Robertas Čėsna
- Research & Development Division, Experimentica Ltd., Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Donatas Neverauskas
- Research & Development Division, Experimentica Ltd., Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Agnė Žiniauskaitė
- Research & Development Division, Experimentica Ltd., Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Sana Iqbal
- Graduate Program in Molecular Pharmacology and Therapeutics, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Jonathan M. Eby
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Simon Kaja
- Research & Development Division, Experimentica Ltd., Forest Park, Illinois, USA
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
13
|
Wang Q, Li M, Zeng N, Zhou Y, Yan J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Exp Biol Med (Maywood) 2023; 248:263-270. [PMID: 36691338 PMCID: PMC10107392 DOI: 10.1177/15353702221147567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Succinate dehydrogenase complex subunit C (SDHC) is a subunit of mitochondrial complex II (MCII), which is also known as succinate dehydrogenase (SDH) or succinate: ubiquinone oxidoreductase. Mitochondrial complex II is the smallest respiratory complex in the respiratory chain and contains four subunits. SDHC is a membrane-anchored subunit of SDH, which connects the tricarboxylic acid cycle and the electron transport chain. SDH regulates several physiological processes within cells, plays an important role in generating energy to maintain normal cell growth, and is involved in apoptosis. Currently, SDHC is generally recognized as a tumor-suppressor gene. SDHC mutations can cause oxidative damage in the body. It is closely related to the occurrence and development of cancer, neurodegenerative diseases, and aging-related diseases. Here, we review studies on the structure, biological function, related diseases of SDHC, and the mev-1 Animal Model of SDHC Mutation and its potential use as a therapeutic target of certain human diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
14
|
van Setten GB. GPR-68 in human lacrimal gland. Detection and possible role in the pathogenesis of dry eye disease. J Fr Ophtalmol 2022; 45:921-927. [DOI: 10.1016/j.jfo.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
|
15
|
Zha Z, Chen Q, Xiao D, Pan C, Xu W, Shen L, Shen J, Chen W. Mussel-Inspired Microgel Encapsulated NLRP3 Inhibitor as a Synergistic Strategy Against Dry Eye. Front Bioeng Biotechnol 2022; 10:913648. [PMID: 35721850 PMCID: PMC9198461 DOI: 10.3389/fbioe.2022.913648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response mediated by oxidative stress is the main pathogenesis of dry eye, but clinical observations have shown that scavenging oxygen-free radicals alone has limited therapeutic effect. Moreover, the unique anatomy and physiology of the ocular surface result in low bioavailability of drugs, and higher concentration is required to achieve the desired efficacy, which, however, may bring systemic side effects. These problems pose a challenge, but the revelation of the ROS-NLRP3-IL-1β signaling axis opens up new possibilities. In this investigation, an NLRP3 inhibitor was successfully encapsulated in polydopamine-based microgels and used for dry eye treatment. It was demonstrated that the well-designed microgels exhibited good biocompatibility, prolonged drug retention time on the ocular surface, and effective inhibition of corneal epithelial damage and cell apoptosis. In addition, due to the synergistic effect, the NLRP3 inhibitor–loaded microgels could exert enhanced oxygen radical scavenging and inflammation-inhibiting effects at a lower dose than monotherapy. These findings suggest that polydopamine-based microgels have advantages as ocular surface drug delivery platforms and have promising applications in oxidative damage–related inflammatory diseases in synergy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhiwei Zha
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Qiumeng Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Decheng Xiao
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Chengjie Pan
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Wei Xu
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Jianliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Wei Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| |
Collapse
|
16
|
Park SB, Jung WK, Yu HY, Kim YH, Kim J. Effect of Aucubin-Containing Eye Drops on Tear Hyposecretion and Lacrimal Gland Damage Induced by Urban Particulate Matter in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092926. [PMID: 35566278 PMCID: PMC9104073 DOI: 10.3390/molecules27092926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Exposure to particulate matter is a causative factor of dry eye disease. We aimed to investigate the beneficial effect of eye drops containing aucubin on dry eye disease induced by urban particulate matter (UPM). Dry eye was induced in male SD rats (6 weeks old) by topical exposure to UPM thrice a day for 5 d. Eye drops containing 0.1% aucubin or 0.5% aucubin were topically administered directly into the eye after UPM exposure for an additional 5 d. Tear secretion was evaluated using a phenol red thread tear test and corneal irregularity. The oxidative damage in the lacrimal gland was evaluated using TUNEL and immunohistochemical staining. The topical administration of aucubin significantly attenuated UPM-induced tear hyposecretion (control group: 9.25 ± 0.62 mm, UPM group: 4.55 ± 0.25 mm, 0.1% aucubin: 7.12 ± 0.58 mm, and 0.5% aucubin: 7.88 ± 0.75 mm) and corneal irregularity (control group: 0.00 ± 0.00, UPM group: 3.40 ± 0.29, 0.1% aucubin: 1.80 ± 0.27, and 0.5% aucubin: 1.15 ± 0.27). In addition, aucubin also reduced the UPM-induced apoptotic injury of lacrimal gland cells induced by oxidative stress through the increased expression of HMGB1 and RAGE. These findings indicate that the topical administration of aucubin eye drops showed a beneficial effect against UPM-induced abnormal ocular changes, such as tear hyposecretion and lacrimal gland damage. Therefore, our results reveal the pharmacological activities of aucubin in dry eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Junghyun Kim
- Correspondence: ; Tel.: +82-63-270-4032; Fax: +82-63-270-4025
| |
Collapse
|
17
|
Xu J, Chen P, Zhao G, Wei S, Li Q, Guo C, Cao Q, Wu X, Di G. Copolymer micelle-administered melatonin ameliorates hyperosmolarity-induced ocular surface damage through regulating PINK1 mediated mitophagy. Curr Eye Res 2022; 47:688-703. [PMID: 35179400 DOI: 10.1080/02713683.2021.2022163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the role and mechanism of melatonin-loaded polymer polyvinyl caprolactam-polyvinyl acetate-polyethyleneglycol graft copolymer (PVCL-PVA-PEG) micelles (Mel-Mic) in dry eye disease (DED). METHODS In vitro, the apoptosis and reactive oxygen species (ROS) generation in HCECs were analyzed by immunostaining and flow cytometry (FCM). The effect of Mel-Mic on autophagy and mitophagy was evaluated by immunostaining and western blots. PINK1 knockdown was analyzed by small interfering RNA (siRNA). In vivo, sodium fluorescein staining, tear secretion test, and periodic acid-schiff (PAS) staining were used to determine whether Mel-Mic can alleviate the severity of DED. Small molecule antagonists were pretreated to investigate whether melatonin type 1 and/or 2 receptors (MT1/MT2) mediate the effects of Mel-Mic. RESULTS Mel-Mic improved the solubility and biological activities of Mel in aqueous solutions. Treatment with Mel-Mic decreased the apoptosis of HCECs exposed to hyperosmotic medium, accompanied by downregulation of cleaved Caspase-3 and upregulation of Bcl-2. In addition, Mel-Mic application suppressed ROS overproduction, rescued mitochondrial function, and decreased the level of oxidative stress associated biomarkers (COX-2 and 4-HNE) in HCECs. Interestingly, HCECs treated with Mel-Mic exhibited increased levels of mitophagy markers (PINK1, PARKIN, Beclin 1 and LC3B) and restored impaired mitophagic flux under hyperosmolarity. While PINK1 knock down largely abolished its protective effects. In vivo, compared to vehicle group, topical Mel-Mic solution treated mice showed significantly improved clinical parameters, increased tear production and decreased goblet cells loss in a dose-dependent manner. Also, TEM assay revealed increased autophagosome number in the corneal epithelium of Mel-Mic group. Moreover, luzindole, a non-selective MT1/MT2 antagonist, but not 4-P-PDOT, a selective MT2 antagonist, blocked the protective effect of Mel-Mic. CONCLUSIONS Our findings demonstrated that Mel-Mic ameliorates hyperosmolarity induced ocular surface damage via PINK1 mediated mitophagy and may represent an effective treatment for DED possibly through acting MT1 receptor.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Guangfen Zhao
- Department of Medicine, The Liaocheng Third People's Hospital. Liaocheng, China
| | - Susu Wei
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Qiqi Li
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co.Ltd, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Tian L, Wen Y, Li S, Zhang P, Wang Y, Wang J, Cao K, Du L, Wang N, Jie Y. Benefits and Safety of Astaxanthin in the Treatment of Mild-To-Moderate Dry Eye Disease. Front Nutr 2022; 8:796951. [PMID: 35096941 PMCID: PMC8792747 DOI: 10.3389/fnut.2021.796951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: To evaluate the effect of astaxanthin in the treatment of mild-to-moderate dry eye disease (DED) in middle-aged and elderly patients. Methods: 120 eyes of 60 middle-aged and elderly patients with mild-to-moderate DED were enrolled in this prospective, one-group, quasi-experimental study. Six milligram Astaxanthin tablets (Weihong Haematococcus Pluvialis Astaxanthin, Hangzhou Xinwei Low Carbon Technology R&D Co., Ltd., China) were administered orally, twice daily for 30 ± 2 days. History of eye diseases, treatment, systemic disease, and medication before the test were recorded. In addition, the ocular surface disease index (OSDI) questionnaire, non-invasive tear break-up time (NIBUT), fluorescein break-up time (FBUT), corneal fluorescein staining (CFS) score, eyelid margin signs, meibomian gland (MG) expressibility, meibum quality, meibomian gland dropout (MGDR), Schirmer I test (SIt), tear meniscus height (TMH), bulbar conjunctiva congestion degree, blink frequency, incomplete blink rate, and thickness of tear film lipid layer were collected before treatment, 2 weeks after the initiation of treatment, and at the end of treatment. Visual acuity (VA), intraocular pressure (IOP), anterior segment, fundus, discomfort symptoms and other adverse reactions were also monitored throughout the study to assess the safety. Results: OSDI score, NIBUT, BUT, CFS score, eyelid margin signs, MG expressibility, meibum quality, and blink frequency improved significantly to varying degrees after treatment compared with those before the treatment (P < 0.05), while TMH, SIt, conjunctival congestion, the thickness of tear film lipid layer, MGDR, incomplete blink rate, VA and IOP did not differ (P > 0.05). Conclusions: Oral administration of astaxanthin improves the symptoms and signs of middle-aged and elderly patients with mild-to-moderate DED.
Collapse
|
19
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
20
|
Li L, Jin R, Li Y, Yoon HS, Yoon HJ, Yoon KC. Effects of eye drops containing a mixture of 3% diquafosol sodium and tocopherol acetate (vitamin E) on the ocular surface of murine dry eye. Cutan Ocul Toxicol 2021; 40:350-358. [PMID: 34496685 DOI: 10.1080/15569527.2021.1973022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the efficacy of topical application of 3% diquafosol sodium (DQS) and tocopherol (TCP) acetate mixtures in a mouse model of experimental dry eye (EDE). METHODS After exposure to desiccating stress for 5 days, eye drops consisting of 3% DQS alone, 0.01% TCP alone, or 3% DQS and 0.005% or 0.01% TCP mixture were applied for the treatment of EDE. Tear volume, tear film break-up time (TBUT), corneal fluorescein staining scores (CFSS), and tear film lipid layer grades (TFLLG) were measured at 0, 5 and 10 days after treatment. The 2',7'-dichlorodihydrofluorescein diacetate assay (DCFDA) for reactive oxygen species (ROS) production, enzyme-linked immunosorbent assay (ELISA) for malondialdehyde (MDA), and flow cytometry for CD4 + interferon (IFN)-γ+ T cells were evaluated on the ocular surface at 10 days after treatment. In addition, levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and chemokine CC motif ligand 4 (CCL4) in the conjunctiva were measured using a multiplex immunobead assay, and conjunctival goblet cells were counted by periodic acid-Schiff staining at 10 days after treatment. RESULTS Both the TCP mixture groups indicated a significant improvement in TBUT, ROS production, and MDA concentrations compared to those in the DQS alone group. Furthermore, the 0.01% TCP mixture group also showed higher tear film lipid layer grades and conjunctival goblet cell density and lower corneal fluorescein staining scores, number of CD4 + IFN-γ+ T cells, and levels of TNF-α, IL-1β, and CCL4 than the DQS alone group (P < 0.05). CONCLUSIONS Application of eye drops containing the mixture of DQS and TCP could stabilize the tear film lipid layer, improve TBUT and corneal epithelial damages, decrease ROS production, inflammatory molecules, and T cells, and increase conjunctival goblet cell density on the ocular surface. Topical DQS and TCP mixtures may have a greater therapeutic effect on clinical signs, oxidative damage, and inflammation of dry eye than DQS eye drops.
Collapse
Affiliation(s)
- Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea.,Department of Biomedical Sciences and Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hee Su Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea.,Department of Biomedical Sciences and Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
21
|
Sedlak L, Świerczyńska M, Borymska W, Zych M, Wyględowska-Promieńska D. Impact of dorzolamide, benzalkonium-preserved dorzolamide and benzalkonium-preserved brinzolamide on selected biomarkers of oxidative stress in the tear film. BMC Ophthalmol 2021; 21:319. [PMID: 34470600 PMCID: PMC8411550 DOI: 10.1186/s12886-021-02079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Long-term use of topical, especially benzalkonium chloride (BAC)-preserved, antiglaucoma medications can cause a negative impact on the ocular surface. The aim of the study was to assess the effect of topical carbonic anhydrase inhibitors (CAIs) on selected oxidative stress biomarkers in the tear film. Methods The patients were divided into four sex-matched groups: group C (n = 25) – control group – subjects who did not use topical antiglaucoma medications, group DL (n = 14) – patients using preservative-free dorzolamide, group DL + BAC (n = 16) – patients using topical BAC-preserved dorzolamide, group BL + BAC (n = 17) – patients using BAC-preserved brinzolamide. Subjects in all the study groups have been using the eye drops two times daily for 6–12 months. The oxidative stress biomarkers in the tear film samples were measured: total protein (TP) concentration, advanced oxidation protein products (AOPP) content, total sulfhydryl (-SH) groups content, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as Total Oxidant Status (TOS), Total Antioxidant Response (TAR), and Oxidative Stress Index (OSI). Results The advanced oxidation protein products content, Total Oxidant Status as well as superoxide dismutase and catalase activities in the group DL + BAC and BL + BAC were higher in comparison with the group C. The total sulfhydryl groups content was lower in the group DL + BAC and BL + BAC when compared to group C. Oxidative Stress Index was higher in the groups DL + BAC and BL + BAC in comparison with the groups DL and C. Conclusions Use of topical benzalkonium chloride-preserved carbonic anhydrase inhibitors increases oxidative stress in the tear film.
Collapse
Affiliation(s)
- Lech Sedlak
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marta Świerczyńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland. .,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
22
|
Ghosh AK, Thapa R, Hariani HN, Volyanyuk M, Ogle SD, Orloff KA, Ankireddy S, Lai K, Žiniauskaitė A, Stubbs EB, Kalesnykas G, Hakkarainen JJ, Langert KA, Kaja S. Poly(lactic-co-glycolic acid) Nanoparticles Encapsulating the Prenylated Flavonoid, Xanthohumol, Protect Corneal Epithelial Cells from Dry Eye Disease-Associated Oxidative Stress. Pharmaceutics 2021; 13:1362. [PMID: 34575438 PMCID: PMC8471707 DOI: 10.3390/pharmaceutics13091362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.
Collapse
Affiliation(s)
- Anita Kirti Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
| | - Rubina Thapa
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Harsh Nilesh Hariani
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Michael Volyanyuk
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Sean David Ogle
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karoline Anne Orloff
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Samatha Ankireddy
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karen Lai
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Agnė Žiniauskaitė
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Evan Benjamin Stubbs
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Giedrius Kalesnykas
- Research & Development Division, UAB Experimentica, LT-10223 Vilnius, Lithuania;
| | - Jenni Johanna Hakkarainen
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Kelly Ann Langert
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Simon Kaja
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
23
|
Qu M, Wan L, Dong M, Wang Y, Xie L, Zhou Q. Hyperglycemia-induced severe mitochondrial bioenergetic deficit of lacrimal gland contributes to the early onset of dry eye in diabetic mice. Free Radic Biol Med 2021; 166:313-323. [PMID: 33705960 DOI: 10.1016/j.freeradbiomed.2021.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Dry eye and diabetic keratopathy represent the major diabetic complications in ocular surface. Here we found that diabetic mice exhibited the early onset of reduced tear secretion and lacrimal gland weight compared to the symptoms of diabetic keratopathy. Considering to the high bioenergetic needs in lacrimal gland and cornea, we hypothesized that hyperglycemia may cause different severity of mitochondrial bioenergetic deficit between them. Through the measurement of oxygen consumption rate (OCR) and basal extracellular acidification rate (ECAR), we found the apparent alterations of mitochondrial bioenergetic profiles in diabetic lacrimal gland and cornea, accompanied with the mtDNA damage and copy number reduction, as well as the reduced glutathione content. Comparative analysis revealed that mouse lacrimal gland cells exhibited 2-3 folds higher of basal, ATP production, maximal OCR and basal ECAR than corneal epithelial cells in normoglycemia. However, the differences were slightly significant or even not detected in hyperglycemia. Accordingly, the mitochondrial bioenergetic metabolism of lacrimal gland was more compromised than that of corneal epithelium in diabetic mice. Through the administration of mitochondrial-targeted antioxidant SkQ1, the severity of dry eye and diabetic keratopathy was significantly attenuated with the improved mitochondrial function. These results indicate that the susceptibility of mitochondrial bioenergetic deficit in diabetic lacrimal gland may contribute to the early onset of dry eye, while mitochondria-targeted antioxidant possesses therapeutic potential for diabetic dry eye and keratopathy.
Collapse
Affiliation(s)
- Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lei Wan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Muchen Dong
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Yidi Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
24
|
Crosslinked Hyaluronic Acid with Liposomes and Crocin Confers Cytoprotection in an Experimental Model of Dry Eye. Molecules 2021; 26:molecules26040849. [PMID: 33561944 PMCID: PMC7915152 DOI: 10.3390/molecules26040849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial condition caused by tear deficiency and accompanied by ocular surface damage. Recent data support a key role of oxidative and inflammatory processes in the pathogenesis of DED. Hyaluronic acid (HA) is widely used in artificial tears to treat DED by improving ocular hydration and reducing surface friction. Crocin (Cr), the main constituent of saffron, is a renowned compound that exhibits potent antioxidant and anti-inflammatory effects. The present study was undertaken to assess the viscosity and muco-adhesiveness of a photoactivated formulation with crosslinked HA (cHA), Cr, and liposomes (cHA-Cr-L). Our aim was also to evaluate whether cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes in human corneal epithelial cells (HCECs). Viscosity was measured using a rotational rheometer, and then the muco-adhesiveness was evaluated. Under hyperosmolarity (450 mOsm), the HCECs were treated with cHA-Cr-L. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR). The levels of reactive oxygen species (ROS) were measured using the DCF assay. The combined action of cHA-Cr-L produced a higher viscosity and muco-adhesiveness compared to the control. The anti-inflammatory effect of cHA-Cr-L was achieved through a significant reduction of IL-1β and TNFα (p < 0.001). The results also showed that cHA-Cr-L reduces ROS production under conditions of hyperosmolarity (p < 0.001). We conclude that cHA-Cr-L has potential as a therapeutic agent in DED, which should be further investigated.
Collapse
|
25
|
Kausar F, Yusuf Amin KM, Bashir S, Parvez A, Ahmad P. Concept of 'Ihtiraq' in Unani Medicine - A correlation with oxidative stress, and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113269. [PMID: 32937158 DOI: 10.1016/j.jep.2020.113269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, oxidative stress (OS) and the generation of ROS have been recognized as a fundamental pathology contributing, at least partially, to a number of important diseases. However, the therapeutic application has been simplistically limited to using antioxidants with little correction of diseases, and many biomarkers of OS, although confirming and quantifying the magnitude of this pathology, are not suggestive of the underlying causes behind generation of a large amount of free radicals. Unfortunately, research has not noted the multi-implication parallel phenomenon of Ihtiraq (Combustion) in Unani Medicine, which possesses much richer etiopathological sub-typing and much more variegated selective and specific treatments (and prophylactics) corresponding to each sub-type of Ihtiraq; the identification of each sub-type's molecular counterparts can be used to develop not only sub-types of OS pathologies and corresponding selective treatments/prophylactics but also non-biomolecular factors. Eminent Unani physicians described a deteriorative phenomenon, which they termed as 'Ihtiraq' which stands for extreme metabolism or 'combustion' and is recognized as a fundamental pathology, contributing as a major factor to the development of chronic diseases. Further, Unani Medicine also possesses a pathophysiological phenomenon called 'Hararat Ghariba' (Unnatural Heat) whose diverse associations with Ihtiraq may be correlatable as upstream, parallel, or downstream associations of OS and consequent pathologies. AIM OF THE STUDY The aim of the study is to: 1. Explore the correlation of the phenomenon and etiopathology of Ihtiraq and OS and the treatment and prevention of the pathologies arising from them. 2. Extrapolate Ihtiraq, its types, causes, prevention, and treatment to OS, hitherto existing as a fundamental and monolithic pathology of increased ROS, to hypothesize its molecular-level sub-typing, as well as to propose selective interventions in these molecular sub-types of OS in place of the existing use of only basic antioxidants such as Vitamin C. MATERIAL AND METHODS This review is presented with a noteworthy insight into Unani concepts and a thorough study of classical Unani literature by Ibn Sina (10th century), Zakaria Razi (9th century), Ibn Rushd (12th century), Ibn al-Nafees (13th century), Majusi (10th century), and Jurjani (11th century), and comparative detailed study of modern concepts of OS from literature databases, as well as Google, recent researches, and review articles. RESULT The study showed very close correspondences between the phenomenon, etiopathology, and treatment and prevention of Ihtiraq in Unani Medicine and OS in contemporary biomolecular medicine. It also revealed sub-types of Ihtiraq and corresponding selective Unani treatments and prophylactics including drugs and non-drug factors. CONCLUSION After a comprehensive study and analysis of the most recent researches and classical theories, it can be stated that OS can be seen as a molecular level expression of Ihtiraq. Further, various components of Ihtiraq may be used to hypothesize molecular sub-types of OS and propose corresponding specific interventions.
Collapse
Affiliation(s)
- Firdaus Kausar
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India.
| | - Kunwar Mohammad Yusuf Amin
- Philosophy-Science Forum, Dept. of Ilmul Advia, Ajmal Khan Tibbiya College, Aligarh Muslim University, Aligarh, 202002, India
| | - Showkeen Bashir
- Dept. of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKAUST-K, Srinagar, India
| | - Athar Parvez
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India
| | - Pervaiz Ahmad
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
26
|
Reina M, Guzmán-López EG, Romeo I, Marino T, Russo N, Galano A. Computationally designed p-coumaric acid analogs: searching for neuroprotective antioxidants. NEW J CHEM 2021. [DOI: 10.1039/d1nj01235e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Newly designed p-coumaric acid derivatives are promising candidates as multifunctional antioxidants with neuroprotective effects.
Collapse
Affiliation(s)
- Miguel Reina
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| | | | - Isabella Romeo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Tiziana Marino
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Nino Russo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| |
Collapse
|
27
|
Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:294-308. [PMID: 33159886 DOI: 10.1016/j.ajpath.2020.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1β, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1β, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1β and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.
Collapse
|
28
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Galano A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Li L, Jin R, Li Y, Nho JH, Choi W, Ji YS, Yoon HJ, Yoon KC. Effects of Eurya japonica extracts on human corneal epithelial cells and experimental dry eye. Exp Ther Med 2020; 20:1607-1615. [PMID: 32742392 PMCID: PMC7388282 DOI: 10.3892/etm.2020.8830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Eurya japonica (EJ) leaves have been indicated to exert anti-oxidative and anti-inflammatory effects. Dry eye disease (DED) is a chronic inflammatory disease and oxidative stress is closely associated with DED. The aim of the present study was to analyze the therapeutic efficacy of EJ in DED using human corneal epithelial (HCE) cells and a mouse model of experimental dry eye (EDE). EJ extracts (0.001, 0.01 and 0.1%) were used to treat HCE cells. Cell viability and mitochondrial function were detected using a EZ-Cytox cell viability assay kit and mitochondrial membrane potential assays. Dichlorofluorescein diacetate (DCF-DA) assay was used to measure cellular reactive oxygen species (ROS) levels. Subsequently, eye drops consisting of BSS or 0.001%, 0.01 and 0.1% EJ extracts were applied for treatment of EDE. At 7 days, conjunctival ROS production was measured using a DCF-DA assay. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 10 kDa interferon gamma-induced protein 10 (IP-10) and monokine induced by interferon-γ (MIG) levels in the conjunctiva were analyzed using a multiplex immunobead assay. Tear film and ocular surface parameters were measured. Treatment with EJ extracts in HCE cells effectively improved cell viability, ROS levels and mitochondrial function. Mice treated with 0.01 and 0.1% EJ extracts indicated a significant decrease in ROS, TNF-α, IL-1β, IP-10 and MIG levels compared with the EDE or BSS groups. Furthermore, a significant improvement in all clinical parameters was observed in the 0.01 and 0.1% EJ extract groups. EJ extracts could decrease cytotoxicity and ROS production in HCE cells. Additionally, topical EJ extracts reduced oxidative damage and inflammation and improved clinical signs of EDE, suggesting that EJ extracts may be used as an adjunctive therapy for DED.
Collapse
Affiliation(s)
- Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea.,Biomedical Sciences and Center for Creative Biomedical Scientists, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Jong Hyun Nho
- Department of Korean Medicine Preclinical Trial Center, National Development Institute of Korean Medicine, Jangheung-gun 59319, Republic of Korea
| | - Won Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Yong Sok Ji
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
30
|
Weissig V. Drug Development for the Therapy of Mitochondrial Diseases. Trends Mol Med 2019; 26:40-57. [PMID: 31727544 DOI: 10.1016/j.molmed.2019.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of inherited or acquired devastating disorders that affect the energy metabolism of the body. Many strategies have been investigated, but currently there is no FDA-approved drug that can alleviate disease symptoms or slow disease progression. This review analyzes to what extent growing knowledge over the past two decades about the etiology and pathogenesis of mitochondrial diseases is reflected in the design and development of new experimental drugs for the therapy of these disorders. All currently registered clinical trials involving new experimental drug entities are reviewed to evaluate how far away we are from the first FDA-approved drug therapy for mitochondrial disease.
Collapse
Affiliation(s)
- Volkmar Weissig
- Midwestern University College of Pharmacy at Glendale, Department of Pharmaceutical Sciences and Nanocenter of Excellence, Glendale, AZ, USA.
| |
Collapse
|
31
|
Di Zazzo A, Micera A, Coassin M, Varacalli G, Foulsham W, De Piano M, Bonini S. InflammAging at Ocular Surface: Clinical and Biomolecular Analyses in Healthy Volunteers. Invest Ophthalmol Vis Sci 2019; 60:1769-1775. [PMID: 31022299 DOI: 10.1167/iovs.18-25822] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the ocular surface in volunteers who consider themselves as healthy, in order to evaluate how para-inflammatory mechanisms fail with age, and thus investigate the phenomenon of "InflammAging." Methods In this observational prospective cohort study, volunteers were categorized into three groups according to age: young (19-40 years), middle-aged (41-60 years), and older adults (61-93 years). Clinical assessments included tear breakup time (T-BUT) and Schirmer test type I. Dry eye symptoms were evaluated by the Ocular Surface Disease Index (OSDI) questionnaire. Conjunctival mRNA and protein expression of intercellular adhesion molecule-1 (ICAM-1), MUC5AC, and IL-8 were measured by real-time PCR and immunofluorescence. Results A total of 82 volunteers (38 males and 44 females) were enrolled. T-BUT decreased significantly with increasing age (young: 11.13 ± 0.18 seconds; middle-aged: 10.83 ± 0.56 seconds; older: 9.00 ± 1.00 seconds, P < 0.05). Schirmer test values decreased significantly with age (young: 20.6 ± 1.0 mm; middle-aged: 19.2 ± 1.2 mm; older: 16.0 ± 1.1 mm, P < 0.05). OSDI scores increased with age in both groups, but they were substantially higher in women. Conjunctival expression of inflammatory markers ICAM-1, IL-8, and MUC5AC increased with age. Conclusions Clinical signs, symptoms, and biomarkers of chronic inflammation increased with age in a cohort of volunteers who considered themselves healthy, indicating an age-related progressive impairment of ocular surface system function.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Alessandra Micera
- Research laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Giuseppe Varacalli
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Maria De Piano
- Research laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
32
|
Ocular mucins in dry eye disease. Exp Eye Res 2019; 186:107724. [PMID: 31325452 DOI: 10.1016/j.exer.2019.107724] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Dry eye disease is a common and multifactorial disease with a high prevalence worldwide. Water loss, reduced expression of glycocalyx mucins, and loss of goblet cells secreting gel-forming mucins are hallmarks of dry eye disease. Mucins are large and complex heavily glycosylated proteins. Their organization in the tear film remains unclear, but they play a key role to protect and maintain integrity of the ocular surface. Mice have been extremely valuable mammalian models with which to study ocular physiology and disease, and to evaluate eye therapies. Genetically modified mice and spontaneously occurring mutants with eye defects have proven to be powerful tools for the pharmaceutical industry, clinicians, and basic researchers investigating dry eye disease. However, ocular mucins remain relatively under-studied and inadequately characterized. This review aims to summarize current knowledge about mucin production at the ocular surface in healthy individuals and in dry eye disease, and to compile an overview of mouse models available for the study of mucins in dry eye disease.
Collapse
|
33
|
Li XT, Qin Y, Zhao JY, Zhang JS. Acute lens opacity induced by different kinds of anesthetic drugs in mice. Int J Ophthalmol 2019; 12:904-908. [PMID: 31236344 DOI: 10.18240/ijo.2019.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To study whether specific anesthetic drugs or tear layer evaporation was primarily responsible for the acute cataract and what the change of lens structure is in anesthetized mice. METHODS Five groups were set up in the experiment: Group A (topicamide and phenylephrine mixed eye drop+ chloral hydrate), Group B (tropicamide and phenylephrine mixed eye drop+sevoflurane), Group C (tropicamide and phenylephrine mixed eye drop), Group D (topicamide and phenylephrine mixed eye drop+chloral hydrate, carbomer eye drop in the right eyes), and Group E (tropicamide and phenylephrine mixed eye drop+sevoflurane, carbomer eye drop in the right eyes). A simple classification system was used to assess the severity of lens opacity. And a numerical value from 0 to 3 to each grade was assigned for the cataract index calculation and data analysis. The gross appearance and time course of development of lens opacity were assessed. Hematoxylin and eosin staining was used to observe the lens structure changes in the reversible cataract. RESULTS Tropicamide did not induce lens opacification in mice. Lens opacity caused by inhaled sevoflurane was similar to injected cholral hydrate. Both inhaled-anesthetic-induced lens opacity and injected-anesthetic-induced lens opacity could be prevented by carbomer eye drop. In the severe opacity lens, a wide range of lens fiber cell structure had disordered. The fiber cells became uneven thickness. CONCLUSION The acute reversible lens opacity can unilaterally develop or be induced by a local cause. The structure of lens fiber cells changed in the lens opacity which may influence the permanent connection of the lens fiber cells. This study was not only of practical significance to help maintain lens transparency for eye research, but also of the deeper consideration about the reversible lens opacification phenomenon.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China.,Aier Eye Hospital, Shenyang 110000, Liaoning Province, China
| | - Yu Qin
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China.,Aier Eye Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
34
|
Niwano Y, Iwasawa A, Tsubota K, Ayaki M, Negishi K. Protective effects of blue light-blocking shades on phototoxicity in human ocular surface cells. BMJ Open Ophthalmol 2019; 4:e000217. [PMID: 31245609 PMCID: PMC6557184 DOI: 10.1136/bmjophth-2018-000217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective Blue light hazards for retina and ocular surface have been repeatedly described and many protective methods are introduced for retina; however, no study has been conducted on ocular surface protection. The purpose of this in vitro study was to examine phototoxicity and shade protection after blue light irradiation in primary human cells of corneal surface origin. Methods and analysis Primary human cells of corneal surface origin were obtained from eye bank eyes. After blue light irradiation (405 nm) of these cells for 3 min, and a further 24 hours’ incubation, surviving viable cells were assessed by the methyl thiazolyl tetrazolium assay. Simultaneously, cell viability was determined in wells covered by ultraviolet and blue light shades. Results Under subconfluent conditions, viable cells decreased by around 50% after blue light irradiation, compared with control cells without irradiation. The blue light phototoxicity was not blocked by the control shade, but the ultraviolet-blocking and blue light-blocking shades protected the cells from phototoxicity, producing a 30%–40% reduction (ultraviolet) and 15%–30% reduction (blue light) in viable cells. Conclusion These results indicate that blue light injures ocular surface cells and the cells are protected from damage by a shade. We recommend blue light protection to maintain ocular health, especially in high-risk populations, such as people with dry eye, contact lens users, the malnourished and the elderly.
Collapse
Affiliation(s)
- Yoshimi Niwano
- Facultyof Nursing, Shumei University, Yachiyo, Japan.,Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuo Iwasawa
- Division of Infection Prevention and Control, Tokyo Healthcare University Postgraduate School, Tokyo, Japan
| | - Kazuo Tsubota
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Ayaki
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Ophthalmology, Otake Clinic Moon View Eye Center, Yamato, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Abstract
Purpose Dry eye is a major ocular pathology worldwide. Although dry eye is a multifactorial disease, recent studies have shown that chronic immunologic processes have a pivotal role in its pathogenesis, characterized by the infiltration of immune cells in the lacrimal glands, elevated levels of tear inflammatory cytokines, and increased density of immune cells in the cornea and conjunctiva. This review describes the recent advances in understanding the relationship between dry eye and inflammation. Methods This narrative review is based on searches of recent international literature using terms related to the immune response in dry eye, and includes clinical trials, animal experiments, and expert reviews. Results Although dry eye presents clinically as tear film instability associated with corneal/conjunctival epithelial disorders, Meibomian gland dysfunction, and decreased visual function, recent laboratory and clinical studies have indicated inflammation in the lacrimal glands, Meibomian glands, conjunctiva, cornea, and aqueous tears. Furthermore, inflammation at these locations leads to conjunctival goblet cell apoptosis, corneal epithelial barrier disruption, and corneal nerve damage. These inflammatory outcomes can be exacerbated by intrinsic and extrinsic factors, such as aging, sex steroid hormone, autoimmune diseases, contact lens use, visual display terminals, and dry environment. Conclusions Recent advances in dry eye research have revealed the inflammatory process and its pathogenesis, which has been proposed as an "inflammatory vicious cycle" of dry eye. Comprehensive assessment of dry eye based on inflammation will improve the selection of treatments and help break the inflammatory cycle in clinical settings.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
36
|
Dogru M, Kojima T, Simsek C, Tsubota K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Invest Ophthalmol Vis Sci 2019; 59:DES163-DES168. [PMID: 30481822 DOI: 10.1167/iovs.17-23402] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as a by-product during the mitochondrial respiration of the oxygen and potentially able to damage the tissues. Oxidative stress occurs as a result of the disruption of the balance between the anti-oxidant system and the pro-oxidant system found in cells. It has been accepted that overexpression of ROS can be induced in the ocular surface as a result of many acute and chronic diseases and even in normal aging. Recent studies demonstrated that oxidative stress damages the ocular surface and plays an important role in the mechanism of dry eye disease. There is a need to investigate the therapeutic modalities employing topical/systemic use of antioxidants in dry eye disease. This review will summarize the recent studies showing the important relationship between oxidative stress and dry eye disease.
Collapse
Affiliation(s)
- Murat Dogru
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Takashi Kojima
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Cem Simsek
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Kazuo Tsubota
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| |
Collapse
|
37
|
de Souza RG, de Paiva CS, Alves MR. Age-related Autoimmune Changes in Lacrimal Glands. Immune Netw 2019; 19:e3. [PMID: 30838158 PMCID: PMC6399097 DOI: 10.4110/in.2019.19.e3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023] Open
Abstract
Aging is a complex process associated with dysregulation of the immune system and low levels of inflammation, often associated with the onset of many pathologies. The lacrimal gland (LG) plays a vital role in the maintenance of ocular physiology and changes related to aging directly affect eye diseases. The dysregulation of the immune system in aging leads to quantitative and qualitative changes in antibodies and cytokines. While there is a gradual decline of the immune system, there is an increase in autoimmunity, with a reciprocal pathway between low levels of inflammation and aging mechanisms. Elderly C57BL/6J mice spontaneously show LGs infiltration that is characterized by Th1 but not Th17 cells. The aging of the LG is related to functional alterations, reduced innervation and decreased secretory activities. Lymphocytic infiltration, destruction, and atrophy of glandular parenchyma, ductal dilatation, and secretion of inflammatory mediators modify the volume and composition of tears. Oxidative stress, the capacity to metabolize and eliminate toxic substances decreased in aging, is also associated with the reduction of LG functionality and the pathogenesis of autoimmune diseases. Although further studies are required for a better understanding of autoimmunity and aging of the LG, we described anatomic and immunology aspects that have been described so far.
Collapse
Affiliation(s)
- Rodrigo G de Souza
- University of Sao Paulo, Sao Paulo, Brazil.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- University of Sao Paulo, Sao Paulo, Brazil.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
38
|
Žiniauskaitė A, Ragauskas S, Ghosh AK, Thapa R, Roessler AE, Koulen P, Kalesnykas G, Hakkarainen JJ, Kaja S. Manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, a superoxide dismutase mimetic, reduces disease severity in in vitro and in vivo models for dry-eye disease. Ocul Surf 2019; 17:257-264. [PMID: 30807830 DOI: 10.1016/j.jtos.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To determine the efficacy of the superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro in human corneal epithelial (HCE-T) cells and in vivo in a preclinical mouse model for dry-eye disease (DED). METHODS In vitro, HCE-T cultures were exposed either to tert-butylhydroperoxide (tBHP) to generate oxidative stress or to hyperosmolar conditions modeling cellular stress during DED. Cells were pre-treated with Mn-TM-2-PyP or vehicle. Mn-TM-2-PyP permeability across stratified HCE-T cells was assayed. In vivo, Mn-TM-2-PyP (0.1% w/v in saline) was delivered topically as eye drops in a desiccating stress/scopolamine model for DED. Preclinical efficacy was compared to untreated, vehicle- and ophthalmic cyclosporine emulsion-treated mice. RESULTS Mn-TM-2-PyP protected HCE-T cells in a dose-dependent manner against tBHP-induced oxidative stress as determined by calculating the IC50 for tBHP in the resazurin, MTT and lactate dehydrogenase release cell viability assays. Mn-TM-2-PyP did not protect HCE-T cells from hyperosmolar insult. Its permeability coefficient across a barrier of HCE-T cells was 1.1 ± 0.05 × 10-6 cm/s and the mass balance was 62 ± 0.6%. In vivo, topical dosing with Mn-TM-2-PyP resulted in a statistically significant reduction of corneal fluorescein staining, similar to ophthalmic cyclosporine emulsion. Furthermore, Mn-TM-2-PyP significantly reduced leukocyte infiltration into lacrimal glands and prevented degeneration of parenchymal tissue. No protective effect against loss of conjunctival goblet cells was observed. Notably, Mn-TM-2-PyP did not produce ocular toxicity when administered topically. DISCUSSION Our data suggest that Mn-TM-2-PyP, a prototypic synthetic metalloporphyrin compound with potent catalytic antioxidant activity, can improve signs of DED in vivo by reducing oxidative stress in corneal epithelial cells.
Collapse
Affiliation(s)
| | | | - Anita K Ghosh
- Graduate Program in Neuroscience, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA; Departments of Ophthalmology and Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | - Peter Koulen
- Vision Research Center, Departments of Ophthalmology and Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, Kansas City, MO, USA
| | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland; Graduate Program in Neuroscience, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA; Departments of Ophthalmology and Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA; K&P Scientific LLC, Oak Park, IL, USA.
| |
Collapse
|
39
|
Haji-Ali-Nili N, Khoshzaban F, Karimi M, Rahimi R, Ashrafi E, Ghaffari R, Ghobadi A, Jabarvand Behrouz M. Effect of a Natural Eye Drop, Made of Plantago Ovata Mucilage on Improvement of Dry Eye Symptoms: A Randomized, Double-blind Clinical Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1602-1611. [PMID: 32641967 PMCID: PMC6934964 DOI: 10.22037/ijpr.2019.1100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dry eye disease is a relatively common eye disorder associated with decrease in quality of life. In this study, efficacy of an eye drop of Plantago ovata mucilage on symptoms of dry eye disease was evaluated. In a randomized, double-blind, placebo-controlled clinical trial, sixty dry eye patients with ocular symptoms and total Ocular Surface Disease Index (OSDI) score of ≥12 were randomly assigned to receive either a natural ophthalmic drop, made of Plantago ovata mucilage or placebo 4 times a day for 6 weeks. The patients were evaluated at pretreatment (baseline), weeks 4 and 6 post-treatment. The evaluation of the efficacy and safety were conducted based on the OSDI questionnaire, the noninvasive tear film break-up time (NI-BUT) with keratograph, the Schirmer test without anesthesia, and the osmolarity test, as well as by monitoring possible adverse events. After 6 weeks, within group analysis showed a significant improvement in total OSDI score (p < 0.001). In addition, between group comparison revealed a significant improvement in the OSDI score of the intervention group (p < 0.001). Although, NI-BUT was significantly improved in the Plantago ovata group (p = 0.004), however no statistically significant difference was observed in between group analysis. There were no significant differences between two groups, or significant changes within the groups in the Schirmer test without anesthesia and the osmolarity test. No serious adverse events were reported. In conclusion, P. ovata mucilage is a natural, inexpensiveness, and safe lubricant polymer that could have beneficial ocular effects on subjective symptoms of the patients with dry eye disease.
Collapse
Affiliation(s)
- Neda Haji-Ali-Nili
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran.
| | - Fariba Khoshzaban
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Karimi
- Department of Iranian Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Ashrafi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Ghaffari
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Ghobadi
- Department of Traditional Pharmacy, School of Traditional Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
40
|
Shimokawa T, Yoshida M, Fukuta T, Tanaka T, Inagi T, Kogure K. Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. J Clin Biochem Nutr 2018; 64:27-35. [PMID: 30705509 PMCID: PMC6348414 DOI: 10.3164/jcbn.18-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Decreases in tear volume, unstable tear films and excessive tear evaporation are known to cause desiccation and hyperosmolar stress. These, in turn, induce oxidative stress that is thought to cause dry eye, which is also considered to be age-related disease. We hypothesized that oxidative stress induces up-regulation of age-related markers, and that the antioxidant astaxanthin prepared as a liposomal formulation may be a candidate for the treatment of dry eye. Herein, we examined age-related markers in an in vitro dry eye model, and evaluated the efficacy of high-affinity liposomes containing astaxanthin. The in vitro dry eye model showed desiccation time-dependent increases in reactive oxygen species. We confirmed the up-regulation of p53, p21 and p16 as a function of desiccation time. Pretreatment with both neutral and slightly-positively-charged astaxanthin liposomal formulations showed significant suppression of up-regulation of all markers, with the positively-charged liposomes exhibiting the greatest efficacy. Furthermore, positively-charged liposomes labeled with fluorescent dyes demonstrated much higher affinity to normal human corneal epithelial cells (HCECs) than neutral liposomes. Taken together, we confirmed the up-regulation of age-related markers, especially p16, in an in vitro dry eye model, and demonstrated the potential of high-affinity liposomal astaxanthin for the treatment of dry eye.
Collapse
Affiliation(s)
- Tatsuharu Shimokawa
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan.,Fuji Research Laboratories Pharmaceutical Division, Kowa Company, Ltd., 332-1 Ohnoshinden, Shizuoka 417-8650, Japan
| | - Mai Yoshida
- Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Toshio Inagi
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
41
|
Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer A. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 2018; 126:27-40. [PMID: 30040995 DOI: 10.1016/j.freeradbiomed.2018.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
AIMS The ocular surface is the very first barrier between the visual system and external environment. It protects the eye from the exposure to various light sources that significantly emit in blue spectrum. However, the impact of blue light on the ocular surface has been poorly explored so far. In this study, we investigated in vitro the phototoxicity of blue light illumination in human epithelial cells of the ocular surface. We worked either in basal conditions or under hyperosmolar stress, in order to mimic dry eye disease (DED) that is the most common disease involving the ocular surface. RESULTS Corneal and conjunctival epithelial cells suffered the most from violet-blue light but also from longer-wave blue light. Exposure to blue wavebands significantly decreased cellular viability, impacted on cellular morphology and provoked reactive oxygen species (ROS) over-production. Conjunctival epithelial cell line had a greater photosensitivity than the corneal epithelial one. Hyperosmolar stress potentiated the blue light phototoxicity, increasing inflammation, altering mitochondrial membrane potential, and triggering the glutathione-based antioxidant system. INNOVATION In human epithelial corneal and conjunctival cells of the ocular surface, we demonstrated the harmful impact of blue light on viability, redox state and inflammation processes, which was modified by hyperosmolarity. CONCLUSION Blue light induced cell death and significant ROS production, and altered the expression of inflammatory genes and operation of the cellular defensive system. We established for the first time that hyperosmolar stress impacted phototoxicity, further suggesting that DED patients might be more sensitive to blue light ocular toxicity.
Collapse
Affiliation(s)
- Veronika Marek
- Essilor International, R&D Department, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | | | | | - Fanny Montoya
- Essilor International, R&D Department, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Versailles-Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Sorbonne Paris Cité - Paris Descartes Université, Faculté de Pharmacie de Paris, Département de Toxicologie, Paris, France
| | - Alexandre Denoyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
42
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
43
|
Dong ZY, Ying M, Zheng J, Hu LJ, Xie JY, Ma Y. Evaluation of a rat meibomian gland dysfunction model induced by closure of meibomian gland orifices. Int J Ophthalmol 2018; 11:1077-1083. [PMID: 30046520 DOI: 10.18240/ijo.2018.07.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/23/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To find a stable, inexpensive, and reliable method to produce a rat meibomian gland dysfunction (MGD) model. METHODS We inserted slim guidewires into the meibomian gland orifices of twelve Brown Norway rats and fulgurized every guidewire to destroy part of the meibomian gland. We then observed the morphological changes in the eyelid margin, and compared the data of tear breakup time (TBUT), Schirmer I test, and the corneal fluorescence staining scores at different times (1, 2, 4, and 6wk). We observed pathological changes of the cornea, conjunctiva and meibomian gland, and we used real-time polymerase chain reaction to analyze epithelial growth factor (EGF), interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and Ki67. RESULTS In the fourth week, compared with the control group, the TBUT of the model group began to decreased (P<0.05). The tear secretion remained stable (P>0.05). The corneal dots were significantly increased in the fourth week when the fusion stain began to appear (P<0.05). In the fourth week, partial meibomian gland openings had hoary secretions blocked, orifices were expanded, and there was a partial convex deformation. In the sixth week, the tissue section showed that the number of conjunctival goblet cells was decreased, epithelial cells were irregular, the epithelium was detached and rough, and meibomian glands were lost. The expressions of EGF, IL-6, IL-8, and TNF-α in corneal, conjunctival, and meibomian tissues were highly increased (P<0.05), but no statistical difference was found in the expression of Ki67 in corneal and conjunctival tissues (P>0.05). CONCLUSION The MGD rat model, produced via electrocauterization of meibomian gland orifices, matched clinical manifestations and cytokine levels. Our research provides a new method of achieving an MGD animal model.
Collapse
Affiliation(s)
- Zi-Yi Dong
- Department of Ophthalmology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Ming Ying
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Jie Zheng
- Department of Ophthalmology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Lan-Jun Hu
- Department of Ophthalmology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Jiang-Yan Xie
- Department of Ophthalmology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yi Ma
- Department of Ophthalmology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
44
|
Experimental and Clinical Applications of Chamaecyparis obtusa Extracts in Dry Eye Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4523673. [PMID: 29441148 PMCID: PMC5758851 DOI: 10.1155/2017/4523673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
Abstract
Purpose To investigate the effects of Chamaecyparis obtusa (CO) on human corneal epithelial (HCE) cells, a murine experimental dry eye (EDE) model, and the efficacy of antioxidant eye mask in dry eye disease (DED) patients. Methods 0.001%, 0.01%, and 0.1% CO extracts were used to treat HCE cells, cell viability, and production of antioxidative enzymes, and reactive oxygen species (ROS) were assessed. Afterwards, CO extracts or balanced salt solution (BSS) was applied in EDE. Clinical and experimental parameters were measured at 7 days after treatment. In addition, DED patients were randomly assigned to wear either an eye mask containing CO extracts or a placebo. Clinical parameters were evaluated. Results The viability of HCE cells and antioxidative enzyme expression significantly improved after treatment with 0.1% CO extracts. Mice treated with 0.1% CO extracts showed significant improvement in clinical parameters. During the trial, the clinical parameters significantly improved in the treatment group at 4 weeks after application. Conclusions 0.1% CO extracts could promote the expression of antioxidative proteins and ROS production. In addition, an eye mask containing CO extracts could improve DED clinical parameters. These suggest that CO extracts may be useful as an adjunctive option for the DED treatment.
Collapse
|
45
|
Pérez-González A, Galano A, Alvarez-Idaboy JR, Tan DX, Reiter RJ. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:2206-2217. [DOI: 10.1016/j.bbagen.2017.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
|
46
|
A Case-Control Study on the Oxidative Balance of 50% Autologous Serum Eye Drops. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9780193. [PMID: 27635188 PMCID: PMC5011221 DOI: 10.1155/2016/9780193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022]
Abstract
Importance. Autologous serum (AS) eye drops are recommended for severe dry eye in patients with ocular surface disease. No description of the antioxidant balance of AS eye drops has been reported in the literature. Objective. This study sought to evaluate the total reactive antioxidant potential (TRAP) and concentration of reactive oxygen species (ROS) in samples of 50% AS eye drops and their correlations with the demographic characteristics and lifestyle habits of patients with ocular surface disease and healthy controls. Design. This was a case-control study with a 3-month follow-up period. Participants. 16 patients with severe dry eye disease of different etiologies and 17 healthy controls matched by age, gender, and race were included. Results. TRAP and ROS were detected at all evaluated times. There were no differences in the mean ROS (p = 0.429) or TRAP (p = 0.475) levels between cases and controls. No statistically significant differences in the concentrations of ROS or TRAPs were found at 0, 15, or 30 days (p for ROS = 0.087 and p for TRAP = 0.93). Neither the demographic characteristics nor the lifestyle habits were correlated with the oxidative balance of the 50% AS eye drops. Conclusions and Relevance. Both fresh and frozen 50% AS eye drops present antioxidant capacities and ROS in an apparently stable balance. Moreover, patients with ocular surface disease and normal controls produce equivalent AS eye drops in terms of oxidative properties.
Collapse
|
47
|
Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface. PLoS One 2016; 11:e0161041. [PMID: 27517861 PMCID: PMC4982597 DOI: 10.1371/journal.pone.0161041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the influence of overexposure to light emitting diode (LED)-derived light with various wavelengths on mouse ocular surface. Methods LEDs with various wavelengths were used to irradiate C57BL/6 mice at an energy dose of 50 J/cm2, twice a day, for 10 consecutive days. The red, green, and blue groups represented wavelengths of 630 nm, 525 nm, and 410 nm, respectively. The untouched group (UT) was not exposed to LED light and served as the untreated control. Tear volume, tear film break-up time (TBUT), and corneal fluorescein staining scores were measured on days 1, 3, 5, 7, and 10. Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured in the cornea and conjunctiva using a multiplex immunobead assay at day 10. Levels of malondialdehyde (MDA) were measured with an enzyme-linked immunosorbent assay. Flow cytometry, 2’7’-dichlorofluorescein diacetate (DCF-DA) assay, histologic analysis, immunohistochemistry with 4-hydroxynonenal, and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining were also performed. Results TBUT of the blue group showed significant decreases at days 7 and 10, compared with the UT and red groups. Corneal fluorescein staining scores significantly increased in the blue group when compared with UT, red, and green groups at days 5, 7, and 10. A significant increase in the corneal levels of IL-1β and IL-6 was observed in the blue group, compared with the other groups. The blue group showed significantly increased reactive oxygen species production in the DCF-DA assay and increased inflammatory T cells in the flow cytometry. A significantly increased TUNEL positive cells was identified in the blue group. Conclusions Overexposure to blue light with short wavelengths can induce oxidative damage and apoptosis to the cornea, which may manifest as increased ocular surface inflammation and resultant dry eye.
Collapse
|
48
|
Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4727415. [PMID: 27313829 PMCID: PMC4899589 DOI: 10.1155/2016/4727415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
Abstract
Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P < 0.05). Conclusions. Topical application of 0.1% medicinal plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice.
Collapse
|
49
|
Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N. Coumarin-Chalcone Hybrids as Peroxyl Radical Scavengers: Kinetics and Mechanisms. J Chem Inf Model 2016; 56:662-70. [PMID: 26998844 DOI: 10.1021/acs.jcim.6b00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary antioxidant activity of coumarin-chalcone hybrids has been investigated using the density functional and the conventional transition state theories. Their peroxyl radical scavenging ability was studied in solvents of different polarity and taking into account different reaction mechanisms. It was found that the activity of the hybrids increases with the polarity of the environment and the number of phenolic sites. In addition, their peroxyl radical scavenging activity is larger than those of the corresponding nonhybrid coumarin and chalcone molecules. This finding is in line with previous experimental evidence. All the investigated molecules were found to react faster than Trolox with (•)OOH, regardless of the polarity of the environment. The role of deprotonation on the overall activity of the studied compounds was assessed. The rate constants and branching ratios for the reactions of all the studied compounds with (•)OOH are reported for the first time.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340 México, D. F. México
| | - Juan R Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México DF 04510, México
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| |
Collapse
|
50
|
Choi W, Kim JC, Kim WS, Oh HJ, Yang JM, Lee JB, Yoon KC. Clinical Effect of Antioxidant Glasses Containing Extracts of Medicinal Plants in Patients with Dry Eye Disease: A Multi-Center, Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. PLoS One 2015; 10:e0139761. [PMID: 26457673 PMCID: PMC4601690 DOI: 10.1371/journal.pone.0139761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the clinical efficacy and safety of wearable antioxidant glasses containing extracts of medicinal plants in patients with mild dry eye disease (DED). Methods Fifty patients with mild DED were randomly assigned to wear either extracts of antioxidant medicinal plants containing (N = 25) or placebo glasses (N = 25). Patients wore the glasses for 15 min three times daily. The ocular surface disease index (OSDI) score, tear film break up time (BUT), and Schirmer’s test were evaluated and compared within the group and between the groups at baseline, 4 weeks, and 8 weeks after treatment. Results OSDI score and tear film BUT were significantly improved in the treatment group at 4 and 8 weeks after wearing glasses (all P < 0.001). Compared to the placebo group, the OSDI scores were significantly lower in the treatment group at 8 weeks (P = 0.007). The results of the Schirmer’s test showed significant improvement in the treatment group at 4 weeks (P = 0.035), however there were no significant differences between the other groups or within the groups. No adverse events were reported during the study. Conclusions Antioxidant glasses containing extracts of medicinal plants were effective in improving in DED both subjectively and objectively. Wearing antioxidants glasses might be a safe and adjunctive therapeutic option for DED. Trial Registration ISRCTN registry 71217488
Collapse
Affiliation(s)
- Won Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jae Chan Kim
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won Soo Kim
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Han Jin Oh
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jee Myung Yang
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jee Bum Lee
- Department of Dermatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
- * E-mail: (KCY); (JBL)
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
- * E-mail: (KCY); (JBL)
| |
Collapse
|