1
|
Ke X, Cai H, Luo F, Zheng X, Hu Q, Zhou Y, Wang Y, Zhang X, Chen Y, Chen G. TRPC4 Mediates Trigeminal Neuropathic Pain via Ca 2+-ERK/P38-ATF2 Pathway in the Trigeminal Ganglion of Mice. CNS Neurosci Ther 2025; 31:e70368. [PMID: 40202077 PMCID: PMC11979714 DOI: 10.1111/cns.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Trigeminal neuropathic pain (TNP) is a debilitating condition characterized by chronic facial pain, yet its underlying mechanisms remain incompletely understood. Transient Receptor Potential Canonical 4 (TRPC4) has been reported to promote the development of abnormal pain or pain hypersensitivity in neuropathic pain. However, the specific contribution of TRPC4 to TNP pathogenesis remains unclear. AIM This study aimed to investigate the role of TRPC4 in a mouse model of trigeminal neuropathic pain induced by chronic constriction of the unilateral infraorbital nerve (CION). METHODS Adult male/female mice were subjected to either CION surgery or sham surgery. Behavioral assays were conducted to assess facial pain-like responses over a 28-day period. TRPC4 distribution in the trigeminal ganglion (TG) was evaluated using Immunofluorescence. TRPC4 inhibitor ML204 and agonist Englerin A were employed to evaluate the impact of TRPC4 on facial pain-like behaviors. A TRPC4-overexpressing HEK293 cell model was conducted via plasmid transfection. To assess the function of TRPC4, we employed cellular calcium imaging technology to investigate the effects of modulating TRPC4 function by analyzing dynamic changes in intracellular calcium ion concentrations in primary trigeminal ganglion neurons and HEK293 cells. Trpc4 shRNA was used to specifically knock down TRPC4 in the trigeminal ganglion. Western blot analysis was used to assess the activation of ERK, P38, and ATF2 signaling pathways. RESULTS Mice subjected to CION exhibited persistent facial pain-like behaviors and a significant increase in TRPC4 expression in TG neurons. Trpc4 shRNA or pharmacological inhibition with ML204 attenuated CION-induced pain behaviors, while activation of TRPC4 with Englerin A induced pain-like responses in naive mice. Calcium imaging revealed that both Englerin A and TRPC4 overexpression elevated intracellular Ca²2+ levels in TG neurons and HEK293 cells. This Ca²2+ influx triggered the activation of ERK and P38, leading to enhanced ATF2 activation. Downregulation of TRPC4 in the TG reduced ERK/P38 phosphorylation and ATF2 expression and activation. CONCLUSION This study provides the first evidence that TRPC4 plays a critical role in CION-induced trigeminal neuropathic pain by promoting the activation of the downstream transcription factor ATF2 via the Ca²2+-ERK/P38 pathway.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Fangla Luo
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Xing Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityZhejiangHangzhouChina
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityZhejiangHangzhouChina
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| |
Collapse
|
2
|
Chen CC, Ke CH, Wu CH, Lee HF, Chao Y, Tsai MC, Shyue SK, Chen SF. Transient receptor potential vanilloid 1 inhibition reduces brain damage by suppressing neuronal apoptosis after intracerebral hemorrhage. Brain Pathol 2024; 34:e13244. [PMID: 38308041 PMCID: PMC11328348 DOI: 10.1111/bpa.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation. ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and TRPV1-/- mice. Capsaicin (CAP; a TRPV1 agonist) or capsazepine (a TRPV1 antagonist) was administered by intracerebroventricular injection 30 min before ICH induction in WT mice. The effects of genetic deletion or pharmacological inhibition of TRPV1 using CAP or capsazepine on motor deficits, histological damage, apoptotic responses, blood-brain barrier (BBB) permeability, and neuroinflammatory reactions were explored. The antiapoptotic mechanisms and calcium influx induced by TRPV1 inactivation were investigated in cultured hemin-stimulated neurons. TRPV1 expression was upregulated in the hemorrhagic brain, and TRPV1 was expressed in neurons, microglia, and astrocytes after ICH. Genetic deletion of TRPV1 significantly attenuated motor deficits and brain atrophy for up to 28 days. Deletion of TRPV1 also reduced brain damage, neurodegeneration, microglial activation, cytokine expression, and cell apoptosis at 1 day post-ICH. Similarly, the administration of CAP ameliorated brain damage, neurodegeneration, brain edema, BBB permeability, and cytokine expression at 1 day post-ICH. In primary neuronal cultures, pharmacological inactivation of TRPV1 by CAP attenuated neuronal vulnerability to hemin-induced injury, suppressed apoptosis, and preserved mitochondrial integrity in vitro. Mechanistically, CAP reduced hemin-stimulated calcium influx and prevented the phosphorylation of CaMKII in cultured neurons, which was associated with reduced activation of P38 and c-Jun NH2-terminal kinase mitogen-activated protein kinase signaling. Our results suggest that TRPV1 inhibition may be a potential therapy for ICH by suppressing mitochondria-related neuronal apoptosis.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Chia-Hua Ke
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Chun-Hu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, Republic of China
| | - Yuan Chao
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
3
|
Cao Y, Jiang W, Yan F, Pan Y, Gei L, Lu S, Chen X, Huang Y, Yan Y, Feng Y, Li Q, Zeng W, Xing W, Chen D. Sex differences in PD-L1-induced analgesia in paclitaxel-induced peripheral neuropathy mice depend on TRPV1-based inhibition of CGRP. CNS Neurosci Ther 2024; 30:e14829. [PMID: 38961264 PMCID: PMC11222069 DOI: 10.1111/cns.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 μL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1β were measured via RT-PCR. RESULTS TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenqi Jiang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fang Yan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yuyan Pan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liba Gei
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyPeking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer HospitalHohhotChina
| | - Simin Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiangnan Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyGuangdong Women and Children HospitalGuangzhouChina
| | - Yang Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yan Yan
- Department of AnesthesiologyHuizhou Municipal Central HospitalHuizhouChina
| | - Yan Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Qiang Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei Xing
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Dongtai Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
Wang Y, Zhou X, Yao L, Hu Q, Liu H, Zhao G, Wang K, Zeng J, Sun M, Lv C. Capsaicin Enhanced the Efficacy of Photodynamic Therapy Against Osteosarcoma via a Pro-Death Strategy by Inducing Ferroptosis and Alleviating Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306916. [PMID: 38221813 DOI: 10.1002/smll.202306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Xueru Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Jun Zeng
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Mingwei Sun
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
5
|
Son H, Zhang Y, Shannonhouse J, Gomez R, Kim YS. PACAP38/mast-cell-specific receptor axis mediates repetitive stress-induced headache in mice. J Headache Pain 2024; 25:87. [PMID: 38802819 PMCID: PMC11131290 DOI: 10.1186/s10194-024-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA.
- Programs in Integrated Biomedical Sciences, Biomedical Engineering, Radiological Sciences, Translational Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
6
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
7
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
8
|
Son H, Zhang Y, Shannonhouse J, Ishida H, Gomez R, Kim YS. Mast-cell-specific receptor mediates alcohol-withdrawal-associated headache in male mice. Neuron 2024; 112:113-123.e4. [PMID: 37909038 PMCID: PMC10843090 DOI: 10.1016/j.neuron.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
Rehabilitation from alcohol addiction or abuse is hampered by withdrawal symptoms including severe headaches, which often lead to rehabilitation failure. There is no appropriate therapeutic option available for alcohol-withdrawal-induced headaches. Here, we show the role of the mast-cell-specific receptor MrgprB2 in the development of alcohol-withdrawal-induced headache. Withdrawing alcohol from alcohol-acclimated mice induces headache behaviors, including facial allodynia, facial pain expressions, and reduced movement, which are symptoms often observed in humans. Those behaviors were absent in MrgprB2-deficient mice during alcohol withdrawal. We observed in vivo spontaneous activation and hypersensitization of trigeminal ganglia (TG) neurons in alcohol-withdrawal WT mice, but not in alcohol-withdrawal MrgprB2-deficient mice. Increased mast cell degranulation by alcohol withdrawal in dura mater was dependent on the presence of MrgprB2. The results indicate that alcohol withdrawal causes headache via MrgprB2 of mast cells in dura mater, suggesting that MrgprB2 is a potential target for treating alcohol-withdrawal-related headaches.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Meerschaert KA, Edwards BS, Epouhe AY, Jefferson B, Friedman R, Babyok OL, Moy JK, Kehinde F, Liu C, Workman CJ, Vignali DAA, Albers KM, Koerber HR, Gold MS, Davis BM, Scheff NN, Saloman JL. Neuronally expressed PDL1, not PD1, suppresses acute nociception. Brain Behav Immun 2022; 106:233-246. [PMID: 36089217 PMCID: PMC10343937 DOI: 10.1016/j.bbi.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022] Open
Abstract
PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.
Collapse
Affiliation(s)
- Kimberly A Meerschaert
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian S Edwards
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ariel Y Epouhe
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bahiyyah Jefferson
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert Friedman
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Olivia L Babyok
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jamie K Moy
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Faith Kehinde
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Kathryn M Albers
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H Richard Koerber
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael S Gold
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian M Davis
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Biobehavioral Cancer Control Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jami L Saloman
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Biobehavioral Cancer Control Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Li YL. Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int J Mol Sci 2022; 23:ijms232113311. [PMID: 36362099 PMCID: PMC9653702 DOI: 10.3390/ijms232113311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a major public health problem worldwide, especially coronary heart disease (myocardial infarction)-induced HF with reduced ejection fraction (HFrEF), which accounts for over 50% of all HF cases. An estimated 6 million American adults have HF. As a major feature of HF, cardiac sympathetic overactivation triggers arrhythmias and sudden cardiac death, which accounts for nearly 50–60% of mortality in HF patients. Regulation of cardiac sympathetic activation is highly integrated by the regulatory circuitry at multiple levels, including afferent, central, and efferent components of the sympathetic nervous system. Much evidence, from other investigators and us, has confirmed the afferent and central neural mechanisms causing sympathoexcitation in HF. The stellate ganglion is a peripheral sympathetic ganglion formed by the fusion of the 7th cervical and 1st thoracic sympathetic ganglion. As the efferent component of the sympathetic nervous system, cardiac postganglionic sympathetic neurons located in stellate ganglia provide local neural coordination independent of higher brain centers. Structural and functional impairments of cardiac postganglionic sympathetic neurons can be involved in cardiac sympathetic overactivation in HF because normally, many effects of the cardiac sympathetic nervous system on cardiac function are mediated via neurotransmitters (e.g., norepinephrine) released from cardiac postganglionic sympathetic neurons innervating the heart. This review provides an overview of cardiac sympathetic remodeling in stellate ganglia and potential mechanisms and the role of cardiac sympathetic remodeling in cardiac sympathetic overactivation and arrhythmias in HF. Targeting cardiac sympathetic remodeling in stellate ganglia could be a therapeutic strategy against malignant cardiac arrhythmias in HF.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; ; Tel.: +1-402-559-3016; Fax: +1-402-559-9659
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
TNF overexpression and dexamethasone treatment impair chondrogenesis and bone growth in an additive manner. Sci Rep 2022; 12:18189. [PMID: 36307458 PMCID: PMC9616891 DOI: 10.1038/s41598-022-22734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.
Collapse
|
13
|
NavaneethaKrishnan S, Law V, Lee J, Rosales JL, Lee KY. Cdk5 regulates IP3R1-mediated Ca 2+ dynamics and Ca 2+-mediated cell proliferation. Cell Mol Life Sci 2022; 79:495. [PMID: 36001172 PMCID: PMC9402492 DOI: 10.1007/s00018-022-04515-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Loss of cyclin-dependent kinase 5 (Cdk5) in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) increases ER–mitochondria tethering and ER Ca2+ transfer to the mitochondria, subsequently increasing mitochondrial Ca2+ concentration ([Ca2+]mt). This suggests a role for Cdk5 in regulating intracellular Ca2+ dynamics, but how Cdk5 is involved in this process remains to be explored. Using ex vivo primary mouse embryonic fibroblasts (MEFs) isolated from Cdk5−/− mouse embryos, we show here that loss of Cdk5 causes an increase in cytosolic Ca2+concentration ([Ca2+]cyt), which is not due to reduced internal Ca2+ store capacity or increased Ca2+ influx from the extracellular milieu. Instead, by stimulation with ATP that mediates release of Ca2+ from internal stores, we determined that the rise in [Ca2+]cyt in Cdk5−/− MEFs is due to increased inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from internal stores. Cdk5 interacts with the IP3R1 Ca2+ channel and phosphorylates it at Ser421. Such phosphorylation controls IP3R1-mediated Ca2+ release as loss of Cdk5, and thus, loss of IP3R1 Ser421 phosphorylation triggers an increase in IP3R1-mediated Ca2+ release in Cdk5−/− MEFs, resulting in elevated [Ca2+]cyt. Elevated [Ca2+]cyt in these cells further induces the production of reactive oxygen species (ROS), which upregulates the levels of Nrf2 and its targets, Prx1 and Prx2. Cdk5−/− MEFs, which have elevated [Ca2+]cyt, proliferate at a faster rate compared to wt, and Cdk5−/− embryos have increased body weight and size compared to their wt littermates. Taken together, we show that altered IP3R1-mediated Ca2+ dynamics due to Cdk5 loss correspond to accelerated cell proliferation that correlates with increased body weight and size in Cdk5−/− embryos.
Collapse
Affiliation(s)
- Saranya NavaneethaKrishnan
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vincent Law
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jungkwon Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jesusa L Rosales
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Scheff NN, Wall IM, Nicholson S, Williams H, Chen E, Tu NH, Dolan JC, Liu CZ, Janal MN, Bunnett NW, Schmidt BL. Oral cancer induced TRPV1 sensitization is mediated by PAR 2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci Rep 2022; 12:4121. [PMID: 35260737 PMCID: PMC8904826 DOI: 10.1038/s41598-022-08005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
| | - Ian M Wall
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Sam Nicholson
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Hannah Williams
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Elyssa Chen
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Nguyen H Tu
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - John C Dolan
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Cheng Z Liu
- Pathology Department, NYU Langone Health, New York, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health Neuroscience Institute, NYU Langone Health, New York, USA
| | - Brian L Schmidt
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA.
| |
Collapse
|
15
|
Kim Y, Jung YH, Park SB, Kim H, Kwon JY, Kim HK, Lee HJ, Jeon S, Kim E. TMI-1, TNF-α-Converting Enzyme Inhibitor, Protects Against Paclitaxel-Induced Neurotoxicity in the DRG Neuronal Cells In Vitro. Front Pharmacol 2022; 13:842779. [PMID: 35250589 PMCID: PMC8889072 DOI: 10.3389/fphar.2022.842779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) negatively impacts cancer survivors' quality of life and is challenging to treat with existing drugs for neuropathic pain. TNF-α is known to potentiate TRPV1 activity, which contributes to CIPN. Here, we assessed the role of TMI-1, a TNF-α-converting enzyme inhibitor, in paclitaxel (PAC)-induced neurotoxicity in dorsal root ganglion (DRG) cells. Materials and Methods: Immortalized DRG neuronal 50B11 cells were cultured and treated with PAC or PAC with TMI-1 following neuronal differentiation. Cell viability, analysis of neurite growth, immunofluorescence, calcium flow cytometry, western blotting, quantitative RT-PCR, and cytokine quantitation by ELISA were performed to determine the role of TMI-1 in neurotoxicity in neuronal cells. Results: PAC administration decreased the length of neurites and upregulated the expression of TRPV1 in 50B11 cells. TMI-1 administration showed a protective effect by suppressing inflammatory signaling, and secretion of TNF-α. Conclusion: TMI-1 partially protects against paclitaxel-induced neurotoxicity by reversing the upregulation of TRPV1 and decreasing levels of inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in neuronal cells.
Collapse
Affiliation(s)
- Yesul Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Young-Hoon Jung
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Seung-Bin Park
- Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Heekee Kim
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Jae-young Kwon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Hae-kyu Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Hyeon-Jeong Lee
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Soeun Jeon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
- Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
16
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
17
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q. Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. CROHN'S & COLITIS 360 2021; 3:otab073. [PMID: 36777266 PMCID: PMC9802269 DOI: 10.1093/crocol/otab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Iman Geelani Khwaja
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jocelyn Rachel Schreyer
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Solis-Castro OO, Wong N, Boissonade FM. Chemokines and Pain in the Trigeminal System. FRONTIERS IN PAIN RESEARCH 2021; 2:689314. [PMID: 35295531 PMCID: PMC8915704 DOI: 10.3389/fpain.2021.689314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chemotactic cytokines or chemokines are a large family of secreted proteins able to induce chemotaxis. Chemokines are categorized according to their primary amino acid sequence, and in particular their cysteine residues that form disulphide bonds to maintain the structure: CC, CXC, CX3C, and XC, in which X represents variable amino acids. Among their many roles, chemokines are known to be key players in pain modulation in the peripheral and central nervous systems. Thus, they are promising candidates for novel therapeutics that could replace current, often ineffective treatments. The spinal and trigeminal systems are intrinsically different beyond their anatomical location, and it has been suggested that there are also differences in their sensory mechanisms. Hence, understanding the different mechanisms involved in pain modulation for each system could aid in developing appropriate pharmacological alternatives. Here, we aim to describe the current landscape of chemokines that have been studied specifically with regard to trigeminal pain. Searching PubMed and Google Scholar, we identified 30 reports describing chemokines in animal models of trigeminal pain, and 15 reports describing chemokines involved in human pain associated with the trigeminal system. This review highlights the chemokines studied to date at different levels of the trigeminal system, their cellular localization and, where available, their role in a variety of animal pain models.
Collapse
Affiliation(s)
- Oscar O. Solis-Castro
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Wong
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Fiona M. Boissonade
| |
Collapse
|
21
|
Abstract
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. Currently, few studies provide information about the prevalence of familial TN; the available evidence indicates that about 1–2% of TN cases have the familial form. The available human studies propose the following genes to be possible contributors to development of TN: CACNA1A, CACNA1H, CACNA1F, KCNK1, TRAK1, SCN9A, SCN8A, SCN3A, SCN10A, SCN5A, NTRK1, GABRG1, MPZ gene, MAOA gene and SLC6A4. Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
Collapse
Affiliation(s)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
23
|
TLR8 in the Trigeminal Ganglion Contributes to the Maintenance of Trigeminal Neuropathic Pain in Mice. Neurosci Bull 2020; 37:550-562. [PMID: 33355900 PMCID: PMC8055805 DOI: 10.1007/s12264-020-00621-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) is a significant health problem but the involved mechanism has not been completely elucidated. Toll-like receptors (TLRs) have recently been demonstrated to be expressed in the dorsal root ganglion and involved in chronic pain. Here, we show that TLR8 was persistently increased in the trigeminal ganglion (TG) neurons in model of TNP induced by partial infraorbital nerve ligation (pIONL). In addition, deletion or knockdown of Tlr8 in the TG attenuated pIONL-induced mechanical allodynia, reduced the activation of ERK and p38-MAPK, and decreased the expression of pro-inflammatory cytokines in the TG. Furthermore, intra-TG injection of the TLR8 agonist VTX-2337 induced pain hypersensitivity. VTX-2337 also increased the intracellular Ca2+ concentration, induced the activation of ERK and p38, and increased the expression of pro-inflammatory cytokines in the TG. These data indicate that TLR8 contributes to the maintenance of TNP through increasing MAPK-mediated neuroinflammation. Targeting TLR8 signaling may be effective for the treatment of TNP.
Collapse
|
24
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
25
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Silva PGDB, de Lima Martins JO, de Lima Praxedes Neto RA, Mota Lemos JV, Machado LC, Matos Carlos ACA, Alves APNN, Lima RA. Tumor necrosis factor alpha mediates orofacial discomfort in an occlusal dental interference model in rats: The role of trigeminal ganglion inflammation. J Oral Pathol Med 2019; 49:169-176. [PMID: 31829463 DOI: 10.1111/jop.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that plays an important role in the early stages of inflammation. In this study, we investigated its role in orofacial discomfort in rats subjected to occlusal dental interference (ODI). METHODS Female Wistar rats (180-200 g) were divided in three groups (n = 30/group): sham group, without ODI, and two experimental groups with ODI pre-treated with 0.1 mL/kg saline (ODI + SAL) or 5 mg/kg infliximab (ODI + INF) and treated every 3 days. The animals were euthanized after 1, 3, and 7 days. The number of bites and scratches and grimace scale scores were determined daily, and the bilateral trigeminal ganglion was histomorphometrically (neuronal body area) analyzed and submitted for immunohistochemistry for TNF-α, nitric oxide synthesis (NOS) neuronal (nNOS) and inducible (iNOS), peroxisome proliferator-activated receptors (PPAR) y (PPARy) and δ/β (PPARδ/β), and glial fibrillary acidic protein (GFAP). One-way/two-way ANOVA/Bonferroni tests were used (P < .05, GraphPad Prism 5.0). RESULTS ODI + SAL showed a large number of bites (P = .002), scratches (P = .002), and grimace scores (P < .001) in the firsts days, and ODI + INF partially reduced these parameters. The contralateral and ipsilateral neuronal body area was significantly reduced on day 1 in ODI + SAL, but returned to the basal size on days 3 and 7, by increase in TNF-α, nNOS, PPARy, PPARδ/β, and GFAP immunostaining. The infliximab treatment attenuated these alterations (P < .05). There was no iNOS immunostaining. CONCLUSION Occlusal dental interference induced transitory orofacial discomfort by trigeminal inflammatory mediator overexpression, and TNF-α blockage attenuated these processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana Paula Negreiros Nunes Alves
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
27
|
Siqueira-Lima PS, Quintans JSS, Heimfarth L, Passos FRS, Pereira EWM, Rezende MM, Menezes-Filho JER, Barreto RSS, Coutinho HDM, Araújo AAS, Medrado AS, Naves LA, Bomfim HF, Lucchese AM, Gandhi SR, Quintans-Júnior LJ. Involvement of the PKA pathway and inhibition of voltage gated Ca2+ channels in antihyperalgesic activity of Lippia grata/β-cyclodextrin. Life Sci 2019; 239:116961. [PMID: 31654745 DOI: 10.1016/j.lfs.2019.116961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Neuropathic pain (NP) is a difficult condition to treat because of the modest efficacy of available drugs. New treatments are required. In the study we aimed to investigate the effects of the essential oil from Lippia grata alone or complexed in β-cyclodextrin (LG or LG-βCD) on persistent inflammatory and neuropathic pain in a mouse model. We also investigated Ca2+ currents in rat dorsal root ganglion (DRG) neurons. Male Swiss mice were treated with LG or LG/β-CD (24 mg/kg, i.g.) and their effect was evaluated using an acute inflammatory pleurisy model and nociception triggered by intraplantar injection of an agonist of the TRPs channels. We also tested their effect in chronic pain models: injection of Freund's Complete Adjuvant and partial sciatic nerve ligation (PSNL). In the pleurisy model, LG reduced the number of leukocytes and the levels of TNF-α and IL-1β. It also inhibited cinnamaldehyde and menthol-induced nociceptive behavior. The pain threshold in mechanical and thermal hyperalgesia was increased and paw edema was decreased in models of inflammatory and neuropathic pain. PSNL increased inflammatory protein contents and LG and LG-βCD restored the protein contents of TNF-α, NF-κB, and PKA, but not IL-1β and IL-10. LG inhibited voltage gated Ca2+ channels from DRG neurons. Our results suggested that LG or LG-βCD produce anti-hyperalgesic effect in chronic pain models through reductions in TNF-α levels and PKA, and inhibited voltage-gated calcium channels and may be innovative therapeutic agents for the management of NP.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Fabiolla R S Passos
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Erik W M Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Marilia M Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - José E R Menezes-Filho
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Henrique D M Coutinho
- Regional University of Cariri. Universidade Regional do Cariri (URCA), Crato/CE, 63105-000, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Aline S Medrado
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ligia A Naves
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Horácio F Bomfim
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | - Angélica M Lucchese
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | | | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| |
Collapse
|
28
|
Lin J, Zhang YY, Liu F, Fang XY, Liu MK, Huang CL, Wang H, Liao DQ, Zhou C, Shen JF. The P2Y 14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int 2019; 131:104567. [PMID: 31586590 DOI: 10.1016/j.neuint.2019.104567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
P2Y purinergic receptors expressed in neurons and satellite glial cells (SGCs) of the trigeminal ganglion (TG) contribute to inflammatory and neuropathic pain. P2Y14 receptor expression is reported in the spinal cord, dorsal root ganglion (DRG), and TG. In present study, the role of P2Y14 receptor in the TG in inflammatory orofacial pain of Sprague-Dawley (SD) rats was investigated. Peripheral injection of complete Freund's adjuvant (CFA) induced mechanical hyperalgesia with the rapid upregulation of P2Y14 receptor, glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), C-C chemokine CCL2, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated p38 (p-p38) proteins in the TG. Furthermore, immunofluorescence staining confirmed the CFA-induced upregulation of P2Y14 receptor. Double immunostaining showed that P2Y14 receptor colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN). Finally, trigeminal injection of a selective antagonist (PPTN) of P2Y14 receptor attenuated CFA-induced mechanical hyperalgesia. PPTN also decreased the upregulation of the GFAP, IL-1β, TNF-α, CCL2, p-ERK1/2, and p-p38 proteins. Our findings showed that P2Y14 receptor in TG may contribute to orofacial inflammatory pain via regulating SGCs activation, releasing cytokines (IL-1β, TNF-α, and CCL2), and phosphorylating ERK1/2 and p38.
Collapse
Affiliation(s)
- Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin-Yi Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Da-Qing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain. Int J Oral Sci 2019; 11:24. [PMID: 31501412 PMCID: PMC6802677 DOI: 10.1038/s41368-019-0055-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory orofacial pain, in which substance P (SP) plays an important role, is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs). SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms, including glial fibrillary acidic protein (GFAP) activation, phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways, and cytokine upregulation. However, in the TG, the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown. In this study, we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs, and we explored whether MAPK signalling pathways mediate the pain process. In the present study, complete Freund’s adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo. SP was administered to SGC cultures in vitro to confirm the effect of SP. Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist), U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2), and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia. In addition, SP promoted SGC activation, which was proven by increased GFAP, p-MAPKs, IL-1β and TNF-α in SGCs under inflammatory conditions. Moreover, the increase in IL-1β and TNF-α was suppressed by L703, 606, U0126 and SB203580 in vivo and in vitro. These present findings suggested that SP, released from TG neurons, activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs, contributing to inflammatory orofacial pain associated with peripheral sensitization.
Collapse
|
30
|
Limaye A, Hall BE, Zhang L, Cho A, Prochazkova M, Zheng C, Walker M, Adewusi F, Burbelo PD, Sun ZJ, Ambudkar IS, Dolan JC, Schmidt BL, Kulkarni AB. Targeted TNF-α Overexpression Drives Salivary Gland Inflammation. J Dent Res 2019; 98:713-719. [PMID: 30958728 DOI: 10.1177/0022034519837240] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation of the salivary glands from pathologic conditions such as Sjögren's syndrome can result in glandular destruction and hyposalivation. To understand which molecular factors may play a role in clinical cases of salivary gland hypofunction, we developed an aquaporin 5 (AQP5) Cre mouse line to produce genetic recombination predominantly within the acinar cells of the glands. We then bred these mice with the TNF-αglo transgenic line to develop a mouse model with salivary gland-specific overexpression of TNF-α; which replicates conditions seen in sialadenitis, an inflammation of the salivary glands resulting from infection or autoimmune disorders such as Sjögren's syndrome. The resulting AQP5-Cre/TNF-αglo mice display severe inflammation in the salivary glands with acinar cell atrophy, fibrosis, and dilation of the ducts. AQP5 expression was reduced in the salivary glands, while tight junction integrity appeared to be disrupted. The immune dysregulation in the salivary gland of these mice led to hyposalivation and masticatory dysfunction.
Collapse
Affiliation(s)
- A Limaye
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - B E Hall
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - L Zhang
- 2 Wuhan University, Wuhan, China
| | - A Cho
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M Prochazkova
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C Zheng
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M Walker
- 3 School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - F Adewusi
- 4 School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - P D Burbelo
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Z J Sun
- 2 Wuhan University, Wuhan, China
| | - I S Ambudkar
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J C Dolan
- 5 School of Dentistry, New York University, New York, NY, USA
| | - B L Schmidt
- 5 School of Dentistry, New York University, New York, NY, USA
| | - A B Kulkarni
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Acevedo C, Blanchard K, Bacigalupo J, Vergara C. Possible ATP trafficking by ATP-shuttles in the olfactory cilia and glucose transfer across the olfactory mucosa. FEBS Lett 2019; 593:601-610. [PMID: 30801684 DOI: 10.1002/1873-3468.13346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/12/2022]
Abstract
Odor transduction in the cilia of olfactory sensory neurons involves several ATP-requiring enzymes. ATP is generated by glycolysis in the ciliary lumen, using glucose incorporated from surrounding mucus, and by oxidative phosphorylation in the dendrite. During prolonged stimulation, the cilia maintain ATP levels along their length, by unknown means. We used immunochemistry, RT-PCR, and immunoblotting to explore possible underlying mechanisms. We found the ATP-shuttles, adenylate and creatine kinases, capable of equilibrating ATP. We also investigated how glucose delivered by blood vessels in the olfactory mucosa reaches the mucus. We detected, in sustentacular and Bowman's gland cells, the crucial enzyme in glucose secretion glucose-6-phosphatase, implicating both cell types as putative glucose pathways. We propose a model accounting for both processes.
Collapse
Affiliation(s)
- Claudia Acevedo
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Kris Blanchard
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan Bacigalupo
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Cecilia Vergara
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Cyclin-dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C-terminal threonine 372. Pain 2018; 158:2155-2168. [PMID: 28809765 DOI: 10.1097/j.pain.0000000000001021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.
Collapse
|
33
|
Ramírez-Barrantes R, Córdova C, Gatica S, Rodriguez B, Lozano C, Marchant I, Echeverria C, Simon F, Olivero P. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death. Front Physiol 2018; 9:682. [PMID: 29922176 PMCID: PMC5996173 DOI: 10.3389/fphys.2018.00682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.
Collapse
Affiliation(s)
- Ricardo Ramírez-Barrantes
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Belén Rodriguez
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlo Lozano
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivanny Marchant
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Cesar Echeverria
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
34
|
Kádková A, Synytsya V, Krusek J, Zímová L, Vlachová V. Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol Res 2018; 66:425-439. [PMID: 28730837 DOI: 10.33549/physiolres.933553] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential A1 (TRPA1) is an excitatory ion channel that functions as a cellular sensor, detecting a wide range of proalgesic agents such as environmental irritants and endogenous products of inflammation and oxidative stress. Topical application of TRPA1 agonists produces an acute nociceptive response through peripheral release of neuropeptides, purines and other transmitters from activated sensory nerve endings. This, in turn, further regulates TRPA1 activity downstream of G-protein and phospholipase C-coupled signaling cascades. Despite the important physiological relevance of such regulation leading to nociceptor sensitization and consequent pain hypersensitivity, the specific domains through which TRPA1 undergoes post-translational modifications that affect its activation properties are yet to be determined at a molecular level. This review aims at providing an account of our current knowledge on molecular basis of regulation by neuronal inflammatory signaling pathways that converge on the TRPA1 channel protein and through modification of its specific residues influence the extent to which this channel may contribute to pain.
Collapse
Affiliation(s)
- A Kádková
- Department of Cellular Neurophysiology, Institute of Physiology CAS, Prague, Czech Republic. or
| | | | | | | | | |
Collapse
|
35
|
Wang Y, Feng C, He H, He J, Wang J, Li X, Wang S, Li W, Hou J, Liu T, Fang D, Xie SQ. Sensitization of TRPV1 receptors by TNF-α orchestrates the development of vincristine-induced pain. Oncol Lett 2018; 15:5013-5019. [PMID: 29552137 PMCID: PMC5840530 DOI: 10.3892/ol.2018.7986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Vincristine is one of the most common anticancer drugs clinically employed in the treatment of various malignancies. A major side effect associated with vincristine is the development of neuropathic pain, which is not readily relieved by available analgesics. Although efforts have been made to identify the pathogenesis of vincristine-induced neuropathic pain, the mechanisms underlying its pathogenesis have not been fully elucidated. In the present study, a neuropathic pain model was established in Sprague-Dawley rats by intraperitoneal injection of vincristine sulfate. The results demonstrated that vincristine administration induced the upregulation of transient receptor potential cation channel subfamily V member 1 (TRPV1) protein expression and current density in dorsal root ganglion (DRG) nociceptive neurons. Consistently, inhibition of TRPV1 with capsazepine alleviated vincristine-induced mechanical allodynia and thermal hyperalgesia in rats. Furthermore, vincristine administration induced the upregulation of tumor necrosis factor (TNF)-α production in DRGs, and inhibition of TNF-α synthesis with thalidomide in vivo reversed TRPV1 protein expression, as well as pain hypersensitivity induced by vincristine in rats. The present results suggested that TNF-α could sensitize TRPV1 by promoting its expression, thus leading to mechanical allodynia and thermal hyperalgesia in vincristine-treated rats. Taken together, these findings may enhance our understanding of the pathophysiological mechanisms underlying vincristine-induced pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Chenyang Feng
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haoying He
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jinjin He
- Department of Clinic Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Song-Qiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
36
|
Sandoval R, Lazcano P, Ferrari F, Pinto-Pardo N, González-Billault C, Utreras E. TNF-α Increases Production of Reactive Oxygen Species through Cdk5 Activation in Nociceptive Neurons. Front Physiol 2018; 9:65. [PMID: 29467671 PMCID: PMC5808211 DOI: 10.3389/fphys.2018.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
The participation of reactive oxygen species (ROS) generated by NOX1 and NOX2/NADPH oxidase has been documented during inflammatory pain. However, the molecular mechanism involved in their activation is not fully understood. We reported earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator, causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+ influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5 activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary culture of nociceptive neurons could increase ROS production. By immunofluorescence we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By using a hydrogen peroxide sensor, we detected a significant increase of ROS production in p35 transfected HEK293 cells as compared with control cells. This effect was significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5 activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a significant increase of ROS production in nociceptive neurons treated with TNF-α and this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly, TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is implicated in the ROS production by NOX1 and NOX2/NADPH oxidase complexes during inflammatory pain.
Collapse
Affiliation(s)
- Rodrigo Sandoval
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Franco Ferrari
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Nicolás Pinto-Pardo
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Doctorate in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Elías Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Xiao L, Hong K, Roberson C, Ding M, Fernandez A, Shen F, Jin L, Sonkusare S, Li X. Hydroxylated Fullerene: A Stellar Nanomedicine to Treat Lumbar Radiculopathy via Antagonizing TNF- α-Induced Ion Channel Activation, Calcium Signaling, and Neuropeptide Production. ACS Biomater Sci Eng 2017; 4:266-277. [PMID: 30038959 DOI: 10.1021/acsbiomaterials.7b00735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current nonsurgical treatments of discogenic lumbar radiculopathy are neither effective nor safe. Our prior studies have suggested that hydroxylated fullerene (fullerol) nanomaterial could attenuate proinflammatory cytokine tumor necrosis factor alpha (TNF-α)-induced neuroinflammation and oxidative stress in mouse dorsal root ganglia (DRG) and primary neurons. Here, we aim to investigate the analgesic effect of fullerol in a clinically relevant lumbar radiculopathy mouse model and to understand its underlying molecular mechanism in mouse DRGs and neurons. Surprisingly, single and local application of fullerol solution (1 μM, 10 μL) was sufficient to alleviate ipsilateral paw pain sensation in mice up to 2 weeks postsurgery. In addition, microCT data suggested fullerol potentially promoted disc height recovery following injury-induced disc herniation. Alcian blue/picrosirius red staining also suggested that fullerol promoted regeneration of extracellular matrix proteins visualized by the presence of abundant newly formed collagen and proteoglycan in herniated discs. For in vitro DRG culture, fullerol attenuated TNF-α-elicited expression of transient receptor potential cation channel subfamily V member 1 (TRPV-1) and neuropeptides release (substance P and calcitonin gene-related peptide). In addition, fullerol suppressed TNF-α-stimulated increase in intracellular Ca2+ concentrations in primary neurons. Moreover, Western blot analysis in DRG revealed that fullerol's beneficial effects against TNF-α might be mediated through protein kinase B (AKT) and extracellular protein-regulated kinase (ERK) pathways. These TNF-α antagonizing and analgesic effects indicated therapeutic potential of fullerol in treating lumbar radiculopathy, providing solid preclinical evidence toward further translational studies.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, Charlottesville, Virginia 22908, United States
| | - Charles Roberson
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Andrew Fernandez
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Francis Shen
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States
| | - Swapnil Sonkusare
- Robert M. Berne Cardiovascular Research Center, Charlottesville, Virginia 22908, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, Charlottesville, Virginia 22908, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
38
|
Intrathecal Resiniferatoxin Modulates TRPV1 in DRG Neurons and Reduces TNF-Induced Pain-Related Behavior. Mediators Inflamm 2017; 2017:2786427. [PMID: 28831207 PMCID: PMC5558708 DOI: 10.1155/2017/2786427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022] Open
Abstract
Transient receptor potential vanilloid-1 (TRPV1) is a nonselective cation channel, predominantly expressed in sensory neurons. TRPV1 is known to play an important role in the pathogenesis of inflammatory and neuropathic pain states. Previous studies suggest interactions between tumor necrosis factor- (TNF-) alpha and TRPV1, resulting in a modulation of ion channel function and protein expression in sensory neurons. We examined the effect of intrathecal administration of the ultrapotent TRPV1 agonist resiniferatoxin (RTX) on TNF-induced pain-associated behavior of rats using von Frey and hot plate behavioral testing. Intrathecal injection of TNF induces mechanical allodynia (2 and 20 ng/kg) and thermal hyperalgesia (200 ng) 24 h after administration. The additional intrathecal administration of RTX (1.9 μg/kg) alleviates TNF-induced mechanical allodynia and thermal hyperalgesia 24 h after injection. In addition, TNF increases the TRPV1 protein level and number of TRPV1-expressing neurons. Both effects could be abolished by the administration of RTX. These results suggest that the involvement of TRPV1 in TNF-induced pain offers new TRPV1-based experimental therapeutic approaches and demonstrates the analgesic potential of RTX in inflammatory pain diseases.
Collapse
|
39
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Lin RL, Gu Q, Khosravi M, Lee LY. Sustained sensitizing effects of tumor necrosis factor alpha on sensory nerves in lung and airways. Pulm Pharmacol Ther 2017; 47:29-37. [PMID: 28587842 DOI: 10.1016/j.pupt.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor alpha (TNFα) plays a significant role in the pathogenesis of airway inflammatory diseases. Inhalation of aerosolized TNFα induced airway hyperresponsiveness accompanied by airway inflammation in healthy human subjects, but the underlying mechanism is not fully understood. We recently reported a series of studies aimed to investigate if TNFα elevates the sensitivity of vagal bronchopulmonary sensory nerves in a mouse model; these studies are summarized in this mini-review. Our results showed that intratracheal instillation of TNFα induced pronounced airway inflammation 24 h later, as illustrated by infiltration of eosinophils and neutrophils and the release of inflammatory mediators and cytokines in the lung and airways. Accompanying these inflammatory reactions, the sensitivity of vagal pulmonary C-fibers and silent rapidly adapting receptors to capsaicin, a selective agonist of transient receptor potential vanilloid type 1 receptor, was markedly elevated after the TNFα treatment. A distinct increase in the sensitivity to capsaicin induced by TNFα was also observed in isolated pulmonary sensory neurons, suggesting that the sensitizing effect is mediated primarily through a direct action of TNFα on these neurons. Furthermore, the same TNFα treatment also induced a lingering (>7days) cough hyperresponsiveness to inhalation challenge of NH3 in awake mice. Both the airway inflammation and the sensitizing effect on pulmonary sensory neurons caused by the TNFα treatment were abolished in the TNF-receptor double homozygous mutant mice, indicating the involvement of TNF-receptor activation. These findings suggest that the TNFα-induced hypersensitivity of vagal bronchopulmonary afferents may be responsible for, at least in part, the airway hyperresponsiveness caused by inhaled TNFα in healthy individuals.
Collapse
Affiliation(s)
- Ruei-Lung Lin
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Qihai Gu
- Department of Biomedical Sciences, Mercer University, Macon, GA, USA
| | - Mehdi Khosravi
- Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
41
|
Lis K, Grygorowicz T, Cudna A, Szymkowski DE, Bałkowiec-Iskra E. Inhibition of TNF reduces mechanical orofacial hyperalgesia induced by Complete Freund's Adjuvant by a TRPV1-dependent mechanism in mice. Pharmacol Rep 2017; 69:1380-1385. [PMID: 29132095 DOI: 10.1016/j.pharep.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inflammation in the orofacial region results in pain and is associated with many pathological states, including migraine, neuralgias and temporomandibular disorder. Although extensively studied, the mechanisms responsible for these conditions are not known and effective treatments are lacking. We reported earlier that the proinflammatory cytokine tumor necrosis factor (TNF) plays an important role in regulation of trigeminal ganglion (TG) neuron function in vitro. In the present study we investigated the role of TNF in mechanical hypersensitivity in mice. METHODS We employed the Complete Freund's Adjuvant (CFA)-induced model of orofacial pain and evaluated the effect of blocking of soluble TNF activity by peripheral administration of the novel dominant negative TNF biologic, XPro1595. RESULTS We show that CFA administration into the lower lip causes hyperalgesia and an increase in both expression of transient receptor potential vanilloid subfamily member 1 (TRPV1) mRNA and in the average intensity of TRPV1 protein immunoreactivity in TG neurons. We also show that intraperitoneal administration of XPro1595 prevents both CFA-induced mechanical hypersensitivity and, as shown in immunohistochemical staining - upregulation of TRPV1 protein expression in TG neurons. CONCLUSIONS We conclude that one of the possible regulatory mechanisms of TNF in pain involves upregulation of the nociceptor TRPV1, and that peripheral treatment with a selective anti-soluble TNF biologic can prevent hyperalgesia caused by inflammation in the orofacial region. Therefore, these new findings suggest that XPro1595 may serve as a novel treatment for orofacial pain disorders.
Collapse
Affiliation(s)
- Krzysztof Lis
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Tomasz Grygorowicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Agnieszka Cudna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | | | - Ewa Bałkowiec-Iskra
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland.
| |
Collapse
|
42
|
Miao X, Huang Y, Liu TT, Guo R, Wang B, Wang XL, Chen LH, Zhou Y, Ji RR, Liu T. TNF-α/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms. Neurosci Bull 2017; 34:42-53. [PMID: 28365861 DOI: 10.1007/s12264-017-0124-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.
Collapse
MESH Headings
- Animals
- Chloroquine/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Etanercept/therapeutic use
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pruritus/chemically induced
- Pruritus/drug therapy
- Pruritus/metabolism
- Pruritus/pathology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Thalidomide/therapeutic use
- Time Factors
- Tumor Necrosis Factor-alpha/adverse effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- p-Methoxy-N-methylphenethylamine/toxicity
Collapse
Affiliation(s)
- Xiuhua Miao
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Ya Huang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Teng-Teng Liu
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ran Guo
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Bing Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Xue-Long Wang
- Capital Medical University Electric Power Teaching Hospital, Beijing, 100073, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yan Zhou
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Tong Liu
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| |
Collapse
|