1
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Quillet R, Gutierrez-Mecinas M, Polgár E, Dickie AC, Boyle KA, Watanabe M, Todd AJ. Synaptic circuits involving gastrin-releasing peptide receptor-expressing neurons in the dorsal horn of the mouse spinal cord. Front Mol Neurosci 2023; 16:1294994. [PMID: 38143564 PMCID: PMC10742631 DOI: 10.3389/fnmol.2023.1294994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The superficial dorsal horn (SDH) of the spinal cord contains a diverse array of neurons. The vast majority of these are interneurons, most of which are glutamatergic. These can be assigned to several populations, one of which is defined by expression of gastrin-releasing peptide receptor (GRPR). The GRPR cells are thought to be "tertiary pruritoceptors," conveying itch information to lamina I projection neurons of the anterolateral system (ALS). Surprisingly, we recently found that GRPR-expressing neurons belong to a morphological class known as vertical cells, which are believed to transmit nociceptive information to lamina I ALS cells. Little is currently known about synaptic circuits engaged by the GRPR cells. Here we combine viral-mediated expression of PSD95-tagRFP fusion protein with super-resolution microscopy to reveal sources of excitatory input to GRPR cells. We find that they receive a relatively sparse input from peptidergic and non-peptidergic nociceptors in SDH, and a limited input from A- and C-low threshold mechanoreceptors on their ventral dendrites. They receive synapses from several excitatory interneuron populations, including those defined by expression of substance P, neuropeptide FF, cholecystokinin, neurokinin B, and neurotensin. We investigated downstream targets of GRPR cells by chemogenetically exciting them and identifying Fos-positive (activated) cells. In addition to lamina I projection neurons, many ALS cells in lateral lamina V and the lateral spinal nucleus were Fos-positive, suggesting that GRPR-expressing cells target a broader population of projection neurons than was previously recognised. Our findings indicate that GRPR cells receive a diverse synaptic input from various types of primary afferent and excitatory interneuron, and that they can activate ALS cells in both superficial and deep regions of the dorsal horn.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Erika Polgár
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Andrew J. Todd
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Qi Y, Nelson TS, Prasoon P, Norris C, Taylor BK. Contribution of µ Opioid Receptor-expressing Dorsal Horn Interneurons to Neuropathic Pain-like Behavior in Mice. Anesthesiology 2023; 139:840-857. [PMID: 37566700 PMCID: PMC10840648 DOI: 10.1097/aln.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Intersectional genetics have yielded tremendous advances in our understanding of molecularly identified subpopulations and circuits within the dorsal horn in neuropathic pain. The authors tested the hypothesis that spinal µ opioid receptor-expressing neurons (Oprm1-expressing neurons) contribute to behavioral hypersensitivity and neuronal sensitization in the spared nerve injury model in mice. METHODS The authors coupled the use of Oprm1Cre transgenic reporter mice with whole cell patch clamp electrophysiology in lumbar spinal cord slices to evaluate the neuronal activity of Oprm1-expressing neurons in the spared nerve injury model of neuropathic pain. The authors used a chemogenetic approach to activate or inhibit Oprm1-expressing neurons, followed by the assessment of behavioral signs of neuropathic pain. RESULTS The authors reveal that spared nerve injury yielded a robust neuroplasticity of Oprm1-expressing neurons. Spared nerve injury reduced Oprm1 gene expression in the dorsal horn as well as the responsiveness of Oprm1-expressing neurons to the selective µ agonist (D-Ala2, N-MePhe4, Gly-ol)-enkephalin (DAMGO). Spared nerve injury sensitized Oprm1-expressing neurons, as reflected by an increase in their intrinsic excitability (rheobase, sham 38.62 ± 25.87 pA [n = 29]; spared nerve injury, 18.33 ± 10.29 pA [n = 29], P = 0.0026) and spontaneous synaptic activity (spontaneous excitatory postsynaptic current frequency in delayed firing neurons: sham, 0.81 ± 0.67 Hz [n = 14]; spared nerve injury, 1.74 ± 1.68 Hz [n = 10], P = 0.0466), and light brush-induced coexpression of the immediate early gene product, Fos in laminae I to II (%Fos/tdTomato+: sham, 0.42 ± 0.57% [n = 3]; spared nerve injury, 28.26 ± 1.92% [n = 3], P = 0.0001). Chemogenetic activation of Oprm1-expressing neurons produced mechanical hypersensitivity in uninjured mice (saline, 2.91 ± 1.08 g [n = 6]; clozapine N-oxide, 0.65 ± 0.34 g [n = 6], P = 0.0006), while chemogenetic inhibition reduced behavioral signs of mechanical hypersensitivity (saline, 0.38 ± 0.37 g [n = 6]; clozapine N-oxide, 1.05 ± 0.42 g [n = 6], P = 0.0052) and cold hypersensitivity (saline, 6.89 ± 0.88 s [n = 5] vs. clozapine N-oxide, 2.31 ± 0.52 s [n = 5], P = 0.0017). CONCLUSIONS The authors conclude that nerve injury sensitizes pronociceptive µ opioid receptor-expressing neurons in mouse dorsal horn. Nonopioid strategies to inhibit these interneurons might yield new treatments for neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Norris
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Nelson TS, Allen HN, Basu P, Prasoon P, Nguyen E, Arokiaraj CM, Santos DF, Seal RP, Ross SE, Todd AJ, Taylor BK. Alleviation of neuropathic pain with neuropeptide Y requires spinal Npy1r interneurons that coexpress Grp. JCI Insight 2023; 8:e169554. [PMID: 37824208 PMCID: PMC10721324 DOI: 10.1172/jci.insight.169554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
| | - Heather N. Allen
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Paramita Basu
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Eileen Nguyen
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cynthia M. Arokiaraj
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diogo F.S. Santos
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Rebecca P. Seal
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Todd
- Spinal Cord Group, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Nelson TS, Santos DFS, Prasoon P, Gralinski M, Allen HN, Taylor BK. Endogenous μ-opioid-Neuropeptide Y Y1 receptor synergy silences chronic postoperative pain in mice. PNAS NEXUS 2023; 2:pgad261. [PMID: 37649580 PMCID: PMC10465188 DOI: 10.1093/pnasnexus/pgad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Tissue injury creates a delicate balance between latent pain sensitization (LS) and compensatory endogenous analgesia. Inhibitory G-protein-coupled receptor (GPCR) interactions that oppose LS, including μ-opioid receptor (MOR) or neuropeptide Y Y1 receptor (Y1R) activity, persist in the spinal cord dorsal horn (DH) for months, even after the resolution of normal pain thresholds. Here, we demonstrate that following recovery from surgical incision, a potent endogenous analgesic synergy between MOR and Y1R activity persists within DH interneurons to reduce the intensity and duration of latent postoperative hypersensitivity and ongoing pain. Failure of such endogenous GPCR signaling to maintain LS in remission may underlie the transition from acute to chronic pain states.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Diogo F S Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Margaret Gralinski
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Heather N Allen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Boyle KA, Polgar E, Gutierrez-Mecinas M, Dickie AC, Cooper AH, Bell AM, Jumolea E, Casas-Benito A, Watanabe M, Hughes DI, Weir GA, Riddell JS, Todd AJ. Neuropeptide Y-expressing dorsal horn inhibitory interneurons gate spinal pain and itch signalling. eLife 2023; 12:RP86633. [PMID: 37490401 PMCID: PMC10392120 DOI: 10.7554/elife.86633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Somatosensory information is processed by a complex network of interneurons in the spinal dorsal horn. It has been reported that inhibitory interneurons that express neuropeptide Y (NPY), either permanently or during development, suppress mechanical itch, with no effect on pain. Here, we investigate the role of interneurons that continue to express NPY (NPY-INs) in the adult mouse spinal cord. We find that chemogenetic activation of NPY-INs reduces behaviours associated with acute pain and pruritogen-evoked itch, whereas silencing them causes exaggerated itch responses that depend on cells expressing the gastrin-releasing peptide receptor. As predicted by our previous studies, silencing of another population of inhibitory interneurons (those expressing dynorphin) also increases itch, but to a lesser extent. Importantly, NPY-IN activation also reduces behavioural signs of inflammatory and neuropathic pain. These results demonstrate that NPY-INs gate pain and itch transmission at the spinal level, and therefore represent a potential treatment target for pathological pain and itch.
Collapse
Affiliation(s)
- Kieran A Boyle
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erika Polgar
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew H Cooper
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Evelline Jumolea
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian Casas-Benito
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - David I Hughes
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gregory A Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John S Riddell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells are a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. Sci Rep 2023; 13:11561. [PMID: 37464016 PMCID: PMC10354228 DOI: 10.1038/s41598-023-38605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C Davis
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B Mustapa
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A Boyle
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - David I Hughes
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
8
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells: a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543241. [PMID: 37333120 PMCID: PMC10274676 DOI: 10.1101/2023.06.01.543241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C. Davis
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C. Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B. Mustapa
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
- Present address: Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A. Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M. Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M. Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J. Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David I. Hughes
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
9
|
Quillet R, Dickie AC, Polgár E, Gutierrez-Mecinas M, Bell AM, Goffin L, Watanabe M, Todd AJ. Characterisation of NPFF-expressing neurons in the superficial dorsal horn of the mouse spinal cord. Sci Rep 2023; 13:5891. [PMID: 37041197 PMCID: PMC10090074 DOI: 10.1038/s41598-023-32720-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Excitatory interneurons in the superficial dorsal horn (SDH) are heterogeneous, and include a class known as vertical cells, which convey information to lamina I projection neurons. We recently used pro-NPFF antibody to reveal a discrete population of excitatory interneurons that express neuropeptide FF (NPFF). Here, we generated a new mouse line (NPFFCre) in which Cre is knocked into the Npff locus, and used Cre-dependent viruses and reporter mice to characterise NPFF cell properties. Both viral and reporter strategies labelled many cells in the SDH, and captured most pro-NPFF-immunoreactive neurons (75-80%). However, the majority of labelled cells lacked pro-NPFF, and we found considerable overlap with a population of neurons that express the gastrin-releasing peptide receptor (GRPR). Morphological reconstruction revealed that most pro-NPFF-containing neurons were vertical cells, but these differed from GRPR neurons (which are also vertical cells) in having a far higher dendritic spine density. Electrophysiological recording showed that NPFF cells also differed from GRPR cells in having a higher frequency of miniature EPSCs, being more electrically excitable and responding to a NPY Y1 receptor agonist. Together, these findings indicate that there are at least two distinct classes of vertical cells, which may have differing roles in somatosensory processing.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Allen C Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Luca Goffin
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Andrew J Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Gutierrez-Mecinas M, Kókai É, Polgár E, Quillet R, Titterton HF, Weir GA, Watanabe M, Todd AJ. Antibodies Against the Gastrin-releasing Peptide Precursor Pro-Gastrin-releasing Peptide Reveal Its Expression in the Mouse Spinal Dorsal Horn. Neuroscience 2023; 510:60-71. [PMID: 36581131 DOI: 10.1016/j.neuroscience.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Gastrin-releasing peptide (GRP) in the spinal dorsal horn acts on the GRP receptor, and this signalling mechanism has been strongly implicated in itch. However, the source of GRP in the dorsal horn is not fully understood. For example, the BAC transgenic mouse line GRP::GFP only captures around 25% of GRP-expressing cells, and Grp mRNA is found in several types of excitatory interneuron. A major limitation in attempts to identify GRP-expressing neurons has been that antibodies against GRP cross-react with other neuropeptides, including some that are expressed by primary afferents. Here we have developed two antibodies raised against different parts of the precursor protein, pro-GRP. We show that labelling is specific, and that the antibodies do not cross-react with neuropeptides in primary afferents. Immunoreactivity was strongest in the superficial laminae, and the two antibodies labelled identical structures, including glutamatergic axons and cell bodies. The pattern of pro-GRP-immunoreactivity varied among different neurochemical classes of excitatory interneuron. Cell bodies and axons of all GRP-GFP cells were labelled, confirming reliability of the antibodies. Among the other populations, we found the highest degree of co-expression (>50%) in axons of NPFF-expressing cells, while this was somewhat lower (10-20%) in cells that expressed substance P and NKB, and much lower (<10%) in other classes. Our findings show that these antibodies reliably detect GRP-expressing neurons and axons, and that in addition to the GRP-GFP cells, excitatory interneurons expressing NPFF or substance P are likely to be the main source of GRP in the spinal dorsal horn.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Raphaëlle Quillet
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Heather F Titterton
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Greg A Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Natale CA, Christie MJ, Aubrey KR. Spinal glycinergic currents are reduced in a rat model of neuropathic pain following partial nerve ligation but not chronic constriction injury. J Neurophysiol 2023; 129:333-341. [PMID: 36541621 DOI: 10.1152/jn.00451.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animal models have consistently indicated that central sensitization and the development of chronic neuropathic pain are linked to changes to inhibitory signaling in the dorsal horn of the spinal cord. However, replication of data investigating the cellular mechanisms that underlie these changes remains a challenge and there is still a lack of understanding about what aspects of spinal inhibitory transmission most strongly contribute to the disease. Here, we compared the effect of two different sciatic nerve injuries commonly used to generate rodent models of neuropathic pain on spinal glycinergic signaling. Using whole cell patch-clamp electrophysiology in spinal slices, we recorded from neurons in the lamina II of the dorsal horn and evoked inhibitory postsynaptic currents with a stimulator in lamina III, where glycinergic cell bodies are concentrated. We found that glycine inputs onto radial neurons were reduced following partial nerve ligation (PNL) of the sciatic nerve, consistent with a previous report. However, this finding was not replicated in animals that underwent chronic constriction injury (CCI) to the same nerve region. To limit the between-experiment variability, we kept the rat species, sex, and age consistent and had a single investigator carry out the surgeries. These data show that PNL and CCI cause divergent spinal signaling outcomes in the cord and add to the body of evidence suggesting that treatments for neuropathic pain should be triaged according to nerve injury or cellular dysfunction rather than the symptoms of the disease.NEW & NOTEWORTHY Neuropathic pain models are used in preclinical research to investigate the mechanisms underlying allodynia, a common symptom of neuropathic pain, and to test, develop, and validate therapies for persistent pain. We demonstrate that a glycinergic dysfunction is consistently associated with partial nerve ligation but not the chronic constriction injury model. This suggests that the cellular effects produced by each injury are distinct and that data from different neuropathic pain models should be considered separately.
Collapse
Affiliation(s)
- Claudia A Natale
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Macdonald J Christie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Grpr expression defines a population of superficial dorsal horn vertical cells that have a role in both itch and pain. Pain 2023; 164:149-170. [PMID: 35543635 PMCID: PMC9756441 DOI: 10.1097/j.pain.0000000000002677] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Neurons in the superficial dorsal horn that express the gastrin-releasing peptide receptor (GRPR) are strongly implicated in spinal itch pathways. However, a recent study reported that many of these correspond to vertical cells, a population of interneurons that are believed to transmit nociceptive information. In this study, we have used a GRPR CreERT2 mouse line to identify and target cells that possess Grpr mRNA. We find that the GRPR cells are highly concentrated in lamina I and the outer part of lamina II, that they are all glutamatergic, and that they account for ∼15% of the excitatory neurons in the superficial dorsal horn. We had previously identified 6 neurochemically distinct excitatory interneuron populations in this region based on neuropeptide expression and the GRPR cells are largely separate from these, although they show some overlap with cells that express substance P. Anatomical analysis revealed that the GRPR neurons are indeed vertical cells, and that their axons target each other, as well as arborising in regions that contain projection neurons: lamina I, the lateral spinal nucleus, and the lateral part of lamina V. Surprisingly, given the proposed role of GRPR cells in itch, we found that most of the cells received monosynaptic input from Trpv1-expressing (nociceptive) afferents, that the majority responded to noxious and pruritic stimuli, and that chemogenetically activating them resulted in pain-related and itch-related behaviours. Together, these findings suggest that the GRPR cells are involved in spinal cord circuits that underlie both pain and itch.
Collapse
|
13
|
Nelson TS, Sinha GP, Santos DFS, Jukkola P, Prasoon P, Winter MK, McCarson KE, Smith BN, Taylor BK. Spinal neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic target for the alleviation of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2204515119. [PMID: 36343228 PMCID: PMC9674229 DOI: 10.1073/pnas.2204515119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ghanshyam P. Sinha
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Diogo F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Peter Jukkola
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ken E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
14
|
Nguyen E, Smith KM, Cramer N, Holland RA, Bleimeister IH, Flores-Felix K, Silberberg H, Keller A, Le Pichon CE, Ross SE. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 2022; 145:2586-2601. [PMID: 35598161 PMCID: PMC9612802 DOI: 10.1093/brain/awac189] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In perilous and stressful situations, the ability to suppress pain can be critical for survival. The rostral ventromedial medulla contains neurons that robustly inhibit nocioception at the level of the spinal cord through a top-down modulatory pathway. Although much is known about the role of the rostral ventromedial medulla in the inhibition of pain, the precise ability to directly manipulate pain-inhibitory neurons in the rostral ventromedial medulla has never been achieved. We now expose a cellular circuit that inhibits nocioception and itch in mice. Through a combination of molecular, tracing and behavioural approaches, we found that rostral ventromedial medulla neurons containing the kappa-opioid receptor inhibit itch and nocioception. With chemogenetic inhibition, we uncovered that these neurons are required for stress-induced analgesia. Using intersectional chemogenetic and pharmacological approaches, we determined that rostral ventromedial medulla kappa-opioid receptor neurons inhibit nocioception and itch through a descending circuit. Lastly, we identified a dynorphinergic pathway arising from the periaqueductal grey that modulates nociception within the rostral ventromedial medulla. These discoveries highlight a distinct population of rostral ventromedial medulla neurons capable of broadly and robustly inhibiting itch and nocioception.
Collapse
Affiliation(s)
- Eileen Nguyen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Ruby A Holland
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Krystal Flores-Felix
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Khalil R, Kallel S, Farhat A, Dlotko P. Topological Sholl descriptors for neuronal clustering and classification. PLoS Comput Biol 2022; 18:e1010229. [PMID: 35731804 PMCID: PMC9255741 DOI: 10.1371/journal.pcbi.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/05/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal morphology is a fundamental factor influencing information processing within neurons and networks. Dendritic morphology in particular can widely vary among cell classes, brain regions, and animal species. Thus, accurate quantitative descriptions allowing classification of large sets of neurons is essential for their structural and functional characterization. Current robust and unbiased computational methods that characterize groups of neurons are scarce. In this work, we introduce a novel technique to study dendritic morphology, complementing and advancing many of the existing techniques. Our approach is to conceptualize the notion of a Sholl descriptor and associate, for each morphological feature, and to each neuron, a function of the radial distance from the soma, taking values in a metric space. Functional distances give rise to pseudo-metrics on sets of neurons which are then used to perform the two distinct tasks of clustering and classification. To illustrate the use of Sholl descriptors, four datasets were retrieved from the large public repository https://neuromorpho.org/ comprising neuronal reconstructions from different species and brain regions. Sholl descriptors were subsequently computed, and standard clustering methods enhanced with detection and metric learning algorithms were then used to objectively cluster and classify each dataset. Importantly, our descriptors outperformed conventional morphometric techniques (L-Measure metrics) in several of the tested datasets. Therefore, we offer a novel and effective approach to the analysis of diverse neuronal cell types, and provide a toolkit for researchers to cluster and classify neurons.
Collapse
Affiliation(s)
- Reem Khalil
- American University of Sharjah, Department of Biology Chemistry and Environmental Sciences, Sharjah, United Arab Emirates
- * E-mail:
| | - Sadok Kallel
- American University of Sharjah, Department of Mathematics, Sharjah, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dlotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Wang H, Chen W, Dong Z, Xing G, Cui W, Yao L, Zou WJ, Robinson HL, Bian Y, Liu Z, Zhao K, Luo B, Gao N, Zhang H, Ren X, Yu Z, Meixiong J, Xiong WC, Mei L. A novel spinal neuron connection for heat sensation. Neuron 2022; 110:2315-2333.e6. [PMID: 35561677 DOI: 10.1016/j.neuron.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yaoyao Bian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Skorput AGJ, Gore R, Schorn R, Riedl MS, Marron Fernandez de Velasco E, Hadlich B, Kitto KF, Fairbanks CA, Vulchanova L. Targeting the somatosensory system with AAV9 and AAV2retro viral vectors. PLoS One 2022; 17:e0264938. [PMID: 35271639 PMCID: PMC8912232 DOI: 10.1371/journal.pone.0264938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated viral (AAV) vectors allow for site-specific and time-dependent genetic manipulation of neurons. However, for successful implementation of AAV vectors, major consideration must be given to the selection of viral serotype and route of delivery for efficient gene transfer into the cell type being investigated. Here we compare the transduction pattern of neurons in the somatosensory system following injection of AAV9 or AAV2retro in the parabrachial complex of the midbrain, the spinal cord dorsal horn, the intrathecal space, and the colon. Transduction was evaluated based on Cre-dependent expression of tdTomato in transgenic reporter mice, following delivery of AAV9 or AAV2retro carrying identical constructs that drive the expression of Cre/GFP. The pattern of distribution of tdTomato expression indicated notable differences in the access of the two AAV serotypes to primary afferent neurons via peripheral delivery in the colon and to spinal projections neurons via intracranial delivery within the parabrachial complex. Additionally, our results highlight the superior sensitivity of detection of neuronal transduction based on reporter expression relative to expression of viral products.
Collapse
Affiliation(s)
- Alexander G. J. Skorput
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Reshma Gore
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rachel Schorn
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Maureen S. Riedl
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Bailey Hadlich
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kelley F. Kitto
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carolyn A. Fairbanks
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ádám D, Arany J, Tóth KF, Tóth BI, Szöllősi AG, Oláh A. Opioidergic Signaling-A Neglected, Yet Potentially Important Player in Atopic Dermatitis. Int J Mol Sci 2022; 23:4140. [PMID: 35456955 PMCID: PMC9027603 DOI: 10.3390/ijms23084140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.
Collapse
Affiliation(s)
- Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Arany
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| |
Collapse
|
19
|
Gradwell MA, Boyle KA, Browne TJ, Bell AM, Leonardo J, Peralta Reyes FS, Dickie AC, Smith KM, Callister RJ, Dayas CV, Hughes DI, Graham BA. Diversity of inhibitory and excitatory parvalbumin interneuron circuits in the dorsal horn. Pain 2022; 163:e432-e452. [PMID: 34326298 PMCID: PMC8832545 DOI: 10.1097/j.pain.0000000000002422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Kieran A. Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tyler J. Browne
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Andrew M. Bell
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacklyn Leonardo
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernanda S. Peralta Reyes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kelly M. Smith
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J. Callister
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
20
|
Larsson M, Nagi SS. Role of C-tactile fibers in pain modulation: animal and human perspectives. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
22
|
Sykes MJ, Kekesi OS, Wong YT, Zhao FY, Spanswick D, Imlach WL. Neuron-specific responses to acetylcholine within the spinal dorsal horn circuits of rodent and primate. Neuropharmacology 2021; 198:108755. [PMID: 34416268 DOI: 10.1016/j.neuropharm.2021.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Excitatory and inhibitory neurotransmission within the spinal dorsal horn is tightly controlled to regulate transmission of nociceptive signals to the brain. One aspect of this control is modulation of neuronal activity through cholinergic signaling. Nociceptive neurons in the dorsal horn express both nicotinic and muscarinic cholinergic receptors and activation of these receptors reduces pain in humans, while inhibition leads to nociceptive hypersensitivity. At a cellular level, acetylcholine (ACh) has diverse effects on excitability which is dependent on the receptor and neuronal subtypes involved. In the present study we sought to characterize the electrophysiological responses of specific subsets of lamina II interneurons from rat and marmoset spinal cord. Neurons were grouped by morphology and by action potential firing properties. Whole-cell voltage-clamp recordings from lamina II dorsal horn neurons of adult rats showed that bath applied acetylcholine increased, decreased or had no effect on spontaneous synaptic current activity in a cell-type specific manner. ACh modulated inhibitory synaptic activity in 80% of neurons, whereas excitatory synaptic activity was affected in less than 50% of neurons. In whole-cell current clamp recordings, brief somatic application of ACh induced cell-type specific responses in 79% of rat lamina II neurons, which included: depolarization and action potential firing, subthreshold membrane depolarization, biphasic responses characterized by transient depolarization followed by hyperpolarization and membrane hyperpolarization alone. Similar responses were seen in marmoset lamina II neurons and the properties of each neuron group were consistent across species. ACh-induced hyperpolarization was blocked by the muscarinic antagonist atropine and all forms of acetylcholine-induced depolarization were blocked by the nicotinic antagonist mecamylamine. The cholinergic system plays an important role in regulating nociception and this study contributes to our understanding of how circuit activity is controlled by ACh at a cellular level in primate and rodent spinal cord.
Collapse
Affiliation(s)
- Matthew J Sykes
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia
| | - Orsolya S Kekesi
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia; Department of Electrical and Computer Systems Engineering, Melbourne, VIC, 3800, Australia
| | - Fei-Yue Zhao
- NeuroSolutions Ltd, Coventry, CV4 7AL, United Kingdom
| | - David Spanswick
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia; University of Warwick, Warwick Medical School, Coventry, CV4 7AL, United Kingdom
| | - Wendy L Imlach
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
23
|
Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line. Sci Rep 2021; 11:17912. [PMID: 34504158 PMCID: PMC8429737 DOI: 10.1038/s41598-021-97105-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50–60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.
Collapse
|
24
|
Löken LS, Braz JM, Etlin A, Sadeghi M, Bernstein M, Jewell M, Steyert M, Kuhn J, Hamel K, Llewellyn-Smith IJ, Basbaum A. Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. eLife 2021; 10:e59751. [PMID: 34061020 PMCID: PMC8245130 DOI: 10.7554/elife.59751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 05/29/2021] [Indexed: 11/13/2022] Open
Abstract
Primary sensory neurons are generally considered the only source of dorsal horn calcitonin gene-related peptide (CGRP), a neuropeptide critical to the transmission of pain messages. Using a tamoxifen-inducible CalcaCreER transgenic mouse, here we identified a distinct population of CGRP-expressing excitatory interneurons in lamina III of the spinal cord dorsal horn and trigeminal nucleus caudalis. These interneurons have spine-laden, dorsally directed, dendrites, and ventrally directed axons. As under resting conditions, CGRP interneurons are under tonic inhibitory control, neither innocuous nor noxious stimulation provoked significant Fos expression in these neurons. However, synchronous, electrical non-nociceptive Aβ primary afferent stimulation of dorsal roots depolarized the CGRP interneurons, consistent with their receipt of a VGLUT1 innervation. On the other hand, chemogenetic activation of the neurons produced a mechanical hypersensitivity in response to von Frey stimulation, whereas their caspase-mediated ablation led to mechanical hyposensitivity. Finally, after partial peripheral nerve injury, innocuous stimulation (brush) induced significant Fos expression in the CGRP interneurons. These findings suggest that CGRP interneurons become hyperexcitable and contribute either to ascending circuits originating in deep dorsal horn or to the reflex circuits in baseline conditions, but not in the setting of nerve injury.
Collapse
Affiliation(s)
- Line S Löken
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Joao M Braz
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Alexander Etlin
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Mahsa Sadeghi
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Mollie Bernstein
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Madison Jewell
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Marilyn Steyert
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Julia Kuhn
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Katherine Hamel
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Ida J Llewellyn-Smith
- Discipline of Physiology, Adelaide Medical School, University of AdelaideAdelaideAustralia
- Department of Cardiology, Flinders Medical CentreBedford ParkAustralia
| | - Allan Basbaum
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
25
|
|
26
|
Abstract
PURPOSE OF REVIEW The current review aims to update the important findings about molecular and cellular biology of mammalian bombesin-like peptides (BLPs) and their receptors. RECENT FINDINGS Recent identification of synaptic communication between gastrin-releasing peptide (GRP) neurons and GRP receptor (GRPR) neurons in spinal itch relay provides us novel insights into physiology of itch sensation. Neuromedin B (NMB) neurons were found to form connections with subcortical areas associated with arousal, hippocampal theta oscillation, and premotor processing and project to multiple downstream stations to regulate locomotion and hippocampal theta power. In addition to researches regarding the roles of BLPs and their receptors in central nervous system, recent findings reveal that NMB receptor is expressed on helminth-induced type 2 innate lymphoid cells and is regulated by basophils, suggesting an important function of NMB in helminth-induced immune responses. Bombesin transactivates epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and HER3 receptors on human nonsmall-cell lung cancer (NSCLC) cells and elicits downstream signaling cascades and induces formation of both human epidermal growthfactor receptor 3 (HER3)/EGFR and HER3/HER2 heterodimers. Several high-affinity ligands for bombesin receptors were characterized, providing useful tools in investigation of biological roles of those peptides and their receptors. SUMMARY The most exciting findings of BLPs and their receptors in the past year come from studies in central nervous system. In addition, more researches are still underway to probe the molecular mechanisms of those peptides in peripheral tissues and characterize novel synthetic ligands with high affinity for mammalian bombesin receptors.
Collapse
Affiliation(s)
- Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | |
Collapse
|
27
|
Sinha GP, Prasoon P, Smith BN, Taylor BK. Fast A-type currents shape a rapidly adapting form of delayed short latency firing of excitatory superficial dorsal horn neurons that express the neuropeptide Y Y1 receptor. J Physiol 2021; 599:2723-2750. [PMID: 33768539 DOI: 10.1113/jp281033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Neuropeptide Y Y1 receptor-expressing neurons in the dorsal horn of the spinal cord contribute to chronic pain. For the first time, we characterized the firing patterns of Y1-expressing neurons in Y1eGFP reporter mice. Under hyperpolarized conditions, most Y1eGFP neurons exhibited fast A-type potassium currents and delayed, short-latency firing (DSLF). Y1eGFP DSLF neurons were almost always rapidly adapting and often exhibited rebound spiking, characteristics of spinal pain neurons under the control of T-type calcium channels. These results will inspire future studies to determine whether tissue or nerve injury downregulates the channels that underlie A-currents, thus unmasking membrane hyperexcitability in Y1-expressing dorsal horn neurons, leading to persistent pain. ABSTRACT Neuroanatomical and behavioural evidence indicates that neuropeptide Y Y1 receptor-expressing interneurons (Y1-INs) in the superficial dorsal horn (SDH) are predominantly excitatory and contribute to chronic pain. Using an adult ex vivo spinal cord slice preparation from Y1eGFP reporter mice, we characterized firing patterns in response to steady state depolarizing current injection of GFP-positive cells in lamina II, the great majority of which expressed Y1 mRNA (88%). Randomly sampled (RS) and Y1eGFP neurons exhibited five firing patterns: tonic, initial burst, phasic, delayed short-latency <180 ms (DSLF) and delayed long-latency >180 ms (DLLF). When studied at resting membrane potential, most RS neurons exhibited delayed firing, while most Y1eGFP neurons exhibited phasic firing. A preconditioning membrane hyperpolarization produced only subtle changes in the firing patterns of RS neurons, but dramatically shifted Y1eGFP neurons to DSLF (46%) and DLLF (24%). In contrast to RS DSLF neurons, which rarely exhibited spike frequency adaptation, Y1eGFP DSLF neurons were almost always rapidly adapting, a characteristic of nociceptive-responsive SDH neurons. Rebound spiking was more prevalent in Y1eGFP neurons (6% RS vs. 32% Y1eGFP), indicating enrichment of T-type calcium currents. Y1eGFP DSLF neurons exhibited fast A-type potassium currents that are known to delay or limit action potential firing and exhibited smaller current density as compared to RS DSLF neurons. Our results will inspire future studies to determine whether tissue or nerve injury downregulates channels that contribute to A-currents, thus potentially unmasking T-type calcium channel activity and membrane hyperexcitability in Y1-INs, leading to persistent pain.
Collapse
Affiliation(s)
- Ghanshyam P Sinha
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Chen W, McRoberts JA, Ennes HS, Marvizon JC. cAMP signaling through protein kinase A and Epac2 induces substance P release in the rat spinal cord. Neuropharmacology 2021; 189:108533. [PMID: 33744339 DOI: 10.1016/j.neuropharm.2021.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022]
Abstract
Using neurokinin 1 receptor (NK1R) internalization to measure of substance P release in rat spinal cord slices, we found that it was induced by the adenylyl cyclase (AC) activator forskolin, by the protein kinase A (PKA) activators 6-Bnz-cAMP and 8-Br-cAMP, and by the activator of exchange protein activated by cAMP (Epac) 8-pCPT-2-O-Me-cAMP (CPTOMe-cAMP). Conversely, AC and PKA inhibitors decreased substance P release induced by electrical stimulation of the dorsal root. Therefore, the cAMP signaling pathway mediates substance P release in the dorsal horn. The effects of forskolin and 6-Bnz-cAMP were not additive with NMDA-induced substance P release and were decreased by the NMDA receptor blocker MK-801. In cultured dorsal horn neurons, forskolin increased NMDA-induced Ca2+ entry and the phosphorylation of the NR1 and NR2B subunits of the NMDA receptor. Therefore, cAMP-induced substance P release is mediated by the activating phosphorylation by PKA of NMDA receptors. Voltage-gated Ca2+ channels, but not by TRPV1 or TRPA1, also contributed to cAMP-induced substance P release. Activation of PKA was required for the effects of forskolin and the three cAMP analogs. Epac2 contributed to the effects of forskolin and CPTOMe-cAMP, signaling through a Raf - mitogen-activated protein kinase pathway to activate Ca2+ channels. Epac1 inhibitors induced NK1R internalization independently of substance P release. In rats with latent sensitization to pain, the effect of 6-Bnz-cAMP was unchanged, whereas the effect of forskolin was decreased due to the loss of the stimulatory effect of Epac2. Hence, substance P release induced by cAMP decreases during pain hypersensitivity.
Collapse
Affiliation(s)
- Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - James A McRoberts
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Helena S Ennes
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
29
|
Wang Z, Jiang C, Yao H, Chen O, Rahman S, Gu Y, Zhao J, Huh Y, Ji RR. Central opioid receptors mediate morphine-induced itch and chronic itch via disinhibition. Brain 2021; 144:665-681. [PMID: 33367648 DOI: 10.1093/brain/awaa430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 02/27/2024] Open
Abstract
Opioids such as morphine are mainstay treatments for clinical pain conditions. Itch is a common side effect of opioids, particularly as a result of epidural or intrathecal administration. Recent progress has advanced our understanding of itch circuits in the spinal cord. However, the mechanisms underlying opioid-induced itch are not fully understood, although an interaction between µ-opioid receptor (MOR) and gastrin-releasing peptide receptor (GRPR) in spinal GRPR-expressing neurons has been implicated. In this study we investigated the cellular mechanisms of intrathecal opioid-induced itch by conditional deletion of MOR-encoding Oprm1 in distinct populations of interneurons and sensory neurons. We found that intrathecal injection of the MOR agonists morphine or DAMGO elicited dose-dependent scratching as well as licking and biting, but this pruritus was totally abolished in mice with a specific Oprm1 deletion in Vgat+ neurons [Oprm1-Vgat (Slc32a1)]. Loss of MOR in somatostatin+ interneurons and TRPV1+ sensory neurons did not affect morphine-induced itch but impaired morphine-induced antinociception. In situ hybridization revealed Oprm1 expression in 30% of inhibitory and 20% of excitatory interneurons in the spinal dorsal horn. Whole-cell recordings from spinal cord slices showed that DAMGO induced outward currents in 9 of 19 Vgat+ interneurons examined. Morphine also inhibited action potentials in Vgat+ interneurons. Furthermore, morphine suppressed evoked inhibitory postsynaptic currents in postsynaptic Vgat- excitatory neurons, suggesting a mechanism of disinhibition by MOR agonists. Notably, morphine-elicited itch was suppressed by intrathecal administration of NPY and abolished by spinal ablation of GRPR+ neurons with intrathecal injection of bombesin-saporin, whereas intrathecal GRP-induced itch response remained intact in mice lacking Oprm1-Vgat. Intrathecal bombesin-saporin treatment reduced the number of GRPR+ neurons by 97% in the lumber spinal cord and 91% in the cervical spinal cord, without changing the number of Oprm1+ neurons. Additionally, chronic itch from DNFB-induced allergic contact dermatitis was decreased by Oprm1-Vgat deletion. Finally, naloxone, but not peripherally restricted naloxone methiodide, inhibited chronic itch in the DNFB model and the CTCL model, indicating a contribution of central MOR signalling to chronic itch. Our findings demonstrate that intrathecal morphine elicits itch via acting on MOR on spinal inhibitory interneurons, leading to disinhibition of the spinal itch circuit. Our data also provide mechanistic insights into the current treatment of chronic itch with opioid receptor antagonist such as naloxone.
Collapse
Affiliation(s)
- Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongyu Yao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sreya Rahman
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Cui F, Yin Q, Wu C, Shen M, Zhang Y, Ma C, Zhang H, Shen F. Capsaicin combined with ice stimulation improves swallowing function in patients with dysphagia after stroke: A randomised controlled trial. J Oral Rehabil 2020; 47:1297-1303. [PMID: 32757479 DOI: 10.1111/joor.13068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Feifei Cui
- ICU The First Affiliated Hospital of Soochow University Suzhou China
| | - Qingmei Yin
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Chao Wu
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Meifen Shen
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Yijie Zhang
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Chen Ma
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Haiying Zhang
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Fang Shen
- Department of Neurosurgery The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
31
|
Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog Neurobiol 2020; 196:101894. [PMID: 32777329 DOI: 10.1016/j.pneurobio.2020.101894] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Bell AM, Gutierrez-Mecinas M, Stevenson A, Casas-Benito A, Wildner H, West SJ, Watanabe M, Todd AJ. Expression of green fluorescent protein defines a specific population of lamina II excitatory interneurons in the GRP::eGFP mouse. Sci Rep 2020; 10:13176. [PMID: 32764601 PMCID: PMC7411045 DOI: 10.1038/s41598-020-69711-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
Dorsal horn excitatory interneurons that express gastrin-releasing peptide (GRP) are part of the circuit for pruritogen-evoked itch. They have been extensively studied in a transgenic line in which enhanced green fluorescent protein (eGFP) is expressed under control of the Grp gene. The GRP-eGFP cells are separate from several other neurochemically-defined excitatory interneuron populations, and correspond to a class previously defined as transient central cells. However, mRNA for GRP is widely distributed among excitatory interneurons in superficial dorsal horn. Here we show that although Grp mRNA is present in several transcriptomically-defined populations, eGFP is restricted to a discrete subset of cells in the GRP::eGFP mouse, some of which express the neuromedin receptor 2 and likely belong to a cluster defined as Glut8. We show that these cells receive much of their excitatory synaptic input from MrgA3/MrgD-expressing nociceptive/pruritoceptive afferents and C-low threshold mechanoreceptors. Although the cells were not innervated by pruritoceptors expressing brain natriuretic peptide (BNP) most of them contained mRNA for NPR1, the receptor for BNP. In contrast, these cells received only ~ 10% of their excitatory input from other interneurons. These findings demonstrate that the GRP-eGFP cells constitute a discrete population of excitatory interneurons with a characteristic pattern of synaptic input.
Collapse
Affiliation(s)
- Andrew M Bell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Maria Gutierrez-Mecinas
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Anna Stevenson
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Adrian Casas-Benito
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Steven J West
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Andrew J Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
33
|
Polgár E, Bell AM, Gutierrez-Mecinas M, Dickie AC, Akar O, Costreie M, Watanabe M, Todd AJ. Substance P-expressing Neurons in the Superficial Dorsal Horn of the Mouse Spinal Cord: Insights into Their Functions and their Roles in Synaptic Circuits. Neuroscience 2020; 450:113-125. [PMID: 32634530 PMCID: PMC7717171 DOI: 10.1016/j.neuroscience.2020.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
Substance P-expressing radial cells in lamina II receive half of their excitatory synaptic input from other interneurons. They are preferentially innervated by transient central cells that express eGFP in a GRP-eGFP mouse line. Around 40% of projection neurons in lamina I express Tac1, the gene for substance P. Silencing Tac1 cells in the dorsal horn reduces reflex responses to cold and radiant heat.
The tachykinin peptide substance P (SP) is expressed by many interneurons and some projection neurons in the superficial dorsal horn of the spinal cord. We have recently shown that SP-expressing excitatory interneurons in lamina II correspond largely to a morphological class known as radial cells. However, little is known about their function, or their synaptic connectivity. Here we use a modification of the Brainbow technique to define the excitatory synaptic input to SP radial cells. We show that around half of their excitatory synapses (identified by expression of Homer) are from boutons with VGLUT2, which are likely to originate mainly from local interneurons. The remaining synapses presumably include primary afferents, which generally have very low levels of VGLUT2. Our results also suggest that the SP cells are preferentially innervated by a population of excitatory interneurons defined by expression of green fluorescent protein under control of the gene for gastrin-releasing peptide, and that they receive sparser input from other types of excitatory interneuron. We show that around 40% of lamina I projection neurons express Tac1, the gene encoding substance P. Finally, we show that silencing Tac1-expressing cells in the dorsal horn results in a significant reduction in reflex responses to cold and radiant heat, but does not affect withdrawal to von Frey hairs, or chloroquine-evoked itch.
Collapse
Affiliation(s)
- Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew M Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Allen C Dickie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Oğuz Akar
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miruna Costreie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
34
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
35
|
Tran M, Braz JM, Hamel K, Kuhn J, Todd AJ, Basbaum AI. Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically induced modalities of pain and itch. J Comp Neurol 2020; 528:1629-1643. [PMID: 31872868 PMCID: PMC7317200 DOI: 10.1002/cne.24847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022]
Abstract
Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and chronic pain prevalence that women experience compared to men. Although previous studies revealed populations of estrogen receptor-expressing neurons in primary afferents and in superficial dorsal horn neurons, there is little to no information as to the contribution of these neurons to the generation of acute and chronic pain. Here we molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that express estrogen receptor α (ERα) and explored the behavioral consequences of their ablation. We found that spinal ERα-positive neurons are largely excitatory interneurons and many coexpress substance P, a marker for a discrete subset of nociceptive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-expressing cells, we observed a significant decrease in the first phase of the formalin test, but in male mice only. ERα-expressing neuron-ablation also reduced pruritogen-induced scratching in both male and female mice. There were no ablation-related changes in mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior. In chronic pain models, we found no change in Complete Freund's adjuvant-induced thermal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that are specifically involved in chemically evoked persistent pain and pruritogen-induced itch.
Collapse
Affiliation(s)
- May Tran
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Joao Manuel Braz
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Katherine Hamel
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Julia Kuhn
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Allan I. Basbaum
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
36
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Pradier B, McCormick SJ, Tsuda AC, Chen RW, Atkinson AL, Westrick MR, Buckholtz CL, Kauer JA. Properties of neurons in the superficial laminae of trigeminal nucleus caudalis. Physiol Rep 2020; 7:e14112. [PMID: 31215180 PMCID: PMC6581829 DOI: 10.14814/phy2.14112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
The trigeminal nucleus caudalis (TNc) receives extensive afferent innervation from peripheral sensory neurons of the trigeminal ganglion (TG), and is the first central relay in the circuitry underpinning orofacial pain. Despite the initial characterization of the neurons in the superficial laminae, many questions remain. Here we report on electrophysiological properties of 535 superficial lamina I/II TNc neurons. Based on their firing pattern, we assigned these cells to five main groups, including (1) tonic, (2) phasic, (3) delayed, (4) H‐current, and (5) tonic‐phasic neurons, groups that exhibit distinct intrinsic properties and share some similarity with groups identified in the spinal dorsal horn. Driving predominantly nociceptive TG primary afferents using optogenetic stimulation in TRPV1/ChR2 animals, we found that tonic and H‐current cells are most likely to receive pure monosynaptic input, whereas delayed neurons are more likely to exhibit inputs that appear polysynaptic. Finally, for the first time in TNc neurons, we used unsupervised clustering analysis methods and found that the kinetics of the action potentials and other intrinsic properties of these groups differ significantly from one another. Unsupervised spectral clustering based solely on a single voltage response to rheobase current was sufficient to group cells with shared properties independent of action potential discharge pattern, indicating that this approach can be effectively applied to identify functional neuronal subclasses. Together, our data illustrate that cells in the TNc with distinct patterns of TRPV1/ChR2 afferent innervation are physiologically diverse, but can be understood as a few major groups of cells having shared functional properties.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Samuel J McCormick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Ayumi C Tsuda
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Rudy W Chen
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Abigail L Atkinson
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Mollie R Westrick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Caroline L Buckholtz
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Julie A Kauer
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
38
|
Browne TJ, Gradwell MA, Iredale JA, Madden JF, Callister RJ, Hughes DI, Dayas CV, Graham BA. Transgenic Cross-Referencing of Inhibitory and Excitatory Interneuron Populations to Dissect Neuronal Heterogeneity in the Dorsal Horn. Front Mol Neurosci 2020; 13:32. [PMID: 32362812 PMCID: PMC7180513 DOI: 10.3389/fnmol.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
The superficial dorsal horn (SDH, LI-II) of the spinal cord receives and processes multimodal sensory information from skin, muscle, joints, and viscera then relay it to the brain. Neurons within the SDH fall into two broad categories, projection neurons and interneurons. The later can be further subdivided into excitatory and inhibitory types. Traditionally, interneurons within the SDH have been divided into overlapping groups according to their neurochemical, morphological and electrophysiological properties. Recent clustering analyses, based on molecular transcript profiles of cells and nuclei, have predicted many more functional groups of interneurons than expected using traditional approaches. In this study, we used electrophysiological and morphological data obtained from genetically-identified excitatory (vGLUT2) and inhibitory (vGAT) interneurons in transgenic mice to cluster cells into groups sharing common characteristics and subsequently determined how many clusters can be assigned by combinations of these properties. Consistent with previous reports, we show differences exist between excitatory and inhibitory interneurons in terms of their excitability, nature of the ongoing excitatory drive, action potential (AP) properties, sub-threshold current kinetics, and morphology. The resulting clusters based on statistical and unbiased assortment of these data fell well short of the numbers of molecularly predicted clusters. There was no clear characteristic that in isolation defined a population, rather multiple variables were needed to predict cluster membership. Importantly though, our analysis highlighted the appropriateness of using transgenic lines as tools to functionally subdivide both excitatory and inhibitory interneuron populations.
Collapse
Affiliation(s)
- Tyler J. Browne
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Mark A. Gradwell
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Jacqueline A. Iredale
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Jessica F. Madden
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Robert J. Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher V. Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| |
Collapse
|
39
|
Bardoni R. Serotonergic Modulation of Nociceptive Circuits in Spinal Cord Dorsal Horn. Curr Neuropharmacol 2020; 17:1133-1145. [PMID: 31573888 PMCID: PMC7057206 DOI: 10.2174/1570159x17666191001123900] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Despite the extensive number of studies performed in the last 50 years, aimed at describing the role of serotonin and its receptors in pain modulation at the spinal cord level, several aspects are still not entirely understood. The interpretation of these results is often complicated by the use of different pain models and animal species, together with the lack of highly selective agonists and antagonists binding to serotonin receptors. Method: In this review, a search has been conducted on studies investigating the modulatory action exerted by serotonin on specific neurons and circuits in the spinal cord dorsal horn. Particular attention has been paid to studies employing electro-physiological techniques, both in vivo and in vitro. Conclusion: The effects of serotonin on pain transmission in dorsal horn depend on several factors, including the type of re-ceptors activated and the populations of neurons involved. Recently, studies performed by activating and/or recording from identified neurons have importantly contributed to the understanding of serotonergic modulation on dorsal horn circuits.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| |
Collapse
|
40
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
41
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
42
|
Gomes FIF, Cunha FQ, Cunha TM. Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 2020; 176:113862. [PMID: 32081790 DOI: 10.1016/j.bcp.2020.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Pain is a classical sign of inflammation, and sensitization of primary sensory neurons (PSN) is the most important mediating mechanism. This mechanism involves direct action of inflammatory mediators such as prostaglandins and sympathetic amines. Pharmacologic control of inflammatory pain is based on two principal strategies: (i) non-steroidal anti-inflammatory drugs targeting inhibition of prostaglandin production by cyclooxygenases and preventing nociceptor sensitization in humans and animals; (ii) opioids and dipyrone that directly block nociceptor sensitization via activation of the NO signaling pathway. This review summarizes basic concepts of inflammatory pain that are necessary to understand the mechanisms of peripheral NO signaling that promote peripheral analgesia; we also discuss therapeutic perspectives based on the modulation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Isaac F Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
43
|
Pereira M, Birtele M, Rylander Ottosson D. Direct reprogramming into interneurons: potential for brain repair. Cell Mol Life Sci 2019; 76:3953-3967. [PMID: 31250034 PMCID: PMC6785593 DOI: 10.1007/s00018-019-03193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
The brain tissue has only a limited capacity for generating new neurons. Therefore, to treat neurological diseases, there is a need of other cell sources for brain repair. Different sources of cells have been subject of intense research over the years, including cells from primary tissue, stem cell-derived cells and reprogrammed cells. As an alternative, direct reprogramming of resident brain cells into neurons is a recent approach that could provide an attractive method for treating brain injuries or diseases as it uses the patient's own cells for generating novel neurons inside the brain. In vivo reprogramming is still in its early stages but holds great promise as an option for cell therapy. To date, both inhibitory and excitatory neurons have been obtained via in vivo reprogramming, but the precise phenotype or functionality of these cells has not been analysed in detail in most of the studies. Recent data shows that in vivo reprogrammed neurons are able to functionally mature and integrate into the existing brain circuitry, and compose interneuron phenotypes that seem to correlate to their endogenous counterparts. Interneurons are of particular importance as they are essential in physiological brain function and when disturbed lead to several neurological disorders. In this review, we describe a comprehensive overview of the existing studies involving brain repair, including in vivo reprogramming, with a focus on interneurons, along with an overview on current efforts to generate interneurons for cell therapy for a number of neurological diseases.
Collapse
Affiliation(s)
- Maria Pereira
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden.
| |
Collapse
|
44
|
Gutierrez-Mecinas M, Bell A, Polgár E, Watanabe M, Todd AJ. Expression of Neuropeptide FF Defines a Population of Excitatory Interneurons in the Superficial Dorsal Horn of the Mouse Spinal Cord that Respond to Noxious and Pruritic Stimuli. Neuroscience 2019; 416:281-293. [PMID: 31421202 PMCID: PMC6839401 DOI: 10.1016/j.neuroscience.2019.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
The great majority of neurons in the superficial dorsal horn of the spinal cord are excitatory interneurons, and these are required for the normal perception of pain and itch. We have previously identified 5 largely non-overlapping populations among these cells, based on the expression of four different neuropeptides (cholecystokinin, neurotensin, neurokinin B and substance P) and of green fluorescent protein driven by the promoter for gastrin-releasing peptide (GRP) in a transgenic mouse line. Another peptide (neuropeptide FF, NPFF) has been identified among the excitatory neurons, and here we have used an antibody against the NPFF precursor (pro-NPFF) and a probe that recognises Npff mRNA to identify and characterise these cells. We show that they are all excitatory interneurons, and are separate from the five populations listed above, accounting for ~ 6% of the excitatory neurons in laminae I-II. By examining phosphorylation of extracellular signal-regulated kinases, we show that the NPFF cells can respond to different types of noxious and pruritic stimulus. Ablation of somatostatin-expressing dorsal horn neurons has been shown to result in a dramatic reduction in mechanical pain sensitivity, while somatostatin released from these neurons is thought to contribute to itch. Since the great majority of the NPFF cells co-expressed somatostatin, these cells may play a role in the perception of pain and itch. NPFF is expressed by around 6% of the excitatory interneurons in the superficial dorsal horn of the mouse spinal cord. NPFF cells differ from those that express substance P, cholecystokinin, neurotensin or neurokinin B. Although some NPFF cells express gastrin-releasing peptide (GRP), they do not express GFP in a GRP-GFP mouse line. Some NPFF cells are activated by noxious or pruritic stimuli.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
45
|
Marvizon JC, Chen W, Fu W, Taylor BK. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019; 158:107732. [PMID: 31377198 DOI: 10.1016/j.neuropharm.2019.107732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.
Collapse
Affiliation(s)
- Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Gutierrez‐Mecinas M, Bell AM, Shepherd F, Polgár E, Watanabe M, Furuta T, Todd AJ. Expression of cholecystokinin by neurons in mouse spinal dorsal horn. J Comp Neurol 2019; 527:1857-1871. [PMID: 30734936 PMCID: PMC6563475 DOI: 10.1002/cne.24657] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/22/2022]
Abstract
Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non-overlapping populations in laminae I-III, based on expression of substance P, gastrin-releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae. Here, we have used immunocytochemistry and in situ hybridization to characterize the CCK cells. We show that they account for ~7% of excitatory neurons in laminae I-II, but between a third and a quarter of those in lamina III. They are largely separate from the neurokinin B, neurotensin, and gastrin-releasing peptide populations, but show limited overlap with the substance P cells. Laminae II-III neurons with protein kinase Cγ (PKCγ) have been implicated in mechanical allodynia following nerve injury, and we found that around 50% of CCK cells were PKCγ-immunoreactive. Neurotensin is also expressed by PKCγ cells, and among neurons with moderate to high levels of PKCγ, ~85% expressed CCK or neurotensin. A recent transcriptomic study identified mRNA for thyrotropin-releasing hormone in a specific subpopulation of CCK neurons, and we show that these account for half of the CCK/PKCγ cells. These findings indicate that the CCK cells are distinct from other excitatory interneuron populations that we have defined. They also show that PKCγ cells can be assigned to different classes based on neuropeptide expression, and it will be important to determine the differential contribution of these classes to neuropathic allodynia.
Collapse
Affiliation(s)
- Maria Gutierrez‐Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Andrew M. Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Fraser Shepherd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Masahiko Watanabe
- Department of AnatomyHokkaido University School of MedicineSapporoJapan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of DentistryOsaka UniversityOsakaJapan
| | - Andrew J. Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
47
|
Wang X, Yvone GM, Cilluffo M, Kim AS, Basbaum AI, Phelps PE. Mispositioned Neurokinin-1 Receptor-Expressing Neurons Underlie Heat Hyperalgesia in Disabled-1 Mutant Mice. eNeuro 2019; 6:ENEURO.0131-19.2019. [PMID: 31122949 PMCID: PMC6584071 DOI: 10.1523/eneuro.0131-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 11/30/2022] Open
Abstract
Reelin (Reln) and Disabled-1 (Dab1) participate in the Reln-signaling pathway and when either is deleted, mutant mice have the same spinally mediated behavioral abnormalities, increased sensitivity to noxious heat and a profound loss in mechanical sensitivity. Both Reln and Dab1 are highly expressed in dorsal horn areas that receive and convey nociceptive information, Laminae I-II, lateral Lamina V, and the lateral spinal nucleus (LSN). Lamina I contains both projection neurons and interneurons that express Neurokinin-1 receptors (NK1Rs) and they transmit information about noxious heat both within the dorsal horn and to the brain. Here, we ask whether the increased heat nociception in Reln and dab1 mutants is due to incorrectly positioned dorsal horn neurons that express NK1Rs. We found more NK1R-expressing neurons in Reln-/- and dab1-/- Laminae I-II than in their respective wild-type mice, and some NK1R neurons co-expressed Dab1 and the transcription factor Lmx1b, confirming their excitatory phenotype. Importantly, heat stimulation in dab1-/- mice induced Fos in incorrectly positioned NK1R neurons in Laminae I-II. Next, we asked whether these ectopically placed and noxious-heat responsive NK1R neurons participated in pain behavior. Ablation of the superficial NK1Rs with an intrathecal injection of a substance P analog conjugated to the toxin saporin (SSP-SAP) eliminated the thermal hypersensitivity of dab1-/- mice, without altering their mechanical insensitivity. These results suggest that ectopically positioned NK1R-expressing neurons underlie the heat hyperalgesia of Reelin-signaling pathway mutants, but do not contribute to their profound mechanical insensitivity.
Collapse
Affiliation(s)
- Xidao Wang
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, CA 94158
| | - Griselda M Yvone
- Department of Integrative Biology and Physiology UCLA, Los Angeles, Los Angeles, CA 90095
| | - Marianne Cilluffo
- Department of Integrative Biology and Physiology UCLA, Los Angeles, Los Angeles, CA 90095
| | - Ashley S Kim
- Department of Integrative Biology and Physiology UCLA, Los Angeles, Los Angeles, CA 90095
| | - Allan I Basbaum
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, CA 94158
| | - Patricia E Phelps
- Department of Integrative Biology and Physiology UCLA, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
48
|
Pagani M, Albisetti GW, Sivakumar N, Wildner H, Santello M, Johannssen HC, Zeilhofer HU. How Gastrin-Releasing Peptide Opens the Spinal Gate for Itch. Neuron 2019; 103:102-117.e5. [PMID: 31103358 PMCID: PMC6616317 DOI: 10.1016/j.neuron.2019.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output. Spinal itch relay requires effective communication from GRP to GRP receptor neurons Single action potentials in GRP neurons fail to release sufficient GRP Only burst firing releases enough GRP to prime GRP receptor neurons for activation GRP acts as a volume transmitter probably explaining why itch is hard to localize
Collapse
Affiliation(s)
- Martina Pagani
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Drug Discovery Network Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8090 Zurich, Switzerland.
| |
Collapse
|
49
|
Neuronal diversity in the somatosensory system: bridging the gap between cell type and function. Curr Opin Neurobiol 2019; 56:167-174. [PMID: 30953870 DOI: 10.1016/j.conb.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
A recent flurry of genetic studies in mice have provided key insights into how the somatosensory system is organized at a cellular level to encode itch, pain, temperature, and touch. These studies are largely predicated on the idea that functional cell types can be identified by their unique developmental provenance and gene expression profile. However, the extent to which gene expression profiles can be correlated with functional cell types and circuit organization remains an open question. In this review, we focus on recent progress in characterizing the sensory afferent and dorsal horn neuron cell types that process cutaneous somatosensory information and ongoing circuit studies that are beginning to bridge the divide between cell type and function.
Collapse
|
50
|
Albisetti GW, Pagani M, Platonova E, Hösli L, Johannssen HC, Fritschy JM, Wildner H, Zeilhofer HU. Dorsal Horn Gastrin-Releasing Peptide Expressing Neurons Transmit Spinal Itch But Not Pain Signals. J Neurosci 2019; 39:2238-2250. [PMID: 30655357 PMCID: PMC6433763 DOI: 10.1523/jneurosci.2559-18.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrin-releasing peptide (GRP) is a spinal itch transmitter expressed by a small population of dorsal horn interneurons (GRP neurons). The contribution of these neurons to spinal itch relay is still only incompletely understood, and their potential contribution to pain-related behaviors remains controversial. Here, we have addressed this question in a series of experiments performed in GRP::cre and GRP::eGFP transgenic male mice. We combined behavioral tests with neuronal circuit tracing, morphology, chemogenetics, optogenetics, and electrophysiology to obtain a more comprehensive picture. We found that GRP neurons form a rather homogeneous population of central cell-like excitatory neurons located in lamina II of the superficial dorsal horn. Multicolor high-resolution confocal microscopy and optogenetic experiments demonstrated that GRP neurons receive direct input from MrgprA3-positive pruritoceptors. Anterograde HSV-based neuronal tracing initiated from GRP neurons revealed ascending polysynaptic projections to distinct areas and nuclei in the brainstem, midbrain, thalamus, and the somatosensory cortex. Spinally restricted ablation of GRP neurons reduced itch-related behaviors to different pruritogens, whereas their chemogenetic excitation elicited itch-like behaviors and facilitated responses to several pruritogens. By contrast, responses to painful stimuli remained unaltered. These data confirm a critical role of dorsal horn GRP neurons in spinal itch transmission but do not support a role in pain.SIGNIFICANCE STATEMENT Dorsal horn gastrin-releasing peptide neurons serve a well-established function in the spinal transmission of pruritic (itch) signals. A potential role in the transmission of nociceptive (pain) signals has remained controversial. Our results provide further support for a critical role of dorsal horn gastrin-releasing peptide neurons in itch circuits, but we failed to find evidence supporting a role in pain.
Collapse
Affiliation(s)
- Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| | - Martina Pagani
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| | - Evgenia Platonova
- Center for Microscopy and Image Analysis, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland,
- Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
- Drug Discovery Network Zurich, CH-8057 Zurich, Switzerland, and
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, CH-8090 Zurich, Switzerland
| |
Collapse
|