1
|
Han DS, Lin JH, Hung CH, Huang S, Chen JY, Chiang YH, Chiu HY, Chou LW, Hsieh CT, Huang MC, Huang WL, Kang JH, Lee HH, Lin CS, Lin CM, Lin CP, Lin YT, Liu YC, Ro LS, Shen CC, Su LIW, Su YJ, Sun JM, Sung JY, Tsai RK, Wang ML, Wen YR, Weng HJ, Wu MS, Yu YW, Hsieh ST, Wang SJ, Sun WZ, Chen CC. The definition of sng: The expert consensus by the sng taxonomy Task force of the Taiwan sng Society. J Formos Med Assoc 2025:S0929-6646(25)00185-8. [PMID: 40287370 DOI: 10.1016/j.jfma.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
"Sng" is a Taiwanese term describing a distinct state of soreness. Accumulating evidence indicates that sng is a specific somatosensory modality, independent of pain, with distinct receptors and transduction pathways. In recent years, variations in its presentation across different medical specialties have highlighted the need for a standardized definition of sng-related terminology. To address this, the Taiwan Sng Society established a multidisciplinary Sng Taxonomy Task Force, comprising 32 experts in both clinical and basic sciences related to sng. Here we summarize the discussions and expert consensus from the Task Force. A total of 16 sng-related terminology was defined. The first edition of sng terminology aims to establish a clear, standardized framework for the clinical practice and research of sng.
Collapse
Affiliation(s)
- Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Beihu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiann-Her Lin
- Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shuping Huang
- Department of Foreign Languages and Literature, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yung-Hsiao Chiang
- Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yean Chiu
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Wei Chou
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; Department of Physical Medicine and Rehabilitation, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Cheng-Ta Hsieh
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan; School of Medicine, National Tsing-Hua University, Hsinchu, Taiwan; Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Shu Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Min Lin
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Ministry of Health and Welfare Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Chih-Peng Lin
- Department of Anesthesiology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tung Lin
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Chin Liu
- Department of Anesthesiology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Anesthesiology, School of Post-Baccalaureate, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Lily I-Wen Su
- Graduate Institute of Linguistics, National Taiwan University, Taipei, Taiwan
| | - Yu-Jih Su
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Ming Sun
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, Taiwan; Department of Nursing, School of Nursing, Fooyin University, Kaohsiung City, Taiwan
| | - Jia-Ying Sung
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Man-Ling Wang
- Department of Anesthesiology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeong-Ray Wen
- Chun Chuan Orthopedic and Pain Specialty Hospital, Taichung, Taiwan
| | - Hao-Jui Weng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, Pain Management Center, Cathay General Hospital, Taipei, Taiwan; Health Science & Wellness Center, National Taiwan University, Taipei, Taiwan.
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Ghitani N, von Buchholtz LJ, MacDonald DI, Falgairolle M, Nguyen MQ, Licholai JA, Ryba NJP, Chesler AT. A distributed coding logic for thermosensation and inflammatory pain. Nature 2025:10.1038/s41586-025-08875-6. [PMID: 40269164 DOI: 10.1038/s41586-025-08875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Somatosensory neurons encode detailed information about touch and temperature and are the peripheral drivers of pain1,2. Here by combining functional imaging with multiplexed in situ hybridization3, we determined how heat and mechanical stimuli are encoded across neuronal classes and how inflammation transforms this representation to induce heat hypersensitivity, mechanical allodynia and continuing pain. Our data revealed that trigeminal neurons innervating the cheek exhibited complete segregation of responses to gentle touch and heat. By contrast, heat and noxious mechanical stimuli broadly activated nociceptor classes, including cell types proposed to trigger select percepts and behaviours4-6. Injection of the inflammatory mediator prostaglandin E2 caused long-lasting activity and thermal sensitization in select classes of nociceptors, providing a cellular basis for continuing inflammatory pain and heat hypersensitivity. We showed that the capsaicin receptor TRPV1 (ref. 7) has a central role in heat sensitization but not in spontaneous nociceptor activity. Unexpectedly, the responses to mechanical stimuli were minimally affected by inflammation, suggesting that tactile allodynia results from the continuing firing of nociceptors coincident with touch. Indeed, we have demonstrated that nociceptor activity is both necessary and sufficient for inflammatory tactile allodynia. Together, these findings refine models of sensory coding and discrimination at the cellular and molecular levels, demonstrate that touch and temperature are broadly but differentially encoded across transcriptomically distinct populations of sensory cells and provide insight into how cellular-level responses are reshaped by inflammation to trigger diverse aspects of pain.
Collapse
Affiliation(s)
- Nima Ghitani
- National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | | | | | | | - Minh Q Nguyen
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Julia A Licholai
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Nicholas J P Ryba
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA.
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, Bethesda, MD, USA.
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
3
|
Tezanos P, Trejo JL. Why are threatening experiences remembered so well? Insights into memory strengthening from protocols of gradual aversive learning. Neurosci Biobehav Rev 2025:106145. [PMID: 40250543 DOI: 10.1016/j.neubiorev.2025.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Aversive experiences often result in strong and persistent memory traces, which can sometimes lead to conditions such as Post-Traumatic Stress Disorder or phobias. Aversive stimulation tests are key tools in psychology and neuroscience for studying learning and memory. These tests typically use electric shocks as the unconditioned stimulus, allowing for precise control over the aversive content of the learning event. This feature has led to extensive research applying these tests with varying shock intensities to examine differences in learning, behavior, and memory formation between low- and high-aversive experiences. This line of research is particularly valuable for understanding the neurobiology underlying memory strengthening, but, to our knowledge, no review has yet compiled and organized the findings from this specific methodology. In this comprehensive review, we focus primarily on animal studies that have employed the same aversive test (i.e. Fear Conditioning, Passive Avoidance, Active Avoidance or Operant boxes) at different intensities. We will first outline and briefly describe the main aversive learning paradigms used in this field. Next, we will examine the relationship between aversiveness and memory strength. Finally, we will explore the neurobiological insights these studies have revealed over the years. Our aim is to gain a better understanding of how the nervous system gradually strengthens memory, while also addressing the remaining gaps and challenges in this area of research.
Collapse
Affiliation(s)
- P Tezanos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid 28002, Spain
| | - J L Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| |
Collapse
|
4
|
Zhang MD, Kupari J, Su J, Magnusson KA, Hu Y, Calvo-Enrique L, Usoskin D, Albisetti GW, Ceder MM, Henriksson K, Leavitt AD, Zeilhofer HU, Hökfelt T, Lagerström MC, Ernfors P. Neural ensembles that encode nocifensive mechanical and heat pain in mouse spinal cord. Nat Neurosci 2025:10.1038/s41593-025-01921-6. [PMID: 40128392 DOI: 10.1038/s41593-025-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Acute pain is an unpleasant experience caused by noxious stimuli. How the spinal neural circuits attribute differences in quality of noxious information remains unknown. By means of genetic capturing, activity manipulation and single-cell RNA sequencing, we identified distinct neural ensembles in the adult mouse spinal cord encoding mechanical and heat pain. Reactivation or silencing of these ensembles potentiated or stopped, respectively, paw shaking, lifting and licking within but not across the stimuli modalities. Within ensembles, polymodal Gal+ inhibitory neurons with monosynaptic contacts to A-fiber sensory neurons gated pain transmission independent of modality. Peripheral nerve injury led to inferred microglia-driven inflammation and an ensemble transition with decreased recruitment of Gal+ inhibitory neurons and increased excitatory drive. Forced activation of Gal+ neurons reversed hypersensitivity associated with neuropathy. Our results reveal the existence of a spinal representation that forms the neural basis of the discriminative and defensive qualities of acute pain, and these neurons are under the control of a shared feed-forward inhibition.
Collapse
Affiliation(s)
- Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Kupari
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - Dmitry Usoskin
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andrew D Leavitt
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2025; 33:196-206. [PMID: 39374825 PMCID: PMC11757073 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Sodmann A, Degenbeck J, Aue A, Schindehütte M, Schlott F, Arampatzi P, Bischler T, Schneider M, Brack A, Monoranu CM, Gräfenhan T, Bohnert M, Pham M, Antoniadis G, Blum R, Rittner HL. Human dorsal root ganglia are either preserved or completely lost after deafferentation by brachial plexus injury. Br J Anaesth 2024; 133:1250-1262. [PMID: 39393999 PMCID: PMC11589459 DOI: 10.1016/j.bja.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Plexus injury results in lifelong suffering from flaccid paralysis, sensory loss, and intractable pain. For this clinical problem, regenerative medicine concepts set high expectations. However, it is largely unknown how dorsal root ganglia (DRG) are affected by accidental deafferentation. METHODS Here, we phenotyped DRG of a clinically and MRI-characterised cohort of 13 patients with plexus injury. Avulsed DRG were collected during reconstructive nerve surgery. For control, we used DRG from forensic autopsy. The cellular composition of the DRG was analysed in histopathological slices with multicolour high-resolution immunohistochemistry, tile microscopy, and deep-learning-based bioimage analysis. We then sequenced the bulk RNA of corresponding DRG slices. RESULTS In about half of the patients we found loss of the typical DRG units consisting of neurones and satellite glial cells. The DRG cells were replaced by mesodermal/connective tissue. In the remaining patients, the cellular units were well preserved. Preoperative plexus MRI neurography was not able to distinguish the two types. Patients with 'neuronal preservation' had less maximum pain than patients with 'neuronal loss'. Arm function improved after nerve reconstruction, but severe pain persisted. Transcriptome analysis of preserved DRGs revealed expression of subtype-specific sensory neurone marker genes, but downregulation of neuronal attributes. Furthermore, they showed signs of ongoing inflammation and connective tissue remodelling. CONCLUSIONS Patients with plexus injury separate into two groups with either neuronal preservation or neuronal loss. The former could benefit from anti-inflammatory therapy. For the latter, studies should explore mechanisms of neuronal loss especially for regenerative approaches. CLINICAL TRIAL REGISTRATION DRKS00017266.
Collapse
Affiliation(s)
- Annemarie Sodmann
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Magnus Schindehütte
- Institute of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Felicitas Schlott
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Max Schneider
- Department of Neurosurgery, Peripheral Nerve Surgery Unit, University of Ulm, Günzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Institute of Pathology, Section Neuropathology, University of Würzburg, Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Mirko Pham
- Institute of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Gregor Antoniadis
- Department of Neurosurgery, Peripheral Nerve Surgery Unit, University of Ulm, Günzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Heike L Rittner
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Hakim S, Jain A, Woolf CJ. Immune drivers of pain resolution and protection. Nat Immunol 2024; 25:2200-2208. [PMID: 39528810 DOI: 10.1038/s41590-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.
Collapse
Affiliation(s)
- Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Motzkin JC, Basbaum AI, Crowther AJ. Neuroanatomy of the nociceptive system: From nociceptors to brain networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:1-39. [PMID: 39580210 DOI: 10.1016/bs.irn.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain. We also describe neuropathic pain conditions, in which nociceptive processing is abnormal, not only because of the primary effects of a lesion or disease affecting peripheral nerves or the central nervous system (CNS), but also due to secondary effects on ascending pathways and brain networks. We discuss how the anatomical components (circuits/networks) reorganize under various etiologies of neuropathic pain and how these changes can give rise to pathological pain states.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology and Department Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Andrew J Crowther
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Philbrook A, O’Donnell MP, Grunenkovaite L, Sengupta P. Cilia structure and intraflagellar transport differentially regulate sensory response dynamics within and between C. elegans chemosensory neurons. PLoS Biol 2024; 22:e3002892. [PMID: 39591402 PMCID: PMC11593760 DOI: 10.1371/journal.pbio.3002892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa, here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in Caenorhabditis elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the AWA cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
Affiliation(s)
- Alison Philbrook
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, Yale University, Connecticut, United States of America
| | - Laura Grunenkovaite
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
10
|
Ständer S, Schmelz M. Skin Innervation. J Invest Dermatol 2024; 144:1716-1723. [PMID: 38402477 DOI: 10.1016/j.jid.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 02/26/2024]
Abstract
All layers and appendages of the skin are densely innervated by afferent and efferent neurons providing sensory information and controlling skin perfusion and sweating. In mice, neuronal functions have been comprehensively linked to unique single-cell expression patterns and to characteristic arborization of nerve endings in skin and dorsal horn, whereas for humans, specific molecular markers for functional classes of afferent neurons are still lacking. Moreover, bidirectional communication between sensory neurons and local skin cells has become of particular interest, resulting in a broader physiological understanding of sensory function but also of trophic functions and immunomodulation in disease states.
Collapse
Affiliation(s)
- Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital, Münster, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
11
|
Olausson H, Marshall A, Nagi SS, Cole J. Slow touch and ultrafast pain fibres: Revisiting peripheral nerve classification. Clin Neurophysiol 2024; 163:255-262. [PMID: 38704307 DOI: 10.1016/j.clinph.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
One hundred years ago, Erlanger and Gasser demonstrated that conduction velocity is correlated with the diameter of a peripheral nerve axon. Later, they also demonstrated that the functional role of the axon is related to its diameter: touch is signalled by large-diameter axons, whereas pain and temperature are signalled by small-diameter axons. Certain discoveries in recent decades prompt a modification of this canonical classification. Here, we review the evidence for unmyelinated (C) fibres signalling touch at a slow conduction velocity and likely contributing to affective aspects of tactile information. We also review the evidence for large-diameter Aβ afferents signalling pain at ultrafast conduction velocity and likely contributing to the rapid nociceptive withdrawal reflex. These discoveries imply that conduction velocity is not as clear-cut an indication of the functional role of the axon as previously thought. We finally suggest that a future taxonomy of the peripheral afferent nervous system might be based on the combination of the axońs molecular expression and electrophysiological response properties.
Collapse
Affiliation(s)
- Håkan Olausson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden.
| | - Andrew Marshall
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Saad S Nagi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Jonathan Cole
- University Hospitals, Dorset and Bournemouth University, Poole BH12 5BB, UK
| |
Collapse
|
12
|
Jain A, Gyori BM, Hakim S, Jain A, Sun L, Petrova V, Bhuiyan SA, Zhen S, Wang Q, Kawaguchi R, Bunga S, Taub DG, Ruiz-Cantero MC, Tong-Li C, Andrews N, Kotoda M, Renthal W, Sorger PK, Woolf CJ. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat Immunol 2024; 25:1296-1305. [PMID: 38806708 PMCID: PMC11224023 DOI: 10.1038/s41590-024-01857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.
Collapse
Affiliation(s)
- Aakanksha Jain
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sara Hakim
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Veselina Petrova
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shannon Zhen
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Samuel Bunga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel G Taub
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology and Neurosciences Institute (Biomedical Research Center) and Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Candace Tong-Li
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol 2024; 154:11-19. [PMID: 38492673 DOI: 10.1016/j.jaci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.
Collapse
Affiliation(s)
- Natalie C Wilcox
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Golnar Taheri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
14
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Sharif-Naeini R, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. SCIENCE ADVANCES 2024; 10:eadj9173. [PMID: 38905344 PMCID: PMC11804847 DOI: 10.1126/sciadv.adj9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.
Collapse
Affiliation(s)
- Shamsuddin A. Bhuiyan
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I. Pantaleo
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zachariah Bertels
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John S. Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Allie J. Widman
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Reza Sharif-Naeini
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Ferron L, Harding EK, Gandini MA, Brideau C, Stys PK, Zamponi GW. Functional remodeling of presynaptic voltage-gated calcium channels in superficial layers of the dorsal horn during neuropathic pain. iScience 2024; 27:109973. [PMID: 38827405 PMCID: PMC11140212 DOI: 10.1016/j.isci.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
N- and P/Q-type voltage-gated Ca2+ channels are critical for synaptic transmission. While their expression is increased in the dorsal root ganglion (DRG) neuron cell bodies during neuropathic pain conditions, less is known about their synaptic remodeling. Here, we combined genetic tools with 2-photon Ca2+ imaging to explore the functional remodeling that occurs in central presynaptic terminals of DRG neurons during neuropathic pain. We imaged GCaMP6s fluorescence responses in an ex vivo spinal cord preparation from mice expressing GCaMP6s in Trpv1-Cre lineage nociceptors. We show that Ca2+ transient amplitude is increased in central terminals of these neurons after spared nerve injury, and that this increase is mediated by both N- and P/Q-type channels. We found that GABA-B receptor-dependent inhibition of Ca2+ transients was potentiated in the superficial layer of the dorsal horn. Our results provide direct evidence toward nerve injury-induced functional remodeling of presynaptic Ca2+ channels in Trpv1-lineage nociceptor terminals.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Erika K. Harding
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Craig Brideau
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
16
|
Wang JC, Nikpoor AR, Crosson T, Kaufmann E, Rafei M, Talbot S. BASOPHILS ACTIVATE PRURICEPTOR-LIKE VAGAL SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598517. [PMID: 38915548 PMCID: PMC11195257 DOI: 10.1101/2024.06.11.598517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vagal sensory neurons convey sensations from internal organs along the vagus nerve to the brainstem. Pruriceptors are a subtype of neurons that transmit itch and induce pruritus. Despite extensive research on the molecular mechanisms of itch, studies focusing on pruriceptors in the vagal ganglia still need to be explored. In this study, we characterized vagal pruriceptor neurons by their responsiveness to pruritogens such as lysophosphatidic acid, β-alanine, chloroquine, and the cytokine oncostatin M. We discovered that lung-resident basophils produce oncostatin M and that its release can be induced by engagement of FcεRIα. Oncostatin M then sensitizes multiple populations of vagal sensory neurons, including Tac1+ and MrgprA3+ neurons in the jugular ganglia. Finally, we observed an increase in oncostatin M release in mice sensitized to the house dust mite Dermatophagoides pteronyssinus or to the fungal allergen Alternaria alternata, highlighting a novel mechanism through which basophils and vagal sensory neurons may communicate during type I hypersensitivity diseases such as allergic asthma.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Amin Reza Nikpoor
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - Théo Crosson
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Sébastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| |
Collapse
|
17
|
Philbrook A, O'Donnell MP, Grunenkovaite L, Sengupta P. Differential modulation of sensory response dynamics by cilia structure and intraflagellar transport within and across chemosensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594529. [PMID: 38798636 PMCID: PMC11118401 DOI: 10.1101/2024.05.16.594529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa , here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in C. elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type, and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
|
18
|
Weman HM, Ceder MM, Ahemaiti A, Magnusson KA, Henriksson K, Andréasson L, Lagerström MC. Spinal Glycine Receptor Alpha 3 Cells Communicate Sensations of Chemical Itch in Hairy Skin. J Neurosci 2024; 44:e1585232024. [PMID: 38553047 PMCID: PMC11079978 DOI: 10.1523/jneurosci.1585-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 05/12/2024] Open
Abstract
Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.
Collapse
Affiliation(s)
- Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| |
Collapse
|
19
|
George DS, Jayaraj ND, Pacifico P, Ren D, Sriram N, Miller RE, Malfait AM, Miller RJ, Menichella DM. The Mas-related G protein-coupled receptor d (Mrgprd) mediates pain hypersensitivity in painful diabetic neuropathy. Pain 2024; 165:1154-1168. [PMID: 38147415 PMCID: PMC11017747 DOI: 10.1097/j.pain.0000000000003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, axonal degeneration, and changes in cutaneous innervation. However, the complete molecular profile underlying the hyperexcitable cellular phenotype of DRG nociceptors in PDN has not been elucidated. This gap in our knowledge is a critical barrier to developing effective, mechanism-based, and disease-modifying therapeutic approaches that are urgently needed to relieve the symptoms of PDN. Using single-cell RNA sequencing of DRGs, we demonstrated an increased expression of the Mas-related G protein-coupled receptor d (Mrgprd) in a subpopulation of DRG neurons in the well-established high-fat diet (HFD) mouse model of PDN. Importantly, limiting Mrgprd signaling reversed mechanical allodynia in the HFD mouse model of PDN. Furthermore, in vivo calcium imaging allowed us to demonstrate that activation of Mrgprd-positive cutaneous afferents that persist in diabetic mice skin resulted in an increased intracellular calcium influx into DRG nociceptors that we assess in vivo as a readout of nociceptors hyperexcitability. Taken together, our data highlight a key role of Mrgprd-mediated DRG neuron excitability in the generation and maintenance of neuropathic pain in a mouse model of PDN. Hence, we propose Mrgprd as a promising and accessible target for developing effective therapeutics currently unavailable for treating neuropathic pain in PDN.
Collapse
Affiliation(s)
| | | | | | - Dongjun Ren
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Rachel E. Miller
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Richard J. Miller
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela Maria Menichella
- Departments of Neurology and
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Feng X, Zhan H, Sokol CL. Sensory neuronal control of skin barrier immunity. Trends Immunol 2024; 45:371-380. [PMID: 38653601 PMCID: PMC11102800 DOI: 10.1016/j.it.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.
Collapse
Affiliation(s)
- Xinyi Feng
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Haoting Zhan
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
22
|
Chen Z, Huang S, Su Y. Better than being aPARt: S. aureus itches to get close to sensory neurons. Cell Host Microbe 2024; 32:3-4. [PMID: 38211562 DOI: 10.1016/j.chom.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
In a recent issue of Cell, Deng et al. show that S. aureus serine protease V8 triggers itch, independent of inflammation, by activating sensory neurons through PAR1. This study presents mechanistic insights into pruritogenic bacteria and their interactions with sensory neurons while providing a possible approach for treating itch-related diseases.
Collapse
Affiliation(s)
- Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated with the Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanlin Su
- Research Center for Tissue Repair and Regeneration affiliated with the Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
23
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jocelyn Solorza
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
25
|
Feuillet V, Ugolini S, Reynders A. Differential regulation of cutaneous immunity by sensory neuron subsets. Trends Neurosci 2023:S0166-2236(23)00128-5. [PMID: 37277277 DOI: 10.1016/j.tins.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Ana Reynders
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|