1
|
Haase R, Dunst AK, Nitzsche N. Blood lactate accumulation during maximal cycling sprints and its relationship to sprint performance characteristics. Eur J Appl Physiol 2025:10.1007/s00421-025-05755-9. [PMID: 40111462 DOI: 10.1007/s00421-025-05755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Blood lactate accumulation (ΔBLC) during maximal short-term exercise is a crucial indicator of peak glycolytic activation in anaerobic performance assessment. However, the relationship between ΔBLC and sprint performance remains inconsistent, potentially due to variations in testing protocols and the use of absolute rather than relative performance metrics. This study investigated the relationship between ΔBLC and cycling sprint performance, hypothesizing normalization to body weight is essential for accurate metabolic performance evaluation. METHODS Twenty-two trained male athletes performed a 10-s maximal isokinetic cycling sprint on an ergometer. Power output and cadence were continuously recorded to calculate peak power (Ppeak), time to peak power (tPpeak), mean power (Pmean), and power increase during the lactic phase (maxΔP, ΔP). Capillary blood samples were collected pre-exercise and up to 12 min post-exercise to determine pre-exercise (BLCpre) and maximal post-exercise blood lactate concentration (BLCmax). ΔBLC was calculated as BLCmax-BLCpre. Statistical analysis included Pearson correlations and stepwise multiple regression. RESULTS ΔBLC exhibited significant correlations with body-weight-normalized maxΔP (r = 0.78, p < 0.001), Pmean (r = 0.70, p < 0.001), and Ppeak (r = 0.65, p < 0.01). In contrast, no significant correlations were observed with absolute metrics (p > 0.05). Stepwise regression analysis identified adjusted maxΔP and Pmean as the strongest predictors of ΔBLC (adjusted R2 = 0.648, p < 0.001). CONCLUSION Relative, body-weight-adjusted metrics, particularly maxΔP and Pmean, are strongly associated with ΔBLC. The use of these relative metrics may enhance the precision of anaerobic performance assessment, facilitate more effective training monitoring, and improve talent identification processes in sports requiring high-intensity efforts.
Collapse
Affiliation(s)
- Ralf Haase
- Department of Sports Medicine and Exercise Therapy, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany.
| | - Anna Katharina Dunst
- Department of Endurance Sports, Institute for Applied Training Science Leipzig, Marschnerstraße 29, 04109, Leipzig, Germany
| | - Nico Nitzsche
- Department of Sports Medicine and Exercise Therapy, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany
| |
Collapse
|
2
|
Burnley M, Vanhatalo A, Poole DC, Jones AM. Blue plaque review series: A.V. Hill, athletic records and the birth of exercise physiology. J Physiol 2025; 603:1361-1374. [PMID: 39988844 PMCID: PMC11908475 DOI: 10.1113/jp288130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
One hundred years ago, A.V. Hill authored three manuscripts analysing athletic world records from a physiological perspective. That analysis, grounded in Hill's understanding of contemporary muscle bioenergetics, provides a fascinating sketch of the thoughts and speculations of one of the fathers of exercise physiology. In this review, we reflect on Hill's prose with the benefit of 100 years of hindsight, and illustrate how Hill was able to draw startlingly accurate conclusions from what limited data were available on the physiology of intense exercise. Hill discusses the energetics of running, swimming, rowing and cycling in both males and females, as well as addressing exercise performance in horses and the mechanics of jumping. He also considers sports nutrition, pacing strategy and ultra-endurance exercise. Perhaps most impactfully, he establishes that the speed-duration relationship has characteristics that reflect the underlying physiological basis of exercise performance. That physiology, in turn, differs depending on the duration of the event itself, providing one of the first descriptions of the task-dependent nature of mechanisms limiting exercise tolerance. A remarkable feature of Hill's papers is that they were written just a few years before a major revolution in muscle biochemistry, and yet Hill was still able to develop conceptually sound ideas about human performance. His hypotheses require only minor revision to bring them into line with current understanding. In reaching their centenary, therefore, the surprising feature of these papers is not how well they have aged, but how relevant they remain.
Collapse
Affiliation(s)
- Mark Burnley
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Anni Vanhatalo
- Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - David C. Poole
- Departments of Kinesiology and Anatomy and PhysiologyKansas State UniversityKansasUSA
| | - Andrew M. Jones
- Public Health and Sport SciencesUniversity of ExeterExeterUK
| |
Collapse
|
3
|
Meng CR, Walts CT, Ryan LJ, Stearne DJ, Clark KP. Spatiotemporal kinematics during top speed sprinting in male intercollegiate track and field and team sport athletes. Sports Biomech 2024:1-14. [PMID: 39492756 DOI: 10.1080/14763141.2024.2423281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
We investigated spatiotemporal kinematics during top speed sprinting and biomechanical running strategies in 98 male intercollegiate athletes from a range of athletic backgrounds in track and field (TF, n = 28) and team sports (TS, n = 70). Participants completed 40 m running trials with sagittal plane motion analyses of high-speed video captured from 30 m to 40 m. Across the entire sample, measures of contact time, step rate, step length, flight length and duty factor (ratio of contact duration to stride duration) were meaningfully correlated with top speed (p < 0.05, 0.51 ≤ |r or ρ| ≤ 0.78). Flight time and contact length were weakly correlated with top speed (p < 0.05, 0.27 ≤ |r or ρ| ≤ 0.34). When comparing sub-groups of Slow TF (n = 14) and Fast TS athletes (n = 22) with similar top speeds (~9.3 m/s), Fast TS athletes clearly demonstrated a more ground-based strategy, with longer ground contact times and contact lengths, shorter flight times and flight lengths, and larger duty factors. Therefore, the results of this study suggest that existing technical models and normative metrics based on data from TF athletes could require modification when evaluating and coaching sprinting performance with TS athletes.
Collapse
Affiliation(s)
- Christopher R Meng
- Department of Kinesiology, West Chester University, West Chester, PA, USA
- Department of Athletics, Princeton University, Princeton, NJ, USA
| | - Cory T Walts
- Department of Athletics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David J Stearne
- Department of Kinesiology, West Chester University, West Chester, PA, USA
| | - Kenneth P Clark
- Department of Kinesiology, West Chester University, West Chester, PA, USA
| |
Collapse
|
4
|
Meixner BJ, Nusser V, Koehler K, Sablain M, Boone J, Sperlich B. Relationship of peak capillary blood lactate accumulation and body composition in determining the mechanical energy equivalent of lactate during sprint cycling. Eur J Appl Physiol 2024; 124:3399-3407. [PMID: 38951183 PMCID: PMC11519294 DOI: 10.1007/s00421-024-05529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
AIM A 15-s all-out sprint cycle test (i.e., νLamax-test) and the post-exercise change in capillary blood lactate concentration is an emerging diagnostic tool that is used to quantify the maximal glycolytic rate. The goal of this study was to determine the relation between 15 s-work, change in capillary blood lactate concentration (∆La) and body composition in a νLamax-test. METHOD Fifty cyclists performed a 15 s all-out sprint test on a Cyclus2 ergometer twice after a previous familiarization trial. Capillary blood was sampled before and every minute (for 8 min) after the sprint to determine ∆La. Body composition was determined employing InBody720 eight-electrode impedance analysis. RESULT Simple regression models of fat-free mass (FFM) and also the product of FFM and ∆La showed similar ability to predict 15 s-work (R2 = 0.79; 0.82). Multiple regression combining both predictors explains 93% of variance between individuals. No differences between males and females were found regarding 15 s-work relative to the product of fat-free mass and ∆La. Considering pairs of similar FFM, a change 1 mmol/l of ∆La is estimated to be equal to 12 J/kg in 15 s-work (R2 = 0.85). DISCUSSION Fifteen s-work is both closely related to FFM and also the product of ∆La and lactate-distribution space approximated by FFM. Differences in 15 s-work between males and females disappear when total lactate production is considered. Considering interindividual differences, the mechanical energy equivalent of blood lactate accumulation seems a robust parameter displaying a clear relationship between ∆La and 15 s-work relative to FFM.
Collapse
Affiliation(s)
- Benedikt Johannes Meixner
- Integrative & Experimental Exercise Science & Training, Institute of Sport Science, Julius-Maximilians-Universität Würzburg, Judenbühlweg 11, 97082, Würzburg, Germany.
- Department of Sport Science and Sport, Friedrich-Alexander-Universität Erlangen-Nürnberg, Gebbertstraße 123B, 91058, Erlangen, Germany.
- Iq-Move Praxis Fraunberger, Gebbertstraße 123B, 91058, Erlangen, Germany.
| | - Valentin Nusser
- Department of Health and Sport Science, TUM School of Medicine and Health, Technical University of Munich, Connollystr. 32, 80809, Munich, Germany
| | - Karsten Koehler
- Department of Health and Sport Science, TUM School of Medicine and Health, Technical University of Munich, Connollystr. 32, 80809, Munich, Germany
| | - Mattice Sablain
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Billy Sperlich
- Integrative & Experimental Exercise Science & Training, Institute of Sport Science, Julius-Maximilians-Universität Würzburg, Judenbühlweg 11, 97082, Würzburg, Germany
| |
Collapse
|
5
|
Kordi M, van Rijswijk I. Performance analysis and mechanical determinants of the opening lap of the team sprint in elite-level track cycling. Eur J Sport Sci 2024; 24:1240-1246. [PMID: 38943450 PMCID: PMC11369316 DOI: 10.1002/ejsc.12158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 02/18/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
The team sprint (TS) is a three-lap pursuit and the most revered event in track sprint cycling. The opening lap of the TS is an important determinant to the overall performance. But despite it being the most controlled and repeatable task in track sprint cycling, very little data are available to better understand the performance of the opening lap. The aim of this study was split into three-parts: part one, to better understand the profile and the indices thought to be determinants of the opening lap of the TS in elite sprint track cyclists. Part two of the study examined all available timing splits (15, 65, 125 and 250 m) from 36 standing-start laps. Part three of the study examined the peak torque outputs and peak power outputs of different various starts performed over a 3-month period. The results showed time to 125 m exhibited a near perfect relationship with starter lap performance. Very strong relationships were seen with 15 and 65 m split times and final lap performance. Peak torque of the lead starting leg and peak power output were shown to be highly predictive 15 m, 65 and 125 m performance in training. These data suggested the first 15 m is highly important and predicts a disproportionately high level of final opening lap time performance. Therefore, it is likely that peak power output normalised to system mass and peak torque of lead leg is a strong determinant of overall performance in the TS.
Collapse
Affiliation(s)
- Mehdi Kordi
- Royal Dutch Cycling Federation (KNWU)Arnhemthe Netherlands
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
| | - Isa van Rijswijk
- The Hague University of Applied SciencesThe Haguethe Netherlands
| |
Collapse
|
6
|
Vigh-Larsen JF, Junge N, Cialdella-Kam L, Tomás R, Young L, Krustrup P, Mohr M, Nybo L. Testing in Intermittent Sports-Importance for Training and Performance Optimization in Adult Athletes. Med Sci Sports Exerc 2024; 56:1505-1537. [PMID: 39004796 DOI: 10.1249/mss.0000000000003442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
ABSTRACT Performance in intermittent sports relies on the interplay between multiple physiological systems determining the capacity to perform short explosive efforts as well as repeated intense actions with limited recovery over the course of an entire game. Testing should reflect these demands to allow for sport- and position-specific capacity analyses that eventually may translate into optimized training and improved performance. This may include individual load management and optimized training prescription, intensity targeting for specific positions or individual athletes, as well as benchmarking for monitoring of training progression and enhanced engagement of athletes. This review provides an overview of available tests in different exercise domains identified as relevant (from assessment of single explosive actions to intermittent endurance capacity), forming the basis for recommendations on how to compose a comprehensive yet feasible test battery that may be integrated into the seasonal competition and training plan. The test procedures should cover the performance spectrum of relevance for the individual athlete-also in team sports to account for positional differences. We emphasize the benefits of sport-specific tests, highlight parameters of importance for test standardization, and discuss how the applied test battery may be supplemented with secondary tests directed toward specific energy systems to allow for more in-depth analyses when required (e.g., in terms of an underperforming athlete). The synergy between testing and tracking of match performance (utilizing time-motion or global positioning systems) is highlighted, and although tracking cannot substitute for testing, combining the tools may provide a comprehensive overview of the physiological demands and performance during competition contextualized to the athletes' maximal exercise capacity.
Collapse
Affiliation(s)
| | - Nicklas Junge
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Lynn Cialdella-Kam
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA
| | - Rita Tomás
- Portugal Football School, Federação Portuguesa de Futebol Avenida das Seleções, Oeiras, PORTUGAL
| | - Laura Young
- American College of Sports Medicine, Indianapolis, IN
| | | | | | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
7
|
Llanos-Lagos C, Ramirez-Campillo R, Moran J, Sáez de Villarreal E. The Effect of Strength Training Methods on Middle-Distance and Long-Distance Runners' Athletic Performance: A Systematic Review with Meta-analysis. Sports Med 2024; 54:1801-1833. [PMID: 38627351 PMCID: PMC11258194 DOI: 10.1007/s40279-024-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The running performance of middle-distance and long-distance runners is determined by factors such as maximal oxygen uptake (VO2max), velocity at VO2max (vVO2max), maximum metabolic steady state (MMSS), running economy, and sprint capacity. Strength training is a proven strategy for improving running performance in endurance runners. However, the effects of different strength training methods on the determinants of running performance are unclear. OBJECTIVE The aim of this systematic review with meta-analysis was to compare the effect of different strength training methods (e.g., high load, submaximal load, plyometric, combined) on performance (i.e., time trial and time until exhaustion) and its determinants (i.e., VO2max, vVO2max, MMSS, sprint capacity) in middle-distance and long-distance runners. METHODS A systematic search was conducted across electronic databases (Web of Science, PubMed, SPORTDiscus, SCOPUS). The search included articles indexed up to November 2022, using various keywords combined with Boolean operators. The eligibility criteria were: (1) middle- and long-distance runners, without restriction on sex or training/competitive level; (2) application of a strength training method for ≥ 3 weeks, including high load training (≥ 80% of one repetition maximum), submaximal load training (40-79% of one repetition maximum), plyometric training, and combined training (i.e., two or more methods); (3) endurance running training control group under no strength training or under strength training with low loads (< 40% of one repetition maximum); (4) running performance, VO2max, vVO2max, MMSS and/or sprint capacity measured before and after a strength training intervention program; (5) randomized and non-randomized controlled studies. The certainty of evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. A random-effects meta-analysis and moderator analysis were performed using Comprehensive meta-analysis (version 3.3.0.70). RESULTS The certainty of the evidence was very low to moderate. The studies included 324 moderately trained, 272 well trained, and 298 highly trained athletes. The strength training programs were between 6 and 40 weeks duration, with one to four intervention sessions per week. High load and combined training methods induced moderate (effect size = - 0.469, p = 0.029) and large effect (effect size = - 1.035, p = 0.036) on running performance, respectively. While plyometric training was not found to have a significant effect (effect size = - 0.210, p = 0.064). None of the training methods improved VO2max, vVO2max, MMSS, or sprint capacity (all p > 0.072). Moderators related to subject (i.e., sex, age, body mass, height, VO2max, performance level, and strength training experience) and intervention (i.e., weeks, sessions per week and total sessions) characteristics had no effect on running performance variables or its determinants (all p > 0.166). CONCLUSIONS Strength training with high loads can improve performance (i.e., time trial, time to exhaustion) in middle-distance and long-distance runners. A greater improvement may be obtained when two or more strength training methods (i.e., high load training, submaximal load training and/or plyometric training) are combined, although with trivial effects on VO2max, vVO2max, MMSS, or sprint capacity.
Collapse
Affiliation(s)
- Cristian Llanos-Lagos
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain.
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, 7591538, Chile
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, CO43SQ, UK
| | - Eduardo Sáez de Villarreal
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain
| |
Collapse
|
8
|
van Oeveren BT, de Ruiter CJ, Beek PJ, van Dieën JH. The biomechanics of running and running styles: a synthesis. Sports Biomech 2024; 23:516-554. [PMID: 33663325 DOI: 10.1080/14763141.2021.1873411] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Running movements are parametrised using a wide variety of devices. Misleading interpretations can be avoided if the interdependencies and redundancies between biomechanical parameters are taken into account. In this synthetic review, commonly measured running parameters are discussed in relation to each other, culminating in a concise, yet comprehensive description of the full spectrum of running styles. Since the goal of running movements is to transport the body centre of mass (BCoM), and the BCoM trajectory can be derived from spatiotemporal parameters, we anticipate that different running styles are reflected in those spatiotemporal parameters. To this end, this review focuses on spatiotemporal parameters and their relationships with speed, ground reaction force and whole-body kinematics. Based on this evaluation, we submit that the full spectrum of running styles can be described by only two parameters, namely the step frequency and the duty factor (the ratio of stance time and stride time) as assessed at a given speed. These key parameters led to the conceptualisation of a so-called Dual-axis framework. This framework allows categorisation of distinctive running styles (coined 'Stick', 'Bounce', 'Push', 'Hop', and 'Sit') and provides a practical overview to guide future measurement and interpretation of running biomechanics.
Collapse
Affiliation(s)
- Ben T van Oeveren
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter J Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Baum BS, Man C. Race and geography impact validity of maximum allowable standing height equations for para-athletes. Sci Rep 2024; 14:6551. [PMID: 38504109 PMCID: PMC10951375 DOI: 10.1038/s41598-024-56597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
World Athletics use maximum allowable standing height (MASH) equations for para-athletes with bilateral lower extremity amputations to estimate stature and limit prosthesis length since longer prostheses can provide running performance advantages. The equations were developed using a white Spanish population; however, validation for other races and geographical groups is limited. This study aimed to determine the validity of the MASH equations for Black and white Americans and whether bias errors between calculated and measured stature were similar between these populations. Sitting height, thigh length, upper arm length, forearm length, and arm span of 1899 male and 1127 female Black and white Americans from the Anthropometric Survey of US Army Personnel database were input into the 6 sex-specific MASH equations to enable comparisons of calculated and measured statures within and between Black and white groups. Two of 12 MASH equations validly calculated stature for Black Americans and 3 of 12 equations were valid for white Americans. Bias errors indicated greater underestimation or lesser overestimation of calculated statures in 10 equations for Black compared to white Americans and in 2 equations for white compared to Black Americans. This study illustrates that race and geography impact the validity of MASH equations.
Collapse
Affiliation(s)
- Brian S Baum
- , Cambridge, USA.
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA, 02421, USA.
| | | |
Collapse
|
10
|
Le Hyaric A, Aftalion A, Hanley B. Modelling the optimization of world-class 400 m and 1,500 m running performances using high-resolution data. Front Sports Act Living 2024; 6:1293145. [PMID: 38504690 PMCID: PMC10948471 DOI: 10.3389/fspor.2024.1293145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
The 400 m and 1,500 m are track events that rely on different but important contributions from both the aerobic and anaerobic energy systems. The purpose of this study is to model men's and women's 400 m and 1,500 m championship performances to gain a deeper understanding of the key mechanical and physiological factors affecting running speed and bend running using high-resolution data from live competition (10 Hz). To investigate World-class athletes' instantaneous speeds, propulsive forces and aerobic and anaerobic energy, we model and simulate the performances of the men's and women's European Athletics 400 m champions, Matthew Hudson-Smith and Femke Bol, as well as the men's European Athletics 1,500 m champion, Jakob Ingebrigtsen, and the women's European Athletics U23 1,500 m champion, Gaia Sabbatini. The simulations show that a fast start is essential in both the 400 m and 1,500 m because of the need for fast oxygen kinetics, with peak running speeds occurring within the first ∼50 m in both events. Subsequently, 400 m athletes slow continually from this maximum speed to the finish, and a total anaerobic contribution of ∼77% is found for both male and female champions. The key to faster 400 m racing is to reduce the decrease in velocity: this comes from both a high VO2 and a high anaerobic contribution. Ingebrigtsen's winning tactic in the European 1,500 m final is to adopt a very fast cruising pace from 300 m onwards that is possible because he is able to maintain a high VO2 value until the end of the race and has a large anaerobic contribution. He has fast VO2 kinetics that does not require as fast a start as his opponents, but then he speeds up in the last two laps, without a fast sprint finish. The comparison between Sabbatini's slower and quicker races (∼8 s difference) shows that it is the improvement of aerobic metabolism that has the greatest effect on 1,500 m performance. Coaches should note in particular that the all-out pacing nature of the 400 m requires the prioritization of anaerobic energy system development, and those who coach the 1,500 m should note the differing energy contributions between even-paced races and championship racing.
Collapse
Affiliation(s)
- Antoine Le Hyaric
- Laboratoire Jacques-Louis Lions (LJLL), CNRS, Inria, Sorbonne Université, Université de Paris, Paris, France
| | - Amandine Aftalion
- Centre D’Analyse et de Mathématique Sociales, CNRS UMR-8557, Ecole des Hautes Etudes en Sciences Sociales, Paris, France
| | - Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
11
|
Deguire S, Sandford GN, Bieuzen F. Anaerobic Speed Reserve and Performance Relationships Between International and World-Class Short-Track Speed Skating. Int J Sports Physiol Perform 2023; 18:1196-1205. [PMID: 37536677 DOI: 10.1123/ijspp.2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE Short-track speed skating race distances of 500, 1000, and 1500 m that last ∼40 seconds to ∼2.5 minutes and require a maximal intensity at speeds beyond maximal oxygen uptake (VO2max). Recently, the anaerobic speed reserve (ASR) has been applied by scientists and coaches in middle-distance sports to deepen understanding of 1- to 5-minute event performance where different physiological profiles (speed, hybrid, and endurance) can have success. METHODS World-class (women, n = 2; men, n = 3) and international-level (women, n = 4; men, n = 5) short-track speed skaters completed maximal aerobic speed and maximal skating speed tests. ASR characteristics were compared between profiles and associated with on-ice performance. RESULTS World-class athletes raced at a lower %ASR in the 1000- (3.1%; large; almost certainly) and 1500-m (1.8%; large; possibly) events than international athletes. Men's and women's speed profiles operated at a higher %ASR in the 500-m than hybrid and endurance profiles, whereas in the 1500-m, endurance profiles worked at a substantially lower %ASR than hybrid and speed profiles. Women's 500-m performance is very largely associated with maximal skating speed, while women's maximal aerobic speed appears to be a key determining factor in the 1000- and 1500-m performance. CONCLUSION World-class short-track speed skaters can be developed in speed, hybrid, and endurance profiles but achieve their performance differently by leveraging their strongest characteristics. These results show nuanced differences between men's and women's 500-, 1000- and 1500-m event performance across ASR profile that unlock new insights for individualizing athlete performance in these disciplines.
Collapse
Affiliation(s)
- Simon Deguire
- Institut National du Sport du Québec, Montréal, QC,Canada
- Speed Skating Canada, Montréal, QC,Canada
| | | | - François Bieuzen
- Institut National du Sport du Québec, Montréal, QC,Canada
- Speed Skating Canada, Montréal, QC,Canada
| |
Collapse
|
12
|
Ramonas A, Laursen PB, Williden M, Kilding AE. The effect of acute manipulation of carbohydrate availability on high intensity running performance, running economy, critical speed, and substrate metabolism in trained Male runners. Eur J Sport Sci 2023; 23:1961-1971. [PMID: 36168815 DOI: 10.1080/17461391.2022.2130097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Completing selected training sessions with reduced glycogen availability is associated with greater signalling and improved muscle oxidative capacity, although it may impact the overall quality of the session. We examined the effects of low carbohydrate availability on high intensity exercise performance, running economy, critical speed, and substrate metabolism. On two occasions, nine male runners (V̇O2peak 60.3 ± 3.3 mL.kg-1.min-1) completed a glycogen depletion protocol involving 90-min at 75%vV̇O2peak followed by 10 × 1-min at 110% vV̇O2peak. This was followed either by high (HIGH) or low (LOW) carbohydrate intake (>6 g.kg-1.day-1 and <50 g.day-1, respectively) until completion of a performance protocol on day 2 consisting of a series of time-trials (TT) (50m to 3000m) and physiological assessments. There were no differences between LOW and HIGH for any TT distance (mean TT performance times for LOW and HIGH were: 3000m TT 651.7 ± 52.8s and 646.4 ± 52.5s, 1500 m TT 304.0 ± 20.2s and 304.2 ± 22.1s, 400 m TT 67.64 ± 4.2s and 67.3 ± 3.8s, 50 m TT 7.27 ± 0.44s and 7.25 ± 0.45s, respectively, P > 0.05), though some athletes performed better in LOW (n = 5). While fat oxidation in LOW was significantly greater than HIGH (Δ0.32 ± 0.14 g.min-1; P < 0.001 at 14 km.h-1 and Δ0.34 ± 0.12 g.min-1 at 16 km.h-1; P < 0.01), running economy did not differ between trials (P > 0.05). Acute manipulation of carbohydrate availability showed immediate effects on substrate metabolism evidenced by greater fat oxidation without changes in RE. Acute low carbohydrate availability did not affect high intensity running performance across a range of distances.Highlights Acute manipulation of muscle glycogen availability using an exercise and dietary manipulation protocol did not affect subsequent high intensity running performance across a range of running distances.Reduced muscle glycogen resulted in a marked increase in fat oxidation in low glycogen condition but no changes in running economy or critical speed.Individual factors should be considered when prescribing high intensity sessions with restricted carbohydrate availability.
Collapse
Affiliation(s)
- Andrius Ramonas
- Auckland University of Technology, Sports Performance Research Institute NZ, Auckland, New Zealand
| | - Paul B Laursen
- Auckland University of Technology, Sports Performance Research Institute NZ, Auckland, New Zealand
| | - Micalla Williden
- Auckland University of Technology, Sports Performance Research Institute NZ, Auckland, New Zealand
| | - Andrew E Kilding
- Auckland University of Technology, Sports Performance Research Institute NZ, Auckland, New Zealand
| |
Collapse
|
13
|
Mildenhall MJ, Maunder ED, Plews DJ, Lindinger MI, Cairns SP. Plasma Acidosis and Peak Power after a Supramaximal Trial in Elite Sprint and Endurance Cyclists: Effect of Bicarbonate. Med Sci Sports Exerc 2023; 55:932-944. [PMID: 36729629 DOI: 10.1249/mss.0000000000003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to determine whether (i) a plasma acidosis contributes to a reduction of mechanical performance and (ii) bicarbonate supplementation blunts plasma acidosis and arterial oxygen desaturation to resist fatigue during the end spurt of a supramaximal trial in elite sprint and endurance cyclists. METHODS Elite/world-class cyclists ( n = 6 sprint, n = 6 endurance) completed two randomized, double-blind, crossover trials at 105%V̇O 2peak simulating 3 min of a 4-km individual pursuit, 90 min after ingestion of 0.3 g·kg -1 BM sodium bicarbonate (BIC) or placebo (PLA). Peak power output (PPO), optimal cadence and optimal peak torque, and fatigue were assessed using a 6-s "all-out sprint" before (PPO1) and after (PPO2) each trial. Plasma pH, bicarbonate, lactate - , K + , Na + , Ca 2+ , and arterial hemoglobin saturation (SpO 2 (%)), were measured. RESULTS Sprint cyclists exhibited a higher PPO, optimal pedal torque, and anaerobic power reserve (APR) than endurance cyclists. The trial reduced PPO (PLA) more for sprint (to 47% initial) than endurance cyclists (to 61% initial). Optimal cadence fell from ~151 to 92 rpm and cyclists with higher APR exhibited a reduced optimal peak torque. Plasma pH fell from 7.35 to 7.13 and plasma [lactate - ] increased from 1.2 to 19.6 mM (PLA), yet neither correlated with PPO loss. Sprint cyclists displayed a lesser plasma acidosis but greater fatigue than endurance cyclists. BIC increased plasma [HCO 3- ] (+6.8 mM) and plasma pH after PPO1 (+0.09) and PPO2 (+0.07) yet failed to influence mechanical performance. SpO 2 fell from 99% to 96% but was unrelated to the plasma acidosis and unaltered with BIC. CONCLUSIONS Plasma acidosis was not associated with the decline of PPO in a supramaximal trial with elite cyclists. BIC attenuated acid-base disturbances yet did not improve arterial oxygen desaturation or mechanical performance at the end-spurt stage.
Collapse
Affiliation(s)
| | - E D Maunder
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| | - Daniel J Plews
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| | - Michael I Lindinger
- Research and Development, The Nutraceutical Alliance, Burlington, Ontario, CANADA
| | - Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| |
Collapse
|
14
|
Burnley M. Invited review: The speed-duration relationship across the animal kingdom. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111387. [PMID: 36740171 DOI: 10.1016/j.cbpa.2023.111387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The parameters of the hyperbolic speed-duration relationship (the asymptote critical speed, CS, and the curvature constant, D') provide estimates of the maximal steady state speed (CS) and the distance an animal can run, swim, or fly at speeds above CS before it is forced to slow down or stop (D'). The speed-duration relationship has been directly studied in humans, horses, mice and rats. The technical difficulties with treadmill running in dogs and the relatively short greyhound race durations means that, perhaps surprisingly, it has not been assessed in dogs. The endurance capabilities of lizards, crabs and salamanders has also been measured, and the speed-duration relationship can be calculated from these data. These analyses show that 1) raising environmental temperature from 25 °C to 40 °C in lizards can double the CS with no change in D'; 2) that lungless salamanders have an extremely low critical speed due, most likely, to O2 diffusion limitations associated with cutaneous respiration; and 3) the painted ghost crab possesses the highest endurance parameter ratio (D'/CS) yet recorded (470 s), allowing it to maintain high speeds for extended periods. Although the speed-duration relationship has not been measured in fish, the sustainable swimming speed has been quantified in a range of species and is conceptually similar to the maximal steady state in humans. The high aerobic power of birds and low metabolic cost of transport during flight permits the extreme feats of endurance observed in bird migrations. However, the parameters of the avian speed-duration relationship have not been quantified.
Collapse
Affiliation(s)
- Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK.
| |
Collapse
|
15
|
McClelland EL, Weyand PG. Sex differences in human running performance: smaller gaps at shorter distances? J Appl Physiol (1985) 2022; 133:876-885. [PMID: 35981732 DOI: 10.1152/japplphysiol.00359.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human, but not canine or equine running performance, is significantly stratified by sex. The degree of stratification has obvious implications for classification and regulation in athletics. However, whether the widely cited sex difference of 10%-12% applies equally to sprint and endurance running events is unknown. Here, different determining factors for sprint (ground force/body mass) versus endurance performance (energy supply and demand) and existing trends, led us to hypothesize that sex performance differences for sprint running would increase with distance and be relatively small. We quantified sex performance differences using: 1) the race times of the world's fastest males and females (n = 40 each) over a 15-year period (2003-2018) at nine standard racing distances (60-10,000 m), and 2) the 10-m segment times of male (n = 14) and female (n = 12) athletes in World Championship 100-m finals. Between-sex performance time differences increased with sprint event distance (60 m-8.6%, 100 m-9.6%, 200 m-11.0%, 400 m-11.7%) and were smaller than the relatively constant mean (12.4 ± 0.3%) observed across the five longer events from 800 to 10,000 m. Between-sex time differences for the 10-m segments within the 100-m dash event increased throughout spanning 5.6%-14.2% from the first to last segment. We conclude that sex differences in sprint running performance increase with race and running distance.NEW & NOTEWORTHY Sex performance differences for sprint running bursts are small (<6%), but widen as the distance sprinted increases (range: 5.6%-14.2%). The distance dependency identified here for sprinting differs from the prevailing literature view of between-sex performance differences for the human running of 10%-12% regardless of distance. The variable sprint margins observed reflect the relative performance benefits shorter females have for brief, acceleration-dependent efforts versus those taller males have for longer steadier-speed sprint efforts.
Collapse
Affiliation(s)
- Emily L McClelland
- Locomotor Performance Laboratory, Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas
| | - Peter G Weyand
- Locomotor Performance Laboratory, Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas
| |
Collapse
|
16
|
Weyand PG, Brooks LC, Prajapati S, McClelland EL, Hatcher SK, Callier QM, Bundle MW. Artificially long legs directly enhance long sprint running performance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220397. [PMID: 35991333 PMCID: PMC9382221 DOI: 10.1098/rsos.220397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This comment addresses the incomplete presentation and incorrect conclusion offered in the recent manuscript of Beck et al. (R. Soc. Open Sci. 9, 211799 (doi:10.1098/rsos.211799)). The manuscript introduces biomechanical and performance data on the fastest-ever, bilateral amputee 400 m runner. Using an advantage standard of not faster than the fastest non-amputee runner ever (i.e. performance superior to that of the intact-limb world record-holder), the Beck et al. manuscript concludes that sprint running performance on bilateral, lower-limb prostheses is not unequivocally advantageous compared to the biological limb condition. The manuscript acknowledges the long-standing support of the authors for the numerous eligibility applications of the bilateral-amputee athlete. However, it does not acknowledge that the athlete's anatomically disproportionate prosthetic limb lengths (+15 cm versus the World Para Athletics maximum) are ineligible in both Olympic and Paralympic track competition due to their performance-enhancing properties. Also not acknowledged are the slower sprint performances of the bilateral-amputee athlete on limbs of shorter length that directly refute their manuscript's primary conclusion. Our contribution here provides essential background information and data not included in the Beck et al. manuscript that make the correct empirical conclusion clear: artificially long legs artificially enhance long sprint running performance.
Collapse
Affiliation(s)
- Peter G. Weyand
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - Lance C. Brooks
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - Sunil Prajapati
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - Emily L. McClelland
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - S. K. Hatcher
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - Quinn M. Callier
- Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, USA
| | - Matthew W. Bundle
- Biomechanics Laboratory, School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| |
Collapse
|
17
|
Mathieu B, Robineau J, Piscione J, Babault N. Concurrent Training Programming: The Acute Effects of Sprint Interval Exercise on the Subsequent Strength Training. Sports (Basel) 2022; 10:sports10050075. [PMID: 35622484 PMCID: PMC9145373 DOI: 10.3390/sports10050075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Exercise modality has been proposed to reduce the interferences between aerobic and resistance sessions during concurrent training. The aim of the study was to examine the acute effects of cycling or running sprint interval exercise on subsequent resistance training sessions. Twenty-five competitive male rugby union players were recruited. Players were tested during three conditions: CONTROL (resistance training session only), CYCLE and RUN (corresponding to a concurrent training scheme with cycling or running sprint interval exercise conducted on the morning, followed by a resistance training session). Four hours rest was proposed between the aerobic and resistance training session. Muscle performance (bar velocity during bench press and box squat, counter movement jump height) and subjective ratings (rate of perceived exertion, wellbeing) were assessed during and after aerobic or resistance training sessions. No significant difference was observed for muscle performance (vertical jump height and bar velocity). However, significant higher perceived exertion and low-value scaled subjective wellbeing were observed in RUN (7.7 ± 1.1 and 17.9 ± 4.1, respectively) as compared with the two other conditions (6.7 ± 1.5 and 21.1 ± 3.6 for CONTROL and 7.4 ± 1.1 and 20.1 ± 3.9 for CYCLE). It was concluded that the exercise modality (running or cycling) during the aerobic exercise using a sprint interval exercise did not impact the quality of the resistance session. However, subjective ratings were affected the following days. Cycling exercises might be more adequate when performing a sprint interval training session during concurrent training programs.
Collapse
Affiliation(s)
- Bertrand Mathieu
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
- Center for Performance Expertise, CAPS, U1093 INSERM, Faculty of Sport Sciences, University of Bourgogne-Franche-Comté, 3 Allée des Stades Universitaires, BP 27877, 21078 Dijon, France
| | - Julien Robineau
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
| | - Julien Piscione
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
| | - Nicolas Babault
- Center for Performance Expertise, CAPS, U1093 INSERM, Faculty of Sport Sciences, University of Bourgogne-Franche-Comté, 3 Allée des Stades Universitaires, BP 27877, 21078 Dijon, France
- Correspondence: ; Tel.: +33-380396743
| |
Collapse
|
18
|
Hallam L, Ducharme J, Mang Z, Amorim F. The role of the anaerobic speed reserve in female middle-distance running. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol 2022; 122:301-316. [PMID: 34708276 PMCID: PMC8783871 DOI: 10.1007/s00421-021-04833-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022]
Abstract
Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individualize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, race demands). It is recommended that field testing should always be conducted in accordance with pre-established guidelines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W'/t + CP (W'-work capacity above CP; t-time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist's power profile.
Collapse
Affiliation(s)
- Peter Leo
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria.
| | - James Spragg
- Health Physical Activity Lifestyle Sport Research Centre (HPALS), University of Cape Town, Cape Town, South Africa
| | - Tim Podlogar
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
20
|
Hallam LC, Amorim FT. Expanding the Gap: An Updated Look Into Sex Differences in Running Performance. Front Physiol 2022; 12:804149. [PMID: 35058806 PMCID: PMC8764368 DOI: 10.3389/fphys.2021.804149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Males consistently outperform females in athletic endeavors, including running events of standard Olympic distances (100 m to Marathon). The magnitude of this percentage sex difference, i.e., the sex gap, has evolved over time. Two clear trends in sex gap evolution are evident; a narrowing of the gap during the 20th century, followed by a period of stability thereafter. However, an updated perspective on the average sex gap from top 20 athlete performances over the past two decades reveals nuanced trends over time, indicating the sex gap is not fixed. Additionally, the sex gap varies with performance level; the difference in absolute running performance between males and females is lowest for world record/world lead performances and increases in lower-ranked elite athletes. This observation of an increased sex gap with world rank is evident in events 400 m and longer and indicates a lower depth in female competitive standards. Explanations for the sex difference in absolute performance and competition depth include physical (physiological, anatomical, neuromuscular, biomechanical), sociocultural, psychological, and sport-specific factors. It is apparent that females are the disadvantaged sex in sport; therefore, measures should be taken to reduce this discrepancy and enable both sexes to reach their biological performance potential. There is scope to narrow the sex performance gap by addressing inequalities between the sexes in opportunities, provisions, incentives, attitudes/perceptions, research, and media representation.
Collapse
Affiliation(s)
- Lydia C Hallam
- Exercise Physiology Laboratory, Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, United States
| | - Fabiano T Amorim
- Exercise Physiology Laboratory, Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
21
|
Douglas J. Comment on: “Using Field Based Data to Model Sprint Track Cycling Performance”. SPORTS MEDICINE - OPEN 2021; 7:60. [PMID: 34423382 PMCID: PMC8380600 DOI: 10.1186/s40798-021-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
|
22
|
Chung HC, Keiller DR, Roberts JD, Gordon DA. Do exercise-associated genes explain phenotypic variance in the three components of fitness? a systematic review & meta-analysis. PLoS One 2021; 16:e0249501. [PMID: 34648504 PMCID: PMC8516263 DOI: 10.1371/journal.pone.0249501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to identify a list of common, candidate genes associated with the three components of fitness, specifically cardiovascular fitness, muscular strength, and anaerobic power, and how these genes are associated with exercise response phenotype variability, in previously untrained participants. A total of 3,969 potentially relevant papers were identified and processed for inclusion. After eligibility and study selection assessment, 24 studies were selected for meta-analysis, comprising a total of 3,012 participants (male n = 1,512; females n = 1,239; not stated n = 261; age 28 ± 9 years). Meta-Essentials spreadsheet 1.4 (Microsoft Excel) was used in creating the forest plots and meta-analysis. IBM SPSS statistics V24 was implemented for the statistical analyses and the alpha was set at p ≤ 0.05. 13 candidate genes and their associated alleles were identified, which were associated with the phenotypes of interest. Analysis of training group data showed significant differential phenotypic responses. Subgroup analysis showed; 44%, 72% and 10% of the response variance in aerobic, strength and power phenotypes, respectively, were explained by genetic influences. This analysis established that genetic variability explained a significant proportion of the adaptation differences across the three components of fitness in the participants post-training. The results also showed the importance of analysing and reporting specific gene alleles. Information obtained from these findings has the potential to inform and influence future exercise-related genes and training studies.
Collapse
Affiliation(s)
- Henry C. Chung
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- * E-mail:
| | - Don R. Keiller
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin D. Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan A. Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
23
|
Sandford GN, Laursen PB, Buchheit M. Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions. Sports Med 2021; 51:2017-2028. [PMID: 34398445 DOI: 10.1007/s40279-021-01523-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Many individual and team sport events require extended periods of exercise above the speed or power associated with maximal oxygen uptake (i.e., maximal aerobic speed/power, MAS/MAP). In the absence of valid and reliable measures of anaerobic metabolism, the anaerobic speed/power reserve (ASR/APR) concept, defined as the difference between an athlete's MAS/MAP and their maximal sprinting speed (MSS)/peak power (MPP), advances our understanding of athlete tolerance to high speed/power efforts in this range. When exercising at speeds above MAS/MAP, what likely matters most, irrespective of athlete profile or locomotor mode, is the proportion of the ASR/APR used, rather than the more commonly used reference to percent MAS/MAP. The locomotor construct of ASR/APR offers numerous underexplored opportunities. In particular, how differences in underlying athlete profiles (e.g., fiber typology) impact the training response for different 'speed', 'endurance' or 'hybrid' profiles is now emerging. Such an individualized approach to athlete training may be necessary to avoid 'maladaptive' or 'non-responses'. As a starting point for coaches and practitioners, we recommend upfront locomotor profiling to guide training content at both the macro (understanding athlete profile variability and training model selection, e.g., annual periodization) and micro levels (weekly daily planning of individual workouts, e.g., short vs long intervals vs repeated sprint training and recovery time between workouts). More specifically, we argue that high-intensity interval training formats should be tailored to the locomotor profile accordingly. New focus and appreciation for the ASR/APR is required to individualize training appropriately so as to maximize athlete preparation for elite competition.
Collapse
Affiliation(s)
- Gareth N Sandford
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada. .,Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada. .,Athletics Canada, Ottawa, ON, Canada.
| | - Paul B Laursen
- Sports Performance Research Institute NZ, Auckland University of Technology, Auckland, New Zealand.,HIIT Science, Revelstoke, BC, Canada
| | - Martin Buchheit
- HIIT Science, Revelstoke, BC, Canada.,Research Department, Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Kitman Labs, Performance Research Intelligence Initiative, Dublin, Ireland
| |
Collapse
|
24
|
Maximal muscular power: lessons from sprint cycling. SPORTS MEDICINE-OPEN 2021; 7:48. [PMID: 34268627 PMCID: PMC8282832 DOI: 10.1186/s40798-021-00341-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Maximal muscular power production is of fundamental importance to human functional capacity and feats of performance. Here, we present a synthesis of literature pertaining to physiological systems that limit maximal muscular power during cyclic actions characteristic of locomotor behaviours, and how they adapt to training. Maximal, cyclic muscular power is known to be the main determinant of sprint cycling performance, and therefore we present this synthesis in the context of sprint cycling. Cyclical power is interactively constrained by force-velocity properties (i.e. maximum force and maximum shortening velocity), activation-relaxation kinetics and muscle coordination across the continuum of cycle frequencies, with the relative influence of each factor being frequency dependent. Muscle cross-sectional area and fibre composition appear to be the most prominent properties influencing maximal muscular power and the power-frequency relationship. Due to the role of muscle fibre composition in determining maximum shortening velocity and activation-relaxation kinetics, it remains unclear how improvable these properties are with training. Increases in maximal muscular power may therefore arise primarily from improvements in maximum force production and neuromuscular coordination via appropriate training. Because maximal efforts may need to be sustained for ~15-60 s within sprint cycling competition, the ability to attenuate fatigue-related power loss is also critical to performance. Within this context, the fatigued state is characterised by impairments in force-velocity properties and activation-relaxation kinetics. A suppression and leftward shift of the power-frequency relationship is subsequently observed. It is not clear if rates of power loss can be improved with training, even in the presence adaptations associated with fatigue-resistance. Increasing maximum power may be most efficacious for improving sustained power during brief maximal efforts, although the inclusion of sprint interval training likely remains beneficial. Therefore, evidence from sprint cycling indicates that brief maximal muscular power production under cyclical conditions can be readily improved via appropriate training, with direct implications for sprint cycling as well as other athletic and health-related pursuits.
Collapse
|
25
|
Johnson MA, Sharpe GR, Needham RS, Williams NC. Effects of Prior Voluntary Hyperventilation on the 3-min All-Out Cycling Test in Men. Med Sci Sports Exerc 2021; 53:1482-1494. [PMID: 33481485 DOI: 10.1249/mss.0000000000002608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT). METHODS Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP). End-test power (EP; synonymous with critical power) was calculated as the mean power output over the last 30 s of the 3MT, and the work done above EP (WEP; synonymous with W') was calculated as the power-time integral above EP. RESULTS At the start of the 3MT, capillary blood PCO2 and [H+] were lower in HYP (25.2 ± 3.0 mm Hg, 27.1 ± 2.6 nmol·L-1) than CONT (43.2 ± 2.0 mm Hg, 40.0 ± 1.5 nmol·L-1) (P < 0.001). At the end of the 3MT, blood PCO2 was still lower in HYP (35.7 ± 5.4 mm Hg) than CONT (40.6 ± 5.0 mm Hg) (P < 0.001). WEP was 10% higher in HYP (19.4 ± 7.0 kJ) than CONT (17.6 ± 6.4 kJ) (P = 0.006), whereas EP was 5% lower in HYP (246 ± 69 W) than CONT (260 ± 74 W) (P = 0.007). The ΔWEP (J·kg-1) between CONT and HYP correlated positively with the PCO2 immediately before the 3MT in HYP (r = 0.77, P = 0.006). CONCLUSION These findings suggest that acid-base changes elicited by prior VH increase WEP but decrease EP during the all-out 3MT.
Collapse
Affiliation(s)
- Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UNITED KINGDOM
| | | | | | | |
Collapse
|
26
|
Determinants of last lap speed in paced and maximal 1500-m time trials. Eur J Appl Physiol 2020; 121:525-537. [PMID: 33151439 DOI: 10.1007/s00421-020-04543-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study identified the physiological and performance characteristics that are deterministic during a maximal 1500-m time trial and in paced 1500-m time trials, with an all-out last lap. METHODS Thirty-two trained middle-distance runners (n = 21 male, VO2peak: 72.1 ± 3.2; n = 11, female, VO2peak: 61.2 ± 3.7 mL kg-1 min-1) completed a 1500-m time trial in the fastest time possible (1500FAST) as well as a 1500MOD and 1500SLOW trial whereby mean speed was reduced during the 0-1100 m by 5% and 10%, respectively. Anaerobic speed reserve (ASR), running economy (RE), the velocity corresponding with VO2peak (VVO2peak), maximal sprint speed (MSS) and maximal accumulated oxygen deficit (MAOD) were determined during additional testing. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and expressed as a Z-score to estimate muscle fibre typology. RESULTS 1500FAST time was best explained by RE and VVO2peak in female runners (adjusted r2 = 0.80, P < 0.001), in addition to the 0-1100-m speed relative to VVO2peak in male runners (adjusted r2 = 0.72, P < 0.001). Runners with a higher gastrocnemius carnosine Z-score (i.e., higher estimated percentage of type II fibres) and greater MAOD, reduced their last lap time to a greater extent in the paced 1500-m trials. Neither ASR nor MSS was associated with last lap time in the paced trials. CONCLUSION These findings suggest that VVO2 peak and RE are key determinants of 1500-m running performance with a sustained pace from the start, while a higher carnosine Z-score and MAOD are more important for last lap speed in tactical 1500-m races.
Collapse
|
27
|
Clark KP, Meng CR, Stearne DJ. 'Whip from the hip': thigh angular motion, ground contact mechanics, and running speed. Biol Open 2020; 9:bio053546. [PMID: 32917763 PMCID: PMC7595692 DOI: 10.1242/bio.053546] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
During high-speed running, lower limb vertical velocity at touchdown has been cited as a critical factor needed to generate large vertical forces. Additionally, greater leg angular velocity has also been correlated with increased running speeds. However, the association between these factors has not been comprehensively investigated across faster running speeds. Therefore, this investigation aimed to evaluate the relationship between running speed, thigh angular motion and vertical force determinants. It was hypothesized that thigh angular velocity would demonstrate a positive linear relationship with both running speed and lower limb vertical velocity at touchdown. A total of 40 subjects (20 males, 20 females) from various athletic backgrounds volunteered and completed 40 m running trials across a range of sub-maximal and maximal running speeds during one test session. Linear and angular kinematic data were collected from 31-39 m. The results supported the hypotheses, as across all subjects and trials (range of speeds: 3.1-10.0 m s-1), measures of thigh angular velocity demonstrated a strong positive linear correlation to speed (all R2>0.70, P<0.0001) and lower limb vertical velocity at touchdown (all R2=0.75, P<0.001). These findings suggest thigh angular velocity is strongly related to running speed and lower limb impact kinematics associated with vertical force application.
Collapse
Affiliation(s)
- Kenneth P Clark
- Department of Kinesiology, West Chester University of Pennsylvania, West Chester, PA 19383, USA
| | - Christopher R Meng
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David J Stearne
- Department of Kinesiology, West Chester University of Pennsylvania, West Chester, PA 19383, USA
| |
Collapse
|
28
|
Dutra YM, de Poli RAB, Miyagi WE, Faustini JB, Zagatto AM. Anaerobic capacity estimated by a single effort distinguishes training status in male cyclists. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Maximal Sprint Speed and the Anaerobic Speed Reserve Domain: The Untapped Tools that Differentiate the World's Best Male 800 m Runners. Sports Med 2020; 49:843-852. [PMID: 30374943 DOI: 10.1007/s40279-018-1010-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that the modern-day men's 800 m runner requires a speed capability beyond that of previous eras. In addition, the appreciation of different athlete subgroups (400-800, 800, 800-1500 m) implies a complex interplay between the mechanical (aerial or terrestrial) and physiological characteristics that enable success in any individual runner. Historically, coach education for middle-distance running often emphasises aerobic metabolic conditioning, while it relatively lacks consideration for an important neuromuscular and mechanical component. Consequently, many 800 m runners today may lack the mechanical competence needed to achieve the relaxed race pace speed required for success, resulting in limited ability to cope with surges, run faster first laps or close fast. Mechanical competence may refer to the skilled coordination of neuromuscular/mechanical (stride length/frequency/impulse) and metabolic components needed to sustain middle-distance race pace and adjust to surges efficiently. The anaerobic speed reserve (ASR) construct (difference between an athlete's velocity at maximal oxygen uptake [v[Formula: see text]O2max]-the first speed at which maximal oxygen uptake [[Formula: see text]O2max] is attained) and their maximal sprint speed (MSS) offers a framework to assess a runner's speed range relative to modern-day race demands. While the smooth and relaxed technique observed in middle-distance runners is often considered causal to running economy measured during submaximal running, little empirical evidence supports such an assumption. Thus, a multidisciplinary approach is needed to examine the underpinning factors enabling elite 800 m running race pace efficiency. Here, we argue for the importance of utilising the ASR and MSS measurement to ensure middle-distance runners have the skills to compete in the race-defining surges of modern-day 800 m running.
Collapse
|
30
|
Puchowicz MJ, Baker J, Clarke DC. Development and field validation of an omni-domain power-duration model. J Sports Sci 2020; 38:801-813. [PMID: 32131692 DOI: 10.1080/02640414.2020.1735609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: To validate and compare a novel model based on the critical power (CP) concept that describes the entire domain of maximal mean power (MMP) data from cyclists.Methods: An omni-domain power-duration (OmPD) model was derived whereby the rate of W' expenditure is bound by maximum sprint power and the power at prolonged durations declines from CP log-linearly. The three-parameter CP (3CP) and exponential (Exp) models were likewise extended with the log-linear decay function (Om3CP and OmExp). Each model bounds W' using a different nonconstant function, W'eff (effective W'). Models were fit to MMP data from nine cyclists who also completed four time-trials (TTs).Results: The OmPD and Om3CP residuals (4 ± 1%) were smaller than the OmExp residuals (6 ± 2%; P < 0.001). W'eff predicted by the OmPD model was stable between 120-1,800 s, whereas it varied for the Om3CP and OmExp models. TT prediction errors were not different between models (7 ± 5%, 8 ± 5%, 7 ± 6%; P = 0.914).Conclusion: The OmPD offers similar or superior goodness-of-fit and better theoretical properties compared to the other models, such that it best extends the CP concept to short-sprint and prolonged-endurance performance.
Collapse
Affiliation(s)
| | | | - David C Clarke
- Department of Biomedical Physiology and Kinesiology and the SFU Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
31
|
Barnes KR, Kilding AE, Blagrove RC, Howatson G, Hayes PR, Boone J, Bourgois J, Fletcher JR, MacIntosh BR, González-Mohíno F, Yustres I, Santos-García DJ, González-Ravé JM, Hopker JG, Coleman DA, Kerhervé HA, Solomon C, Malatesta D, Lanzi S, Fernandez-Menendez A, Borrani F, Sandford GN, Maunder E, McNulty CR, Robergs RA, Pavei G, de Oliveira Barreto T, de Lima Conceição MR, Souza DS, Tenan MS, Macfarlane D, Hackney AC, Adamic EM, Shei RJ, Freemas JA, Barenie M, Barton J, Yeager Z, Nowak M, Paris HL, Mickleborough TD. Commentaries on Viewpoint: Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance. J Appl Physiol (1985) 2019; 125:676-682. [PMID: 30138048 DOI: 10.1152/japplphysiol.00638.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kyle R Barnes
- Department of Movement Science, Grand Valley State University, Allendale, Michigan
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Richard C Blagrove
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom,Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom,Water Research Group, Northwest University, Potchefstroom, South Africa
| | - Philip R Hayes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Jan Boone
- Department of Movement and Sports Science, Ghent University, Ghent, Belgium
| | - Jan Bourgois
- Department of Movement and Sports Science, Ghent University, Ghent, Belgium
| | - Jared R Fletcher
- Human Performance Laboratory, Faculty of Kinesiology. University of Calgary. Calgary, AB, Canada,W21C Research and Innovation Centre, O’Brien Institute of Public Health, Cumming School of Medicine. University of Calgary. Calgary, AB, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology. University of Calgary. Calgary, AB, Canada
| | | | | | | | | | - James G Hopker
- School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Kent, England
| | - Damian A Coleman
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, England
| | | | - Colin Solomon
- School of Health and Sport Sciences, University of the Sunshine Coast, Australia
| | - Davide Malatesta
- Institute of Sport Sciences (ISSUL), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefano Lanzi
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Aitor Fernandez-Menendez
- Institute of Sport Sciences (ISSUL), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences (ISSUL), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gareth N Sandford
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tatiane de Oliveira Barreto
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Diego Santos Souza
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | - Emily M Adamic
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama,Gregory Fleming James Cystic Fibrosis Research Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica A Freemas
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Matthew Barenie
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Jacob Barton
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Zane Yeager
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Madeleine Nowak
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hunter L Paris
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Timothy D Mickleborough
- Human Performance Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
32
|
Sandford GN, Stellingwerff T. " Question Your Categories": the Misunderstood Complexity of Middle-Distance Running Profiles With Implications for Research Methods and Application. Front Sports Act Living 2019; 1:28. [PMID: 33344952 PMCID: PMC7739647 DOI: 10.3389/fspor.2019.00028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/02/2019] [Indexed: 11/15/2022] Open
Abstract
Middle-distance running provides unique complexity where very different physiological and structural/mechanical profiles may achieve similar elite performances. Training and improving the key determinants of performance and applying interventions to athletes within the middle-distance event group are probably much more divergent than many practitioners and researchers appreciate. The addition of maximal sprint speed and other anaerobic and biomechanical based parameters, alongside more commonly captured aerobic characteristics, shows promise to enhance our understanding and analysis within the complexities of middle-distance sport science. For coaches, athlete diversity presents daily training programming challenges in order to best individualize a given stimulus according to the athletes profile and avoid “non-responder” outcomes. It is from this decision making part of the coaching process, that we target this mini-review. First we ask researchers to “question their categories” concerning middle-distance event groupings. Historically broad classifications have been used [from 800 m (~1.5 min) all the way to 5,000 m (~13–15 min)]. Here within we show compelling rationale from physiological and event demand perspectives for narrowing middle-distance to 800 and 1,500 m alone (1.5–5 min duration), considering the diversity of bioenergetics and mechanical constraints within these events. Additionally, we provide elite athlete data showing the large diversity of 800 and 1,500 m athlete profiles, a critical element that is often overlooked in middle-distance research design. Finally, we offer practical recommendations on how researchers, practitioners, and coaches can advance training study designs, scientific interventions, and analysis on middle-distance athletes/participants to provide information for individualized decision making trackside and more favorable and informative study outcomes.
Collapse
Affiliation(s)
- Gareth N Sandford
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Physiology, Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Athletics Canada, Ottawa, ON, Canada
| | - Trent Stellingwerff
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Physiology, Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Athletics Canada, Ottawa, ON, Canada
| |
Collapse
|
33
|
Clark KP, Rieger RH, Bruno RF, Stearne DJ. The National Football League Combine 40-yd Dash: How Important is Maximum Velocity? J Strength Cond Res 2019; 33:1542-1550. [PMID: 28658072 DOI: 10.1519/jsc.0000000000002081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clark, KP, Rieger, RH, Bruno, RF, and Stearne, DJ. The NFL combine 40-yard dash: how important is maximum velocity? J Strength Cond Res 33(6): 1542-1550, 2019-This investigation analyzed the sprint velocity profiles for athletes who completed the 40-yard (36.6 m) dash at the 2016 National Football League (NFL) Combine. The purpose was to evaluate the relationship between maximum velocity and sprint performance, and to compare acceleration patterns for fast and slow athletes. Using freely available online sources, data were collected for body mass and sprint performance (36.6 m time with split intervals at 9.1 and 18.3 m). For each athlete, split times were used to generate modeled curves of distance vs. time, velocity vs. time, and velocity vs. distance using a monoexponential equation. Model parameters were used to quantify acceleration patterns as the ratio of maximum velocity to maximum acceleration (vmax/amax, or τ). Linear regression was used to evaluate the relationship between maximum velocity and sprint performance for the entire sample. In addition, athletes were categorized into fast and slow groups based on maximum velocity, with independent t-tests and effect size statistics used to evaluate between-group differences in sprint performance and acceleration patterns. Results indicated that maximum velocity was strongly correlated with sprint performance across 9.1, 18.3, and 36.6 m (r of 0.72, 0.83, and 0.94, respectively). However, both fast and slow groups accelerated in a similar pattern relative to maximum velocity (τ = 0.768 ± 0.068 seconds for the fast group and τ = 0.773 ± 0.070 seconds for the slow group). We conclude that maximum velocity is of critical importance to 36.6 m time, and inclusion of more maximum velocity training may be warranted for athletes preparing for the NFL Combine.
Collapse
Affiliation(s)
- Kenneth P Clark
- Department of Kinesiology, Human Performance Laboratory, West Chester University of Pennsylvania, West Chester, Pennsylvania
| | - Randall H Rieger
- Department of Mathematics, West Chester University of Pennsylvania, West Chester, Pennsylvania
| | - Richard F Bruno
- Department of Kinesiology, Human Performance Laboratory, West Chester University of Pennsylvania, West Chester, Pennsylvania
| | - David J Stearne
- Department of Kinesiology, Human Performance Laboratory, West Chester University of Pennsylvania, West Chester, Pennsylvania
| |
Collapse
|
34
|
Sundberg CW, Fitts RH. Bioenergetic basis of skeletal muscle fatigue. CURRENT OPINION IN PHYSIOLOGY 2019; 10:118-127. [PMID: 31342000 DOI: 10.1016/j.cophys.2019.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Energetic demand from high-intensity exercise can easily exceed ATP synthesis rates of mitochondria leading to a reliance on anaerobic metabolism. The reliance on anaerobic metabolism results in the accumulation of intracellular metabolites, namely inorganic phosphate (Pi) and hydrogen (H+), that are closely associated with exercise-induced reductions in power. Cellular and molecular studies have revealed several steps where these metabolites impair contractile function demonstrating a causal role in fatigue. Elevated Pi or H+ directly inhibits force and power of the cross-bridge and decreases myofibrillar Ca2+ sensitivity, whereas Pi also inhibits Ca2+ release from the sarcoplasmic reticulum (SR). When both metabolites are elevated, they act synergistically to cause marked reductions in power, indicating that fatigue during high-intensity exercise has a bioenergetic basis.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, WI.,Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI
| |
Collapse
|
35
|
Kramer M, Du Randt R, Watson M, Pettitt RW. Energetics of male field-sport athletes during the 3-min all-out test for linear and shuttle-based running. Eur J Appl Physiol 2018; 119:477-486. [PMID: 30511278 DOI: 10.1007/s00421-018-4047-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE All-out, non-steady state running makes for difficult comparisons regarding linear and shuttle running; yet such differences remain an important distinction for field-based sports. The purpose of the study was to determine whether an energetic approach could be used to differentiate all-out linear from shuttle running. METHODS Fifteen male field-sport athletes volunteered for the study (means ± SD): age, 21.53 ± 2.23 years; height, 1.78 ± 0.68 m; weight, 83.85 ± 11.73 kg. Athletes completed a graded exercise test, a 3-min linear all-out test and two all-out shuttle tests of varied distances (25 m and 50 m shuttles). RESULTS Significant differences between the all-out tests were found for critical speed (CS) [F(8.97), p < 0.001), D' (finite capacity for running speeds exceeding critical speed) [F(7.83), p = 0.001], total distance covered [F(85.31), p < 0.001], peak energetic cost ([Formula: see text]) [F(45.60), p < 0.001], peak metabolic power ([Formula: see text]) [F(23.36), p < 0.001], average [Formula: see text] [F(548.74), p < 0.001], maximal speed [F(22.87), p < 0.001] and fatigue index [F(3.93), p = 0.027]. Non-significant differences were evident for average [Formula: see text] [F(2.47), p = 0.097], total [Formula: see text] [F(0.86), p = 0.416] and total [Formula: see text] [F(2.11), p = 0.134]. CONCLUSIONS The energetic approach provides insights into performance characteristics that differentiate linear from shuttle running, yet surprising similarities between tests were evident. Key parameters from all-out linear and shuttle running appear to be partly interchangeable between tests, indicating that the final choice between linear and shuttle testing should be based on the requirements of the sport.
Collapse
Affiliation(s)
- Mark Kramer
- Human Movement Science Department, Nelson Mandela University, University Way, Summerstrand, Port Elizabeth, 6001, South Africa.
| | - Rosa Du Randt
- Human Movement Science Department, Nelson Mandela University, University Way, Summerstrand, Port Elizabeth, 6001, South Africa
| | - Mark Watson
- Psychology Department, Nelson Mandela University, Port Elizabeth, South Africa
| | | |
Collapse
|
36
|
Sanders D, Heijboer M. The anaerobic power reserve and its applicability in professional road cycling. J Sports Sci 2018; 37:621-629. [PMID: 30317920 DOI: 10.1080/02640414.2018.1522684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study examined if short-duration record power outputs can be predicted with the Anaerobic Power Reserve (APR) model in professional cyclists using a field-based approach. Additionally, we evaluated if modified model parameters could improve predictive ability of the model. Twelve professional cyclists (V̇O2max 75 ± 6 ml∙kg-1∙min-1) participated in this investigation. Using the mean power output during the last stage of an incremental field test, sprint peak power output and an exponential constant describing the decrement in power output over time, a power-duration relationship was established for each participant. Record power outputs of different durations (5 to 180 s) were collected from training and competition data and compared to the predicted power output from the APR model. The originally proposed exponent (k = 0.026) predicted performance within an average of 43 W (Standard Error of Estimate (SEE) of 32 W) and 5.9%. Modified model parameters slightly improved predictive ability to a mean of 34-39 W (SEE of 29 - 35 W) and 4.1 - 5.3%. This study shows that a single exponent model generally fits well with the decrement in power output over time in professional cyclists. Modified model parameters may contribute to improving predictability of the model.
Collapse
Affiliation(s)
- Dajo Sanders
- a Physiology, Exercise and Nutrition Research Group , University of Stirling , Stirling , UK.,b Sport, Exercise and Health Research Centre , Newman University , Birmingham , UK
| | - Mathieu Heijboer
- c Team LottoNL-Jumbo professional cycling team , Amsterdam , Netherlands
| |
Collapse
|
37
|
Rudolf AM, Dańko MJ, Sadowska ET, Dheyongera G, Koteja P. Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Exp Gerontol 2017; 98:70-79. [PMID: 28803134 DOI: 10.1016/j.exger.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.
Collapse
Affiliation(s)
- Agata Marta Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057 Rostock, Germany
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
38
|
Roecker K, Mahler H, Heyde C, Röll M, Gollhofer A. The relationship between movement speed and duration during soccer matches. PLoS One 2017; 12:e0181781. [PMID: 28742832 PMCID: PMC5526535 DOI: 10.1371/journal.pone.0181781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes.
Collapse
Affiliation(s)
- Kai Roecker
- Furtwangen University, Applied Public Health (AGW), Furtwangen, Germany
- Albert-Ludwigs-University Freiburg, Institute of Sports and Sports Science (IfSS), Freiburg im Breisgau, Germany
| | - Hubert Mahler
- Furtwangen University, Applied Public Health (AGW), Furtwangen, Germany
- Albert-Ludwigs-University Freiburg, Institute of Sports and Sports Science (IfSS), Freiburg im Breisgau, Germany
| | - Christian Heyde
- Furtwangen University, Applied Public Health (AGW), Furtwangen, Germany
- Albert-Ludwigs-University Freiburg, Institute of Sports and Sports Science (IfSS), Freiburg im Breisgau, Germany
- adidas AG, Future Team, Herzogenaurach, Germany
| | - Mareike Röll
- Furtwangen University, Applied Public Health (AGW), Furtwangen, Germany
| | - Albert Gollhofer
- Albert-Ludwigs-University Freiburg, Institute of Sports and Sports Science (IfSS), Freiburg im Breisgau, Germany
| |
Collapse
|
39
|
Kordi M, Goodall S, Barratt P, Rowley N, Leeder J, Howatson G. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production. J Electromyogr Kinesiol 2017. [PMID: 28624688 DOI: 10.1016/j.jelekin.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task.
Collapse
Affiliation(s)
- Mehdi Kordi
- English Institute of Sport, Manchester, United Kingdom; Department of Sport, Exercise and Rehabilitation, Northumbria University, United Kingdom.
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, United Kingdom
| | - Paul Barratt
- English Institute of Sport, Manchester, United Kingdom
| | - Nicola Rowley
- Golf College, Dunchy College, Cornwall, United Kingdom
| | | | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, United Kingdom; Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
40
|
Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci 2016; 18:1-12. [PMID: 27806677 DOI: 10.1080/17461391.2016.1249524] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The duration that exercise can be maintained decreases as the power requirements increase. In this review, we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs is sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake ([Formula: see text]), with task failure being associated with the attainment of [Formula: see text] max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis.
Collapse
Affiliation(s)
- Mark Burnley
- a Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham , Kent , UK
| | - Andrew M Jones
- b Sport and Health Sciences, College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
41
|
Nicolò A, Bazzucchi I, Felici F, Patrizio F, Sacchetti M. Mechanical and electromyographic responses during the 3-min all-out test in competitive cyclists. J Electromyogr Kinesiol 2015; 25:907-13. [PMID: 26363565 DOI: 10.1016/j.jelekin.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022] Open
Abstract
While the 3-min all-out test is an ideal exercise paradigm to study muscle fatigue during dynamic whole-body exercise, so far it has been used mainly to provide insight into the bioenergetic determinants of performance. To shed some light into the development of peripheral muscle fatigue during the 3-min all-out test, we investigated the time course of muscle-fibre conduction velocity (MFCV). Twelve well-trained cyclists (23 ± 3 yrs) performed an incremental test, a 3-min all-out familiarization trial and a 3-min all-out test. Surface electromyographic signals were detected from the vastus lateralis muscle of the dominant limb. MFCV decreased with power output, though with a somewhat different time course, and the two parameters were strongly correlated (r = 0.87; P < 0.001). A modest decrease in MFCV (17.7 ± 4.8%), probably due to the endurance characteristics of the subjects, may help explain why a relatively high power output (79 ± 8% of the peak power output of the incremental test; 60 ± 14% of the difference between this peak value and the gas exchange threshold) was still maintained at the end of the test. These findings suggest that muscle fatigue substantially affects performance in the 3-min all-out test, expanding on the traditional bioenergetic explanation that performance is limited by rate and capacity of energy supply.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Piazza Lauro De Bosis 6, Rome 00135, Italy
| | - Ilenia Bazzucchi
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Piazza Lauro De Bosis 6, Rome 00135, Italy
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Piazza Lauro De Bosis 6, Rome 00135, Italy
| | - Federica Patrizio
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Piazza Lauro De Bosis 6, Rome 00135, Italy
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Piazza Lauro De Bosis 6, Rome 00135, Italy.
| |
Collapse
|
42
|
Sundberg CW, Bundle MW. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise. Am J Physiol Regul Integr Comp Physiol 2015; 309:R51-61. [PMID: 25876654 PMCID: PMC4491536 DOI: 10.1152/ajpregu.00356.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/08/2015] [Indexed: 11/22/2022]
Abstract
We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9-11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Biomechanics Laboratory, Departments of Health and Human Performance and Organismal Biology and Ecology, University of Montana, Missoula, Montana
| | - Matthew W Bundle
- Biomechanics Laboratory, Departments of Health and Human Performance and Organismal Biology and Ecology, University of Montana, Missoula, Montana
| |
Collapse
|
43
|
Clark KP, Weyand PG. Are running speeds maximized with simple-spring stance mechanics? J Appl Physiol (1985) 2014; 117:604-15. [DOI: 10.1152/japplphysiol.00174.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds ( n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R2 statistic (where an R2 of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds ( R2 <0.85 vs. R2 ≥ 0.91, respectively), and deviated most at top speed ( R2 = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds.
Collapse
Affiliation(s)
- Kenneth P. Clark
- Southern Methodist University, Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Dallas, Texas
| | - Peter G. Weyand
- Southern Methodist University, Locomotor Performance Laboratory, Department of Applied Physiology and Wellness, Dallas, Texas
| |
Collapse
|
44
|
A physical model of sprinting. J Biomech 2014; 47:2933-40. [DOI: 10.1016/j.jbiomech.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/18/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022]
|
45
|
Girard O, Brocherie F, Millet GP. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. Br J Sports Med 2014; 47 Suppl 1:i121-3. [PMID: 24282198 PMCID: PMC3903140 DOI: 10.1136/bjsports-2013-092794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background/aim With the evolving boundaries of sports science and greater understanding of the driving factors in the human performance physiology, one of the limiting factors has now become the technology. The growing scientific interest on the practical application of hypoxic training for intermittent activities such as team and racket sports legitimises the development of innovative technologies serving athletes in a sport-specific setting. Methods Description of a new mobile inflatable simulated hypoxic equipment. Results The system comprises two inflatable units—that is, a tunnel and a rectangular design, each with a 215 m3 volume and a hypoxic trailer generating over 3000 Lpm of hypoxic air with FiO2 between 0.21 and 0.10 (a simulated altitude up to 5100 m). The inflatable units offer a 45 m running lane (width=1.8 m and height=2.5 m) as well as a 8 m×10 m dome tent. FiO2 is stable within a range of 0.1% in normal conditions inside the tunnel. The air supplied is very dry—typically 10–15% relative humidity. Conclusions This mobile inflatable simulated hypoxic equipment is a promising technological advance within sport sciences. It offers an opportunity for team-sport players to train under hypoxic conditions, both for repeating sprints (tunnel configuration) or small-side games (rectangular configuration).
Collapse
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, , Doha, Qatar
| | | | | |
Collapse
|