1
|
Tain YL, Hsu CN. Nutritional Approaches Targeting Gut Microbiota in Oxidative-Stress-Associated Metabolic Syndrome: Focus on Early Life Programming. Nutrients 2024; 16:683. [PMID: 38474810 DOI: 10.3390/nu16050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) denotes a constellation of risk factors associated with the development of cardiovascular disease, with its roots potentially traced back to early life. Given the pivotal role of oxidative stress and dysbiotic gut microbiota in MetS pathogenesis, comprehending their influence on MetS programming is crucial. Targeting these mechanisms during the early stages of life presents a promising avenue for preventing MetS later in life. This article begins by examining detrimental insults during early life that impact fetal programming, ultimately contributing to MetS in adulthood. Following that, we explore the role of oxidative stress and the dysregulation of gut microbiota in the initiation of MetS programming. The review also consolidates existing evidence on how gut-microbiota-targeted interventions can thwart oxidative-stress-associated MetS programming, encompassing approaches such as probiotics, prebiotics, postbiotics, and the modulation of bacterial metabolites. While animal studies demonstrate the favorable effects of gut-microbiota-targeted therapy in mitigating MetS programming, further clinical investigations are imperative to enhance our understanding of manipulating gut microbiota and oxidative stress for the prevention of MetS.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Wells JCK, Desoye G, Leon DA. Reconsidering the developmental origins of adult disease paradigm: The 'metabolic coordination of childbirth' hypothesis. Evol Med Public Health 2024; 12:50-66. [PMID: 38380130 PMCID: PMC10878253 DOI: 10.1093/emph/eoae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Indexed: 02/22/2024] Open
Abstract
In uncomplicated pregnancies, birthweight is inversely associated with adult non-communicable disease (NCD) risk. One proposed mechanism is maternal malnutrition during pregnancy. Another explanation is that shared genes link birthweight with NCDs. Both hypotheses are supported, but evolutionary perspectives address only the environmental pathway. We propose that genetic and environmental associations of birthweight with NCD risk reflect coordinated regulatory systems between mother and foetus, that evolved to reduce risks of obstructed labour. First, the foetus must tailor its growth to maternal metabolic signals, as it cannot predict the size of the birth canal from its own genome. Second, we predict that maternal alleles that promote placental nutrient supply have been selected to constrain foetal growth and gestation length when fetally expressed. Conversely, maternal alleles that increase birth canal size have been selected to promote foetal growth and gestation when fetally expressed. Evidence supports these hypotheses. These regulatory mechanisms may have undergone powerful selection as hominin neonates evolved larger size and encephalisation, since every mother is at risk of gestating a baby excessively for her pelvis. Our perspective can explain the inverse association of birthweight with NCD risk across most of the birthweight range: any constraint of birthweight, through plastic or genetic mechanisms, may reduce the capacity for homeostasis and increase NCD susceptibility. However, maternal obesity and diabetes can overwhelm this coordination system, challenging vaginal delivery while increasing offspring NCD risk. We argue that selection on viable vaginal delivery played an over-arching role in shaping the association of birthweight with NCD risk.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - David A Leon
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
3
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Huang YH, Tain YL, Hsu CN. Maternal Supplementation of Probiotics, Prebiotics or Postbiotics to Prevent Offspring Metabolic Syndrome: The Gap between Preclinical Results and Clinical Translation. Int J Mol Sci 2022; 23:10173. [PMID: 36077575 PMCID: PMC9456151 DOI: 10.3390/ijms231710173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate in early life. This concept is now being termed the developmental origins of health and disease (DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through early intervention (i.e., reprogramming). In this review, we summarize the existing literature that supports how environmental cues induced MetS of developmental origins and the interplay between gut microbiota and other fundamental underlying mechanisms. We also present an overview of experimental animal models addressing implementation of gut microbiota-targeted reprogramming interventions to avert the programming of MetS. Even with growing evidence from animal studies supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of developmental origins, their effects on pregnant women are still unknown and these results require further clinical translation.
Collapse
Affiliation(s)
- Ying-Hua Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Holzapfel C, Waldenberger M, Lorkowski S, Daniel H. Genetics and Epigenetics in Personalized Nutrition: Evidence, Expectations and Experiences. Mol Nutr Food Res 2022; 66:e2200077. [PMID: 35770348 DOI: 10.1002/mnfr.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Indexed: 11/10/2022]
Abstract
With the presentation of the blueprint of the first human genome in 2001 and the advent of technologies for high-throughput genetic analysis, personalized nutrition (PN) became a new scientific field and the first commercial offerings of genotype-based nutrition advice emerged at the same time. Here, we summarize the state of evidence for the effect of genetic and epigenetic factors in the development of obesity, the metabolic syndrome and resulting illnesses such as non-insulin-dependent diabetes mellitus and cardiovascular diseases. We also critically value the concepts of PN that were built around the new genetic avenue from both the academic and a commercial perspective and their effectiveness in causing sustained changes in diet, lifestyle and for improving health. Despite almost 20 years of research and commercial direct-to-consumer offerings, evidence for the success of gene-based dietary recommendations is still generally lacking. This calls for new concepts of future PN solutions that incorporate more phenotypic measures and provide a panel of instruments (e.g., self- and bio-monitoring tools, feedback systems, algorithms based on artificial intelligence) that increases compliance based on the individual´s physical and social environment and value system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christina Holzapfel
- Institute for Nutritional Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Friedrich Schiller University, Jena, Germany
| | - Hannelore Daniel
- Professor emeritus, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Tain YL, Hsu CN. Novel Insights on Dietary Polyphenols for Prevention in Early-Life Origins of Hypertension: A Review Focusing on Preclinical Animal Models. Int J Mol Sci 2022; 23:6620. [PMID: 35743061 PMCID: PMC9223825 DOI: 10.3390/ijms23126620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with health benefits. Early life appears to offer a critical window of opportunity for launching interventions focused on preventing hypertension, as increasing evidence supports the supposition that hypertension can originate in early life. Although polyphenols have antihypertensive actions, knowledge of the potential beneficial action of the early use of polyphenols to avert the development of hypertension is limited. Thus, in this review, we first provide a brief summary of the chemistry and biological function of polyphenols. Then, we present the current epidemiological and experimental evidence supporting the early-life origins of hypertension. We also document animal data on the use of specific polyphenols as an early-life intervention to protect offspring against hypertension in adulthood and discuss underlying mechanisms. Continued research into the use of polyphenols to prevent hypertension from starting early in life will have far-reaching implications for future health.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int J Mol Sci 2021; 22:11872. [PMID: 34769303 PMCID: PMC8584419 DOI: 10.3390/ijms222111872] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
One of the leading global public-health burdens is metabolic syndrome (MetS), despite the many advances in pharmacotherapies. MetS, now known as "developmental origins of health and disease" (DOHaD), can have its origins in early life. Offspring MetS can be programmed by various adverse early-life conditions, such as nutrition imbalance, maternal conditions or diseases, maternal chemical exposure, and medication use. Conversely, early interventions have shown potential to revoke programming processes to prevent MetS of developmental origins, namely reprogramming. In this review, we summarize what is currently known about adverse environmental insults implicated in MetS of developmental origins, including the fundamental underlying mechanisms. We also describe animal models that have been developed to study the developmental programming of MetS. This review extends previous research reviews by addressing implementation of reprogramming strategies to prevent the programming of MetS. These mechanism-targeted strategies include antioxidants, melatonin, resveratrol, probiotics/prebiotics, and amino acids. Much work remains to be accomplished to determine the insults that could induce MetS, to identify the mechanisms behind MetS programming, and to develop potential reprogramming strategies for clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Chen Kung University, Tainan 701, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
8
|
The Guinea-Bissau Twin Registry Update: A Platform for Studying Twin Mortality and Metabolic Disease. Twin Res Hum Genet 2019; 22:554-560. [PMID: 31317858 DOI: 10.1017/thg.2019.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sub-Saharan Africa has the highest natural twinning rate in the world. Unfortunately, due to lack of adequate care during pregnancy, labor and postnatally, twin mortality in Sub-Saharan Africa also remains very high. Thus, it has been estimated that one in five twins dies during the childhood years. In spite of this, surprisingly few twin studies have been conducted in the region, making additional epidemiological data much needed. In 2009, we established one of the first twin registries in Sub-Saharan Africa at the Bandim Health Project in Guinea-Bissau. The registry had two main objectives. First, we wanted to describe the twinning rate and mortality patterns among newborn twins, including mortality risk factors and hospitalization patterns. Such studies can help the local clinicians improve twin health by identifying the most vulnerable children. Second, and in light of the rapidly increasing diabetes rates in Africa, we wanted to use the registry to particularly focus on metabolic disorders. Twins are often born with low birth weight, which according to the 'thrifty phenotype hypothesis' could predispose them to metabolic disorders later in life. Yet, no such 'fetal programming' data have previously been available from African twins despite the fact that nutritional patterns and influences from other factors (e.g., infections) could be markedly different here compared to high-income settings. In this article, we summarize the findings and current status of the Guinea-Bissau twin registry.
Collapse
|
9
|
Tain YL, Hsu CN. Developmental Programming of the Metabolic Syndrome: Can We Reprogram with Resveratrol? Int J Mol Sci 2018; 19:ijms19092584. [PMID: 30200293 PMCID: PMC6164855 DOI: 10.3390/ijms19092584] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is a mounting epidemic worldwide. MetS can start in early life, in a microenvironment that is now known as the developmental origins of health and disease (DOHaD). The concept of DOHaD also offers opportunities for reprogramming strategies that aim to reverse programming processes in early life. Resveratrol, a polyphenolic compound has a wide spectrum of beneficial effects on human health. In this review, we first summarize the epidemiological and experimental evidence supporting the developmental programming of MetS. This review also presents an overview of the evidence linking different molecular targets of resveratrol to developmental programming of MetS-related disorders. This will be followed by studies documenting resveratrol as a reprogramming agent to protect against MetS-related disorders. Further clinical studies are required in order to bridge the gap between animal models and clinical trials in order to establish the effective dose and therapeutic duration for resveratrol as a reprogramming therapy on MetS disorders from developmental origins.
Collapse
Affiliation(s)
- You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
10
|
Hennild DE, Bjerregaard-Andersen M, Joaquím LC, Christensen K, Sodemann M, Beck-Nielsen H, Jensen DM. Prevalence of impaired glucose tolerance and other types of dysglycaemia among young twins and singletons in Guinea-Bissau. BMC Endocr Disord 2016; 16:46. [PMID: 27491662 PMCID: PMC4973540 DOI: 10.1186/s12902-016-0126-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Twins may be at increased risk of dysglycaemic disorders due to adverse fetal conditions. Data from Africa regarding this association is limited. We studied impaired glucose tolerance (IGT) and other types of dysglycemia among twins and singletons in Guinea-Bissau. METHODS The study was conducted from February 2011 until March 2012 at the Bandim Health Project, a health and demographic surveillance system site in the capital Bissau. Twins (n = 209) and singletons (n = 182) were recruited from a previously established cohort. Oral glucose tolerance tests (OGTT) were performed, along with anthropometrics and collection of clinical and dietary data. RESULTS Median age was 16.6 and 14.2 years between twins and singletons, respectively (P = 0.08). Mean birth weight was 2410 vs. 3090 g, respectively (P < 0.001). Twins had higher median fasting- and two hour capillary plasma glucose, 5.4(3.2-8.2) vs. 5.0(3.2-11.5) mmol/L (P < 0.001) and 6.8(3.4-11.3) vs. 6.2(3.2-12.1) mmol/L (P < 0.001), respectively, compared to singletons. The prevalence of IGT was 2.5 % (5/209) vs. 3.5 % (6/182) (RR = 0.73, 95 % CI: 0.20-2.64). 12 % (25/209) of twins had impaired fasting glucose (IFG), compared to 3.5 % (6/182) of singletons (3.63, 1.53-8.62). Dysglycemia (IGT and/or IFG or overt diabetes) was found in 17 % (35/209) vs. 9 % (16/182) (1.90, 1.08-3.37), respectively. CONCLUSIONS Twins had higher glucose levels in both the fasting and postprandial state. This may indicate a detrimental effect of the twin fetal environment on glucose metabolism later in life, a result contrary to Scandinavian register studies. The IGT burden was low in this young age group and the risk was similar in twins and singletons.
Collapse
Affiliation(s)
- Ditte Egegaard Hennild
- Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau Codex, Guinea-Bissau
- Department of Infectious Diseases, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau Codex, Guinea-Bissau
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Luis Carlos Joaquím
- Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau Codex, Guinea-Bissau
- Guinean Diabetes Association (ANDD), Bissau, Guinea-Bissau
| | - Kaare Christensen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 9, 5000 Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Morten Sodemann
- Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau Codex, Guinea-Bissau
- Department of Infectious Diseases, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Henning Beck-Nielsen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
- Elite Research Centre for Medical Endocrinology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Dorte Møller Jensen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
- Elite Research Centre for Medical Endocrinology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- The Research Unit of Gynaecology and Obstetrics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| |
Collapse
|
11
|
Abstract
Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed.
Collapse
Affiliation(s)
- Romain Barrès
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Molecular Medicine and Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, SE 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Hjort R, Alfredsson L, Carlsson PO, Groop L, Martinell M, Storm P, Tuomi T, Carlsson S. Low birthweight is associated with an increased risk of LADA and type 2 diabetes: results from a Swedish case-control study. Diabetologia 2015. [PMID: 26208603 DOI: 10.1007/s00125-015-3711-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Our aim was to investigate the association between birthweight and latent autoimmune diabetes in adults (LADA), a common diabetes form with features of both type 1 and type 2 diabetes. METHODS We used data from the Epidemiological Study of Risk Factors for LADA and Type 2 Diabetes (ESTRID), a Swedish population-based study. Eligible for the analysis were 134 incident LADA cases (glutamic acid decarboxylase antibody [GADA] positive), 350 incident type 2 diabetes cases (GADA negative) and 603 randomly selected controls. We present ORs and 95% CIs for LADA and type 2 diabetes in relation to birthweight, adjusted for sex, age, BMI and family history of diabetes. RESULTS Low birthweight increased the risk of LADA as well as the risk of type 2 diabetes; OR per kg reduction was estimated as 1.52 (95% CI 1.12, 2.08) and 1.58 (1.23, 2.04), respectively. The OR for participants weighing <3 kg compared with ≥4 kg at birth was estimated as 2.38 (1.23, 4.60) for LADA and 2.37 (1.37, 4.10) for type 2 diabetes. A combination of low birthweight (<3 kg) and current overweight (BMI ≥ 25) further augmented the risk: LADA, OR 3.26 (1.69, 6.29); and type 2 diabetes, OR 39.93 (19.27, 82.71). Family history of diabetes had little impact on these estimates. CONCLUSIONS/INTERPRETATION Our results suggest that low birthweight may be a risk factor for LADA of the same strength as for type 2 diabetes. These findings support LADA, despite its autoimmune component, having an aetiology that includes factors related to type 2 diabetes.
Collapse
Affiliation(s)
- Rebecka Hjort
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| | - Lars Alfredsson
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Leif Groop
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Petter Storm
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Division of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Finnish Institute for Molecular Medicine and Research Program for Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
| | - Sofia Carlsson
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| |
Collapse
|
13
|
de Visser KL, Landman GWD, Meyboom-de Jong B, de Visser W, te Meerman GJ, Bilo HJG. Familial Aggregation between the 14th and 21st Century and Type 2 Diabetes Risk in an Isolated Dutch Population. PLoS One 2015; 10:e0132549. [PMID: 26193086 PMCID: PMC4508118 DOI: 10.1371/journal.pone.0132549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The development of type 2 diabetes results from an interaction of hereditary factors and environmental factors. This study aimed to investigate the contribution of interrelatedness to the risk of developing type 2 diabetes in an isolated Dutch population. Materials and Methods A genealogical database from inhabitants living on the former island Urk between the 14th and 21st century was constructed. In a case-control study, effects of interrelatedness and the risk of type 2 diabetes were estimated with Kinship Coefficients (KCs). Relative risks in first, second, and third degree relatives and spouses of inhabitants with type 2 diabetes were compared to matched controls. Results Patients with type 2 diabetes were more interrelated, expressed by a higher KC compared to controls (7.2 vs. 5.2, p=0.001). First, second and third degree relatives had an increased risk of developing type 2 diabetes. Second degree relatives had a similar risk,1.7 (1.5-2.0) as third degree relatives,1.8 (1.5-2.2). Spouses of patients with diabetes had a 3.4 (2.7-4.4) higher risk of developing type 2 diabetes. Conclusions Interrelatedness was higher among inhabitants with type 2 diabetes compared to controls. This differences extended beyond the nuclear family, thereby supporting the hypothesis that interrelatedness contributed to the development of type 2 diabetes on Urk. However, the size of this effect was small and the patterns of risk in first, second and third degree relatives suggested that factors other than interrelatedness were the main contributors to the development of type 2 diabetes on Urk.
Collapse
Affiliation(s)
- Kees L. de Visser
- Diabetes Centre, Isala, 8025 BT, Zwolle, The Netherlands
- Department of General practice, University Medical Center Groningen and University of Groningen, 9700 RB, Groningen, The Netherlands
- General practice Urk, 8322 BA, The Netherlands
| | - Gijs W. D. Landman
- Diabetes Centre, Isala, 8025 BT, Zwolle, The Netherlands
- Department of internal medicine, Gelre hospital, 7334 DZ, Apeldoorn, The Netherlands
- Langerhans Medical Research Institute, Zwolle, The Netherlands
- * E-mail:
| | - Betty Meyboom-de Jong
- Diabetes Centre, Isala, 8025 BT, Zwolle, The Netherlands
- Department of General practice, University Medical Center Groningen and University of Groningen, 9700 RB, Groningen, The Netherlands
| | | | - Gerard J. te Meerman
- Department of genetics, University Medical Center Groningen and University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Henk J. G. Bilo
- Diabetes Centre, Isala, 8025 BT, Zwolle, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
14
|
Changes in Weight and Cardiovascular Disease Risk Factors in Monozygotic Twins: The Healthy Twin Study. Twin Res Hum Genet 2015; 18:151-7. [DOI: 10.1017/thg.2014.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We aimed to assess the non-genetic contribution to the associations between the change in weight and changes in cardiovascular disease (CVD) risk factors. This analysis included 194 Korean monozygotic (MZ) twin pairs (116 men, 272 women; mean age, 38.5 ± 6.8 years) who were first examined for weight and CVD risk factors (blood pressure (BP), glucose, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL)) between December 2005 and December 2008, and returned for a repeat examination after 2.7 ± 0.9 years. The within-pair correlations were 0.21 for the change in weight and 0.05-0.42 for the changes in CVD risk factors. Bivariate analyses showed significant environmental correlations shared between the change in weight and the changes in CVD risk factors (p < .05), except for glucose, while there were no significant genetic effects shared between the phenotypes. After adjusting for baseline values of weight, smoking, and alcohol consumption, diastolic blood pressure (DBP), TG, TC, and LDL significantly increased by 1.6 mmHg, 0.09 mmol/L, 0.10 mmol/L, and 0.09 mmol/L, respectively, per 1 kg increase in within-pair differences in weight change. In Korean MZ twins, similarity between twins for changes in weight and CVD risk factors were small to moderate, and non-genetic factors were responsible for the associations between the change in weight and changes in DBP, TG, TC, and LDL.
Collapse
|
15
|
Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J Bone Miner Res 2014; 29:1917-25. [PMID: 24861883 DOI: 10.1002/jbmr.2286] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 05/16/2014] [Indexed: 01/20/2023]
Abstract
It is becoming increasingly apparent that the risk of developing osteoporosis is accrued throughout the entire lifecourse, even from as early as conception. Thus early growth is associated with bone mass at peak and in older age, and risk of hip fracture. Novel findings from mother-offspring cohorts have yielded greater understanding of relationships between patterns of intrauterine and postnatal growth in the context of later bone development. Study of biological samples from these populations has helped characterize potential mechanistic underpinnings, such as epigenetic processes. Global policy has recognized the importance of early growth and nutrition to the risk of developing adult chronic noncommunicable diseases such as osteoporosis; testing of pregnancy interventions aimed at optimizing offspring bone health is now underway. It is hoped that through such programs, novel public health strategies may be established with the ultimate goal of reducing the burden of osteoporotic fracture in older age.
Collapse
Affiliation(s)
- Nicholas Harvey
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | |
Collapse
|
16
|
Genetic and Environmental Relationships Between Change in Weight and Insulin Resistance: The Healthy Twin Study. Twin Res Hum Genet 2014; 17:199-205. [DOI: 10.1017/thg.2014.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We aimed to investigate the association between weight change from 20 years of age and insulin resistance (IR), and genetic and environmental relationships between these traits. In 594 Korean twins and family members (209 men, 385 women, 44.0 ± 10.8 years old), the percentage of weight change was calculated using self-reported body weight at 20 years of age and currently measured bodyweight. IR traits were assessed using fasting plasma glucose and insulin, the homeostasis model assessment of IR index (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI). Linear mixed analysis was applied after adjusting for household, body mass index (BMI) at the age of 20 years, age, sex, alcohol, smoking, physical activity, and caloric intake. Heritabilities and genetic and environmental correlations were estimated after adjusting for covariates. In 55 monozygotic twin pairs discordant for HOMA-IR level by >0.3, a conditional logistic regression analysis was conducted regarding weight change. Increases in glucose, insulin, and HOMA-IR and a decrease in QUICKI were associated with a higher percentage of weight change (p < .05). Estimated heritabilities for IR traits were 0.401–0.606 (p < .001). In cross-trait relationships, environmental correlations were -0.43–0.42 (p < .05 for all IR), while genetic correlations were -0.27–0.27 (p < .05 for QUICKI, insulin, and HOMA-IR). In 55 pairs of monozygotic twins, the odds ratio (95% confidence interval) for having a higher level of HOMA-IR was 1.10 (1.03–1.17) with 1% increase in weight change since 20 years old, after adjusting for lifestyle-related factors. In conclusion, both genetic and environmental influences played significant roles in the positive association between weight change from 20 years of age and IR.
Collapse
|
17
|
Bjerregaard-Andersen M, Hansen L, da Silva LI, Joaquím LC, Hennild DE, Christiansen L, Aaby P, Benn CS, Christensen K, Sodemann M, Jensen DM, Beck-Nielsen H. Risk of metabolic syndrome and diabetes among young twins and singletons in Guinea-Bissau. Diabetes Care 2013; 36:3549-56. [PMID: 23949562 PMCID: PMC3816924 DOI: 10.2337/dc12-2653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Twins in Africa may be at increased risk of metabolic disorders due to strained conditions in utero, including high exposure to infections. We studied metabolic syndrome (MS) and diabetes mellitus (DM) among young twins and singletons in Guinea-Bissau. RESEARCH DESIGN AND METHODS The study was cross-sectional and occurred from October 2009 until August 2011 at the Bandim Health Project, a demographic surveillance site in the capital Bissau. Twins and singleton controls between 5 and 32 years were visited at home. Fasting blood samples for metabolic measurements were collected. Zygosity was established genetically for a subset. DM was defined as HbA1c ≥6.5% (48 mmol/mol) and MS by the International Diabetes Federation criteria. RESULTS HbA1c was available for 574 twins and 463 singletons. Mean age was 15.3 years versus 15.8 years, respectively. Eighteen percent of twins were monozygotic. There were no DM cases among twins but one among singletons. A total of 1.4% (8 of 574) of twins had elevated HbA1c (6.0-6.4%, 42-46 mmol/mol) compared with 2.4% (11 of 463) of singletons (P = 0.28). Mean HbA1c was 5.3% (34 mmol/mol) for both groups. MS data were available for 364 twins and 360 singletons. The MS prevalence was 3.0% (11 of 364) among twins and 3.6% (13 of 360) among singletons (P = 0.66). The prevalence of fasting blood glucose (F-glucose) ≥5.6 mmol/L was 34.9% (127 of 364) for twins versus 24.7% (89 of 360) for singletons (P = 0.003). Median homeostasis model assessment-insulin resistance did not differ (P = 0.34). CONCLUSIONS The MS and DM prevalences among young individuals in Guinea-Bissau were low. Twins did not have a higher MS and DM burden than singletons, though elevated F-glucose was more common among twins.
Collapse
|
18
|
Friedrichsen M, Poulsen P, Wojtaszewski J, Hansen PR, Vaag A, Rasmussen HB. Carboxylesterase 1 gene duplication and mRNA expression in adipose tissue are linked to obesity and metabolic function. PLoS One 2013; 8:e56861. [PMID: 23468884 PMCID: PMC3585247 DOI: 10.1371/journal.pone.0056861] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
CONTEXT AND AIMS Carboxylesterase 1 (CES1) appears to play an important role in the control of the metabolism of triglycerides and cholesterol in adipocytes and other cell types including hepatocytes. Therefore, it is relevant to gain insights into the genetic versus non-genetic mechanisms involved in the control of CES1 mRNA expression. Here, we investigated CES1 mRNA expression level in adipose tissue and its association with measures of adiposity and metabolic function in a population of elderly twins. Furthermore, the heritability of CES1 mRNA expression level in adipose tissue and the effect of CES1 gene duplication were assessed. METHODOLOGY A total of 295 monozygotic and dizygotic twin subjects (62-83 years) with (n = 48) or without (n = 247) type 2 diabetes mellitus were enrolled in the study. They were subjected to a standard oral glucose tolerance test and excision of abdominal subcutaneous fat biopsies during the fasting state. Levels of CES1 mRNA and copy number of the gene were assessed by quantitative PCR. RESULTS CES1 mRNA expression level in adipose tissue was positively associated with body-mass index (P<0.001), homeostasis model assessment-insulin resistance (P = 0.003) and level of fasting glucose (P = 0.002), insulin (P = 0.006), and triglycerides (P = 0.003). The heritability for the expression of CES1 mRNA in adipose tissue was high. CES1 gene duplication was positively associated with insulin sensitivity (P = 0.05) as well as glucose tolerance (P = 0.03) and negatively associated with homeostasis model assessment-insulin resistance (P = 0.02). Duplication of CES1 was not linked to mRNA level of this gene (P = 0.63). CONCLUSION CES1 mRNA in adipose tissue appears to be under strong genetic control and was associated with measures of metabolic function raising the possibility of a potential role of this enzyme in the development of type 2 diabetes mellitus. Further studies are needed to understand the potential effect of CES1 gene duplication on adipocyte and whole-body metabolic functions.
Collapse
Affiliation(s)
- Martin Friedrichsen
- Department of Diabetes and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Allan Vaag
- Department of Diabetes and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Berg Rasmussen
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
19
|
Abstract
Twins traditionally retain a special status in many African societies. In Guinea-Bissau, twins are often well regarded yet still suffer from a very high mortality, especially in the perinatal and infant period. At the Bandim Health Project, a health and demographic surveillance site, we have recently established one of the first twin registries in Sub-Saharan Africa. Our short-term aim is to describe twin mortality and morbidity in order to design appropriate health interventions. Our long-term goal is a large-scale database to explore the pathogenesis of prevalent diseases; for example, diabetes mellitus, metabolic syndrome, and infectious diseases such as HIV, tuberculosis, and malaria. A major focus area is also the etiology of low birth weight and how epigenetic processes might modulate the consequences of low birth weight in Sub-Saharan Africa. For this, monozygotic twin studies represent a powerful tool. Though twin studies have been carried out by the Bandim Health Project for more than 30 years, the renewed registry described here was officially established in 2009 and includes both a cohort of newborn twins and a cohort of young and adult twins. Currently more than 1,500 twins are being followed in the two cohorts combined. We believe that the registry holds exciting possibilities and will encourage the establishment of further twin registries across the region.
Collapse
|
20
|
D'Aloisio AA, Baird DD, DeRoo LA, Sandler DP. Early-life exposures and early-onset uterine leiomyomata in black women in the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:406-12. [PMID: 22049383 PMCID: PMC3295338 DOI: 10.1289/ehp.1103620] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 11/02/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Uterine leiomyomata (fibroids) are hormonally responsive tumors, but little is known about risk factors. Early-life exposures may influence uterine development and subsequent response to hormones in adulthood. An earlier analysis of non-Hispanic white women who participated in the Sister Study found associations between several early-life factors and early-onset fibroids. OBJECTIVES We evaluated associations of early-life and childhood exposures with early-onset fibroids among black women and compared the results with those found among white women. METHODS We analyzed baseline data from 3,534 black women, 35-59 years of age, in the Sister Study (a nationwide cohort of women who had a sister diagnosed with breast cancer) who self-reported information on early-life and childhood exposures. Early-onset fibroids were assessed based on self-report of a physician diagnosis of fibroids by the age of 30 years (n = 561). We estimated risk ratios (RR) and 95% confidence intervals (CI) from log-binomial regression models. RESULTS Factors most strongly associated with early-onset fibroids were in utero diethylstilbestrol (DES; RR = 2.02; 95% CI: 1.28, 3.18), maternal prepregnancy diabetes or gestational diabetes (RR = 1.54; 95% CI: 0.95, 2.49), and monozygotic multiple birth (RR = 1.94; 95% CI: 1.26, 2.99). We also found positive associations with having been taller or thinner than peers at the age of 10 years and with early-life factors that included being the firstborn child of a teenage mother, maternal hypertensive disorder, preterm birth, and having been fed soy formula. CONCLUSIONS With the exception of monozygotic multiple birth and maternal hypertensive disorder, early-life risk factors for early-onset fibroids for black women were similar to those found for white women. However, in contrast to whites, childhood height and weight, but not low socioeconomic status indicators, were associated with early-onset fibroids in blacks. The general consistency of early-life findings for black and white women supports a possible role of early-life factors in fibroid development.
Collapse
Affiliation(s)
- Aimee A D'Aloisio
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
21
|
Vaag A, Arora GP, Thaman RG. Timing of inter-generational prevention of adiposity and type 2 diabetes. J Physiol 2012; 590:1021-2. [PMID: 22399820 DOI: 10.1113/jphysiol.2012.227371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- A Vaag
- Department of Endocrinology, Rigshospitalet and Copenhagen University, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
22
|
Alpert JS, Chen QM. Has the genomic revolution failed? Clin Cardiol 2012; 35:178-9. [PMID: 22278947 DOI: 10.1002/clc.21956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/28/2011] [Indexed: 11/11/2022] Open
|
23
|
Hancock SN, Oliver MH, McLean C, Jaquiery AL, Bloomfield FH. Size at birth and adult fat mass in twin sheep are determined in early gestation. J Physiol 2011; 590:1273-85. [PMID: 22183720 DOI: 10.1113/jphysiol.2011.220699] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Size at birth is related to adult health outcomes. Twins are born smaller than singletons; this has been assumed to be secondary to limited nutrient supply in late gestation.We hypothesised that growth trajectory in twins, and the adult consequences of being conceived a twin, are determined in early gestation. Twin pregnancies in sheep were randomised to reduction of one twin on day 42 of a 148 day pregnancy by intra-thoracic KCl (Reductions, n =46) or a sham procedure (Twins, n =22). Singleton-bearing ewes also underwent a sham procedure (n =27). Ewes lambed spontaneously. Linear measures of size at birth were similar in Twins and Reductions, and significantly less than in Singletons. Birthweight was lower in Twins and Reductions than in Singletons, and less in Twins than in Reductions (means (SEM): Singletons, liveborn n =23: 6.59 (0.17) kg; Twins, liveborn n =36: 5.23 (0.16) kg; Reductions, liveborn n =27: 5.76 (0.15) kg; all comparisons P <0.05). Reductions grew most rapidly between birth and weaning (Singletons, 20.0 (0.4) g kg⁻¹ day⁻¹; Twins, 20.0 (0.3) g kg⁻¹ day⁻¹; Reductions, 21.0 (0.3) g kg⁻¹ day⁻¹, P <0.05) and were of similar weight as Singletons by weaning; Twins remained smaller by weaning but grew most rapidly thereafter (Singletons, 1.6 (0.1) g kg⁻¹ day⁻¹; Twins, 2.1 (0.1) g kg⁻¹ day⁻¹; Reductions, 1.6 (0.1) g kg⁻¹ day⁻¹, P <0.01), so that all groups had similar weight at 2 years. However, Twins and Reductions had greater percentage fat mass than Singletons at 2 years (Singletons, 11.1 (1.1)%; Twins, 14.8 (1.2)%; Reductions, 15.5 (1.1)%, P <0.05). Thus, in twins, fetal growth trajectory, linear size at birth and adult fat mass are largely determined in early gestation. If this is also true in humans, there are important implications for interventions aimed at optimising fetal growth and pregnancy outcome.
Collapse
Affiliation(s)
- S N Hancock
- Liggins Institute, University of Auckland and National Research Centre for Growth and Development, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
24
|
Bloomfield FH. Epigenetic modifications may play a role in the developmental consequences of early life events. J Neurodev Disord 2011; 3:348-55. [PMID: 21984032 PMCID: PMC3261267 DOI: 10.1007/s11689-011-9096-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/27/2011] [Indexed: 01/21/2023] Open
Abstract
Many aspects of postnatal development are influenced by events before birth, including cognitive and language development. An adverse intrauterine environment, for example secondary to poor maternal nutritional status, multiple pregnancy, or late preterm birth, is associated with increased risks of delayed or impaired childhood development and altered physiology in adulthood that may predispose to increased risk of adult disease. Maternal periconceptional undernutrition and twin conception can both result in late preterm birth, but it is less clear whether cases of late preterm birth not following a recognized early pregnancy event may still have their origin in the periconceptional period. Thus, the very earliest periods of pregnancy, and perhaps even the pre-pregnancy period, may be an important period determining the developmental trajectory of the fetus, and thus both pregnancy and later health outcomes. Profound epigenetic modifications to the genome occur in the early embryo as a normal part of development. Recent evidence suggests that environmental signals acting during early development may also result in epigenetic changes which may play a role in mediating the association between early life exposures and later phenotype.
Collapse
Affiliation(s)
- Frank H Bloomfield
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand,
| |
Collapse
|
25
|
Abstract
It is now well established that IUGR is associated with an increased risk of a range of adult onset diseases, including cardiovascular disease, obesity, and type 2 diabetes. Infants from twin pregnancies are generally born smaller than singletons; therefore, it has been suggested that twins represent a naturally occurring model of IUGR. Although twin gestations contribute significantly to the population burden of preterm birth and small size at birth, whether twins have the same long-term health consequences as IUGR singletons remains unclear. The purpose of this review is to consider what is currently known about the clinical implications of twinning, the differences that exist between the growth and developmental profiles of singleton and twin fetuses, and to use this as a basis for exploring the question of whether fetuses conceived as twins are analogous to IUGR singletons of similar birthweight and gestation. This question is increasingly important in both the clinical and research settings, because the incidence of twinning is increasing and the long-term implications of reduced size at birth are mostly investigated in species which bear multiple offspring.
Collapse
|
26
|
Petersen I, Nielsen MMF, Beck-Nielsen H, Christensen K. No evidence of a higher 10 year period prevalence of diabetes among 77,885 twins compared with 215,264 singletons from the Danish birth cohorts 1910-1989. Diabetologia 2011; 54:2016-24. [PMID: 21487729 DOI: 10.1007/s00125-011-2128-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/07/2011] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS Previous Danish twin studies have found a highly increased risk of precursors of type 2 diabetes as well as a higher prevalence of type 2 diabetes among twins compared with singletons. Likewise, small-scale studies of Danish twins have shown that monozygotic twins have a higher risk of developing precursors of type 2 diabetes compared with dizygotic twins. In the present register-based study, the 10 year period diabetes prevalence in Danish twins is compared with that in a random sample of Danish citizens. Furthermore, the 10 year period prevalence of diabetes in monozygotic twins is compared with that in dizygotic twins. METHODS The study population consisted of twins (n = 77,885) identified in the Danish Twin Registry, and a 5% random sample (n = 215,264) from the birth cohorts 1910-1989. We identified diabetes patients by means of three nationwide Danish health registers. RESULTS The number of identified diabetes cases among males was 6,677 (6.24%) for singletons vs 2,271 (5.68%) for twins (difference = 0.56% [0.29-0.83%]). The number among females was 6,143 (5.67%) for singletons and 1,722 (4.54%) for twins (difference = 1.13% [0.88-0.38%]). Restriction to various birth cohorts, known zygosity and known type 2 diabetes did not alter the overall conclusions. The difference between monozygotic twins (males, 5.29%; females, 4.40%) and dizygotic twins (males, 5.77%; females, 4.63%) was non-significant. CONCLUSIONS/INTERPRETATION Danish twins do not have an increased risk of developing diabetes compared with singletons, and the risk of diabetes among monozygotic twins does not differ from that of dizygotic twins.
Collapse
Affiliation(s)
- I Petersen
- The Danish Twin Registry, Danish Aging Research Center, University of Southern Denmark, J. B. Winsløws Vej 9B st.tv., 5000 Odense C, Denmark.
| | | | | | | |
Collapse
|
27
|
Green AS, Macko AR, Rozance PJ, Yates DT, Chen X, Hay WW, Limesand SW. Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus. Am J Physiol Endocrinol Metab 2011; 300:E817-23. [PMID: 21343544 PMCID: PMC3093975 DOI: 10.1152/ajpendo.00572.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
Abstract
GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons (y = 0.018x(3) - 0.26x(2) + 1.2x - 0.64) and twins (y = -0.012x(3) + 0.043x(2) + 0.40x - 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin (n = 18) and singleton (n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 (P < 0.01) and 43% (P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles (P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins (n = 8) had lower body weight (P < 0.05) and β-cell mass (P < 0.01) than singleton fetuses (n = 7) as a result of smaller pancreata (P < 0.01) and a positive correlation (P < 0.05) between insulin immunopositive area and fetal weight (P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.
Collapse
Affiliation(s)
- Alice S Green
- Dept. of Animal Sciences, Univ. of Arizona, 1650 E. Limberlost Dr., Tucson, AZ 85719, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental 'exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Complex Suite 130, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
29
|
Abstract
For the past two decades, genetics has been widely explored as a tool for unraveling the pathogenesis of diabetes. Many risk alleles for type 2 diabetes and hyperglycemia have been detected in recent years through massive genome-wide association studies and evidence exists that most of these variants influence pancreatic β-cell function. However, risk alleles in five loci seem to have a primary impact on insulin sensitivity. Investigations of more detailed physiologic phenotypes, such as the insulin response to intravenous glucose or the incretion hormones, are now emerging and give indications of more specific pathologic mechanisms for diabetes-related risk variants. Such studies have shed light on the function of some loci but also underlined the complex nature of disease mechanism. In the future, sequencing-based discovery of low-frequency variants with higher impact on intermediate diabetes-related traits is a likely scenario and identification of new pathways involved in type 2 diabetes predisposition will offer opportunities for the development of novel therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Niels Grarup
- Diabetes Genetics, Hagedorn Research Institute, Gentofte, Denmark
| | - Thomas Sparsø
- Diabetes Genetics, Hagedorn Research Institute, Gentofte, Denmark
| | - Torben Hansen
- Hagedorn Research Institute, Niels Steensens Vej 1, 2820 Gentofte, Denmark
| |
Collapse
|
30
|
Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010; 126:453-65. [PMID: 20816181 DOI: 10.1016/j.jaci.2010.07.030] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T-cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past 2 or 3 decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on the epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, polycyclic aromatic hydrocarbons, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure, asthma, or both might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
|
31
|
Friedrichsen M, Poulsen P, Richter EA, Hansen BF, Birk JB, Ribel-Madsen R, Stender-Petersen K, Nilsson E, Beck-Nielsen H, Vaag A, Wojtaszewski JFP. Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action. Diabetologia 2010; 53:1998-2007. [PMID: 20512309 DOI: 10.1007/s00125-010-1795-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/22/2010] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance in skeletal muscle is a key factor in the development of type 2 diabetes and although some studies indicate that this could be partly attributed to reduced content and activity of various proximal and distal insulin signalling molecules, consensus is lacking. We therefore aimed to investigate the regulation of proximal insulin signalling in skeletal muscle and its effect on glucose metabolism in a large non-diabetic population. METHODS We examined 184 non-diabetic twins with gold-standard techniques including the euglycaemic-hyperinsulinaemic clamp. Insulin signalling was evaluated at three key levels, i.e. the insulin receptor, IRS-1 and V-akt murine thymoma viral oncogene (Akt) levels, employing kinase assays and phospho-specific western blotting. RESULTS Proximal insulin signalling was not associated with obesity, age or sex. However, birthweight was positively associated with IRS-1-associated phosphoinositide 3-kinase (PI3K; IRS-1-PI3K) activity (p = 0.04); maximal aerobic capacity (VO2(max)), paradoxically, was negatively associated with IRS-1-PI3K (p = 0.02) and Akt2 activity (p = 0.01). Additionally, we found low heritability estimates for most measures of insulin signalling activity. Glucose disposal was positively associated with Akt-308 phosphorylation (p < 0.001) and Akt2 activity (p = 0.05), but not with insulin receptor tyrosine kinase or IRS-1-PI3K activity. CONCLUSIONS/INTERPRETATION With the exception of birthweight, 'classical' modifiers of insulin action, including genetics, age, sex, obesity and VO2(max) do not seem to mediate their most central effects on whole-body insulin sensitivity through modulation of proximal insulin signalling in skeletal muscle. We also demonstrated an association between Akt activity and in vivo insulin sensitivity, suggesting a role of Akt in control of in vivo insulin resistance and potentially in type 2 diabetes.
Collapse
Affiliation(s)
- M Friedrichsen
- Steno Diabetes Center, Niels Steensens Vej 1, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The widespread epidemics of obesity and type 2 diabetes mellitus (T2DM) suggest that both conditions are closely linked. An increasing body of evidence has shifted our view of adipose tissue from a passive energy depot to a dynamic "endocrine organ" that tightly regulates nutritional balance by means of a complex crosstalk of adipocytes with their microenvironment. Dysfunctional adipose tissue, particularly as observed in obesity, is characterized by adipocyte hypertrophy, macrophage infiltration, impaired insulin signaling, and insulin resistance. The result is the release of a host of inflammatory adipokines and excessive amounts of free fatty acids that promote ectopic fat deposition and lipotoxicity in muscle, liver, and pancreatic beta cells. This review focuses on recent work on how glucose homeostasis is profoundly altered by distressed adipose tissue. A better understanding of this relationship offers the best chance for early intervention strategies aimed at preventing the burden of T2DM.
Collapse
Affiliation(s)
- Kenneth Cusi
- The University of Texas Health Science Center at San Antonio, Diabetes Division, Room 3.380S, 7703 Floyd Curl Drive, San Antonio, TX 78284-3900, USA.
| |
Collapse
|
33
|
Qi L, Liang J. Interactions between genetic factors that predict diabetes and dietary factors that ultimately impact on risk of diabetes. Curr Opin Lipidol 2010; 21:31-7. [PMID: 19915463 PMCID: PMC2833314 DOI: 10.1097/mol.0b013e3283346cb6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of the present review is to summarize recent advances in investigations of interactions between established genetic and dietary risk factors for type 2 diabetes (T2D). RECENT FINDINGS Several studies reported that dietary factors related to carbohydrate quality and quantity, such as whole grains and glycemic load, might interact with transcription factor 7-like 2 variants in relation to T2D risk. The genetic predisposition defined by the combination of 10 established T2D risk alleles was found to modulate the association between Western dietary pattern (high intakes of red meat, processed meat, and low fiber) and T2D; a stronger association was observed in those with a high-risk genetic profile. Variants in genes HHEX, CDKN2A/2B, JAZF1, and IGF2BP2 were found to interact with prenatal nutrition in relation to T2D risk and glucose levels in later life. SUMMARY The available data provide preliminary support for the gene-diet interactions in determining T2D. However, most findings have yet to be validated. Future studies will need agreed standards of study design and statistical power, dietary measurement, analytical methods, and replication strategies.
Collapse
Affiliation(s)
- Lu Qi
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|
34
|
Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2010; 2:9. [PMID: 20353613 PMCID: PMC2847700 DOI: 10.1186/gm130] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 10/27/2009] [Accepted: 02/01/2010] [Indexed: 12/11/2022] Open
Abstract
Background Skeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers. Methods We profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes. Results The muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation. Conclusions We provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions.
Collapse
|
35
|
Torres de Heens GL, Loos BG, van der Velden U. Monozygotic twins are discordant for chronic periodontitis: clinical and bacteriological findings. J Clin Periodontol 2010; 37:120-8. [DOI: 10.1111/j.1600-051x.2009.01511.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Abstract
Early interventions to prevent type 2 diabetes mellitus (T2DM) demand a better understanding of its underlying mechanisms. Nonobese healthy subjects with a strong family history of T2DM (FH(+) subjects) hold a key to this end by allowing the study of the disease before the development of confounding factors, such as obesity or hyperglycemia. In this article, we share our experience over the past decade in studying FH(+) subjects and how lipotoxicity alters glucose metabolism in such individuals, in particular pancreatic beta-cell function. FH(+) subjects have no obvious clinical abnormalities, but when carefully studied, reveal severe hepatic/muscle/adipose tissue insulin resistance and subtle defects in beta-cell function. In most subjects, metabolic adaption allows freedom from diabetes for decades. However, the obesity epidemic is drastically changing this. Given the unique susceptibility of pancreatic beta cells to free fatty acids in FH(+) subjects, interventions that protect against obesity-induced lipotoxicity may hold the greatest promise for preventing T2DM in genetically predisposed individuals.
Collapse
Affiliation(s)
- Kenneth Cusi
- Diabetes Division, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
37
|
Blackman SM, Hsu S, Vanscoy LL, Collaco JM, Ritter SE, Naughton K, Cutting GR. Genetic modifiers play a substantial role in diabetes complicating cystic fibrosis. J Clin Endocrinol Metab 2009; 94:1302-9. [PMID: 19126627 PMCID: PMC2682466 DOI: 10.1210/jc.2008-2186] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/29/2008] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin-requiring diabetes affects 7-15% of teens and young adults, and more than 25% of older adults with cystic fibrosis (CF). Pancreatic exocrine disease caused by CF transmembrane conductance regulator (CFTR) dysfunction underlies the high rate of diabetes in CF patients; however, only a subset develops this complication, indicating that other factors are necessary. OBJECTIVE Our objective was to estimate the relative contribution of genetic and nongenetic modifiers to the development of diabetes in CF. DESIGN/PATIENTS This was a twin and sibling study involving 1366 individuals at 109 centers in the CF Twin and Sibling Study, from which were derived 68 monozygous twin pairs, 23 dizygous twin pairs, and 588 sibling pairs, all with CF. MAIN OUTCOME MEASURE Chronic, insulin-requiring diabetes in the setting of CF, as established using longitudinal clinical and biochemical data, was studied. RESULTS About 9% of this predominantly pediatric population (mean age = 15.8 yr) had diabetes. Key independent risk factors identified by regression modeling included having a twin or sibling with CF and diabetes, increasing age, pancreatic exocrine insufficiency or two mutations causing severe CFTR dysfunction, decreased lung function or decreased body mass index, and longer duration of glucocorticoid treatment. The concordance rate for diabetes was substantially higher in monozygous twins (0.73) than in dizygous twins and siblings with CF (0.18; P = 0.002). Heritability was estimated as near one (95% confidence interval 0.42-1.0). CONCLUSIONS Diabetes is a frequent complication of CF that is associated with worse outcomes. Although a nongenetic factor (steroid treatment) contributes to risk, genetic modifiers (i.e. genes other than CFTR) are the primary cause of diabetes in CF.
Collapse
Affiliation(s)
- Scott M Blackman
- Division of Pediatric Endocrinology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Vaag A, Poulsen P. Periconceptional nutrition, twinning and how this impacts on current understanding of the aetiology and pathophysiology of the metabolic syndrome. J Physiol 2008; 586:1203-4. [PMID: 18310128 DOI: 10.1113/jphysiol.2007.150227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Allan Vaag
- Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | | |
Collapse
|