1
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
2
|
Wu D, Wang H, Xie L, Hu F. Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:908868. [PMID: 35865314 PMCID: PMC9294175 DOI: 10.3389/fendo.2022.908868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid increase of obesity and associated diseases has become a major global health problem. Adipose tissues are critical for whole-body homeostasis. The gut microbiota has been recognized as a significant environmental factor in the maintenance of energy homeostasis and host immunity. A growing body of evidence suggests that the gut microbiota regulates host metabolism through a close cross-talk with adipose tissues. It modulates energy expenditure and alleviates obesity by promoting energy expenditure, but it also produces specific metabolites and structural components that may act as the central factors in the pathogenesis of inflammation, insulin resistance, and obesity. Understanding the relationship between gut microbiota and adipose tissues may provide potential intervention strategies to treat obesity and associated diseases. In this review, we focus on recent advances in the gut microbiota and its actions on adipose tissues and highlight the joint actions of the gut microbiota and adipose tissue with each other in the regulation of energy metabolism.
Collapse
|
3
|
Ijaz MU, Ahmad MI, Hussain M, Khan IA, Zhao D, Li C. Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3933-3946. [PMID: 32148030 DOI: 10.1021/acs.jafc.0c00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endocannabinoids modulate insulin and adipokine expression in adipocytes through cannabinoid receptors and their levels are elevated during hyperglycemia and obesity, but little is known about how diets affect them. We assessed the effects of dietary casein, chicken, beef, and pork proteins in a high-fat diet mode, on endocannabinoids, adipogenesis, and biomarkers associated with dyslipemdia. A high-fat beef or chicken diet upregulated cannabinoid 1 receptor, N-acyl phosphatidylethanolamine-selective phospholipase-D and diacylglycerol lipase α in adipose tissue and reduced the immunoreactivity of mitochondrial uncoupling protein 1 in brown adipose tissue. In addition, the high-fat diets with beef and chicken protein had a significant impact on adipocyte differentiation and mitochondrial biogenesis in obese mice. A 16S rRNA gene sequencing indicated that high-fat diets, regardless of the protein source, significantly enhanced the ratio of Firmicutes to Bacteroidetes in colon. Meat proteins in a high-fat diet significantly decreased the relative abundances of Akkermansia and Bifidobacteria but enhanced the lipopolysaccharides level in the serum, which promoted the adipogenesis process by causing dysregulation in the endocannabinoid receptors. Consumption of meat protein with high-fat-induced adiposity, visceral obesity, and dyslipidemia reduced the thermogenesis and had a distinctive effect on the mitochondrial biogenesis compared with casein protein.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Iftikhar Ali Khan
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
- International Joint Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- National Center for International Research on Animal Gut Nutrition, MOST, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
4
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Gholizadeh P, Mahallei M, Pormohammad A, Varshochi M, Ganbarov K, Zeinalzadeh E, Yousefi B, Bastami M, Tanomand A, Mahmood SS, Yousefi M, Asgharzadeh M, Kafil HS. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog 2018; 127:48-55. [PMID: 30503960 DOI: 10.1016/j.micpath.2018.11.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Recent studies have been considered to symbiotic interactions of the human gastrointestinal microbiota and human lifestyle-related disorders. The human gastrointestinal microbiota continuously stimulates the immune system against opportunistic and pathogen bacteria from infancy. Changes in gastrointestinal microbiota have been associated with numbers of human diseases such as allergic diseases, autoimmune encephalitis, atherosclerosis, colorectal cancer, obesity, diabetes etc. In this review article, we evaluate studies on the roles of human gastrointestinal microbiota and interference pathogenicity in allergic diseases, obesity, and diabetes. Several studies indicated association between allergic diseases and changes in bacterial balance such as increased of Clostridium spp., some species of Bifidobacterium spp., or decreased of Bacteroidetes phylum and some species of Bifiobacterium spp. and production of specific short-chain fatty acids due to food type, delivery modes of infant, infant evolvement environment and time of getting bacteria at an early-life age. In addition, obesity and diabetes are associated with food type, production of short chain fatty acids undergo fermentation of the intestinal microbiota, metabolic endotoxemia, endocannabinoid system and properties of the immune system. Well-characterized underlying mechanisms may provide novel strategies for using prebiotic and probiotic to prevent and treatment of allergic diseases, obesity, diabetes, and other lifestyle-related disorders.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahallei
- Children Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Varshochi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
The effect of N-stearoylethanolamine on adipocytes free cholesterol content and phospholipid composition in rats with obesity-induced insulin resistance. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Abstract
The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Aline Corado Gomes
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Goiânia, Goiás, Brazil,CONTACT Dra. Aline Corado Gomes Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Setor Leste Universitário, Goiânia, St. 227, Block 68, Goiânia GO, Brazil
| | - Christian Hoffmann
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Maher T, Clegg ME. Dietary lipids with potential to affect satiety: Mechanisms and evidence. Crit Rev Food Sci Nutr 2018; 59:1619-1644. [DOI: 10.1080/10408398.2017.1423277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tyler Maher
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, UK
| | - Miriam E. Clegg
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, UK
| |
Collapse
|
9
|
Sihag J, Jones PJH. Dietary fatty acid composition impacts plasma fatty acid ethanolamide levels and body composition in golden Syrian hamsters. Food Funct 2018; 9:3351-3362. [DOI: 10.1039/c8fo00621k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatty acid ethanolamides (FAEs) are a class of lipid amides that regulate numerous pathophysiological functions.
Collapse
Affiliation(s)
- Jyoti Sihag
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| | - Peter J. H. Jones
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| |
Collapse
|
10
|
Pesce M, D'Alessandro A, Borrelli O, Gigli S, Seguella L, Cuomo R, Esposito G, Sarnelli G. Endocannabinoid-related compounds in gastrointestinal diseases. J Cell Mol Med 2017; 22:706-715. [PMID: 28990365 PMCID: PMC5783846 DOI: 10.1111/jcmm.13359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS) or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy.,Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Stefano Gigli
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| |
Collapse
|
11
|
Artegoitia VM, Foote AP, Lewis R, King DA, Shackelford SD, Wheeler TL, Freetly HC. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers1. J Anim Sci 2016; 94:5177-5181. [DOI: 10.2527/jas.2016-1025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Abstract
The nature of the gastrointestinal microbiome determines the reservoir of lipopolysaccharide, which can migrate from the gut into the circulation, where it contributes to low-grade inflammation. Osteoarthritis (OA) is a low-grade inflammatory condition, and the elevation of levels of lipopolysaccharide in association with obesity and metabolic syndrome could contribute to OA. A 'two- hit' model of OA susceptibility and potentiation suggests that lipopolysaccharide primes the proinflammatory innate immune response via Toll-like receptor 4 and that progression to a full-blown inflammatory response and structural damage of the joint results from coexisting complementary mechanisms, such as inflammasome activation or assembly by damage-associated molecular patterns in the form of fragmented cartilage-matrix molecules. Lipopolysaccharide could be considered a major hidden risk factor that provides a unifying mechanism to explain the association between obesity, metabolic syndrome and OA.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, 300 North Duke Street, Durham, North Carolina 27701, USA
| |
Collapse
|
13
|
Pedraz M, Araos P, García-Marchena N, Serrano A, Romero-Sanchiz P, Suárez J, Castilla-Ortega E, Mayoral-Cleries F, Ruiz JJ, Pastor A, Barrios V, Chowen JA, Argente J, Torrens M, de la Torre R, Rodríguez De Fonseca F, Pavón FJ. Sex differences in psychiatric comorbidity and plasma biomarkers for cocaine addiction in abstinent cocaine-addicted subjects in outpatient settings. Front Psychiatry 2015; 6:17. [PMID: 25762940 PMCID: PMC4329735 DOI: 10.3389/fpsyt.2015.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
There are sex differences in the progression of drug addiction, relapse, and response to therapies. Because biological factors participate in these differences, they should be considered when using biomarkers for addiction. In the current study, we evaluated the sex differences in psychiatric comorbidity and the concentrations of plasma mediators that have been reported to be affected by cocaine. Fifty-five abstinent cocaine-addicted subjects diagnosed with lifetime cocaine use disorders (40 men and 15 women) and 73 healthy controls (48 men and 25 women) were clinically assessed with the diagnostic interview "Psychiatric Research Interview for Substance and Mental Disorders." Plasma concentrations of chemokines, cytokines, N-acyl-ethanolamines, and 2-acyl-glycerols were analyzed according to history of cocaine addiction and sex, controlling for covariates age and body mass index (BMI). Relationships between these concentrations and variables related to cocaine addiction were also analyzed in addicted subjects. The results showed that the concentrations of chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) and chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) were only affected by history of cocaine addiction. The plasma concentrations of interleukin 1-beta (IL-1β), IL-6, IL-10, and tumor necrosis factor-alpha (TNFα) were affected by history of cocaine addiction and sex. In fact, whereas cytokine concentrations were higher in control women relative to men, these concentrations were reduced in cocaine-addicted women without changes in addicted men. Regarding fatty acid derivatives, history of cocaine addiction had a main effect on the concentration of each acyl derivative, whereas N-acyl-ethanolamines were increased overall in the cocaine group, 2-acyl-glycerols were decreased. Interestingly, N-palmitoleoyl-ethanolamine (POEA) was only increased in cocaine-addicted women. The covariate BMI had a significant effect on POEA and N-arachidonoyl-ethanolamine concentrations. Regarding psychiatric comorbidity in the cocaine group, women had lower incidence rates of comorbid substance use disorders than did men. For example, alcohol use disorders were found in 80% of men and 40% of women. In contrast, the addicted women had increased prevalences of comorbid psychiatric disorders (i.e., mood, anxiety, and psychosis disorders). Additionally, cocaine-addicted subjects showed a relationship between the concentrations of N-stearoyl-ethanolamine and 2-linoleoyl-glycerol and diagnosis of psychiatric comorbidity. These results demonstrate the existence of a sex influence on plasma biomarkers for cocaine addiction and on the presence of comorbid psychopathologies for clinical purposes.
Collapse
Affiliation(s)
- María Pedraz
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Pedro Araos
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Nuria García-Marchena
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Pablo Romero-Sanchiz
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Estela Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Fermín Mayoral-Cleries
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Jesús Ruiz
- Centro Provincial de Drogodependencia, Diputación de Málaga, Málaga, Spain
| | - Antoni Pastor
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Vicente Barrios
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrens
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
- Institut de Neuropsiquiatria i Addiccions (INAD) del Parc de Salut MAR, Barcelona, Spain
| | - Rafael de la Torre
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Facultat de Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Fernando Rodríguez De Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
Shewchuk BM. Prostaglandins and n-3 polyunsaturated fatty acids in the regulation of the hypothalamic-pituitary axis. Prostaglandins Leukot Essent Fatty Acids 2014; 91:277-87. [PMID: 25287609 DOI: 10.1016/j.plefa.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/23/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
The hypothalamic-pituitary (H-P) axis integrates complex physiological and environmental signals and responds to these cues by modulating the synthesis and secretion of multiple pituitary hormones to regulate peripheral tissues. Prostaglandins are a component of this regulatory system, affecting multiple hormone synthesis and secretion pathways in the H-P axis. The implications of these actions are that physiological processes or disease states that alter prostaglandin levels in the hypothalamus or pituitary can impinge on H-P axis function. Considering the role of prostaglandins in mediating inflammation, the potential for neuroinflammation to affect H-P axis function in this manner may be significant. In addition, the mitigating effects of n-3 polyunsaturated fatty acids (n-3 PUFA) on the inflammation-associated synthesis of prostaglandins and their role as substrates for pro-resolving lipid mediators may also include effects in the H-P axis. One context in which neuroinflammation may play a role is in the etiology of diet-induced obesity, which also correlates with altered pituitary hormone levels. This review will survey evidence for the actions of prostaglandins and other lipid mediators in the H-P axis, and will address the potential for obesity-associated inflammation and n-3 PUFA to impinge on these mechanisms.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
15
|
Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 2014; 5:3-17. [PMID: 23886976 DOI: 10.3920/bm2012.0065] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and activity are discussed in the context of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- L Geurts
- WELBIO, Walloon Excellence in Life Sciences and BIOtechnology Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - A M Neyrinck
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - N M Delzenne
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - C Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Team 3, 31432 Toulouse, France Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, UPS, CHU Rangueil, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - P D Cani
- WELBIO, Walloon Excellence in Life Sciences and BIOtechnology Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
16
|
Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 976-977:6-18. [PMID: 25436483 DOI: 10.1016/j.jchromb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 11/02/2014] [Indexed: 11/16/2022]
Abstract
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Collapse
Affiliation(s)
- María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Peter Rhyn
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Oliver G Bosch
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstr. 31, CH-8032 Zürich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstr. 31, CH-8032 Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
17
|
Alhouayek M, Bottemanne P, Subramanian KV, Lambert DM, Makriyannis A, Cani PD, Muccioli GG. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis. FASEB J 2014; 29:650-61. [PMID: 25384424 DOI: 10.1096/fj.14-255208] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
N-Palmitoylethanolamine or palmitoylethanolamide (PEA) is an anti-inflammatory compound that was recently shown to exert peroxisome proliferator-activated receptor-α-dependent beneficial effects on colon inflammation. The actions of PEA are terminated following hydrolysis by 2 enzymes: fatty acid amide hydrolase (FAAH), and the less-studied N-acylethanolamine-hydrolyzing acid amidase (NAAA). This study aims to investigate the effects of inhibiting the enzymes responsible for PEA hydrolysis in colon inflammation in order to propose a potential therapeutic target for inflammatory bowel diseases (IBDs). Two murine models of IBD were used to assess the effects of NAAA inhibition, FAAH inhibition, and PEA on macroscopic signs of colon inflammation, macrophage/neutrophil infiltration, and the expression of proinflammatory mediators in the colon, as well as on the colitis-related systemic inflammation. NAAA inhibition increases PEA levels in the colon and reduces colon inflammation and systemic inflammation, similarly to PEA. FAAH inhibition, however, does not increase PEA levels in the colon and does not affect the macroscopic signs of colon inflammation or immune cell infiltration. This is the first report of an anti-inflammatory effect of a systemically administered NAAA inhibitor. Because NAAA is the enzyme responsible for the control of PEA levels in the colon, we put forth this enzyme as a potential therapeutic target in chronic inflammation in general and IBD in particular.
Collapse
Affiliation(s)
- Mireille Alhouayek
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Pauline Bottemanne
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Kumar V Subramanian
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Didier M Lambert
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Patrice D Cani
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Giulio G Muccioli
- *Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Medicinal Chemistry Research Group, and Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Colombano G, Albani C, Ottonello G, Ribeiro A, Scarpelli R, Tarozzo G, Daglian J, Jung KM, Piomelli D, Bandiera T. O-(triazolyl)methyl carbamates as a novel and potent class of fatty acid amide hydrolase (FAAH) inhibitors. ChemMedChem 2014; 10:380-95. [PMID: 25338703 DOI: 10.1002/cmdc.201402374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/09/2022]
Abstract
Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed to date; O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives were designed and synthesized exploiting a copper- catalyzed [3+2] cycloaddition reaction between azides and alkynes (click chemistry). Exploration of the structure-activity relationships within this new class of compounds identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. In addition, these derivatives showed improved stability in rat plasma and kinetic solubility in buffer with respect to the lead compound. Based on the results of the study, the novel analogues identified can be considered to be promising starting point for the development of new FAAH inhibitors with improved drug-like properties.
Collapse
Affiliation(s)
- Giampiero Colombano
- Drug Discovery & Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); The Institute of Cancer Research, 15 Cotswold Rd, Sutton, Surrey SM2 5NG (UK). ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Onopchenko OV, Kosiakova GV, Oz M, Klimashevsky VM, Gula NM. N-Stearoylethanolamine Restores Pancreas Lipid Composition in Obesity-Induced Insulin Resistant Rats. Lipids 2014; 50:13-21. [DOI: 10.1007/s11745-014-3960-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022]
|
20
|
Ottria R, Ravelli A, Gigli F, Ciuffreda P. Simultaneous ultra-high performance liquid chromathograpy-electrospray ionization-quadrupole-time of flight mass spectrometry quantification of endogenous anandamide and related N-acylethanolamides in bio-matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:83-9. [DOI: 10.1016/j.jchromb.2014.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
|
21
|
Lin L, Rideout T, Yurkova N, Yang H, Eck P, Jones PJH. Fatty acid ethanolamides modulate CD36-mRNA through dietary fatty acid manipulation in Syrian Golden hamsters. Appl Physiol Nutr Metab 2013; 38:870-8. [PMID: 23855275 DOI: 10.1139/apnm-2012-0289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids convert to fatty acid ethanolamides which associate with lipid signalling, fat oxidation, and energy balance; however, the extent to which dietary fatty acids manipulation can impact such control processes through fatty acid ethanolamides-related mechanisms remains understudied. The objective was to examine the impact of diets containing 6% corn oil, high oleic canola oil, docosahexaenoic acid + high oleic canola oil, and fish oil on plasma and organ levels of fatty acid ethanolamides, peroxisome proliferator-activated receptor-α regulatory targets, and lipid metabolism in Syrian Golden hamsters. After 29 days, in plasma, animals that were fed fish oil showed greater (p < 0.05) oleoylethanolamide and lower (p < 0.05) arachidonoylethanolamide and palmitoylethanolamide levels compared with other groups, while animals fed canola oil showed higher (p < 0.05) oleoylethanolamide levels in proximal intestine and liver than groups that were fed coin oil and fish oil. The canola oil group showed elevated (p < 0.01) fat oxidation (%) and over 3.0-fold higher (p < 0.05) hepatic-CD36 expression compared with the corn oil group. Hepatic-lipogenesis was lower (p < 0.05) in hamsters that were fed DHA-canola oil compared with the corn oil group. To conclude, dietary fatty acids produced shifts in plasma and organ levels of arachidonoylethanolamide, oleoylethanolamide, and palmitoylethanolamid, which were accompanied by changes in gene expression, lipogenesis, and energy expenditure, suggesting mechanisms through which dietary fatty acids influence disease risk.
Collapse
Affiliation(s)
- Lin Lin
- a Richardson Centre for Functional Foods and Nutraceuticals, Department of Human Nutritional Sciences, 196 Innovation Drive, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Avraham Y, Katzhendler J, Vorobeiv L, Merchavia S, Listman C, Kunkes E, Harfoush F, Salameh S, Ezra AF, Grigoriadis NC, Berry EM, Najajreh Y. Novel Acylethanolamide Derivatives That Modulate Body Weight through Enhancement of Hypothalamic Pro-Opiomelanocortin (POMC) and/or Decreased Neuropeptide Y (NPY). J Med Chem 2013; 56:1811-29. [DOI: 10.1021/jm300484d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yosefa Avraham
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jehoshua Katzhendler
- Institute of Drug Research,
School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Lia Vorobeiv
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Merchavia
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chana Listman
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eithan Kunkes
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fida’ Harfoush
- Anticancer Drugs Research Lab,
Faculty of Pharmacy, Al-Quds University, Abu-Dies, P.O. Box 20002, Jerusalem, Palestinian Authority
| | - Sawsan Salameh
- Anticancer Drugs Research Lab,
Faculty of Pharmacy, Al-Quds University, Abu-Dies, P.O. Box 20002, Jerusalem, Palestinian Authority
| | - Aviva F. Ezra
- Institute of Drug Research,
School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Nikolaos C. Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elliot M. Berry
- Department of Human Nutrition
and Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yousef Najajreh
- Anticancer Drugs Research Lab,
Faculty of Pharmacy, Al-Quds University, Abu-Dies, P.O. Box 20002, Jerusalem, Palestinian Authority
| |
Collapse
|
23
|
Geurts L, Muccioli GG, Delzenne NM, Cani PD. Chronic endocannabinoid system stimulation induces muscle macrophage and lipid accumulation in type 2 diabetic mice independently of metabolic endotoxaemia. PLoS One 2013; 8:e55963. [PMID: 23393605 PMCID: PMC3564911 DOI: 10.1371/journal.pone.0055963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/04/2013] [Indexed: 01/06/2023] Open
Abstract
Aims Obesity and type 2 diabetes are characterised by low-grade inflammation, metabolic endotoxaemia (i.e., increased plasma lipopolysaccharides [LPS] levels) and altered endocannabinoid (eCB)-system tone. The aim of this study was to decipher the specific role of eCB-system stimulation or metabolic endotoxaemia in the onset of glucose intolerance, metabolic inflammation and altered lipid metabolism. Methods Mice were treated with either a cannabinoid (CB) receptor agonist (HU210) or low-dose LPS using subcutaneous mini-pumps for 6 weeks. After 3 weeks of the treatment under control (CT) diet, one-half of each group of mice were challenged with a high fat (HF) diet for the following 3-week period. Results Under basal conditions (control diet), chronic CB receptor agonist treatment (i.e., 6 weeks) induced glucose intolerance, stimulated metabolic endotoxaemia, and increased macrophage infiltration (CD11c and F4/80 expression) in the muscles; this phenomenon was associated with an altered lipid metabolism (increased PGC-1α expression and decreased CPT-1b expression) in this tissue. Chronic LPS treatment tended to increase the body weight and fat mass, with minor effects on the other metabolic parameters. Challenging mice with an HF diet following pre-treatment with the CB agonist exacerbated the HF diet-induced glucose intolerance, the muscle macrophage infiltration and the muscle's lipid content without affecting the body weight or the fat mass. Conclusion Chronic CB receptor stimulation under basal conditions induces glucose intolerance, stimulates metabolic inflammation and alters lipid metabolism in the muscles. These effects worsen following the concomitant ingestion of an HF diet. Here, we highlight the central roles played by the eCB system and LPS in the pathophysiology of several hallmarks of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lucie Geurts
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Laboratory, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Patrice D. Cani
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
- * E-mail:
| |
Collapse
|
24
|
Kovatcheva-Datchary P, Arora T. Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2013; 27:59-72. [PMID: 23768553 DOI: 10.1016/j.bpg.2013.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a lifestyle disease, determined by the interplay of genetic and environmental factors. Obesity is a significant risk factor for development of the metabolic syndrome, and the prevalence of obesity is increasing due to changes in lifestyle and diet. Recently, the gut microbiota has emerged as an important contributor to the development of obesity and metabolic disorders, through its interactions with environmental (e.g. diet) and genetic factors. Human and animal studies have shown that alterations in intestinal microbiota composition and shifts in the gut microbiome towards increased energy harvest are associated with an obese phenotype. However, the underlying mechanisms by which gut microbiota affects host metabolism still need to be defined. In this review we discuss the complexity surrounding the interactions between diet and the gut microbiota, and their connection to obesity. Furthermore, we review the literature on the effects of probiotics and prebiotics on the gut microbiota and host metabolism, focussing primarily on their anti-obesity potential.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Bruna Straket 16, 413 45 Gothenburg, Sweden.
| | | |
Collapse
|
25
|
Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012; 3:279-88. [PMID: 22572877 PMCID: PMC3463487 DOI: 10.4161/gmic.19625] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with metabolic alterations related to glucose homeostasis and cardiovascular risk factors. These metabolic alterations are associated with low-grade inflammation that contributes to the onset of these diseases. We and others have provided evidence that gut microbiota participates in whole-body metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders. Recently, we defined gut microbiota-derived lipopolysaccharide (LPS) (and metabolic endotoxemia) as a factor involved in the onset and progression of inflammation and metabolic diseases. In this review, we discuss mechanisms involved in the development of metabolic endotoxemia such as the gut permeability. We also discuss our latest discoveries demonstrating a link between the gut microbiota, endocannabinoid system tone, leptin resistance, gut peptides (glucagon-like peptide-1 and -2), and metabolic features. Finally, we will introduce the role of the gut microbiota in specific dietary treatments (prebiotics and probiotics) and surgical interventions (gastric bypass).
Collapse
|
26
|
Rossmeisl M, Macek Jilkova Z, Kuda O, Jelenik T, Medrikova D, Stankova B, Kristinsson B, Haraldsson GG, Svensen H, Stoknes I, Sjövall P, Magnusson Y, Balvers MGJ, Verhoeckx KCM, Tvrzicka E, Bryhn M, Kopecky J. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PLoS One 2012; 7:e38834. [PMID: 22701720 PMCID: PMC3372498 DOI: 10.1371/journal.pone.0038834] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. METHODOLOGY/PRINCIPAL FINDINGS In a 'prevention study', C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. CONCLUSIONS/SIGNIFICANCE Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WAT.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Zuzana Macek Jilkova
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Tomas Jelenik
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Dasa Medrikova
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Barbora Stankova
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | - Peter Sjövall
- SP Technical Research Institute of Sweden, Borås, Sweden
| | - Ylva Magnusson
- Wallenberg Laboratory, The Sahlgrenska Academy and University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Michiel G. J. Balvers
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Research Group Quality & Safety, TNO, Zeist, the Netherlands
| | | | - Eva Tvrzicka
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|
27
|
Sasso O, Bertorelli R, Bandiera T, Scarpelli R, Colombano G, Armirotti A, Moreno-Sanz G, Reggiani A, Piomelli D. Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions. Pharmacol Res 2012; 65:553-63. [PMID: 22420940 DOI: 10.1016/j.phrs.2012.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 11/26/2022]
Abstract
Fatty-acid amide hydrolase (FAAH) catalyzes the intracellular hydrolysis of the endocannabinoid anandamide and other bioactive lipid amides. In the present study, we conducted a comparative characterization of the effects of the newly identified brain-impermeant FAAH inhibitor, URB937 ([3-(3-carbamoylphenyl)-4-hydroxy-phenyl] N-cyclohexylcarbamate), in various rodent models of acute and persistent pain. When administered by the oral route in mice, URB937 was highly active (median effective dose, ED(50), to inhibit liver FAAH activity: 0.3mgkg(-1)) and had a bioavailability of 5.3%. The antinociceptive effects of oral URB937 were investigated in mouse models of acute inflammation (carrageenan), peripheral nerve injury (chronic sciatic nerve ligation) and arthritis (complete Freund's adjuvant). In all models, URB937 was as effective or more effective than standard analgesic and anti-inflammatory drugs (indomethacin, gabapentin, dexamethasone) and reversed pain-related responses (mechanical hyperalgesia, thermal hyperalgesia, and mechanical allodynia) in a dose-dependent manner. ED(50) values ranged from 0.2 to 10mgkg(-1), depending on model and readout. Importantly, URB937 was significantly more effective than two global FAAH inhibitors, URB597 and PF-04457845, in the complete Freund's adjuvant model. The effects of a combination of URB937 with the non-steroidal anti-inflammatory agent, indomethacin, were examined in the carrageenan and chronic sciatic nerve ligation models. Isobolographic analyses showed that the two compounds interacted synergistically to attenuate pain-related behaviors. Furthermore, URB937 reduced the number and severity of gastric lesions produced by indomethacin, while exerting no ulcerogenic effect when administered alone. The results indicate that the peripheral FAAH inhibitor URB937 is more effective than globally active FAAH inhibitors at inhibiting inflammatory pain. Our findings further suggest that FAAH and cyclooxygenase inhibitors interact functionally in peripheral tissues, to either enhance or hinder each other's actions.
Collapse
Affiliation(s)
- Oscar Sasso
- Drug Discovery and Development, Italian Institute of Technology, Via Morego, 30, Genova 16163, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2011; 2:149. [PMID: 21808634 PMCID: PMC3139240 DOI: 10.3389/fmicb.2011.00149] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/26/2011] [Indexed: 11/13/2022] Open
Abstract
Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes, and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system (eCB) and gut microbiota-derived compounds, namely lipopolysaccharide (LPS). We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db) by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria, and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the eCB and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression) in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the eCB and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review discusses the role of enteroendocrine cells in the gastrointestinal tract as chemoreceptors that sense intraluminal contents and induce changes in food intake through the release of signalling substances, such as satiety hormones. Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors (GPCRs) that are known to mediate gustatory signals in the oral cavity. GPCRs can be grouped into several families, depending on the stimuli to which they respond, e.g. proteins, amino acids, carbohydrates, fatty acids, or tastants. Sensing of these stimuli by GPCRs results in hormone secretions of enteroendocrine cells, which participate in the control of food intake. A better understanding of the stimuli that induce the strongest binding with these receptors, and thus induce a strong release of hormones, can be a very useful strategy for the development of novel foods in the treatment of obesity.
Collapse
Affiliation(s)
- M C P Geraedts
- Department of Human Biology, Maastricht University Medical Centre +, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Makoto MURAKAMI
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science
- Department of Health Chemistry, School of Pharmaceutical Science, Showa University
| |
Collapse
|
31
|
The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6:392. [PMID: 20664638 PMCID: PMC2925525 DOI: 10.1038/msb.2010.46] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/20/2010] [Indexed: 12/05/2022] Open
Abstract
We investigated several models of gut microbiota modulation: selective (prebiotics, probiotics, high-fat), drastic (antibiotics, germ-free mice) and mice bearing specific mutations of a key gene involved in the toll-like receptors (TLR) bacteria-host interaction (Myd88−/−). Here we report that gut microbiota modulates the intestinal endocannabinoid (eCB) system-tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The activation of the intestinal endocannabinoid system increases gut permeability which in turn enhances plasma LPS levels and inflammation in physiological and pathological conditions such as obesity and type 2 diabetes. The investigation of adipocyte differentiation and lipogenesis (both markers of adipogenesis) indicate that gut microbiota controls adipose tissue physiology through LPS-eCB system regulatory loops and may play a critical role in the adipose tissue plasticity during obesity. In vivo, ex vivo and in vitro studies indicate that LPS acts as a master switch on adipose tissue metabolism, by blocking the cannabinoid-driven adipogenesis.
Obesity and type II diabetes have reached epidemic proportions and are associated with a massive expansion of the adipose tissue. Recent data have shown that these metabolic disorders are characterised by low-grade inflammation of unknown molecular origin (Hotamisligil and Erbay, 2008; Shoelson and Goldfine, 2009); therefore, it is of the utmost importance to identify the link between inflammation and adipose tissue metabolism and plasticity. Among the latest important discoveries published in the field, two new concepts have driven this study. First, emerging data have shown that gut microbiota is involved in the control of energy homeostasis (Ley et al, 2005; Turnbaugh et al, 2006; Claus et al, 2008) Obesity is characterised by the massive expansion of adipose tissues and is associated with inflammation (Weisberg et al, 2003). It is possible that both this expansion and the associated inflammation are controlled by microbiota and lipopolysaccharide (LPS) (Cani et al, 2007a, 2008), a cell wall component of Gram-negative bacteria that is among the most potent inducers of inflammation (Cani et al, 2007a, 2007b, 2008; Cani and Delzenne, 2009). Second, obesity is also characterised by greater endocannabinoid (eCB) system tone (increased eCB plasma levels, altered expression of the cannabinoid receptor 1 (CB1 mRNA) and increased eCB levels in the adipose tissue) (Engeli et al, 2005; Bluher et al, 2006; Matias et al, 2006; Cote et al, 2007; D'Eon et al, 2008; Starowicz et al, 2008; Di Marzo et al, 2009; Izzo et al, 2009). Several studies have suggested a close relationship between LPS, gut microbiota and the eCB system. Indeed, LPS controls the synthesis of eCB in macrophages, whereas macrophage infiltration in the adipose tissue occurring during obesity is an important factor in the development of the metabolic disorders (Weisberg et al, 2003). We have shown that macrophage infiltration is not only dependent on the activation of the receptor CD14 by LPS, but is also dependent on the gut microbiota composition and the gut barrier function (gut permeability) (Cani et al, 2007a, 2008). Moreover, LPS controls the synthesis of eCBs both in vivo (Hoareau et al, 2009) and in vitro (Di Marzo et al, 1999; Maccarrone et al, 2001) through mechanisms dependent of the LPS receptor signalling pathway (Liu et al, 2003). Thus, obesity is nowadays associated with changes in gut microbiota and a higher endocannabinoid system tone, both having a function in the disease's pathophysiology. Given that the convergent molecular mechanisms that may affect these different supersystem activities and adiposity remain to be elucidated, we tested the hypothesis that the gut microbiota and the eCB system control gut permeability and adipogenesis, by a LPS-dependent mechanism, under both physiological and obesity-related conditions. First, we found that high-fat diet-induced obese and diabetic animals exhibit threefold higher colonic CB1 mRNA, whereas no modification was observed in the small intestinal segment (jejunum). Moreover, selective modulation of gut microbiota using prebiotics (i.e. non-digestible compounds fermented by specific bacteria in the gut) (Gibson and Roberfroid, 1995) reduces by about one half this effect. Similarly, in genetically obese mice (ob/ob), prebiotic treatment decreases colonic CB1 mRNA and colonic eCB concentrations (AEA) (Figure 2A). In addition, we have observed a modulation of FAAH and MGL mRNA (Figure 2A). Furthermore, we have found that antibiotic treatment decreasing the number of gut bacteria content was associated with a strong reduction of the CB1 receptor levels in the colon of healthy mice. Second, we show that the endocannabinoid system controls gut barrier function (in vivo and in vitro) and endotoxaemia. More precisely, we designed two in vivo experiments in obese and lean mice (Figure 2). In a first experiment, we blocked the CB1 receptor in obese mice with a specific and selective antagonist (SR141716A) and found that the blockade of the CB1 receptor reduces plasma LPS levels by a mechanism linked to the improvement of the gut barrier function (Figure 2C) as shown by the lower alteration of tight junctions proteins (zonula occludens-1 (ZO-1) and occludin) distribution and localisation, and independently of food intake behaviour (Figures 2D and 3). In a second set of experiments performed in lean wild-type mice, we mimicked the increased eCB system tone observed during obesity by chronic (4-week) infusion of a cannabinoid receptor agonist (HU-210) through mini-pumps implanted subcutaneously. We found that cannabinoid agonist administration significantly increased plasma LPS levels. Furthermore, increased plasma fluorescein isothiocyanate-dextran levels were observed after oral gavage (Figure 2F and G). These sets of in vivo experiments strongly suggest that an overactive eCB system increases gut permeability. Finally, in a cellular model of intestinal epithelial barrier (Caco-2 cells monolayer), we found that CB1 receptor antagonist normalised LPS and the cannabinoid receptors agonist HU-210-induced epithelial barrier alterations. Third, we provide evidence that adipogenesis is under the control of the gut microbiota, through the modulation of the gut and adipose tissue endocannabinoid systems in both physiological and pathological conditions. We found that the higher eCB system tone (found in obesity or mimicked by eCB agonist) participates to the regulation of adipogenesis by directly acting on the adipose tissue, but also indirectly by increasing plasma LPS levels, which consequently impair adipogenesis and promote inflammatory states. Here, we found that both the specific modulation of the gut microbiota and the blockade of the CB1 receptor decrease plasma LPS levels and is associated with higher adipocyte differentiation and lipogenesis rate. One possible explanation for these surprising data could be as follows: plasma LPS levels might be under the control of CB1 in the intestine (gut barrier function); therefore, under particular pathophysiological conditions in vivo (e.g. obesity/type II diabetes), this could lead to higher circulating LPS levels. Furthermore, CB1 receptor blockade might paradoxically increase adipogenesis because of the ability of CB1 antagonist to reduce gut permeability and counteract the LPS-induced inhibitory effect on adipocyte differentiation and lipogenesis (i.e. a disinhibition mechanism). In summary, given that these treatments reduce gut permeability and, hence, plasma LPS levels and inflammatory tone, we hypothesised that LPS could act as a regulator in this process. This hypothesis was further supported in vitro and in vivo by the observation that cannabinoid-induced adipocyte differentiation and lipogenesis were directly altered (i.e. reduced) in the presence of physiological levels of LPS. In summary, because these treatments reduce gut permeability, hence, plasma LPS and inflammatory tone, we hypothesised that LPS acts as a regulator in this process. Altogether, our data provide the evidence that the consequences of obesity and gut microbiota dysregulation on gut permeability and metabolic endotoxaemia are clearly mediated by the eCB system, those observed on adiposity are likely the result of two systems interactions: LPS-dependent pathways activities and eCB system tone dysregulation (Figure 9). Our results indicate that the endocannabinoid system tone and the plasma LPS levels have a critical function in the regulation of the adipose tissue plasticity. As obesity is commonly characterised by increased eCB system tone, higher plasma LPS levels, altered gut microbiota and impaired adipose tissue metabolism, it is likely that the increased eCB system tone found in obesity is caused by a failure or a vicious cycle within the pathways controlling the eCB system. These findings show that two novel therapeutic targets in the treatment of obesity, the gut microbiota and the endocannabinoid system, are closely interconnected. They also provide evidence for the presence of a new integrative physiological axis between gut and adipose tissue regulated by LPS and endocannabinoids. Finally, we propose that the increased endotoxaemia and endocannabinoid system tone found in obesity might explain the altered adipose tissue metabolism. Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB1 agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity.
Collapse
|
32
|
Patti ME. Rehashing endocannabinoid antagonists: can we selectively target the periphery to safely treat obesity and type 2 diabetes? J Clin Invest 2010; 120:2646-8. [PMID: 20664166 DOI: 10.1172/jci44099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A growing body of evidence supports an important role for the endocannabinoid system as a regulator of appetite, body weight, and systemic metabolism, which is overactive in obesity and type 2 diabetes. While initial attempts to target this system using the cannabinoid receptor inverse agonist rimonabant were successful in producing modest weight loss and improving obesity-related metabolic complications in humans, adverse central nervous system side effects precluded introduction of this drug into clinical practice. However, new data, presented by Tam and colleagues in this issue of the JCI, demonstrate that selective blockade of peripheral cannabinoid receptors may be a novel successful therapeutic approach.
Collapse
Affiliation(s)
- Mary-Elizabeth Patti
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
33
|
Joosten MM, Balvers MG, Verhoeckx KC, Hendriks HF, Witkamp RF. Plasma anandamide and other N-acylethanolamines are correlated with their corresponding free fatty acid levels under both fasting and non-fasting conditions in women. Nutr Metab (Lond) 2010; 7:49. [PMID: 20546561 PMCID: PMC2894840 DOI: 10.1186/1743-7075-7-49] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022] Open
Abstract
N-acylethanolamines (NAEs), such as anandamide (AEA), are a group of endogenous lipids derived from a fatty acid linked to ethanolamine and have a wide range of biological activities, including regulation of metabolism and food intake. We hypothesized that i) NAE plasma levels are associated with levels of total free fatty acids (FFAs) and their precursor fatty acid in fasting and non-fasting conditions and ii) moderate alcohol consumption alters non-fasting NAE levels. In a fasting and non-fasting study we sampled blood for measurements of specific NAEs and FFAs. In the fasting study blood was drawn after an overnight fast in 22 postmenopausal women. In the non-fasting study blood was sampled before and frequently after a standardized lunch with beer or alcohol-free beer in 19 premenopausal women. Fasting AEA levels correlated with total FFAs (r = 0.84; p < 0.001) and arachidonic acid levels (r = 0.42; p < 0.05). Similar results were observed for other NAEs with both total FFAs and their corresponding fatty acid precursors. In addition, AEA (r = 0.66; p < 0.01) and OEA levels (r = 0.49; p <0.02) positively related with BMI. Changes over time in non-fasting AEA levels were correlated with changes in total FFA levels, both after a lunch with beer (r = 0.80; 95% confidence interval: 0.54-0.92) and alcohol-free beer (r = 0.73; 0.41-0.89). Comparable correlations were found for other NAEs, without differences in correlations of each NAE between beer and alcohol free beer with lunch. In conclusion, i) in fasting and non-fasting states circulating anandamide and other N-acylethanolamines were associated with free fatty acid levels and ii) moderate alcohol consumption does not affect non-fasting NAE levels. This suggests that similar physiological stimuli cause the release of plasma N-acylethanolamines and free fatty acids in blood. The trials are registered at ClinicalTrials.gov numbers: NCT00524550 and NCT00652405.
Collapse
Affiliation(s)
- Michel M Joosten
- Business Unit Biosciences, TNO Quality of Life, Zeist, The Netherlands.,Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Michiel Gj Balvers
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Business Unit Quality & Safety, TNO Quality of Life, Zeist, The Netherlands
| | - Kitty Cm Verhoeckx
- Business Unit Quality & Safety, TNO Quality of Life, Zeist, The Netherlands
| | - Henk Fj Hendriks
- Business Unit Biosciences, TNO Quality of Life, Zeist, The Netherlands
| | - Renger F Witkamp
- Business Unit Biosciences, TNO Quality of Life, Zeist, The Netherlands.,Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
34
|
Delzenne N, Blundell J, Brouns F, Cunningham K, De Graaf K, Erkner A, Lluch A, Mars M, Peters HPF, Westerterp-Plantenga M. Gastrointestinal targets of appetite regulation in humans. Obes Rev 2010; 11:234-50. [PMID: 20433660 DOI: 10.1111/j.1467-789x.2009.00707.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this paper is to describe and discuss relevant aspects of the assessment of physiological functions - and related biomarkers - implicated in the regulation of appetite in humans. A short introduction provides the background and the present state of biomarker research as related to satiety and appetite. The main focus of the paper is on the gastrointestinal tract and its functions and biomarkers related to appetite for which sufficient data are available in human studies. The first section describes how gastric emptying, stomach distension and gut motility influence appetite; the second part describes how selected gastrointestinal peptides are involved in the control of satiety and appetite (ghrelin, cholecystokinin, glucagon-like peptide, peptide tyrosin-tyrosin) and can be used as potential biomarkers. For both sections, methodological aspects (adequacy, accuracy and limitation of the methods) are described. The last section focuses on new developments in techniques and methods for the assessment of physiological targets involved in appetite regulation (including brain imaging, interesting new experimental approaches, targets and markers). The conclusion estimates the relevance of selected biomarkers as representative markers of appetite regulation, in view of the current state of the art.
Collapse
Affiliation(s)
- N Delzenne
- Louvain Drug Research Institute, Unit PMNT 7369, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Müller TD, Brönner G, Wandolski M, Carrie J, Nguyen TT, Greene BH, Scherag A, Grallert H, Vogel CI, Scherag S, Rief W, Wichmann HE, Illig T, Schäfer H, Hebebrand J, Hinney A. Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity. BMC MEDICAL GENETICS 2010; 11:2. [PMID: 20044928 PMCID: PMC2830932 DOI: 10.1186/1471-2350-11-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 01/01/2010] [Indexed: 12/01/2022]
Abstract
Background The orexigenic effects of cannabinoids are limited by activation of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH). The aim of this study was to analyse whether FAAH alleles are associated with early and late onset obesity. Methods We initially assessed association of five single nucleotide polymorphisms (SNPs) in FAAH with early onset extreme obesity in up to 521 German obese children and both parents. SNPs with nominal p-values ≤ 0.1 were subsequently analysed in 235 independent German obesity families. SNPs associated with childhood obesity (p-values ≤ 0.05) were further analysed in 8,491 adult individuals of a population-based cohort (KORA) for association with adult obesity. One SNP was further analysed in 985 German obese adults and 588 normal and underweight controls. In parallel, we screened the FAAH coding region for novel sequence variants in 92 extremely obese children using single-stranded-conformation-polymorphism-analysis and denaturing HPLC and assessed the implication of the identified new variants for childhood obesity. Results The trio analysis revealed some evidence for an association of three SNPs in FAAH (rs324420 rs324419 and rs873978) with childhood obesity (two-sided p-values between 0.06 and 0.10). Although analyses of these variants in 235 independent obesity families did not result in statistically significant effects (two-sided p-values between 0.14 and 0.75), the combined analysis of all 603 obesity families supported the idea of an association of two SNPs in FAAH (rs324420 and rs2295632) with early onset extreme obesity (p-values between 0.02 and 0.03). No association was, however, found between these variants and adult obesity. The mutation screen revealed four novel variants, which were not associated with early onset obesity (p > 0.05). Conclusions As we observed some evidence for an association of the FAAH variants rs2295632 rs324420 with early onset but not adult obesity, we conclude that the FAAH variants analyzed here at least do not seem to play a major role in the etiology of obesity within our samples.
Collapse
Affiliation(s)
- Timo D Müller
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol 2009; 78:1419-27. [PMID: 19660440 DOI: 10.1016/j.bcp.2009.07.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/27/2009] [Accepted: 07/27/2009] [Indexed: 11/16/2022]
Abstract
It is increasingly clear that some of the effects of both free and derivatised long chain fatty acids in pancreatic beta-cells are mediated by a group of G-protein coupled receptors. Some of these display close structural homology while others are more divergent. This Commentary reviews the expression and functional roles of three such molecules, GPR40, GPR119 and GPR120. GPR40 is the best characterised of this group and appears to mediate the acute stimulatory effects of long chain fatty acids on insulin secretion. GPR40 has also been proposed as a potential mediator of fatty acid toxicity but this is more controversial. GPR119 is also involved in stimulation of insulin secretion and responds primarily to ethanolamide derivatives of long chain fatty acids and also to some lysophospholipids rather than to free fatty acids. It may represent a useful target for the development of new insulin secretagogues aimed to enhance insulin release in patients with type 2 diabetes. GPR120 is the most enigmatic of the lipid-responsive cell-surface receptors and its function remains to be established. It has been proposed to play a cytoprotective role in certain other cell types but it is unclear whether it fulfils a similar function in beta-cells.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical & Clinical Science, John Bull Building, Peninsula Medical School, Plymouth PL6 8BU, UK.
| | | |
Collapse
|
37
|
Poeggeler B, Schulz C, Pappolla MA, Bodó E, Tiede S, Lehnert H, Paus R. Leptin and the skin: a new frontier. Exp Dermatol 2009; 19:12-8. [PMID: 19601981 DOI: 10.1111/j.1600-0625.2009.00930.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here, we examine the currently available information which supports that the adipokine, leptin, is a major player in the biology and pathology of mammalian skin and its appendages. Specifically, the potent metabolic effects of leptin and its mimetics may be utilized to improve, preserve and restore skin regeneration and hair cycle progression, and may halt or even partially reverse some aspects of skin ageing. Since leptin can enhance mitochondrial activity and biogenesis, this may contribute to the wound healing-promoting and hair growth-modulatory effects of leptin. Leptin dependent intracellular signalling by the Janus kinase 2 dependent signal transducer and activator of transcription 3, adenosine monophosphate kinase, and peroxisome proliferator-activated receptor (PPAR) gamma coactivator/PPAR converges to mediate mitochondrial metabolic activation and enhanced cell proliferation which may orchestrate the potent developmental, trophic and protective effects of leptin. Since leptin and leptin mimetics have already been clinically tested, investigative dermatology is well-advised to place greater emphasis on the systematic exploration of the cutaneous dimensions and dermatological potential of this pleiotropic hormone.
Collapse
|
38
|
Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:33-49. [PMID: 19285259 DOI: 10.1016/j.beem.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
39
|
Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, Destaillats F. Biological Functions and Metabolism of Oleoylethanolamide. Lipids 2008; 43:887-94. [DOI: 10.1007/s11745-008-3217-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 01/27/2023]
|
40
|
Schäfer A, Pfrang J, Neumüller J, Fiedler S, Ertl G, Bauersachs J. The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines and leukocytes in Zucker rats. Br J Pharmacol 2008; 154:1047-54. [PMID: 18469848 DOI: 10.1038/bjp.2008.158] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effect of rimonabant on inflammation and enhanced platelet reactivity in type 2 diabetic Zucker rats, an experimental model of impaired glucose tolerance and the metabolic syndrome. EXPERIMENTAL APPROACH Rimonabant (10 mg kg(-1) by gavage) was fed for 2 weeks to 3-month-old male obese Zucker rats as an impaired glucose tolerance model and for 10 weeks to 6-month-old male obese Zucker rats as a model of the metabolic syndrome. RANTES (Regulated upon Activation, Normal T cell Expressed, and Secreted) and MCP-1 (monocyte chemotactic protein-1) serum levels were determined by ELISA. Leukocyte populations were quantitatively assessed using a veterinary differential blood cell counter. Platelet activation was assessed by flow-cytometry, platelet aggregation, and adhesion of isolated platelets to immobilized fibrinogen. KEY RESULTS RANTES and MCP-1 serum levels were increased in obese vs lean Zucker rats and significantly reduced by long-term treatment with rimonabant, which slowed weight gain in rats with the metabolic syndrome. Neutrophils and monocytes were significantly increased in young and old obese vs lean Zucker rats and lowered by rimonabant. Platelet-bound fibrinogen was significantly enhanced in obese vs lean Zucker rats of both age, and was reduced by rimonabant. Platelets from obese rats were more sensitive to thrombin-induced aggregation and adhesion to fibrinogen, which were both attenuated by rimonabant therapy. CONCLUSIONS AND IMPLICATIONS We demonstrate positive modulation of circulating neutrophil and monocyte numbers, reduced platelet activation and lower RANTES and MCP-1 levels by rimonabant in Zucker rats. This may potentially contribute to a reduction of cardiovascular risk.
Collapse
Affiliation(s)
- A Schäfer
- Department of Internal Medicine I-Cardiology, University Hospital Würzburg, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|