1
|
Li H, Li J, Song C, Yang H, Luo Q, Chen M. Brown adipose tissue: a potential target for aging interventions and healthy longevity. Biogerontology 2024; 25:1011-1024. [PMID: 39377866 DOI: 10.1007/s10522-024-10137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Brown Adipose Tissue (BAT) is a type of fat tissue that can generate heat and plays an important role in regulating body temperature and energy metabolism. Enhancing BAT activity through medication, exercise and other means has become a potential effective method for treating metabolic disorders. Recently, there has been increasing evidence suggesting a link between BAT and aging. As humans age, the volume and activity of BAT decrease, which may contribute to the development of age-related diseases. Multiple organelles signaling pathways have been reported to be involved in the aging process associated with BAT. Therefore, we aimed to review the evidence related to the association between aging process and BAT decreasing, analyze the potential of BAT as a predictive marker for age-related diseases, and explore potential therapeutic strategies targeting BAT for aging interventions and healthy longevity.
Collapse
Affiliation(s)
- Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Mori S, Beyer RS, Bernardes de Souza B, Sorg JM, Hoover DB, Sacks HS, Fishbein MC, Chang G, Peacock WJ, St. John MA, Law J, Symonds ME, Ajijola OA, Shivkumar K, Srikanthan P. Sympathetic innervation of the supraclavicular brown adipose tissue: A detailed anatomical study. PLoS One 2023; 18:e0290455. [PMID: 37792692 PMCID: PMC10550181 DOI: 10.1371/journal.pone.0290455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The supraclavicular fossa is the dominant location for human brown adipose tissue (BAT). Activation of BAT promotes non-shivering thermogenesis by utilization of glucose and free fatty acids and has been the focus of pharmacological and non-pharmacological approaches for modulation in order to improve body weight and glucose homeostasis. Sympathetic neural control of supraclavicular BAT has received much attention, but its innervation has not been extensively investigated in humans. METHODS Dissection of the cervical region in human cadavers was performed to find the distribution of sympathetic nerve branches to supraclavicular fat pad. Furthermore, proximal segments of the 4th cervical nerve were evaluated histologically to assess its sympathetic components. RESULTS Nerve branches terminating in supraclavicular fat pad were identified in all dissections, including those from the 3rd and 4th cervical nerves and from the cervical sympathetic plexus. Histology of the proximal segments of the 4th cervical nerves confirmed tyrosine hydroxylase positive thin nerve fibers in all fascicles with either a scattered or clustered distribution pattern. The scattered pattern was more predominant than the clustered pattern (80% vs. 20%) across cadavers. These sympathetic nerve fibers occupied only 2.48% of the nerve cross sectional area on average. CONCLUSIONS Human sympathetic nerves use multiple pathways to innervate the supraclavicular fat pad. The present finding serves as a framework for future clinical approaches to activate human BAT in the supraclavicular region.
Collapse
Affiliation(s)
- Shumpei Mori
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Ryan S. Beyer
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Breno Bernardes de Souza
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Julie M. Sorg
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States of America
| | - Harold S. Sacks
- VA Endocrinology and Diabetes Division, Department of Medicine, UCLA, Los Angeles, CA, United States of America
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, United States of America
| | - Grace Chang
- Department of Surgery, UCLA, Los Angeles, CA, United States of America
| | | | - Maie A. St. John
- Department of Head and Neck Surgery, UCLA, Los Angeles, CA, United States of America
| | - James Law
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Micheal E. Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Olujimi A. Ajijola
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Kalyanam Shivkumar
- David Geffen School of Medicine at UCLA, UCLA Health System, University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA, United States of America
| | - Preethi Srikanthan
- Division of Endocrinology UCLA, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
4
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
5
|
Ziqubu K, Dludla PV, Moetlediwa MT, Nyawo TA, Pheiffer C, Jack BU, Nkambule B, Mazibuko-Mbeje SE. Disease progression promotes changes in adipose tissue signatures in type 2 diabetic (db/db) mice: The potential pathophysiological role of batokines. Life Sci 2023; 313:121273. [PMID: 36521548 DOI: 10.1016/j.lfs.2022.121273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Unlike the white adipose tissue (WAT) which mainly stores excess energy as fat, brown adipose tissue (BAT) has become physiologically important and therapeutically relevant for its prominent role in regulating energy metabolism. The current study makes use of an established animal model of type 2 diabetes (T2D) db/db mice to determine the effect of the disease progression on adipose tissue morphology and gene regulatory signatures. Results showed that WAT and BAT from db/db mice display a hypertrophied phenotype that is consistent with increased expression of the pro-inflammatory cytokine, tumor necrosis factor-alpha (Tnf-α). Moreover, BAT from both db/db and non-diabetic db/+ control mice displayed an age-related impairment in glucose homeostasis, inflammatory profile, and thermogenic regulation, as demonstrated by reduced expression of genes like glucose transporter (Glut-4), adiponectin (AdipoQ), and uncoupling protein 1 (Ucp-1). Importantly, gene expression of the batokines regulating sympathetic neurite outgrowth and vascularization, including bone morphogenic protein 8b (Bmp8b), fibroblast growth factor 21 (Fgf-21), neuregulin 4 (Nrg-4) were altered in BAT from db/db mice. Likewise, gene expression of meteorin-like (Metrnl), growth differentiation factor 15 (Gdt-15), and C-X-C motif chemokine-14 (Cxcl-14) regulating pro- and anti-inflammation were altered. This data provides some new insights into the pathophysiological mechanisms involved in BAT hypertrophy (or whitening) and the disturbances of batokines during the development and progression of T2D. However, these are only preliminary results as additional experiments are necessary to confirm these findings in other experimental models of T2D.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa; Department of Obstetrics and Gynaecology, Faculty of Health Science, University of Pretoria, Pretoria 0001, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | |
Collapse
|
6
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
7
|
Regulation of p27 and Cdk2 Expression in Different Adipose Tissue Depots in Aging and Obesity. Int J Mol Sci 2021; 22:ijms222111745. [PMID: 34769201 PMCID: PMC8584112 DOI: 10.3390/ijms222111745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Aging usually comes associated with increased visceral fat accumulation, reaching even an obesity state, and favoring its associated comorbidities. One of the processes involved in aging is cellular senescence, which is highly dependent on the activity of the regulators of the cell cycle. The aim of this study was to analyze the changes in the expression of p27 and cdk2 in different adipose tissue depots during aging, as well as their regulation by obesity in mice. Changes in the expression of p27 and CDK2 in visceral and subcutaneous white adipose tissue (WAT) biopsies were also analyzed in a human cohort of obesity and type 2 diabetes. p27, but not cdk2, exhibits a lower expression in subcutaneous than in visceral WAT in mice and humans. p27 is drastically downregulated by aging in subcutaneous WAT (scWAT), but not in gonadal WAT, of female mice. Obesity upregulates p27 and cdk2 expression in scWAT, but not in other fat depots of aged mice. In humans, a significant upregulation of p27 was observed in visceral WAT of subjects with obesity. Taken together, these results show a differential adipose depot-dependent regulation of p27 and cdk2 in aging and obesity, suggesting that p27 and cdk2 could contribute to the adipose-tissue depot’s metabolic differences. Further studies are necessary to fully corroborate this hypothesis.
Collapse
|
8
|
Brady SL, Wong KK, Doubrovin M, Han Y, Li Y, Wu S, Hossain AKMM, Chism CB, Naik MH, Rossi M, Shulkin BL. Effect of Propranolol on 18F-Fluorodeoxyglucose Uptake in Brown Adipose Tissue in Children and Young Adults with Neoplastic Diseases. Mol Imaging Biol 2021; 23:260-269. [PMID: 33067751 PMCID: PMC8268535 DOI: 10.1007/s11307-020-01547-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the effectiveness of propranolol at mitigating FDG uptake in brown adipose tissue (BAT) of pediatric patients with known or suspected malignancies. METHODS PET/CT scans of 3 cohorts of patients treated from 2005 to 2017 were scored for the presence of FDG uptake by BAT at 7 sites: right or left neck/supraclavicular area, right or left axilla, mediastinum, posterior thorax, and abdomen/pelvis. Uptake was scored as follows: 0, none; 1, mild uptake < liver; 2, moderate uptake = liver; and 3, intense uptake > liver. Group 1 consisted of 323 patients (630 scans) who had no specific preparation to mitigate FDG uptake by BAT. Group 2 consisted of 345 patients (705 scans) who underwent only warming in an uptake room with a fixed temperature at 24 °C. Group 3 consisted of 622 patients (1457 scans) who underwent warming. In group 3, patients 8 years and older, 471 patients (1114 scans), were also pre-medicated with oral propranolol 60 min before injection of FDG. Generalized estimation equation, using the logit link method, was used to model the relationship between the incidence of BAT score > 0, in any site, as a function of age, sex, seasonal effect, and body surface area (BSA). RESULTS In patients aged 8 years or older, the incidence of BAT uptake was 35-44 % and declined to 15 % with propranolol. BAT was most frequent in the neck (26 %), axilla (18 %), posterior thorax (18 %), mediastinum (14 %), and abdomen/pelvis (8 %); BAT was less common in warm months (p = 0.001). No substantial benefit was shown with pre-injection warming alone. No significant effect was found for age, sex, or BSA separately. When BAT uptake was present, it was usually intense. CONCLUSION Propranolol preparation minimizes FDG uptake by BAT and should be considered routine for pediatric FDG PET/CT cancer-related protocols in children, adolescents, and young adults.
Collapse
Affiliation(s)
- Samuel L Brady
- Department of Radiology, Cincinnati Children's Hospital Medical Center & University of Cincinnati, Cincinnati, OH, USA
| | - Ka Kit Wong
- Department of Radiology, Division of Nuclear Medicine, C.S. Mott Children's Hospital, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Mikhail Doubrovin
- Department of Diagnostic Imaging, Division of Nuclear Medicine, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shengjie Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - A K M Moinul Hossain
- Department of Diagnostic Imaging, Division of Nuclear Medicine, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| | - Charles B Chism
- Department of Diagnostic Imaging, Division of Nuclear Medicine, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| | - Mihir H Naik
- Department of Diagnostic Imaging, Division of Nuclear Medicine, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| | - Michael Rossi
- Division of Anesthesiology, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barry L Shulkin
- Department of Diagnostic Imaging, Division of Nuclear Medicine, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Jeon HJ, Choi DK, Choi J, Lee S, Lee H, Yu JH, Min SH. D-Mannitol Induces a Brown Fat-like Phenotype via a β3-Adrenergic Receptor-Dependent Mechanism. Cells 2021; 10:cells10040768. [PMID: 33807329 PMCID: PMC8066535 DOI: 10.3390/cells10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of brown adipocytes within white adipose tissue is associated with phenotypes that exhibit improved metabolism and proper body weight maintenance. Therefore, a variety of dietary agents that facilitate the browning of white adipocytes have been investigated. In this study, we screened a natural product library comprising 133 compounds with the potential to promote the browning of white adipocytes, and found that D-mannitol induces the browning of 3T3-L1 adipocytes by enhancing the expression of brown fat-specific genes and proteins, and upregulating lipid metabolism markers. D-mannitol also increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase 1 (ACC), suggesting a possible role in lipolysis and fat oxidation. Moreover, an increase in the expression of genes associated with D-mannitol-induced browning was strongly correlated with the activation of the β3-adrenergic receptor as well as AMPK, protein kinase A (PKA), and PPARγ coactivator 1α (PGC1α). D-mannitol effectively reduced the body weight of mice fed a high-fat diet, and increased the expression of β1-oxidation and energy expenditure markers, such as Cidea, carnitine palmityl transferase 1 (CPT1), uncoupling protein 1 (UCP1), PGC1α, and acyl-coenzyme A oxidase (ACOX1) in the inguinal white adipose tissue. Our findings suggest that D-mannitol plays a dual regulatory role by inducing the generation of a brown fat-like phenotype and enhancing lipid metabolism. These results indicate that D-mannitol can function as an anti-obesity supplement.
Collapse
|
10
|
Li X, Frazier JA, Spahiu E, McPherson M, Miller RA. Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. Aging (Albany NY) 2020; 12:8766-8789. [PMID: 32464603 PMCID: PMC7288969 DOI: 10.18632/aging.103380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 01/24/2023]
Abstract
Altered adipose tissue may contribute to the longevity of Snell dwarf and growth hormone receptor (GHR) knock-out mice. We report here that white (WAT) and brown (BAT) fat have elevated UCP1 in both kinds of mice, and that adipocytes in WAT depots turn beige/brown. These imply increased thermogenesis and are expected to lead to improved glucose control. Both kinds of long-lived mice show lower levels of inflammatory M1 macrophages and higher levels of anti-inflammatory M2 macrophages in BAT and WAT, with correspondingly lower levels of TNFα, IL-6, and MCP1. Experiments with mice with tissue-specific disruption of GHR showed that these adipocyte and macrophage changes were not due to hepatic IGF1 production nor to direct GH effects on adipocytes, but instead reflect GH effects on muscle. Muscles deprived of GH signals, either globally (GKO) or in muscle only (MKO), produce higher levels of circulating irisin and its precursor FNDC5. The data thus suggest that the changes in adipose tissue differentiation and inflammatory status seen in long-lived mutant mice reflect interruption of GH-dependent irisin inhibition, with consequential effects on metabolism and thermogenesis.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Jacquelyn A. Frazier
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edward Spahiu
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Madaline McPherson
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA,University of Michigan Geriatrics Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Wong KK, Sedig LK, Bloom DA, Hutchinson RJ, Shulkin BL. 18F-2-fluoro-2-deoxyglucose uptake in white adipose tissue on pediatric oncologic positron emission tomography (PET)/computed tomography (CT). Pediatr Radiol 2020; 50:524-533. [PMID: 31776602 DOI: 10.1007/s00247-019-04574-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Altered biodistribution of [F-18]2-fluoro-2-deoxyglucose (FDG) is sometimes encountered in pediatric patients undergoing chemotherapy for lymphoma on post-induction positron emission tomography (PET) imaging. A characteristic pattern of increased FDG uptake in white adipose tissue can be seen, particularly in the buccal regions, body wall and gluteal regions, with a shift of radiotracer away from the blood pool and liver. This altered biodistribution has been attributed to effects of corticosteroids in pediatric and adult patients and is important to recognize because of its potential for limiting the diagnostic quality of the PET scan and interfering with therapeutic response assessment. OBJECTIVE In contrast to the well-known metabolically active brown fat seen on up to one-third of pediatric PET scans, white fat is usually non-metabolically active. We sought to determine the incidence of altered distribution of FDG in subcutaneous white adipose tissue in pediatric patients undergoing PET imaging and to assess the association with corticosteroid use. MATERIALS AND METHODS We reviewed the medical records and imaging for four children in whom altered biodistribution in white adipose tissue was present on post-induction FDG PET/CT, identified during routine clinical practice. All four were receiving corticosteroids as part of their chemotherapy. We then retrospectively reviewed oncology FDG PET/CT scans over a 2-year period (1,361 scans in 689 patients) to determine the incidence of uptake in white fat by qualitative visual assessment. In the children identified with altered biodistribution, we measured maximum standard uptake value (SUVmax) and mean standard uptake value (SUVmean) in areas of subcutaneous white fat, the buccal regions, body wall or gluteal soft-tissue regions, liver and blood pool. We reviewed all medical records, including medication lists. We summarize the relevant clinical and imaging findings of 13 pediatric patients, including the 4 index patients. RESULTS We determined the incidence of FDG uptake in white fat to be rare, found in 9 of 1,361 (0.6%) PET scans performed for pediatric cancer evaluation. FDG uptake was increased in subcutaneous adipose tissue, particularly in the buccal regions, body wall and gluteal regions, with a shift of radiotracer away from the blood pool and liver. The degree of increased uptake in peripheral white fat varied from marked to mild, and the biodistribution was distinct from that of brown adipose tissue. Children with this altered biodistribution were uniformly receiving corticosteroids as part of induction treatment for their cancer, and these findings were only identified on post-induction PET/CT. Follow-up PET/CT documented resolution of this effect after treatment with corticosteroids ceased. CONCLUSION Our findings support the current understanding that characteristic uptake of FDG in white adipose tissue is mediated by corticosteroid effect. Although this altered biodistribution is rare (<1% of PET scans) it could impair the diagnostic quality of the scan, affecting image interpretation, and should be recognized when present.
Collapse
Affiliation(s)
- Ka Kit Wong
- Division of Nuclear Medicine, Department of Radiology, C. S. Mott Children's Hospital, University of Michigan Health System, B1G505 University Hospital SPC 5028, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5028, USA.
| | - Laura K Sedig
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, C. S. Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI, USA
| | - David A Bloom
- Section of Pediatric Radiology, Department of Radiology, C. S. Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI, USA
| | - Raymond J Hutchinson
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, C. S. Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI, USA
| | - Barry L Shulkin
- Division of Nuclear Medicine, Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Winn NC, Acin-Perez R, Woodford ML, Hansen SA, Haney MM, Ayedun LA, Rector RS, Vieira-Potter VJ, Shirihai OS, Sacks HS, Kanaley JA, Padilla J. A Thermogenic-Like Brown Adipose Tissue Phenotype Is Dispensable for Enhanced Glucose Tolerance in Female Mice. Diabetes 2019; 68:1717-1729. [PMID: 30862679 PMCID: PMC6702635 DOI: 10.2337/db18-1070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevailing dogma is that thermogenic brown adipose tissue (BAT) contributes to improvements in glucose homeostasis in obesogenic animal models, though much of the evidence supporting this premise is from thermostressed rodents. Determination of whether modulation of the BAT morphology/function drives changes in glucoregulation at thermoneutrality requires further investigation. We used loss- and gain-of-function approaches including genetic manipulation of the lipolytic enzyme Pnpla2, change in environmental temperature, and lifestyle interventions to comprehensively test the premise that a thermogenic-like BAT phenotype is coupled with enhanced glucose tolerance in female mice. In contrast to this hypothesis, we found that 1) compared to mice living at thermoneutrality, enhanced activation of BAT and its thermogenic phenotype via chronic mild cold stress does not improve glucose tolerance in obese mice, 2) silencing of the Pnpla2 in interscapular BAT causes a brown-to-white phenotypic shift accompanied with inflammation but does not disrupt glucose tolerance in lean mice, and 3) exercise and low-fat diet improve glucose tolerance in obese mice but these effects do not track with a thermogenic BAT phenotype. Collectively, these findings indicate that a thermogenic-like BAT phenotype is not linked to heightened glucose tolerance in female mice.
Collapse
Affiliation(s)
- Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rebeca Acin-Perez
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO
| | - Megan M Haney
- Office of Animal Resources, University of Missouri, Columbia, MO
| | - Lolade A Ayedun
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - R Scott Rector
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | | | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Harold S Sacks
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jill A Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
- Child Health, University of Missouri, Columbia, MO
| |
Collapse
|
13
|
Cinti S. Anatomy and physiology of the nutritional system. Mol Aspects Med 2019; 68:101-107. [PMID: 30965049 DOI: 10.1016/j.mam.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
Abstract
The organisms of mammals are composed of organs cooperating as systems that are organized to perform functions which allow the survival of the individual and maintenance of the species. Thus, to reach the main goals of these functions we need systems that ensure nutrient uptake and distribution, thermogenesis, oxygen uptake and distribution, the discharge of toxic internal by-products, the defense from internal and external pathogens, gamete fertilization, and the fine-tuning of the activity of all the tissues composing the organs. Most of these activities also require interactions with the internal and external environment. The latter function is served by the nervous system and the others by the cardiovascular, respiratory, excretory, immune, reproductive and endocrine systems. Nutrient intake and distribution and thermoregulation are realized by the collaborative work of the adipose and the digestive organs. In this review I will outline data on adipose tissue anatomy and function which have been collected during the past 40 years. They provide a convergent body of evidence toward a new concept regarding the collaborative work between the adipose organ and the organs of the gastrointestinal tract, which constitute a system ensuring nutrient search, intake and distribution to the organism. Furthermore, the same system also seems to enable nutrient distribution to the offspring to ensure not only short-term but also long-term homeostasis.
Collapse
Affiliation(s)
- Saverio Cinti
- University of Ancona (Politecnica delle Marche), Center of Obesity, Via Tronto 10a, 60020, Ancona, Italy; Policlinico Morgagni, Via Del Bosco 105, 95125 Catania, Italy.
| |
Collapse
|
14
|
Zhang X, Li X, Fang H, Guo F, Li F, Chen A, Huang S. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond) 2019; 16:47. [PMID: 31346342 PMCID: PMC6637576 DOI: 10.1186/s12986-019-0370-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Flavonoids are a class of plant and fungus secondary metabolites and are the most common group of polyphenolic compounds in the human diet. In recent studies, flavonoids have been shown to induce browning of white adipocytes, increase energy consumption, inhibit high-fat diet (HFD)-induced obesity and improve metabolic status. Promoting the activity of brown adipose tissue (BAT) and inducing white adipose tissue (WAT) browning are promising means to increase energy expenditure and improve glucose and lipid metabolism. This review summarizes recent advances in the knowledge of flavonoid compounds and their metabolites. Methods We searched the following databases for all research related to flavonoids and WAT browning published through March 2019: PubMed, MEDLINE, EMBASE, and the Web of Science. All included studies are summarized and listed in Table 1. Result We summarized the effects of flavonoids on fat metabolism and the specific underlying mechanisms in sub-categories. Flavonoids activated the sympathetic nervous system (SNS), promoted the release of adrenaline and thyroid hormones to increase thermogenesis and induced WAT browning through the AMPK-PGC-1α/Sirt1 and PPAR signalling pathways. Flavonoids may also promote brown preadipocyte differentiation, inhibit apoptosis and produce inflammatory factors in BAT. Conclusion Flavonoids induced WAT browning and activated BAT to increase energy consumption and non-shivering thermogenesis, thus inhibiting weight gain and preventing metabolic diseases.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Orthopedics, First People's Hospital of Yichang, No.4 Hudi Street, Yichang, 443000 Hubei Province China
| | - Xin Li
- 2Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jie Fang Avenue, Wuhan, 430022 Hubei Province China
| | - Huang Fang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Fengjin Guo
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Feng Li
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Anmin Chen
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Shilong Huang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| |
Collapse
|
15
|
Ganeff IMM, Bos MM, van Heemst D, Noordam R. BMI-associated gene variants in FTO and cardiometabolic and brain disease: obesity or pleiotropy? Physiol Genomics 2019; 51:311-322. [PMID: 31199196 DOI: 10.1152/physiolgenomics.00040.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity is a causal risk factor for the development of age-related disease conditions, which includes Type 2 diabetes mellitus, cardiovascular disease, and dementia. In genome-wide association studies, genetic variation in FTO is strongly associated with obesity and has been described across different ethnic backgrounds and life stages. To date, much work has been devoted on determining the biological mechanisms via which FTO affects body weight regulation and ultimately contributes to age-related cardiometabolic and brain disease. The main hypotheses of the involved biological mechanisms include the involvement of FTO in habitual food intake and energy expenditure. In this narrative review, our overall aim is to provide an overview on how FTO gene variants could increase the risk of developing age-related disease conditions. Specifically, we will discuss the state of the literature based on the different hypotheses how FTO regulates body weight and ultimately contributes to cardiometabolic disease and brain disease.
Collapse
Affiliation(s)
- Ingeborg M M Ganeff
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maxime M Bos
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Zoico E, Rubele S, De Caro A, Nori N, Mazzali G, Fantin F, Rossi A, Zamboni M. Brown and Beige Adipose Tissue and Aging. Front Endocrinol (Lausanne) 2019; 10:368. [PMID: 31281288 PMCID: PMC6595248 DOI: 10.3389/fendo.2019.00368] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 01/24/2023] Open
Abstract
Across aging, adipose tissue (AT) changes its quantity and distribution: AT becomes dysfunctional with an increase in production of inflammatory peptides, a decline of those with anti-inflammatory activity and infiltration of macrophages. Adipose organ dysfunction may lead to age-related metabolic alterations. Aging is characterized by an increase in adiposity and a decline in brown adipose tissue (BAT) depots and activity, and UCP1 expression. There are many possible links to age-associated involution of BAT, including the loss of mitochondrial function, impairment of the sympathetic nervous system, age-induced alteration of brown adipogenic stem/progenitor cell function and changes in endocrine signals. Aging is also associated with a reduction in beige adipocyte formation. Beige adipocytes are known to differentiate from a sub-population of progenitors resident in white adipose tissue (WAT); a defective ability of progenitor cells to proliferate and differentiate has been hypothesized with aging. The loss of beige adipocytes with age may be caused by changes in trophic factors in the adipose tissue microenvironment, which regulate progenitor cell proliferation and differentiation. This review focuses on possible mechanisms involved in the reduction of BAT and beige activity with aging, along with possible targets for age-related metabolic disease therapy.
Collapse
Affiliation(s)
- Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Elena Zoico
| | - Sofia Rubele
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Annamaria De Caro
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicole Nori
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Gloria Mazzali
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Fantin
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Rossi
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
18
|
Assessment of the Aging of the Brown Adipose Tissue by 18F-FDG PET/CT Imaging in the Progeria Mouse Model Lmna -/. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8327089. [PMID: 30116163 PMCID: PMC6079616 DOI: 10.1155/2018/8327089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023]
Abstract
Brown adipose tissue (BAT) is an important energy metabolic organ that is highly implicated in obesity, type 2 diabetes, and atherosclerosis. Aging is one of the most important determinants of BAT activity. In this study, we used 18F-FDG PET/CT imaging to assess BAT aging in Lmna−/− mice. The maximum standardized uptake value (SUVMax) of the BAT was measured, and the target/nontarget (T/NT) values of BAT were calculated. The transcription and the protein expression levels of the uncoupling protein 1 (UCP1), beta3-adrenergic receptor (β3-AR), and the PR domain-containing 16 (PRDM16) were measured by quantitative real-time polymerase chain reaction (RT-PCR) and Western blotting or immunohistochemical analysis. Apoptosis and cell senescence rates in the BAT of WT and Lmna−/− mice were determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and by CDKN2A/p16INK4a immunohistochemical staining, respectively. At 14 weeks of age, the BAT SUVMax and the expression levels of UCP1, β3-AR, and PRDM16 in Lmna−/− mice were significantly reduced relative to WT mice. At the same time, the number of p16INK4a and TUNEL positively stained cells (%) increased in Lmna−/− mice. Collectively, our results indicate that the aging characteristics and the aging regulatory mechanism in the BAT of Lmna−/− mice can mimic the normal BAT aging process.
Collapse
|
19
|
de Ligt M, Bruls YMH, Hansen J, Habets MF, Havekes B, Nascimento EBM, Moonen-Kornips E, Schaart G, Schrauwen-Hinderling VB, van Marken Lichtenbelt W, Schrauwen P. Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol Metab 2018; 12:39-47. [PMID: 29706321 PMCID: PMC6001939 DOI: 10.1016/j.molmet.2018.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023] Open
Abstract
Objective Resveratrol supplementation improves metabolic health in healthy obese men, but not in patients with type 2 diabetes (T2D) when given as add-on therapy. Therefore, we examined whether resveratrol can enhance metabolic health in men at risk of developing T2D. Additionally, we examined if resveratrol can stimulate brown adipose tissue (BAT). Methods Thirteen male first degree relatives (FDR) of patients with T2D received resveratrol (150 mg/day) and placebo for 30 days in a randomized, placebo controlled, cross-over trial. Results Resveratrol significantly improved ex vivo muscle mitochondrial function on a fatty acid-derived substrate. However, resveratrol did not improve insulin sensitivity, expressed as the rate of glucose disposal during a two-step hyperinsulinemic-euglycemic clamp. Also, intrahepatic and intramyocellular lipid content, substrate utilization, energy metabolism, and cold-stimulated 18F-FDG glucose uptake in BAT (n = 8) remained unaffected by resveratrol. In vitro experiments in adipocytes derived from human BAT confirmed the lack of effect on BAT. Conclusions Resveratrol stimulates muscle mitochondrial function in FDR males, which is in concordance with previous results. However, no other metabolic benefits of resveratrol were found in this group. This could be attributed to subject characteristics causing alterations in metabolism of resveratrol and thereby affecting resveratrol's effectiveness. ClinicalTrials.gov ID NCT02129595. Resveratrol supplementation improves muscle mitochondrial function. Resveratrol does not improve insulin sensitivity in people at risk of diabetes. Resveratrol does not affect brown adipose tissue in people at risk of diabetes.
Collapse
Affiliation(s)
- Marlies de Ligt
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Yvonne M H Bruls
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands; Department of Radiology, Maastricht University Medical Centre, NUTRIM School for Nutrition and Translational Research in Metabolism, The Netherlands
| | - Jan Hansen
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Marie-Fleur Habets
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Centre, The Netherlands
| | - Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Esther Moonen-Kornips
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands; Department of Radiology, Maastricht University Medical Centre, NUTRIM School for Nutrition and Translational Research in Metabolism, The Netherlands
| | - Wouter van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands.
| |
Collapse
|
20
|
Kong LR, Zhou YP, Chen DR, Ruan CC, Gao PJ. Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging. Front Physiol 2018; 9:400. [PMID: 29720945 PMCID: PMC5915562 DOI: 10.3389/fphys.2018.00400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Functional perivascular adipose tissue (PVAT) is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT)-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs). In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT) in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY) rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1) staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.
Collapse
Affiliation(s)
- Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Ping Zhou
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension at Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H 2S in obesity. Pharmacol Res 2017; 128:190-199. [PMID: 28982640 DOI: 10.1016/j.phrs.2017.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Given that H2S exerts significant effects on bioenergetics and metabolism, the goal of the current study was to determine the expression of H2S-producing enzymes in adipose tissues in models of obesity and metabolic disruption. Mice fed a western diet expressed lower mRNA levels of all three enzymes in epididymal fat (EWAT), while only CSE and 3-MST were reduced in brown adipose tissue (BAT). At the protein level 3-MST was reduced in all fat depots studied. Using db/db mice, a genetic model of obesity, we found that CSE, CBS and 3-MST mRNA were reduced in white fat, while only CSE was reduced in BAT. CBS and CSE protein levels were suppressed in all three fat depots. In a model of age-related weight gain, no reduction in the mRNA of any of the enzymes was noted. Smaller amounts of 3-MST protein were found in EWAT, while both CSE and 3-MST were reduced in BAT. Tissue levels of H2S were lower in WAT in HFD mice; both WAT and BAT contained lower H2S amounts in db/db animals. Taken together, our data suggest that obesity is associated with a decreased expression of H2S-synthesizing enzymes and reduced H2S levels in adipose tissues of mice. We propose that the reduction in H2S may contribute to the metabolic response associated with obesity. Further work is needed to determine whether restoring H2S levels may have a beneficial effect on obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
22
|
Haq T, Crane JD, Kanji S, Gunn E, Tarnopolsky MA, Gerstein HC, Steinberg GR, Morrison KM. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; implications for measuring brown adipose tissue activity in humans. Sci Rep 2017; 7:11934. [PMID: 28931855 PMCID: PMC5607277 DOI: 10.1038/s41598-017-11537-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
The discovery of brown adipose tissue (BAT) in adults has sparked interest in its role as a therapeutic target in metabolic disorders. Infrared thermography is a promising way to quantify BAT; however, a standardized methodology has not been established. This study aims to establish a standardized and reproducible protocol to measure thermal response to cold in the supraclavicular area using thermographic imaging. In Phase 1, we compared the thermal response to 12 °C cold after acclimation at either 32 °C or room temperature using thermographic imaging. Repeatability of the 32 °C acclimation trial was studied in a second group in Phase 2. Phase 1 included 28 men (mean age 23.9 ± 5.9 y; mean BMI 25.2 ± 3.9 kg/m2) and Phase 2 included 14 men (mean age 20.9 ± 2.4 y; mean BMI 23.6 ± 3.1 kg/m2). The thermal response was greater after 32 °C than after room temperature acclimation (0.22 ± 0.19 vs 0.13 ± 0.17 °C, p = 0.05), was not related to outdoor temperature (r = −0.35, p = 0.07), did not correlate with supraclavicular fat (r = −0.26, p = 0.21) measured with dual-energy x-ray absorptiometry and was repeatable [ICC 0.69 (0.14–0.72)]. Acclimation at 32 °C followed by cold generates a reproducible change in supraclavicular skin temperature measurable by thermal imaging that may be indicative of BAT metabolic activity.
Collapse
Affiliation(s)
- Tahniyah Haq
- Department of Pediatrics, McMaster University, Hamilton, L8S 4K1, Canada
| | - Justin D Crane
- Department of Pediatrics, McMaster University, Hamilton, L8S 4K1, Canada
| | - Sarah Kanji
- Department of Pediatrics, McMaster University, Hamilton, L8S 4K1, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, L8S 4K1, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, L8S 4K1, Canada.,Department of Medicine, McMaster University, Hamilton, L8S 4K1, Canada
| | | | - Gregory R Steinberg
- Department of Medicine, McMaster University, Hamilton, L8S 4K1, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Canada.
| | | |
Collapse
|
23
|
Fujii T, Yajima R, Tatsuki H, Oosone K, Kuwano H. Implication of atypical supraclavicular F18-fluorodeoxyglucose uptake in patients with breast cancer: Association between brown adipose tissue and breast cancer. Oncol Lett 2017; 14:7025-7030. [PMID: 29422959 PMCID: PMC5773005 DOI: 10.3892/ol.2017.6768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
It has been reported that F18-fluorodeoxyglucose (FDG) uptake in the neck and supraclavicular lesions represents activated brown adipose tissue (BAT). In the present study, the association between BAT activity, detected by FDG-positron emission tomography (PET), and the clinicopathological features of patients with breast cancer was investigated. The cases of 156 consecutive patients with breast cancer who underwent FDG-PET preoperatively were analyzed. The distribution and intensity of atypical FDG uptake in the neck and/or supraclavicular region was reviewed. The intensity was graded as follows: 1, weak; 2, moderate; and 3, intense. Among the 156 patients, 70 (44.9%) exhibited grade 1 intensity, 65 (41.7%) exhibited grade 2 intensity and 21 (13.5%) exhibited grade 3 intensity. The intensity of FDG was significantly associated with human epidermal growth factor receptor 2 (HER2) expression and progesterone expression. Among the 156 patients, 6 (3.8%) had recurrent disease. Multivariate analysis revealed that showing a low grade of atypical FDG uptake was the only independent risk factor of short-term recurrence, and none of the patients with recurrent disease had atypical FDG uptake that may reflect the activation of BAT. These results indicated that the presence of BAT is associated with HER2 expression and the absence of BAT may be a prognostic factor for breast cancer.
Collapse
Affiliation(s)
- Takaaki Fujii
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Reina Yajima
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hironori Tatsuki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Katsuya Oosone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
24
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
25
|
Berstein LM. Insulinemia, heterogeneity of obesity and the risk of different types of endometrial cancer: existing evidence. Expert Rev Endocrinol Metab 2016; 11:51-64. [PMID: 30063451 DOI: 10.1586/17446651.2016.1128325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to a number of reasons, endometrial cancer is a point of interest not only for oncologists, but also for a variety of specialists - especially endocrinologists. The endocrinology of endometrial cancer can be firmly divided into two categories - steroid and non-steroid. The steroid approach dominated during several decades due to hyperestrogenization signs observed in some patients. The balance was only regained in the last 15 years, when the role of diabetes and insulin resistance began to draw attention. This review aims to provide an update on connections between insulinemia (insulin resistance) and different obesity phenotypes as well to discuss their relation to development of endometrial cancer, its clinical-morphological features and the increasing number of its molecular-biological subtypes.
Collapse
Affiliation(s)
- Lev M Berstein
- a Laboratory of Oncoendocrinology, NN Petrov Research Institute of Oncology , St. Petersburg , Russian Federation
| |
Collapse
|
26
|
Mueller E. Browning and Graying: Novel Transcriptional Regulators of Brown and Beige Fat Tissues and Aging. Front Endocrinol (Lausanne) 2016; 7:19. [PMID: 26973598 PMCID: PMC4773441 DOI: 10.3389/fendo.2016.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Obesity represents a major risk factor for the development of a number of metabolic disorders, including cardiovascular disease and type 2 diabetes. Since the discovery that brown and beige fat cells exist in adult humans and contribute to energy expenditure, increasing interest has been devoted to the understanding of the molecular switches turning on calorie utilization. It has been reported that the ability of thermogenic tissues to burn energy declines during aging, possibly contributing to the development of metabolic dysfunction late in life. This review will focus on the recently identified transcriptional modulators of brown and beige cells and will discuss the potential impact of some of these thermogenic factors on age-associated metabolic disorders.
Collapse
Affiliation(s)
- Elisabetta Mueller
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Elisabetta Mueller,
| |
Collapse
|
27
|
Shao X, Shao X, Wang X, Wang Y. Characterization of brown adipose tissue 18 F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population. Nucl Med Biol 2016; 43:7-11. [DOI: 10.1016/j.nucmedbio.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 10/22/2022]
|
28
|
Reynés B, García-Ruiz E, Oliver P, Palou A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am J Physiol Regul Integr Comp Physiol 2015; 309:R824-34. [PMID: 26246506 DOI: 10.1152/ajpregu.00221.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022]
Abstract
Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| |
Collapse
|
29
|
Abstract
It was previously assumed that brown adipose tissue (BAT) is present in humans only for a short period following birth, the time in which mechanisms of generating heat by way of shivering are not yet developed. Although BAT is maximally recruited in early infancy, findings in recent years have led to a new consensus that metabolically active BAT remains present in most children and many adult humans. Evidence to date supports a slow and steady decline in BAT activity throughout life, with the exception of an intriguing spike in the prevalence and volume of BAT around the time of puberty that remains poorly understood. Because BAT activity is more commonly observed in individuals with a lower body mass index, an association seen in both adult and pediatric populations, there is the exciting possibility that BAT is protective against childhood and adult obesity. Indeed, the function and metabolic relevance of human BAT is currently an area of vigorous research. The goal of this review is to summarize what is currently known about changes that occur in BAT during various stages of life, with a particular emphasis on puberty and aging.
Collapse
Affiliation(s)
- Nicole H Rogers
- California Institute for Biomedical Research (Calibr) , La Jolla, CA 92037 , USA
| |
Collapse
|
30
|
Ro SH, Semple I, Ho A, Park HW, Lee JH. Sestrin2, a Regulator of Thermogenesis and Mitohormesis in Brown Adipose Tissue. Front Endocrinol (Lausanne) 2015; 6:114. [PMID: 26257706 PMCID: PMC4513567 DOI: 10.3389/fendo.2015.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022] Open
Abstract
Sestrin2 is a stress-inducible protein that functions as an antioxidant and inhibitor of mTOR complex 1. In a recent study, we found that Sestrin2 overexpression in brown adipocytes interfered with normal metabolism by reducing mitochondrial respiration through the suppression of uncoupling protein 1 (UCP1) expression. The metabolic effects of Sestrin2 in brown adipocytes were dependent on its antioxidant activity, and chemical antioxidants produced similar effects in inhibiting UCP1-dependent thermogenesis. These observations suggest that low levels of reactive oxygen species (ROS) in brown adipocytes can actually be beneficial and necessary for proper metabolic homeostasis. In addition, considering that Sestrins are ROS inducible and perform ROS detoxifying as well as other metabolism-controlling functions, they are potential regulators of mitohormesis. This is a concept in which overall beneficial effects result from low-level oxidative stress stimuli, such as the ones induced by caloric restriction or physical exercise. In this perspective, we incorporate our recent insight obtained from the Sestrin2 study toward a better understanding of the relationship between ROS, Sestrin2, and mitochondrial metabolism in the context of brown adipocyte physiology.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Allison Ho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Jun Hee Lee, Institute of Gerontology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 3019 BSRB, Ann Arbor, MI 48109, USA,
| |
Collapse
|
31
|
Bitto A, Lerner CA, Nacarelli T, Crowe E, Torres C, Sell C. P62/SQSTM1 at the interface of aging, autophagy, and disease. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9626. [PMID: 24557832 PMCID: PMC4082582 DOI: 10.1007/s11357-014-9626-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/28/2014] [Indexed: 06/02/2023]
Abstract
Advanced age is characterized by increased incidence of many chronic, noninfectious diseases that impair the quality of living of the elderly and pose a major burden on the healthcare systems of developed countries. These diseases are characterized by impaired or altered function at the tissue and cellular level, which is a hallmark of the aging process. Age-related impairments are likely due to loss of homeostasis at the cellular level, which leads to the accumulation of dysfunctional organelles and damaged macromolecules, such as proteins, lipids, and nucleic acids. Intriguingly, aging and age-related diseases can be delayed by modulating nutrient signaling pathways converging on the target of rapamycin (TOR) kinase, either by genetic or dietary intervention. TOR signaling influences aging through several potential mechanisms, such as autophagy, a degradation pathway that clears the dysfunctional organelles and damaged macromolecules that accumulate with aging. Autophagy substrates are targeted for degradation by associating with p62/SQSTM1, a multidomain protein that interacts with the autophagy machinery. p62/SQSTM1 is involved in several cellular processes, and its loss has been linked to accelerated aging and to age-related pathologies. In this review, we describe p62/SQSTM1, its role in autophagy and in signaling pathways, and its emerging role in aging and age-associated pathologies. Finally, we propose p62/SQSTM1 as a novel target for aging studies and age-extending interventions.
Collapse
Affiliation(s)
- Alessandro Bitto
- />Department of Pathology, University of Washington, Health Science Building D-514, Box 357470, Seattle, WA USA
| | | | - Timothy Nacarelli
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Elizabeth Crowe
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Claudio Torres
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Christian Sell
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
32
|
Differences in the metabolic status of healthy adults with and without active brown adipose tissue. Wien Klin Wochenschr 2013; 125:687-95. [PMID: 24146327 DOI: 10.1007/s00508-013-0431-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/13/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous studies have proven the existence of active brown adipose tissue (BAT) in adults; however, its effect on systematic metabolism remains unclear. AIM The current study was designed to investigate the differences in the metabolic profiles of healthy adults with and without active BAT using positron emission tomography-computed tomography (PET-CT) scans in the un-stimulated state. METHODS A cross-sectional analysis was performed to assess the health of adults using PET-CT whole-body scans at Huashan Hospital Medical Centre between November 2009 and May 2010. A total of 62 healthy adults with active BAT were enrolled in the BAT-positive group. For each positive subject, a same-gender individual who underwent PET-CT the same day and who had no detectable BAT was chosen as the negative control. Body composition was measured, and blood samples were collected for assays of metabolic profiles and other biomarkers. RESULTS In both the male and female groups, BAT-positive individuals were younger and had lower body mass indexes, fasting insulin, insulin resistance, and leptin, but a greater level of high-density lipoprotein cholesterol compared with the negative controls. In the male group, body fat content and levels of tumor necrosis factor-α were significantly lower in the BAT-positive than in the negative control group. CONCLUSIONS The healthy adults with active BAT in an un-stimulated state had favorable metabolic profiles suggesting that active BAT may be a potential target for preventing and treating obesity and other metabolic disorders.
Collapse
|
33
|
Affiliation(s)
- Charmaine S Tam
- Human Physiology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
34
|
Huang YC, Hsu CC, Wang PW, Chang YH, Chen TB, Lee BF, Chiu NT. Review analysis of the association between the prevalence of activated brown adipose tissue and outdoor temperature. ScientificWorldJournal 2012; 2012:793039. [PMID: 22593707 PMCID: PMC3349155 DOI: 10.1100/2012/793039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/21/2011] [Indexed: 01/19/2023] Open
Abstract
Brown adipose tissue (BAT) is important for regulating body weight. Environmental temperature influences BAT activation. Activated BAT is identifiable using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). 18F-FDG PET/CT scans done between June 2005 and May 2009 in our institution in tropical southern Taiwan and BAT studies from PubMed (2002–2011) were reviewed, and the average outdoor temperatures during the study periods were obtained. A simple linear regression was used to analyze the association between the prevalence of activated BAT (P) and the average outdoor temperature (T). The review analysis for 9 BAT studies (n = 16, 765) showed a significant negative correlation (r = −0.741, P = 0.022) between the prevalence of activated BAT and the average outdoor temperature. The equation of the regression line is P(%) = 6.99 − 0.20 × T (°C). The prevalence of activated BAT decreased by 1% for each 5°C increase in average outdoor temperature. In a neutral ambient temperature, the prevalence of activated BAT is low and especially rare in the tropics. There is a significant linear negative correlation between the prevalence of activated BAT and the average outdoor temperature.
Collapse
Affiliation(s)
- Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Hu HH, Hines CDG, Smith DL, Reeder SB. Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 2012; 30:323-9. [PMID: 22244539 PMCID: PMC3288644 DOI: 10.1016/j.mri.2011.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/16/2011] [Accepted: 12/04/2011] [Indexed: 12/21/2022]
Abstract
PURPOSE The purpose was to compare T(2)* relaxation times and proton density fat-fraction (PDFF) values between brown (BAT) and white (WAT) adipose tissue in lean and ob/ob mice. MATERIALS AND METHODS A group of lean male mice (n=6) and two groups of ob/ob male mice placed on similar 4-week (n=6) and 8-week (n=8) ad libitum diets were utilized. The animals were imaged at 3 T using a T(2)*-corrected chemical-shift-based water-fat magnetic resonance imaging (MRI) method that provides simultaneous estimation of T(2)* and PDFF on a voxel-wise basis. Regions of interest were drawn within the interscapular BAT and gonadal WAT depots on co-registered T(2)* and PDFF maps. Measurements were assessed using analysis of variance, Bonferroni-adjusted t test for multigroup comparisons and the Tukey post hoc test. RESULTS Significant differences (P<.01) in BAT T(2)* and PDFF were observed between the lean and ob/ob groups. The ob/ob animals exhibited longer BAT T(2)* and greater PDFF than lean animals. However, only BAT PDFF was significantly different (P<.01) between the two ob/ob groups. When comparing BAT to WAT within each group, T(2)* and PDFF values were consistently lower in BAT than WAT (P<.01). The difference was most prominent in the lean animals. In both ob/ob groups, BAT exhibited very WAT-like appearances and properties on the MRI images. CONCLUSION T(2)* and PDFF are lower in BAT than WAT. This is likely due to variations in tissue composition. The values were consistently lower in lean mice than in ob/ob mice, suggestive of the former's greater demand for BAT thermogenesis and reflective of leptin hormone deficiencies and diminished BAT metabolic activity in the latter.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | |
Collapse
|
36
|
Huang YC, Chen TB, Hsu CC, Li SH, Wang PW, Lee BF, Kuo CY, Chiu NT. The relationship between brown adipose tissue activity and neoplastic status: an (18)F-FDG PET/CT study in the tropics. Lipids Health Dis 2011; 10:238. [PMID: 22182284 PMCID: PMC3267802 DOI: 10.1186/1476-511x-10-238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/20/2011] [Indexed: 12/20/2022] Open
Abstract
Background Brown adipose tissue (BAT) has thermogenic potential. For its activation, cold exposure is considered a critical factor though other determinants have also been reported. The purpose of this study was to assess the relationship between neoplastic status and BAT activity by 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in people living in the tropics, where the influence of outdoor temperature was low. Methods 18F-FDG PET/CT scans were reviewed and the total metabolic activity (TMA) of identified activated BAT quantified. The distribution and TMA of activated BAT were compared between patients with and without a cancer history. The neoplastic status of patients was scored according to their cancer history and 18F-FDG PET/CT findings. We evaluated the relationships between the TMA of BAT and neoplastic status along with other factors: age, body mass index, fasting blood sugar, gender, and outdoor temperature. Results Thirty of 1740 patients had activated BAT. Those with a cancer history had wider BAT distribution (p = 0.043) and a higher TMA (p = 0.028) than those without. A higher neoplastic status score was associated with a higher average TMA. Multivariate analyses showed that neoplastic status was the only factor significantly associated with the TMA of activated BAT (p = 0.016). Conclusions Neoplastic status is a critical determinant of BAT activity in patients living in the tropics. More active neoplastic status was associated with more vigorous TMA of BAT.
Collapse
Affiliation(s)
- Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin L, Saha PK, Ma X, Henshaw IO, Shao L, Chang BHJ, Buras ED, Tong Q, Chan L, McGuinness OP, Sun Y. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 2011; 10:996-1010. [PMID: 21895961 DOI: 10.1111/j.1474-9726.2011.00740.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Adiposity/genetics
- Aging/genetics
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Eating/physiology
- Energy Metabolism/physiology
- Gene Expression Regulation
- Ghrelin/genetics
- Ghrelin/metabolism
- Humans
- Insulin Resistance/genetics
- Ion Channels/genetics
- Ion Channels/metabolism
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Knockout
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Receptors, Ghrelin/antagonists & inhibitors
- Receptors, Ghrelin/deficiency
- Receptors, Ghrelin/genetics
- Signal Transduction/genetics
- Thermogenesis/physiology
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Ligen Lin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|