1
|
Francis T, Soendenbroe C, Lazarus NR, Mackey AL, Harridge SDR. Insights into human muscle biology from human primary skeletal muscle cell culture. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09696-w. [PMID: 40346328 DOI: 10.1007/s10974-025-09696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
This review arises from the symposium held in honour of Prof Jenny Morgan at UCL in 2024 and the authors would like to acknowledge the outstanding contribution that Prof Morgan has made to the field of translational muscle cell biology. Prof Morgan published a review article in 2010 entitled: Are human and mice satellite cells really the same? In which the authors highlighted differences between species which are still pertinent to skeletal muscle cell culture studies today. To our knowledge there are no comprehensive reviews which outline the considerable work that has been undertaken using human primary skeletal muscle origin cells as the main model system. This review highlights the multitude of muscle biology that has been investigated using human primary cells, as well as discussing the advantages and disadvantages over other cell models. We also discuss future directions for primary cell culture models utilising the latest technologies in cell type specificity and culture systems.
Collapse
Affiliation(s)
- Thomas Francis
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK.
| | - Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Norman R Lazarus
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen D R Harridge
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Zhou X, Ding Y, Yang C, Li C, Su Z, Xu J, Qu C, Shi Y, Kang X. FHL3 gene regulates bovine skeletal muscle cell growth through the PI3K/Akt/mTOR signaling pathway. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101356. [PMID: 39549419 DOI: 10.1016/j.cbd.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Beef quality is a critical factor in evaluating the effectiveness of beef cattle production. Fiber types play key roles in determining muscle growth and meat quality characteristics. FHL3 is de novo expressed in skeletal muscle and is responsible for MyHC isoform expression in C2C12 cells. Nevertheless, the precise function of this factor in regulating the proliferation, differentiation, and fiber type of bovine skeletal muscle cells (BSMCs) have yet to be identified. This study aimed to investigate the impact of the FHL3 on BSMCs proliferation, differentiation, and muscle fiber types. The results revealed that the FHL3 promoted BSMCs proliferation, inhibited differentiation, increased type II muscle fiber expression, and decreased type I muscle fiber expression. Meanwhile, the FHL3 promoted the expression and phosphorylation levels of PI3K, Akt, and mTOR in the PI3K/Akt/mTOR signaling pathway, and inhibited the expression and phosphorylation levels of PI3K, Akt, and mTOR after treatment with the pathway inhibitor LY294002, furthermore, it promoted differentiation and inhibited proliferation of BSMCs, while promoting the expression of type II muscle fibers and inhibiting the expression of type I muscle fibers. The results suggest that the FHL3 has an effect on promoting the proliferation and inhibiting the differentiation of BSMCs through the PI3K/Akt/mTOR signaling pathway, but the effect of the FHL3 on myofiber type conversion is not regulated by this pathway. The objective of this study is to enhance our understanding of the molecular function of FHL3 in the development of BSMCs.
Collapse
Affiliation(s)
- Xiaonan Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanling Ding
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chaoyun Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chenglong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zonghua Su
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Junjie Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chang Qu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yuangang Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaolong Kang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
3
|
Gillham SH, Cole PL, Viggars MR, Nolan AH, Close GL, Owens DJ. Comparative transcriptomics of broad-spectrum and synthetic cannabidiol treated C2C12 skeletal myotubes. Physiol Rep 2024; 12:e70059. [PMID: 39289171 PMCID: PMC11407902 DOI: 10.14814/phy2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Cannabidiol (CBD) is widely used in sports for recovery, pain management, and sleep improvement, yet its effects on muscle are not well understood. This study aimed to determine the transcriptional response of murine skeletal muscle myotubes to broad-spectrum CBD and synthetic CBD (sCBD). Differentiated C2C12 myotubes were treated with 10 μM CBD, sCBD, or vehicle control (DMSO) for 24 h before RNA extraction. Poly-A tail-enriched mRNA libraries were constructed and sequenced using 2 × 50 bp paired-end sequencing. CBD and sCBD treatment induced 4489 and 1979 differentially expressed genes (DEGs; p < 0.001, FDR step-up <0.05), respectively, with common upregulation of 857 genes and common downregulation of 648 genes. Common upregulated DEGs were associated with "response to unfolded protein," "cell redox homeostasis," "endoplasmic reticulum stress," "oxidative stress," and "cellular response to hypoxia." Common downregulated DEGs were linked to "sarcomere organization," "skeletal muscle tissue development," "regulation of muscle contraction," and "muscle contraction." CBD treatment induced unique DEGs compared to sCBD. The data indicate CBD may induce mild cellular stress, activating pathways associated with altered redox balance, unfolded protein response, and endoplasmic reticulum stress. We hypothesize that CBD interacts with muscle and may elicit a "mitohormetic" effect that warrants further investigation.
Collapse
Affiliation(s)
- Scott H. Gillham
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Paige L. Cole
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Mark R. Viggars
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - Andy H. Nolan
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Graeme L. Close
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Owens
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
4
|
Allen SL, Elliott BT, Carson BP, Breen L. Improving physiological relevance of cell culture: the possibilities, considerations, and future directions of the ex vivo coculture model. Am J Physiol Cell Physiol 2023; 324:C420-C427. [PMID: 36571441 PMCID: PMC9902212 DOI: 10.1152/ajpcell.00473.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
In vitro models provide an important platform for the investigation of cellular growth and atrophy to inform, or extend mechanistic insights from, logistically challenging in vivo trials. Although these models allow for the identification of candidate mechanistic pathways, many models involve supraphysiological dosages, nonphysiological conditions, or experimental changes relating to individual proteins or receptors, all of which limit translation to human trials. To overcome these drawbacks, the use of ex vivo human plasma and serum has been used in cellular models to investigate changes in myotube hypertrophy, cellular protein synthesis, anabolic and catabolic markers in response to differing age, disease states, and nutrient status. However, there are currently no concurrent guidelines outlining the optimal methodology for this model. This review discusses the key methodological considerations surrounding the use of ex vivo plasma and serum with a focus in application to skeletal muscle cell lines (i.e., C2C12, L6, and LHCN-M2) and human primary skeletal muscle cells (HSMCs) as a means to investigate molecular signaling in models of atrophy and hypertrophy, alongside future directions.
Collapse
Affiliation(s)
- Sophie L Allen
- School of Sport Exercise and Rehabilitation Sciences, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Brian P Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Leigh Breen
- School of Sport Exercise and Rehabilitation Sciences, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Aging Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Nagendra AH, Ray A, Chaudhury D, Mitra A, Ranade AV, Bose B, Shenoy P. S. Sodium fluoride induces skeletal muscle atrophy via changes in mitochondrial and sarcomeric proteomes. PLoS One 2022; 17:e0279261. [PMID: 36548359 PMCID: PMC9779014 DOI: 10.1371/journal.pone.0279261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Sodium Fluoride (NaF) can change the expression of skeletal muscle proteins. Since skeletal muscle is rich in mitochondrial and contractile (sarcomeric) proteins, these proteins are sensitive to the effects of NaF, and the changes are dose-and time-dependent. In the current study, we have analysed the effect of high concentrations of NaF (80ppm) on mouse skeletal muscle at two different time points, i.e., 15 days and 60 days. At the end of the experimental time, the animals were sacrificed, skeletal muscles were isolated, and proteins were extracted and subjected to bioinformatic (Mass Spectrometric) analysis. The results were analysed based on changes in different mitochondrial complexes, contractile (sarcomeric) proteins, 26S proteasome, and ubiquitin-proteasome pathway. The results showed that the mitochondrial proteins of complex I, II, III, IV and V were differentially regulated in the groups treated with 80ppm of NaF for 15 days and 60 days. The network analysis indicated more changes in mitochondrial proteins in the group treated with the higher dose for 15 days rather than 60 days. Furthermore, differential expression of (sarcomeric) proteins, downregulation of 26S proteasome subunits, and differential expression in proteins related to the ubiquitin-proteasome pathway lead to muscle atrophy. The differential expression might be due to the adaptative mechanism to counteract the deleterious effects of NaF on energy metabolism. Data are available via ProteomeXchange with identifier PXD035014.
Collapse
Affiliation(s)
- Apoorva H. Nagendra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Animikh Ray
- Father Muller Research Centre, Father Muller Medical College, Father Muller Charitable Institutions, Kankanady, Mangalore, Karnataka, India
| | - Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Anu Vinod Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| |
Collapse
|
6
|
Moustogiannis A, Philippou A, Zevolis E, Taso OS, Giannopoulos A, Chatzigeorgiou A, Koutsilieris M. Effect of Mechanical Loading of Senescent Myoblasts on Their Myogenic Lineage Progression and Survival. Cells 2022; 11:3979. [PMID: 36552743 PMCID: PMC9776690 DOI: 10.3390/cells11243979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During aging, muscle cell apoptosis increases and myogenesis gradually declines. The impaired myogenic and survival potential of the aged skeletal muscle can be ameliorated by its mechanical loading. However, the molecular responses of aged muscle cells to mechanical loading remain unclear. This study examined the effect of mechanical loading of aged, proliferating, and differentiated myoblasts on the gene expression and signaling responses associated with their myogenic lineage progression and survival. METHODS Control and aged C2C12 cells were cultured on elastic membranes and underwent passive stretching for 12 h at a low frequency (0.25 Hz) and different elongations, varying the strain on days 0 and 10 of myoblast differentiation. Activation of ERK1/2 and Akt, and the expression of focal adhesion kinase (FAK) and key myogenic regulatory factors (MRFs), MyoD and Myogenin, were determined by immunoblotting of the cell lysates derived from stretched and non-stretched myoblasts. Changes in the expression levels of the MRFs, muscle growth, atrophy, and pro-apoptotic factors in response to mechanical loading of the aged and control cells were quantified by real-time qRT-PCR. RESULTS Mechanical stretching applied on myoblasts resulted in the upregulation of FAK both in proliferating (day 0) and differentiated (day 10) cells, as well as in increased phosphorylation of ERK1/2 in both control and aged cells. Moreover, Akt activation and the expression of early differentiation factor MyoD increased significantly after stretching only in the control myoblasts, while the late differentiation factor Myogenin was upregulated in both the control and aged myoblasts. At the transcriptional level, mechanical loading of the proliferating myoblasts led to an increased expression of IGF-1 isoforms and MRFs, and to downregulation of muscle atrophy factors mainly in control cells, as well as in the upregulation of pro-apoptotic factors both in control and aged cells. In differentiated cells, mechanical loading resulted in an increased expression of the IGF-1Ea isoform and Myogenin, and in the downregulation of atrophy and pro-apoptotic factors in both the control and aged cells. CONCLUSIONS This study revealed a diminished beneficial effect of mechanical loading on the myogenic and survival ability of the senescent muscle cells compared with the controls, with a low strain (2%) loading being most effective in upregulating myogenic/anabolic factors and downregulating atrophy and pro-apoptotic genes mainly in the aged myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Orjona S. Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
- School of Biological Sciences, Deanery of Biomedical Sciences, Centre for Discovery Brain Sciences, Edinburgh EH8 9JZ, UK
| | - Antonios Giannopoulos
- Department of Surgical and Perioperative Sciences, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| |
Collapse
|
7
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
8
|
Nagendra AH, Najar MA, Bose B, Shenoy PS. High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128654. [PMID: 35286933 DOI: 10.1016/j.jhazmat.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.
Collapse
Affiliation(s)
- Apoorva H Nagendra
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bipasha Bose
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - P Sudheer Shenoy
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
9
|
Zevolis E, Philippou A, Moustogiannis A, Chatzigeorgiou A, Koutsilieris M. The Effects of Mechanical Loading Variations on the Hypertrophic, Anti-Apoptotic, and Anti-Inflammatory Responses of Differentiated Cardiomyocyte-like H9C2 Cells. Cells 2022; 11:473. [PMID: 35159283 PMCID: PMC8834179 DOI: 10.3390/cells11030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiomyocytes possess the ability to respond to mechanical stimuli by adapting their biological functions. This study investigated cellular and molecular events in cardiomyocyte-like H9C2 cells during differentiation as well as the signalling and gene expression responses of the differentiated cells under various mechanical stretching protocols in vitro. Immunofluorescence was used to monitor MyHC expression and structural changes during cardiomyoblast differentiation. Moreover, alterations in the expression of cardiac-specific markers, cell cycle regulatory factors, MRFs, hypertrophic, apoptotic, atrophy and inflammatory factors, as well as the activation of major intracellular signalling pathways were evaluated during differentiation and under mechanical stretching of the differentiated H9C2 cells. Compared to undifferentiated cells, advanced-differentiation cardiomyoblasts exhibited increased expression of cardiac-specific markers, MyHC, MRFs, and IGF-1 isoforms. Moreover, differentiated cells that underwent a low strain/frequency mechanical loading protocol of intermediate duration showed enhanced expression of MRFs and hypertrophic factors, along with a decreased expression of apoptotic, atrophy, and inflammatory factors compared to both high-strain/frequency loading protocols and to unloaded cells. These findings suggest that altering the strain and frequency of mechanical loading applied on differentiated H9C2 cardiomyoblasts can regulate their anabolic/survival program, with a low-strain/frequency stretching being, overall, most effective at inducing beneficial responses.
Collapse
Affiliation(s)
| | | | | | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27 Athens, Greece; (E.Z.); (A.P.); (A.M.); (A.C.)
| |
Collapse
|
10
|
Moustogiannis A, Philippou A, Taso O, Zevolis E, Pappa M, Chatzigeorgiou A, Koutsilieris M. The Effects of Muscle Cell Aging on Myogenesis. Int J Mol Sci 2021; 22:3721. [PMID: 33918414 PMCID: PMC8038215 DOI: 10.3390/ijms22073721] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The process of myogenesis gradually deteriorates as the skeletal muscle ages, contributing to muscle mass loss. The aim of this study is to investigate the effect of senescence/aging on skeletal myogenesis, in vitro. A model of multiple cell divisions of C2C12 myoblasts was used to replicate cell senescence. Control and aged myoblasts were investigated during myogenesis, i.e., at days 0, 2, and 6of differentiation. SA-β-gal activity and comet assay were used as markers of aging and DNA damage. Flow cytometry was performed to characterize potential differences in cell cycle between control and aged cells. Alterations in the mRNA and/or protein expression of myogenic regulatory factors (MRFs), IGF-1 isoforms, apoptotic, atrophy, inflammatory, metabolic and aging-related factors were evaluated. Compared with the control cells, aged myoblasts exhibited G0/G1 cell cycle arrest, DNA damage, increased SA-β-gal activity, and increased expression of aging-related factors p16 and p21 during differentiation. Moreover, aged myoblasts showed a reduction in the expression of MRFs and metabolic/anabolic factors, along with an increased expression of apoptotic, atrophy and inflammatory factors. A diminished differentiation capacity characterized the aged myoblasts which, in combination with the induction of apoptotic and atrophy factors, indicated a disrupted myogenic lineage in the senescent muscle cells.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| |
Collapse
|
11
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
12
|
Moustogiannis A, Philippou A, Zevolis E, Taso O, Chatzigeorgiou A, Koutsilieris M. Characterization of Optimal Strain, Frequency and Duration of Mechanical Loading on Skeletal Myotubes' Biological Responses. In Vivo 2020; 34:1779-1788. [PMID: 32606147 PMCID: PMC7439881 DOI: 10.21873/invivo.11972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Mechanical loading of differentiated myoblasts in vitro may mimic loading patterns of skeletal muscle in vivo. However, it is still uncharacterized the loading conditions that can produce the most effective muscle cells' biological responses, in vitro. This study investigated the effects of different loading protocols on the expression of myogenic regulatory factors, anabolic, atrophy and pro-apoptotic factors in skeletal myotubes. MATERIALS AND METHODS C2C12 myoblasts were differentiated and underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Murf1, Atrogin, Myostatin, Foxo and Fuca were measured by Real Time-PCR. RESULTS Stretching by 2% elongation at 0.25 Hz for 12 h was overall the most effective in inducing beneficial responses. CONCLUSION A low strain, low frequency intermediate duration stretching can most effectively up-regulate myogenic/anabolic factors and down-regulate pro-apoptotic and atrophy genes in myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
14
|
Morano M, Ronchi G, Nicolò V, Fornasari BE, Crosio A, Perroteau I, Geuna S, Gambarotta G, Raimondo S. Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation. Sci Rep 2018; 8:5047. [PMID: 29568012 PMCID: PMC5864756 DOI: 10.1038/s41598-018-23454-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/12/2018] [Indexed: 12/23/2022] Open
Abstract
Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.
Collapse
Affiliation(s)
- Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Valentina Nicolò
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Alessandro Crosio
- Microsurgery Unit, AOU Città della Salute e della Scienza, PO CTO, 10126, Torino, Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| |
Collapse
|
15
|
Shao Y, Wolf PG, Guo S, Guo Y, Gaskins HR, Zhang B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem 2017; 43:18-26. [PMID: 28193579 DOI: 10.1016/j.jnutbio.2017.01.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022]
|
16
|
Kasper AM, Turner DC, Martin NRW, Sharples AP. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. J Cell Physiol 2017; 233:1985-1998. [DOI: 10.1002/jcp.25840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas M. Kasper
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Daniel C. Turner
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Neil R. W. Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences; Loughborough University; Loughborough UK
| | - Adam P. Sharples
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
17
|
Shimizu M, Tanaka M, Atomi Y. Small Heat Shock Protein αB-Crystallin Controls Shape and Adhesion of Glioma and Myoblast Cells in the Absence of Stress. PLoS One 2016; 11:e0168136. [PMID: 27977738 PMCID: PMC5158045 DOI: 10.1371/journal.pone.0168136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/27/2016] [Indexed: 01/14/2023] Open
Abstract
Cell shape and adhesion and their proper controls are fundamental for all biological systems. Mesenchymal cells migrate at an average rate of 6 to 60 μm/hr, depending on the extracellular matrix environment and cell signaling. Myotubes, fully differentiated muscle cells, are specialized for power-generation and therefore lose motility. Cell spreading and stabilities of focal adhesion are regulated by the critical protein vinculin from immature myoblast to mature costamere of differentiated myotubes where myofibril Z-band linked to sarcolemma. The Z-band is constituted from microtubules, intermediate filaments, cell adhesion molecules and other adapter proteins that communicate with the outer environment. Mesenchymal cells, including myoblast cells, convert actomyosin contraction forces to tension through mechano-responsive adhesion assembly complexes as Z-band equivalents. There is growing evidence that microtubule dynamics are involved in the generation of contractile forces; however, the roles of microtubules in cell adhesion dynamics are not well determined. Here, we show for the first time that αB-crystallin, a molecular chaperon for tubulin/microtubules, is involved in cell shape determination. Moreover, knockdown of this molecule caused myoblasts and glioma cells to lose their ability for adhesion as they tended to behave like migratory cells. Surprisingly, αB-crystallin knockdown in both C6 glial cells and L6 myoblast permitted cells to migrate more rapidly (2.7 times faster for C6 and 1.3 times faster for L6 cells) than dermal fibroblast. On the other hand, overexpression of αB-crystallin in cells led to an immortal phenotype because of persistent adhesion. Position of matured focal adhesion as visualized by vinculin immuno-staining, stress fiber direction, length, and density were clearly αB-crystallin dependent. These results indicate that the small HSP αB-crystallin has important roles for cell adhesion, and thus microtubule dynamics are necessary for persistent adhesion.
Collapse
Affiliation(s)
- Miho Shimizu
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mikihito Tanaka
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoriko Atomi
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Saini A, Sharples AP, Al-Shanti N, Stewart CE. Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation. Biogerontology 2016; 18:109-129. [PMID: 27864687 PMCID: PMC5288450 DOI: 10.1007/s10522-016-9667-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 12/17/2022]
Abstract
Sarcopenic obesity is characterised by high fat mass, low muscle mass and an elevated inflammatory environmental milieu. We therefore investigated the effects of elevated inflammatory cytokine TNF-α (aging/obesity) and saturated fatty acid, palmitate (obesity) on skeletal muscle cells in the presence/absence of EPA, a-3 polyunsaturated fatty acid with proposed anti-inflammatory, anti-obesity activities. In the present study we show that palmitate was lipotoxic, inducing high levels of cell death and blocking myotube formation. Cell death under these conditions was associated with increased caspase activity, suppression of differentiation, reductions in both creatine kinase activity and gene expression of myogenic factors; IGF-II, IGFBP-5, MyoD and myogenin. However, inhibition of caspase activity via administration of Z-VDVAD-FMK (caspase-2), Z-DEVD-FMK (caspase-3) and ZIETD-KMK (caspase 8) was without effect on cell death. By contrast, lipotoxicity associated with elevated palmitate was reduced with the MEK inhibitor PD98059, indicating palmitate induced cell death was MAPK mediated. These lipotoxic conditions were further exacerbated in the presence of inflammation via TNF-α co-administration. Addition of EPA under cytotoxic stress (TNF-α) was shown to partially rescue differentiation with enhanced myotube formation being associated with increased MyoD, myogenin, IGF-II and IGFBP-5 expression. EPA had little impact on the cell death phenotype observed in lipotoxic conditions but did show benefit in restoring differentiation under lipotoxic plus cytotoxic conditions. Under these conditions Id3 (inhibitor of differentiation) gene expression was inversely linked with survival rates, potentially indicating a novel role of EPA and Id3 in the regulation of apoptosis in lipotoxic/cytotoxic conditions. Additionally, signalling studies indicated the combination of lipo- and cyto-toxic effects on the muscle cells acted through ceramide, JNK and MAPK pathways and blocking these pathways using PD98059 (MEK inhibitor) and Fumonisin B1 (ceramide inhibitor) significantly reduced levels of cell death. These findings highlight novel pathways associated with in vitro models of lipotoxicity (palmitate-mediated) and cytotoxicity (inflammatory cytokine mediated) in the potential targeting of molecular modulators of sarcopenic obesity.
Collapse
Affiliation(s)
- Amarjit Saini
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport & Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Life Science Building, Byrom Street Campus, Liverpool, L3 3AF, UK.
| | - Nasser Al-Shanti
- Neuromuscular and Skeletal Ageing Research Group, Healthcare Science Research Institute, Manchester Metropolitan University, Oxford Road, Manchester, M1 5GD, UK
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport & Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Life Science Building, Byrom Street Campus, Liverpool, L3 3AF, UK
| |
Collapse
|
19
|
Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15:603-16. [PMID: 27102569 PMCID: PMC4933662 DOI: 10.1111/acel.12486] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| |
Collapse
|
20
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
21
|
Massaccesi L, Goi G, Tringali C, Barassi A, Venerando B, Papini N. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells. J Cell Biochem 2016; 117:1833-42. [PMID: 26728070 DOI: 10.1002/jcb.25483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giancarlo Goi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Passey SL, Bozinovski S, Vlahos R, Anderson GP, Hansen MJ. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes. PLoS One 2016; 11:e0146882. [PMID: 26784349 PMCID: PMC4718684 DOI: 10.1371/journal.pone.0146882] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. RESULTS SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. CONCLUSIONS These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.
Collapse
Affiliation(s)
- Samantha L. Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Michelle J. Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14:511-23. [PMID: 25866088 PMCID: PMC4531066 DOI: 10.1111/acel.12342] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio-economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin-like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| | - David C. Hughes
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
- Department of Neurobiology, Physiology and Behavior; University of California; Davis California CA 95616 USA
| | - Colleen S. Deane
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research; School of Medicine; University of Nottingham; Royal Derby Hospital; Derby DE22 3DT UK
- School of Health and Social Care; Bournemouth University; Bournemouth BH12 5BB UK
| | - Amarjit Saini
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER); Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Claire E. Stewart
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| |
Collapse
|
24
|
Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 2015; 333:228-237. [PMID: 25773777 DOI: 10.1016/j.yexcr.2015.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade.
Collapse
|
25
|
Robin JD, Wright WE, Zou Y, Cossette SC, Lawlor MW, Gussoni E. Isolation and immortalization of patient-derived cell lines from muscle biopsy for disease modeling. J Vis Exp 2015:52307. [PMID: 25651101 DOI: 10.3791/52307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The generation of patient-specific cell lines represents an invaluable tool for diagnostic or translational research, and these cells can be collected from skin or muscle biopsy tissue available during the patient's diagnostic workup. In this protocol, we describe a technique for live cell isolation from small amounts of muscle or skin tissue for primary cell culture. Additionally, we provide a technique for the immortalization of myogenic cell lines and fibroblast cell lines from primary cells. Once cell lines are immortalized, substantial expansion of patient-derived cells can be achieved. Immortalized cells are amenable to many downstream applications, including drug screening and in vitro correction of the genetic mutation. Altogether, these protocols provide a reliable tool to generate and preserve patient-derived cells for downstream applications.
Collapse
Affiliation(s)
- Jerome D Robin
- Department of Cell Biology, UT Southwestern Medical Center
| | - Woody E Wright
- Department of Cell Biology, UT Southwestern Medical Center
| | - Yaqun Zou
- National Institute of Neurological Disorders and Stroke, National Institute of Health
| | - Stacy C Cossette
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin
| | | |
Collapse
|
26
|
Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle. Biotechnol Lett 2014; 36:1113-24. [PMID: 24563297 DOI: 10.1007/s10529-014-1464-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/09/2014] [Indexed: 01/24/2023]
Abstract
Skeletal muscle (SkM) is a tissue that responds to mechanical load following both physiological (exercise) or pathophysiological (bed rest) conditions. The heterogeneity of human samples and the experimental and ethical limitations of animal studies provide a rationale for the study of SkM plasticity in vitro. Many current in vitro approaches of mechanical loading of SkM disregard the three-dimensional (3D) structure in vivo. Tissue engineered 3D SkM, that displays highly aligned and differentiated myotubes, was used to investigate mechano-regulated gene transcription of genes implicated in hypertrophy/atrophy. Static loading (STL) and ramp loading (RPL) at 10 % strain for 60 min were used as mechano-stimulation with constructs sampled immediately for RNA extraction. STL increased IGF-I mRNA compared to both RPL and CON (control, p = 0.003 and 0.011 respectively) whilst MMP-9 mRNA increased in STL and RPL compared to CON (both p < 0.05). IGFBP-2 mRNA was differentially regulated in RPL and STL compared to CON (p = 0.057), whilst a reduction in IGFBP-5 mRNA was found for STL and RPL compared to CON (both p < 0.05). There was no effect in the expression of putative atrophic genes, myostatin, MuRF-1 and MAFBx (all p > 0.05). These data demonstrate a transcriptional signature associated with SkM hypertrophy within a tissue-engineered model that more greatly recapitulates the in vivo SkM structure compared previously published studies.
Collapse
|
27
|
Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med 2013; 11:310. [PMID: 24330398 PMCID: PMC3867424 DOI: 10.1186/1479-5876-11-310] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background Nutrigenomics elucidate the ability of bioactive food components to influence gene expression, protein synthesis, degradation and post-translational modifications. Resveratrol (RSV), natural polyphenol found in grapes and in other fruits, has a plethora of health benefits in a variety of human diseases: cardio- and neuroprotection, immune regulation, cancer chemoprevention, DNA repair, prevention of mitochondrial disorder, avoidance of obesity-related diseases. In skeletal muscle, RSV acts on protein catabolism and muscle function, conferring resistance against oxidative stress, injury and cell death, but its action mechanisms and protein targets in myogenesis process are not completely known. Myogenesis is a dynamic multistep process regulated by Myogenic Regulator Factors (MRFs), responsible of the commitment of myogenic cell into skeletal muscle: mononucleated undifferentiated myoblasts break free from cell cycle, elongate and fuse to form multinucleated myotubes. Skeletal muscle hypertrophy can be defined as a result of an increase in the size of pre-existing skeletal muscle fibers accompanied by increased protein synthesis, mainly regulated by Insulin Like Growth Factor 1 (IGF-1), PI3-K/AKT signaling pathways. Aim of this work was the study of RSV effects on proliferation, differentiation process and hypertrophy in C2C12 murine cells. Methods To study proliferative phase, cells were incubated in growth medium with/without RSV (0.1 or 25 μM) until reaching sub confluence condition (24, 48, 72 h). To examine differentiation, at 70% confluence, cells were transferred in differentiation medium both with/without RSV (0.1 or 25 μM) for 24, 48, 72, 96 hours. After 72 hours of differentiation, the genesis of hypertrophy in neo-formed myotubes was analyzed. Results Data showed that RSV regulates cell cycle exit and induces C2C12 muscle differentiation. Furthermore, RSV might control MRFs and muscle-specific proteins synthesis. In late differentiation, RSV has positive effects on hypertrophy: RSV stimulates IGF-1 signaling pathway, in particular AKT and ERK 1/2 protein activation, AMPK protein level and induces hypertrophic morphological changes in neo-formed myotubes modulating cytoskeletal proteins expression. Conclusions RSV might control cell cycle promoting myogenesis and hypertrophy in vitro, opening a novel field of application of RSV in clinical conditions characterized by chronic functional and morphological muscle impairment.
Collapse
Affiliation(s)
| | | | | | | | - Ileana Terruzzi
- Division of Metabolic and Cardiovascular Sciences, Metabolism, Nutrigenomics and Cellular Differentiation Unit, DIBIT-San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
28
|
Sharples AP, Al-Shanti N, Hughes DC, Lewis MP, Stewart CE. The role of insulin-like-growth factor binding protein 2 (IGFBP2) and phosphatase and tensin homologue (PTEN) in the regulation of myoblast differentiation and hypertrophy. Growth Horm IGF Res 2013; 23:53-61. [PMID: 23583027 DOI: 10.1016/j.ghir.2013.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
The complex actions of the insulin-like-growth factor binding proteins (IGFBPs) in skeletal muscle are becoming apparent, with IGFBP2 being implicated in skeletal muscle cell proliferation and differentiation (Ernst et al., 1992; Sharples et al., 2010). Furthermore, PTEN signalling has been linked to IGFBP2 action in other cell types by co-ordinating downstream Akt signalling, a known modulator of myoblast differentiation. The present study therefore aimed to determine the interaction between IGFBP2 and PTEN on myoblast differentiation. It has previously been established that C2C12 cells have high IGFBP2 gene expression upon transfer to low serum media, and that expression reduces rapidly as cells differentiate over 72 h [1]. Wishing to establish a potential role for IGFBP2 in this model, a neutralising IGFBP2 antibody was administered to C2C12 myoblasts upon initiation of differentiation. Myoblasts subsequently displayed reduced morphological differentiation (myotube number), biochemical differentiation (creatine kinase) and myotube hypertrophy (myotube area) with an early reduction in Akt phosphorylation. Knock-down of phosphatase and tensin homologue (PTEN) using siRNA in the absence of the neutralising antibody did not improve differentiation or hypertrophy vs. control conditions, however, in the presence of the neutralising IGFBP2 antibody, differentiation was restored and importantly hypertrophy exceeded that of control levels. Overall, these data suggest that; 1) reduced early availability of IGFBP2 can inhibit myoblast differentiation at later time points, 2) knock-down of PTEN levels can restore myoblast differentiation in the presence of neutralising IGFBP2 antibody, and 3) PTEN inhibition acts as a potent inducer of myotube hypertrophy when the availability of IGFBP2 is reduced in C2C12 myoblasts.
Collapse
Affiliation(s)
- Adam P Sharples
- Stem Cell, Ageing and Molecular Physiology (SCAMP) Unit, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, UK.
| | | | | | | | | |
Collapse
|
29
|
Pedrosa RG, Donato J, Pires IS, Tirapegui J. Leucine supplementation increases serum insulin-like growth factor 1 concentration and liver protein/RNA ratio in rats after a period of nutritional recovery. Appl Physiol Nutr Metab 2013; 38:694-7. [PMID: 23724889 DOI: 10.1139/apnm-2012-0440] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the effect of leucine on the protein status of rats submitted to 50% food restriction for 1 week, followed by 2 weeks of nutritional recovery. A significant increase of serum insulin-like growth factor 1 and protein/RNA ratio in the liver was observed in leucine-supplemented rats. There was no change in carcass, liver, or gastrocnemius protein content when compared with control animals. The supplementation tested did not favor protein status, although it improved some indicators of an anabolic state.
Collapse
Affiliation(s)
- Rogerio G Pedrosa
- Department of Integrated Education in Health, CCS, Federal University of Espírito Santo, Vitória, Brazil.
| | | | | | | |
Collapse
|
30
|
Matheny RW, Lynch CM, Leandry LA. Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110β-deficient myoblasts is mediated by PI3K p110α and mTORC2. Growth Factors 2012; 30:367-84. [PMID: 23137199 DOI: 10.3109/08977194.2012.734507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Building 42, Natick, MA 01760, USA.
| | | | | |
Collapse
|
31
|
Sharples AP, Player DJ, Martin NRW, Mudera V, Stewart CE, Lewis MP. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs. Aging Cell 2012; 11:986-95. [PMID: 22882433 DOI: 10.1111/j.1474-9726.2012.00869.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Degeneration of skeletal muscle (SkM) with age (sarcopenia) is a major contributor to functional decline, morbidity and mortality. Methodological implications often make it difficult to embark on interventions in already frail and diseased elderly individuals. Using in vitro three-dimensional (3D) bioengineered skeletal muscle constructs that model aged phenotypes and incorporate a representative extracellular matrix (collagen), are under tension, and display morphological and transcript expression of mature skeletal muscle may more accurately characterize the SkM niche. Furthermore, an in vitro model would provide greater experimental manipulation with regard to gene, pharmacological and exercise (mechanical stretch/electrical stimulation) therapies and thus strategies for combating muscle wasting with age. The present study utilized multiple population-doubled (MPD) murine myoblasts compared with parental controls (CON), previously shown to have an aged phenotype in monolayer cultures (Sharples et al., 2011), seeded into 3D type I collagen matrices under uniaxial tension. 3D bioengineered constructs incorporating MPD cells had reduced myotube size and diameter vs. CON constructs. MPD constructs were characterized by reduced peak force development over 24 h after cell seeding, reduced transcript expression of remodelling matrix metalloproteinases, MMP2 and MMP9, with reduced differentiation/hypertrophic potential shown by reduced IGF-I, IGF-IR, IGF-IEa, MGF mRNA. Increased IGFBP2 and myostatin in MPD vs. CON constructs also suggested impaired differentiation/reduced regenerative potential. Overall, 3D bioengineered skeletal muscle constructs represent an in vitro model of the in vivo cell niche with MPD constructs displaying similar characteristics to ageing/atrophied muscle in vivo, thus potentially providing a future test bed for therapeutic interventions to contest muscle degeneration with age.
Collapse
Affiliation(s)
- Adam P Sharples
- Muscle Cellular and Molecular Physiology Research Group (MCMPRG), Institute for Sport and Physical Activity Research (ISPAR Bedford), University of Bedfordshire, Bedford, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Hadj Sassi A, Monteil J, Sauvant P, Atgié C. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity. J Physiol Biochem 2012; 68:683-90. [DOI: 10.1007/s13105-012-0192-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 01/10/2023]
|
33
|
Sharples AP, Al-Shanti N, Lewis MP, Stewart CE. Reduction of myoblast differentiation following multiple population doublings in mouse C2 C12 cells: a model to investigate ageing? J Cell Biochem 2012; 112:3773-85. [PMID: 21826704 DOI: 10.1002/jcb.23308] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ageing skeletal muscle displays declines in size, strength, and functional capacity. Given the acknowledged role that the systemic environment plays in reduced regeneration (Conboy et al. [2005] Nature 433: 760-764), the role of resident satellite cells (termed myoblasts upon activation) is relatively dismissed, where, multiple cellular divisions in-vivo throughout the lifespan could also impact on muscular deterioration. Using a model of multiple population doublings (MPD) in-vitro thus provided a system in which to investigate the direct impact of extensive cell duplications on muscle cell behavior. C(2) C(12) mouse skeletal myoblasts (CON) were used fresh or following 58 population doublings (MPD). As a result of multiple divisions, reduced morphological and biochemical (creatine kinase, CK) differentiation were observed. Furthermore, MPD cells had significantly increased cells in the S and decreased cells in the G1 phases of the cell cycle versus CON, following serum withdrawal. These results suggest continued cycling rather than G1 exit and thus reduced differentiation (myotube atrophy) occurs in MPD muscle cells. These changes were underpinned by significant reductions in transcript expression of: IGF-I and myogenic regulatory factors (myoD and myogenin) together with elevated IGFBP5. Signaling studies showed that decreased differentiation in MPD was associated with decreased phosphorylation of Akt, and with later increased phosphorylation of JNK1/2. Chemical inhibition of JNK1/2 (SP600125) in MPD cells increased IGF-I expression (non-significantly), however, did not enhance differentiation. This study provides a potential model and molecular mechanisms for deterioration in differentiation capacity in skeletal muscle cells as a consequence of multiple population doublings that would potentially contribute to the ageing process.
Collapse
Affiliation(s)
- Adam P Sharples
- Faculty of Science and Engineering, Institute for Biomedical Research into Human Movement and Health (IRM), Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, UK.
| | | | | | | |
Collapse
|
34
|
Liu HH, Wang JW, Chen X, Zhang RP, Yu HY, Jin HB, Li L, Han CC. In ovo administration of rhIGF-1 to duck eggs affects the expression of myogenic transcription factors and muscle mass during late embryo development. J Appl Physiol (1985) 2011; 111:1789-97. [PMID: 21885804 DOI: 10.1152/japplphysiol.00551.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In ovo administration of IGF-1 to poultry eggs has effective roles on post hatching muscle development. However, the secondary muscle development stages at the late embryo development stage are important for muscle fiber formation and differentiation. To investigate the roles of in ovo administration of IGF-1 on duck secondary muscle development, we injected rhIGF-1 into duck eggs in hatching at day 12. After administration on days 18, 21, 24, and 27 in hatching (E18d, E21d, E24d, and E27d, respectively), muscle samples were isolated, and the muscle tissue weight, muscle fiber parameters, and myoblast proliferation rate in leg and breast muscle were analyzed. Additionally, the expression levels of the transcription factors MyoG and MRF4 were detected using qPCR. Results show that embryo body weight and muscle fiber parameters, including muscle fiber diameter (MFD) and the number of myofibers per unit area, are upregulated in IGF-1-treated groups. Moreover, the transcription factors MyoG and MRF4 are expressed at higher levels in the experimental groups compared with the control groups. These results suggest that in ovo administration of IGF-1 to poultry eggs can mediate the expression of MyoG and MRF4, induce myoblast proliferation, and finally influence muscle development during the secondary muscle development stages.
Collapse
Affiliation(s)
- H H Liu
- Institute of Animal Breeding & Genetics, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|