1
|
Qaisar R, Hussain MA, Franzese F, Karim A, Ahmad F, Awad A, Alsaeed M, Alkahtani SA. The simple task of lifting five kilograms serves as a predictor of age-related disorders in old adults. Sci Rep 2025; 15:17833. [PMID: 40404852 PMCID: PMC12098914 DOI: 10.1038/s41598-025-03128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
Muscle weakness is a risk factor for multiple diseases. However, most protocols to assess muscle weakness require clinical settings. A difficulty lifting 5 kg may be a simple measure of muscle weakness in domestic settings. However, no relevant study on assessing muscle weakness has been reported. We investigated the associations of difficulty lifting 5 kg with various musculoskeletal, cardiovascular, metabolic, and neurological diseases in geriatric adults aged 50 or above from 15 countries (n = 51,536) over five years. The data was collected by the Survey of Health, Ageing, and Retirement in Europe (SHARE) conducted between 2013 and 2020. Overall, 10,025 (19.5%) respondents exhibited difficulty lifting 5 kg at baseline in 2013. Over the next four years, these respondents exhibited higher risks for developing a low quality of life (QoL) (9.42%), depression (8.14%), low handgrip strength (7.38%), and osteoarthritis (6.98%) after adjusting for age and gender. Additionally, these respondents exhibited mild to moderate risks for developing rheumatoid arthritis, heart attack, diabetes mellitus, hypertension, Alzheimer's disease, stroke, or hip fracture (all p < 0.05). After adjusting for age and country, the risks of developing various diseases were higher in men than in women. Collectively, difficulty lifting 5 kg can herald the onset of several cardiovascular, neurological, and musculoskeletal disorders along with a reduced QoL. We suggest that difficulty lifting 5 kg may be a valuable indicator of muscle weakness and poor health in domestic settings.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - M Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah, United Arab Emirates
- Department of Social Sciences and Business, Roskilde University, Roskilde, Denmark
| | | | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Atif Awad
- Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Alsaeed
- Department of Biomechanics and Motor Behavior, College of Sport Sciences and Physical Activity, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Shaea Ayed Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, PO Box: 1949, 11441, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Rocha-Braga LC, Pimentel Neto J, Gomes I, Ciena AP. Myotendinous junction: a microenvironment favorable for short-term adaptations to resistance training following gastrocnemius muscle atrophy. Front Physiol 2025; 16:1493820. [PMID: 40438252 PMCID: PMC12116370 DOI: 10.3389/fphys.2025.1493820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
The myotendinous junction (MTJ) is an interface region between the skeletal muscle fibers and the tendon, specialized in force transmission, and has a wide capacity to adapt to different stimuli. Disuse muscle atrophy is a deleterious effect of joint immobilization, which is used as a conservative treatment for bone, muscle, and joint injuries and promotes a significant functional decline. Physical exercise is an effective therapeutic modality in combating muscle atrophy, especially resistance training that promotes hypertrophic responses. We aimed to investigate the plasticity of the MTJ in rats subjected to joint immobilization, followed by resistance training in a short period (7 and 14 days). Forty-eight male Wistar rats (90 days old) were used and divided into groups (n = 8): Control (C), Immobilized (I), Trained (T), and Immobilized Trained (IT). The MTJ samples of gastrocnemius muscle were collected and processed for morphoquantitative analyses using transmission electron microscopy (MTJ and sarcomeres morphometry) and immunofluorescence techniques for collagen XXII, satellite cells and telocytes. We observed that the I group exhibited a reduction in muscle mass, which was associated with a decrease in the length of sarcoplasmic invaginations and evaginations, as well as reductions in belly and proximal sarcomere length. Conversely, the IT groups demonstrated a progressive increase in muscle mass, with significant improvements from 7 days (p < 0.01) to 14 days (p < 0.0001). The most pronounced adaptations in sarcoplasmic projections were observed in the IT14 group, which exhibited: a significant increase in the length of sarcoplasmic invaginations (p < 0.05); a marked increase in sarcoplasmic evaginations (p < 0.001); a substantial enlargement of the belly sarcomere (p < 0.0001) and proximal sarcomere (p < 0.0001); and a notable expansion of the collagen XXII perimeter (p < 0.001). We concluded that the joint immobilization resulted in muscle atrophy due to disuse, which led to a decrease in sarcoplasmic projections in the MTJ, a reduction in the perimeter of collagen XXII, and, consequently, fragility of the region. Short-term training demonstrated positive effects on functional improvement, partial recovery of muscle mass, and induction of hypertrophic responses, indicating positive repercussions for the structural recovery of the myotendinous region.
Collapse
Affiliation(s)
- Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | | | | |
Collapse
|
3
|
Kawaida MY, Kwon OS, Ahn A, Reiter AS, Tillquist NM, Noh SG, Lee JW, Moore TE, Reed SA. Effects of an astaxanthin-containing supplement on oxidative status in skeletal muscle and circulation during deconditioning and reconditioning periods in polo ponies. Physiol Rep 2025; 13:e70346. [PMID: 40285451 PMCID: PMC12032451 DOI: 10.14814/phy2.70346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigated the effects of astaxanthin (ASTX) supplementation on oxidative status during a deconditioning-reconditioning cycle. Twelve polo ponies were assigned to no supplementation (CON) or an ASTX supplemented group, which received oral administration of a supplement containing 75 mg ASTX daily for 32 weeks. Polo ponies underwent a 16-week deconditioning period (DECON) followed by a 16-week reconditioning program (RECON). Submaximal exercise tests (SETs) were performed at the beginning of the study (Baseline), after DECON, and after RECON. Blood samples were collected at -30, 0, 15, 30, and 60 min relative to each SET for oxidative status analysis. Muscle samples were collected 2 weeks before (Pre-Ex) and 2 h after (Post-Ex) each SET for muscle oxidative status and gene expression analyses. Pre-Ex muscles were analyzed for high-resolution respirometry. Circulating glutathione peroxidase (GPX) activity was increased (p ≤ 0.02) and protein carbonylation was decreased in ASTX (p ≤ 0.05). Muscle oxidative status was affected by DECON and reconditioning (p ≤ 0.05). ASTX increased gene expression of PPARGC1A after reconditioning (p ≤ 0.05). Deconditioning reduced oxidative phosphorylation at complex I and II (p = 0.01). Thus, a deconditioning-reconditioning cycle had greater impacts on muscle oxidative capacity than ASTX supplementation.
Collapse
Affiliation(s)
- Mia Y. Kawaida
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
- Present address:
Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleUSA
| | - Oh. Sung Kwon
- Department of KinesiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Orthopaedic Surgery & Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Ahram Ahn
- Department of KinesiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Amanda S. Reiter
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
- Present address:
Department of Animal ScienceTarleton State UniversityStephenvilleUSA
| | | | - Sung Gi Noh
- Department of KinesiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Jung W. Lee
- Department of StatisticsUniversity of ConnecticutStorrsConnecticutUSA
| | - Timothy E. Moore
- Statistical Consulting Services, Center for Open Research Resources & EquipmentUniversity of ConnecticutStorrsConnecticutUSA
| | - Sarah A. Reed
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
4
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
5
|
Xu H, Brown JL, Bhaskaran S, Van Remmen H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic Biol Med 2025; 227:446-458. [PMID: 39613046 PMCID: PMC11816180 DOI: 10.1016/j.freeradbiomed.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
One of the most critical factors impacting healthspan in the elderly is the loss of muscle mass and function, clinically referred to as sarcopenia. Muscle atrophy and weakness lead to loss of mobility, increased risk of injury, metabolic changes and loss of independence. Thus, defining the underlying mechanisms of sarcopenia is imperative to enable the development of effective interventions to preserve muscle function and quality in the elderly and improve healthspan. Over the past few decades, understanding the roles of mitochondrial dysfunction and oxidative stress has been a major focus of studies seeking to reveal critical molecular pathways impacted during aging. In this review, we will highlight how oxidative stress might contribute to sarcopenia by discussing the impact of oxidative stress on the loss of innervation and alteration in the neuromuscular junction (NMJ), on muscle mitochondrial function and atrophy pathways, and finally on muscle contractile function.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
6
|
Gungor-Orhan I, Akin S, Powers SK, Olgaz-Bingol S, Demirel HA. Sedentary lifestyle induces oxidative stress and atrophy in rat skeletal muscle. Exp Physiol 2025. [PMID: 39887581 DOI: 10.1113/ep092331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Abundant evidence indicates that skeletal muscle plays a key role in regulating metabolic homeostasis. Therefore, maintaining healthy skeletal muscles is essential to good health. While prolonged muscle inactivity is known to cause oxidative stress and muscle loss, it remains unclear whether a shift from an active to a sedentary lifestyle induces similar effects. This study tested the hypothesis that transitioning to a sedentary lifestyle rapidly leads to oxidative stress and muscle loss in the load-bearing soleus muscle. Adult Wistar rats were randomly divided into control (CON; n = 8) and sedentary (SED; n = 8) groups. During a 7-day experimental period, CON rats were housed in standard cages allowing free movement, while SED rats were confined to smaller cages promoting sedentary behaviour. Soleus muscles were analysed for antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)), as well as two oxidative stress biomarkers (advanced protein oxidation products (AOPPs) and 4-hydroxynonenal (4-HNE)). Sedentary behaviour caused a 17.2% reduction in the soleus-to-body weight ratio (P < 0.001). Moreover, the activities of SOD, CAT and GPX were significantly lower in the soleus muscle of SED animals (P < 0.05), while AOPPs and 4-HNE levels were higher (P < 0.001 and P < 0.05) compared to CON animals. These findings provide the first evidence that transitioning from an active to a sedentary lifestyle leads to the rapid onset of oxidative stress and atrophy in the soleus muscle. Importantly, the results suggest that impaired antioxidant defences contribute to sedentary behaviour-induced oxidative stress in load-bearing muscles.
Collapse
Affiliation(s)
- Irem Gungor-Orhan
- Department of Exercise and Sport Sciences, Exercise and Sport Physiology Division, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Senay Akin
- Department of Exercise and Sport Sciences, Exercise and Sport Physiology Division, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Seda Olgaz-Bingol
- Turkish Doping Control Center, Hacettepe University, Ankara, Türkiye
| | - Haydar A Demirel
- Faculty of Sport Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
7
|
Wu CC, Fang YW, Wang C, Lin CY. Positive Correlation Between Serum Limonene Levels and Muscle Health in a Representative Adult Population in the United States. Pharmaceuticals (Basel) 2025; 18:74. [PMID: 39861137 PMCID: PMC11768618 DOI: 10.3390/ph18010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Monoterpenes, a class of organic compounds with the molecular formula C10H16, have garnered significant attention for their potential medicinal benefits. Emerging evidence suggests they may positively influence skeletal muscle function. However, the impact of monoterpene exposure on muscle strength and mass in humans remains unclear. Methods: To explore this relationship, we analyzed data from 1202 adults (aged ≥ 18 years) who participated in the 2013-2014 National Health and Nutrition Examination Survey (NHANES), focusing on serum levels of three specific monoterpenes-α-pinene, β-pinene, and limonene-and their association with hand grip strength and lean muscle mass. Results: Our analysis revealed that, except for test 2 of hand 1, all grip strength measures showed a positive correlation with ln-limonene levels. The β coefficient for combined grip strength was 2.409 (S.E. = 0.891, p = 0.015). Positive associations were also found between serum limonene levels and lean muscle mass. The β coefficient for the Appendicular Skeletal Muscle Mass Index (ASMI) was 0.138 (S.E. = 0.041, p = 0.004). Furthermore, combined grip strength and ASMI significantly increased across limonene quintiles (p for trend = 0.005 and 0.006, respectively). However, none of the three monoterpene levels showed a significant association with clinically defined low muscle mass or low muscle strength. Conclusions: Our findings suggest a plausible association between exposure to limonene, hand grip strength, and lean muscle mass among adults in the United States. Further investigation is needed to fully understand the underlying mechanisms and medical significance of this association.
Collapse
Affiliation(s)
- Chang-Chin Wu
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City 237, Taiwan
| |
Collapse
|
8
|
Ruszkowska J, Drygas W, Kwaśniewska M. The Influence of Berry-Derived Polyphenol Supplementation on Exercise-Induced Oxidative Stress and Cardiovascular Health in Physically Active Individuals. Antioxidants (Basel) 2024; 13:1561. [PMID: 39765888 PMCID: PMC11673391 DOI: 10.3390/antiox13121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Numerous studies have documented that high-intensity or prolonged exercise is associated with increased oxidative stress and modification of antioxidant status. Polyphenol-rich dietary supplements seem to be the compounds that can upregulate the endogenous antioxidant defense system and consequently prevent muscle damage, support recovery. As berry fruits are at the top of the list of the richest polyphenol food sources, supplements containing berries have become the subject of interest in the context of counteracting exercise-induced oxidative stress and the development of cardiovascular diseases. The purpose of this review is to summarize current knowledge on the effects of berry-derived polyphenol supplementation on exercise-induced oxidative stress and cardiovascular health in physically active individuals. Based on the available literature, blackcurrant supplementation, with its richest version being New Zealand blackcurrant extract, is the most commonly explored berry fruit, followed by chokeberries and blueberries. Although several studies have documented the significant and beneficial influence of berry-derived supplements on redox status and cardiovascular response, some inconsistencies remain. The presented findings should be interpreted with caution due the limited number of available studies, particularly with the participation of physically active individuals. Further research is needed to reveal more comprehensive and accurate data concerning the impact of berry-derived supplements on exercise-induced outcomes taking into account the type of supplement, time of administration, and dosage.
Collapse
Affiliation(s)
- Joanna Ruszkowska
- Department of Social and Preventive Medicine, Medical University of Lodz, 90-752 Lodz, Poland; (W.D.); (M.K.)
| | - Wojciech Drygas
- Department of Social and Preventive Medicine, Medical University of Lodz, 90-752 Lodz, Poland; (W.D.); (M.K.)
- World Institute of Family Health, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland
| | - Magdalena Kwaśniewska
- Department of Social and Preventive Medicine, Medical University of Lodz, 90-752 Lodz, Poland; (W.D.); (M.K.)
| |
Collapse
|
9
|
Pan S, Ren W, Zhao Y, Cai M, Tian Z. Role of Irisin in exercise training-regulated endoplasmic reticulum stress, autophagy and myogenesis in the skeletal muscle after myocardial infarction. J Physiol Biochem 2024; 80:895-908. [PMID: 39271606 DOI: 10.1007/s13105-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Patients with heart failure (HF) are often accompanied by skeletal muscle abnormalities, which can lead to exercise intolerance and compromise daily activities. Irisin, an exercise training (ET) -induced myokine, regulates energy metabolism and skeletal muscle homeostasis. However, the precise role of Irisin in the benefits of ET on inhibiting skeletal muscle atrophy, particularly on endoplasmic reticulum (ER) stress, autophagy, and myogenesis following myocardial infarction (MI) remains unclear. In this study, we investigated the expression of Irisin protein in wild-type mice with MI, and assessed its role in the beneficial effects of ET using an Fndc5 knockout mice. Our findings revealed that MI reduced muscle fiber cross-sectional area (CSA), while downregulating the expression of Irisin, PGC-1α and SOD1. Concurrently, MI elevated the levels of ER stress and apoptosis, and inhibited autophagy in skeletal muscle. Conversely, ET mitigated ER stress and apoptosis in the skeletal muscle of infarcted mice. Notably, Fndc5 knockout worsened MI-induced ER stress and apoptosis, suppressed autophagy and myogenesis, and abrogated the beneficial effects of ET. In conclusion, our findings highlight the role of Irisin in the ET-mediated alleviation of skeletal muscle abnormalities. This study provides valuable insights into MI-induced muscle abnormalities and enhances our understanding of exercise rehabilitation mechanisms in clinical MI patients.
Collapse
Affiliation(s)
- Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wujing Ren
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| |
Collapse
|
10
|
Wu Y, Yao X, Shi X, Xu Z, Ren J, Shi M, Li M, Liu J, Du X. Myeloma extracellular vesicle-derived RAGE increases inflammatory responses and myotube atrophy in multiple myeloma through activation of the TLR4/NF-κB p65 pathway. Apoptosis 2024; 29:849-864. [PMID: 38117373 DOI: 10.1007/s10495-023-01920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.
Collapse
Affiliation(s)
- Yue Wu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Xingchen Yao
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Xiangjun Shi
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Ziyu Xu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Ming Shi
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Meng Li
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Junpeng Liu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China
| | - Xinru Du
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing, China.
- Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, 100020, Beijing, China.
| |
Collapse
|
11
|
Jang BC, Kwon ES, Lee YJ, Jung JI, Moon YS, Kwon DR. Comparison of Muscle Regeneration Effects at Different Melittin Concentrations in Rabbit Atrophied Muscle. Int J Mol Sci 2024; 25:5035. [PMID: 38732255 PMCID: PMC11084904 DOI: 10.3390/ijms25095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 μg/kg of Melittin to Group 2 (G2-4 μg/kg Melittin); 20 μg/kg of Melittin to Group 3 (G3-20 μg/kg Melittin); and 100 μg/kg of Melittin to Group 4 (G4-100 μg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.
Collapse
Affiliation(s)
- Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Eun Sang Kwon
- Department of Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae Ik Jung
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| |
Collapse
|
12
|
Son RH, Kim MI, Kim HM, Guo S, Lee DH, Lim GM, Kim SM, Kim JY, Kim CY. Potential of Lycii Radicis Cortex as an Ameliorative Agent for Skeletal Muscle Atrophy. Pharmaceuticals (Basel) 2024; 17:462. [PMID: 38675422 PMCID: PMC11054743 DOI: 10.3390/ph17040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Lycii Radicis Cortex (LRC) is a traditional medicine in East Asia with various beneficial effects, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and anti-depressant properties. However, its potential effects on skeletal muscle atrophy have not been studied. In this study, the protective effects of LRC extract (LRCE) on dexamethasone (DEX)-induced muscle atrophy were investigated in C2C12 myotubes and mice. We evaluated the effect of LRCE on improving muscle atrophy using a variety of methods, including immunofluorescence staining, quantitative polymerase chain reaction (qPCR), Western blot, measurements of oxidative stress, apoptosis, ATP levels, and muscle tissue analysis. The results showed that LRCE improved myotube diameter, fusion index, superoxide dismutase (SOD) activity, mitochondrial content, ATP levels, expression of myogenin and myosin heavy chain (MHC), and reduced reactive oxygen species (ROS) production in dexamethasone-induced C2C12 myotubes. LRCE also enhanced protein synthesis and reduced protein degradation in the myotubes. In mice treated with DEX, LRCE restored calf thickness, decreased mRNA levels of muscle-specific RING finger protein 1 (MuRF1) and atrogin-1, and increased insulin-like growth factor 1 (IGF-1) mRNA level. Moreover, LRCE also repaired gastrocnemius muscle atrophy caused by DEX. Although human studies are not available, various preclinical studies have identified potential protective effects of LRCE against muscle atrophy, suggesting that it could be utilized in the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Rak Ho Son
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Myeong Il Kim
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Hye Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Shuo Guo
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Do Hyun Lee
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Gyu Min Lim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 88 Dongnae-ro, Daegu 41061, Republic of Korea;
| | - Jae-Yong Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| |
Collapse
|
13
|
Hirunsai M, Srikuea R. Differential effects of cholecalciferol and calcitriol on muscle proteolysis and oxidative stress in angiotensin II-induced C2C12 myotube atrophy. Physiol Rep 2024; 12:e16011. [PMID: 38627219 PMCID: PMC11021198 DOI: 10.14814/phy2.16011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Renin-angiotensin system activation contributes to skeletal muscle atrophy in aging individuals with chronic diseases. We aimed to explore the effects of cholecalciferol (VD3) and calcitriol (1,25VD3) on signaling of muscle proteolysis and oxidative stress in myotubes challenged with angiotensin II (AII). The mouse C2C12 myotubes were assigned to vehicle, AII, AII + VD3, AII + 1,25VD3, and AII + losartan groups. The expression levels of muscle-specific E3 ubiquitin ligase proteins, autophagy-related proteins, and oxidative stress markers were investigated. We demonstrated the diverse effects of VD3 and 1,25VD3 on AII-induced myotube atrophy. The myotube diameter was preserved by treatment with 100 nM VD3 and losartan, while 1 and 10 nM 1,25VD3 increased levels of FoxO3a, MuRF1, and atrogin-1 protein expression in myotubes exposed to AII. Treatment with AII + 10 nM 1,25VD3 resulted in the upregulation of LC3B-II, LC3B-II/LC3B-I, and mature cathepsin L, which are autophagic marker proteins. The p62/SQSTM1 protein was downregulated and vitamin D receptor was upregulated after treatment with AII + 10 nM 1,25VD3. A cellular redox imbalance was observed as AII + 10 nM 1,25VD3-induced reactive oxygen species and NADPH oxidase-2 overproduction, and these changes were associated with an inadequate response of antioxidant superoxide dismutase-1 and catalase proteins. Collectively, these findings provide a translational perspective on the role of vitamin D3 in alleviating muscle atrophy related to high levels of AII.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of PharmacySrinakharinwirot UniversityNakhon NayokThailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
14
|
Kim JS, Lee H, Yoo A, Jeong HY, Jung CH, Ahn J, Ha TY. Gromwell ( Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis. J Microbiol Biotechnol 2024; 34:495-505. [PMID: 38247215 PMCID: PMC11016769 DOI: 10.4014/jmb.2311.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Institute of Precision Public Health, Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Ahyoung Yoo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hang Yeon Jeong
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
15
|
Wang M, Wu X, Jiao Y, Yin W, Zhang L. Life-Long Aerobic Exercise is a Non-Pharmacological Approach for Inducing Autophagy and Delaying Muscle Atrophy in the Aging Population. Aging Dis 2024:AD.2024.0318. [PMID: 38607740 DOI: 10.14336/ad.2024.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous bodily processes deteriorate with age, chief among them being the loss of muscle mass and function. The condition referred to as aging myasthenia gravis impairs older persons' quality of life and is linked to a higher risk of several chronic illnesses. An increasing number of studies conducted in the last several years has demonstrated that moderate exercise can halt this process. Specifically, by promoting autophagy, aerobic exercise helps to postpone the onset of senile myasthenia gravis. In this work, we will explore how aerobic exercise modulates autophagy to prevent muscle aging and examine the most recent findings in this area of study. We discovered that exercise-induced autophagy can effectively balance protein degradation and relieve skeletal muscle atrophy by looking through pertinent literature. Aerobic exercise has a direct impact on autophagy, but it can also delay the onset of senile myasthenia gravis by enhancing blood flow, lowering inflammation, and boosting muscle oxidative capacity. In order to postpone the onset of senile myasthenia gravis, research on the mechanism of action of aerobic exercise in inducing autophagy will be discussed in detail in this study.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Physical Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xiangzhi Wu
- School of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuyao Jiao
- School of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenli Yin
- JSNU SPBPU Institute of Engineering Sino-Russian Institute of Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lili Zhang
- JSNU SPBPU Institute of Engineering Sino-Russian Institute of Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
17
|
Latham CM, Balawender PJ, Thomas NT, Keeble AR, Brightwell CR, Ismaeel A, Wen Y, Fry JL, Sullivan PG, Johnson DL, Noehren B, Owen AM, Fry CS. Overexpression of manganese superoxide dismutase mitigates ACL injury-induced muscle atrophy, weakness and oxidative damage. Free Radic Biol Med 2024; 212:191-198. [PMID: 38154571 PMCID: PMC10842887 DOI: 10.1016/j.freeradbiomed.2023.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress has been implicated in the etiology of skeletal muscle weakness following joint injury. We investigated longitudinal patient muscle samples following knee injury (anterior cruciate ligament tear). Following injury, transcriptomic analysis revealed downregulation of mitochondrial metabolism-related gene networks, which were supported by reduced mitochondrial respiratory flux rates. Additionally, enrichment of reactive oxygen species (ROS)-related pathways were upregulated in muscle following knee injury, and further investigation unveiled marked oxidative damage in a progressive manner following injury and surgical reconstruction. We then investigated whether antioxidant protection is effective in preventing muscle atrophy and weakness after knee injury in mice that overexpress Mn-superoxide dismutase (MnSOD+/-). MnSOD+/- mice showed attenuated oxidative damage, atrophy, and muscle weakness compared to wild type littermate controls following ACL transection surgery. Taken together, our results indicate that ROS-related damage is a causative mechanism of muscle dysfunction after knee injury, and that mitochondrial antioxidant protection may hold promise as a therapeutic target to prevent weakness and development of disability.
Collapse
Affiliation(s)
- Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA; Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Appell CR, Jiwan NC, Wang R, Shen CL, Luk HY. Ginger Supplementation Attenuated Mitochondrial Fusion and Improved Skeletal Muscle Size in Type 2 Diabetic Rats. In Vivo 2024; 38:73-81. [PMID: 38148056 PMCID: PMC10756480 DOI: 10.21873/invivo.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.
Collapse
Affiliation(s)
- Casey R Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, U.S.A
| | - Nigel C Jiwan
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, U.S.A
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, U.S.A.;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| |
Collapse
|
19
|
Kim Y, Oh Y, Kim YS, Shin JH, Lee YS, Kim Y. β‑carotene attenuates muscle wasting in cancer cachexia by regulating myogenesis and muscle atrophy. Oncol Rep 2024; 51:9. [PMID: 37975253 PMCID: PMC10696564 DOI: 10.3892/or.2023.8668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer cachexia is a metabolic disease involving multiple organs, which is accompanied by the depletion of muscle tissue and is associated with ~20% of cancer‑related deaths. Muscle wasting is a critical factor in cancer cachexia. β‑carotene (BC) has been shown to increase muscle mass and hypertrophy in healthy mice. However, its effects on muscle tissue dysregulation in cancer cachexia have yet to be studied. In the present study, 5‑week‑old male C57BL/6J mice were injected with 1x106 Lewis lung carcinoma (LLC) cells to induce cancer cachexia; then the mice were administered BC (4 or 8 mg/kg) for 22 days to assess its effects on muscle atrophy in the gastrocnemius muscles. The effects of BC on inflammatory cytokines, myogenesis and muscle atrophy were evaluated using C2C12 myotubes treated with LLC‑conditioned media. BC supplementation significantly suppressed tumor growth, inflammatory cytokines, and hepatic gluconeogenesis in the LLC‑induced cancer cachexia mouse model, while also improving muscle weight and grip strength. These effects are considered to be mediated by the PI3K/Akt pathway and through regulation of muscle atrophy. Moreover, BC treatment was associated with the recovery of LLC‑conditioned media‑induced muscle differentiation deficits and muscle atrophy in C2C12 myotubes. These findings indicate BC as a potential novel therapeutic agent for cancer cachexia.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeonsoo Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 13135, Republic of Korea
| | - Yeon Su Lee
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 13135, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
20
|
Zhang H, Du Y, Tang W, Chen M, Yu W, Ke Z, Dong S, Cheng Q. Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice. Skelet Muscle 2023; 13:22. [PMID: 38115079 PMCID: PMC10729577 DOI: 10.1186/s13395-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol-treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Zheng Ke
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Shuangshuang Dong
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
21
|
Lee HJ, Choi HJ, Lee SA, Baek DH, Heo JB, Song GY, Lee W. Myogenesis Effects of RGX365 to Improve Skeletal Muscle Atrophy. Nutrients 2023; 15:4307. [PMID: 37836590 PMCID: PMC10574276 DOI: 10.3390/nu15194307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Age-related skeletal muscle atrophy and weakness not only reduce the quality of life of those afflicted, but also worsen the prognosis of underlying diseases. We evaluated the effect of RGX365, a protopanaxatriol-type rare ginsenoside mixture, on improving skeletal muscle atrophy. We investigated the myogenic effect of RGX365 on mouse myoblast cells (C2C12) and dexamethasone (10 µM)-induced atrophy of differentiated C2C12. RGX365-treated myotube diameters and myosin heavy chain (MyHC) expression levels were analyzed using immunofluorescence. We evaluated the myogenic effects of RGX365 in aging sarcopenic mice. RGX365 increased myoblast differentiation and MyHC expression, and attenuated the muscle atrophy-inducing F-box (Atrogin-1) and muscle RING finger 1 (MuRF1) expression. Notably, one month of oral administration of RGX365 to 23-month-old sarcopenic mice improved muscle fiber size and the expression of skeletal muscle regeneration-associated molecules. In conclusion, rare ginsenosides, agonists of steroid receptors, can ameliorate skeletal muscle atrophy during long-term administration.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Sang-Ah Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbruecken, Germany
| | - Dong Hyuk Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
22
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
23
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Wouda MF, Slettahjell HB, Lundgaard E, Bastani NE, Raastad T, Blomhoff R, Kostovski E. Acute changes in antioxidants and oxidative stress to vigorous arm exercise: an intervention trial in persons with spinal cord injury and healthy controls. Spinal Cord Ser Cases 2023; 9:32. [PMID: 37443310 DOI: 10.1038/s41394-023-00590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
STUDY DESIGN Intervention trial. BACKGROUND Literature remains unclear on possible health benefits and risks assosciated with high intensity exercise for persons with SCI. Elevated oxidative stress levels might influence their ability to exercise at high intensity. We investigated several biomarkers of oxidative stress and antioxidant defense at rest, during and after vigorous exercise among persons with chronic SCI. SETTING Sunnaas Rehabilitation Hospital, Norway. METHODS Six participants (five males) with chronic SCI (AIS A, injury level thoracic 2-8, >1 year postinjury) and six matched able-bodied controls performed two maximal arm-cranking tests, with one-three days in between. During the second exercise test, participants performed three bouts with four minutes arm cranking at high intensity (85-95% of peak heart rate (HRpeak)), before they reached maximal effort. Blood and urine biomarkers for oxidative stress and antioxidant levels were collected at six time points at the day of the second exercise test; baseline, at high intensity exercise, at maximal effort, at five, 30 and 60 min post-exercise, and 24 h post exercise. RESULTS Participants with SCI had significant lower levels of creatinine (∆16 µmol/L, p = 0.03), α-carotene (∆0.14 nmol/L, p < 0.001) and β-carotene (∆0.51 nmol/L, p = 0.001) at baseline compared to controls. Urine and blood biomarkers of oxidative stress and antioxidant levels showed similar response to vigorous exercise in the SCI and control group. CONCLUSIONS SCI participants showed similar changes in redox status during high intensity exercise compared to matched able-bodied. SCI participants had lower levels of exogen antioxidants both before, during and after vigorous exercise.
Collapse
Affiliation(s)
- Matthijs F Wouda
- Sunnaas Rehabilitation Hospital, Research department, Nesoddtangen, Norway.
| | - Hanne Bjørg Slettahjell
- Sunnaas Rehabilitation Hospital, Research department, Nesoddtangen, Norway
- University of Oslo, Department of Nutrition, Institute of Basic Medical Sciences, Oslo, Norway
| | - Eivind Lundgaard
- Sunnaas Rehabilitation Hospital, Research department, Nesoddtangen, Norway
| | - Nasser E Bastani
- University of Oslo, Department of Nutrition, Institute of Basic Medical Sciences, Oslo, Norway
| | - Truls Raastad
- Norwegian School of Sport Sciences, Department of Physical Performance, Oslo, Norway
| | - Rune Blomhoff
- University of Oslo, Department of Nutrition, Institute of Basic Medical Sciences, Oslo, Norway
- Oslo University Hospital, Department of Clinical Service, Division of Cancer Medicine, Oslo, Norway
| | | |
Collapse
|
25
|
Agrawal S, Chakole S, Shetty N, Prasad R, Lohakare T, Wanjari M. Exploring the Role of Oxidative Stress in Skeletal Muscle Atrophy: Mechanisms and Implications. Cureus 2023; 15:e42178. [PMID: 37602126 PMCID: PMC10439769 DOI: 10.7759/cureus.42178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Skeletal muscle atrophy is a complex physiological process characterized by progressive muscle mass and strength loss. It is associated with various health conditions, including aging, disease, and certain diseases. Emerging research has indicated that oxidative stress plays a significant role in developing and progressing skeletal muscle atrophy. This review article explores the mechanisms by which oxidative stress influences skeletal muscle atrophy and its implications for potential therapeutic interventions. The review begins by providing an overview of skeletal muscle atrophy and the current understanding of its underlying mechanisms, highlighting the intricate balance between protein degradation and synthesis pathways. Subsequently, the concept of oxidative stress is introduced, discussing its sources and the intricate redox signaling pathways present in skeletal muscle cells. This review's main focus is exploring the multifaceted role of oxidative stress in skeletal muscle atrophy. The detrimental effects of excessive reactive oxygen species (ROS) production on cellular components, including proteins, lipids, and deoxyribonucleic acid (DNA), are discussed. In addition, the impact of oxidative stress on key signaling pathways involved in muscle wasting, such as the ubiquitin-proteasome system and autophagy, is examined. Furthermore, the review highlights the implications of oxidative stress in modulating muscle regeneration and the importance of redox balance in maintaining muscle health. Potential therapeutic strategies targeting oxidative stress, such as antioxidant supplementation, exercise interventions, and pharmacological approaches, are also discussed. In conclusion, this review comprehensively explains the intricate relationship between oxidative stress and skeletal muscle atrophy. By elucidating the underlying mechanisms and discussing potential therapeutic interventions, this review aims to contribute to the development of novel strategies for mitigating muscle wasting and improving overall muscle health.
Collapse
Affiliation(s)
- Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nidhi Shetty
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
26
|
Huang M, Yan Y, Deng Z, Zhou L, She M, Yang Y, Zhang M, Wang D. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154766. [PMID: 37002971 DOI: 10.1016/j.phymed.2023.154766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Skeletal muscle atrophy in chronic kidney disease (CKD) leads to a decline in quality of life and increased risk of morbidity and mortality. We have obtained evidence that oxidative stress is essential in the progression of CKD-related muscle atrophy. Whether Saikosaponin A and D, two emerging antioxidants extracted from Bupleurum chinense DC, alleviate muscle atrophy remains to be further studied. The purpose of this study was to investigate the effects and mechanisms of these two components on CKD complicated with muscle atrophy. METHODS In this research, muscle dystrophy model was established using 5/6 nephrectomized mice in vivo and in vitro with Dexamethasone (Dex)-managed C2C12 myotubes. RESULTS The results of RNA-sequencing showed that exposure to Dex affected the antioxidant activity, catalytic activity and enzyme regulator activity of C2C12 cells. According to KEGG analysis, the largest numbers of differentially expressed genes detected were enriched in the PI3K/AKT pathway. In vivo, Saikosaponin A and D remain renal function, cross-section size, fiber-type composition and anti-inflammatory ability. These two components suppressed the expression of MuRF-1 and enhanced the expression of MyoD and Dystrophin. In addition, Saikosaponin A and D maintained redox balance by increasing the activities of antioxidant enzymes while inhibiting the excessive accumulation of reactive oxygen species. Furthermore, Saikosaponin A and D stimulated PI3K/AKT and its downstream Nrf2 pathway in CKD mice. The effects of Saikosaponin A and D on increasing the inner diameter of C2C12 myotube, reducing oxidative stress and enhancing expression of p-AKT, p-mTOR, p70S6K, Nrf2 and HO-1 proteins were observed in vitro. Importantly, we verified that these protective effects could be significantly reversed by inhibiting PI3K and knocking out Nrf2. CONCLUSIONS In summary, Saikosaponin A and D improve CKD-induced muscle atrophy by reducing oxidative stress through the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang,524000, China
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
27
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
28
|
Giraldo-Vallejo JE, Cardona-Guzmán MÁ, Rodríguez-Alcivar EJ, Kočí J, Petro JL, Kreider RB, Cannataro R, Bonilla DA. Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review. Nutrients 2023; 15:819. [PMID: 36839176 PMCID: PMC9965375 DOI: 10.3390/nu15040819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
It is estimated that three to five million sports injuries occur worldwide each year. The highest incidence is reported during competition periods with mainly affectation of the musculoskeletal tissue. For appropriate nutritional management and correct use of nutritional supplements, it is important to individualize based on clinical effects and know the adaptive response during the rehabilitation phase after a sports injury in athletes. Therefore, the aim of this PRISMA in Exercise, Rehabilitation, Sport Medicine and Sports Science PERSiST-based systematic integrative review was to perform an update on nutritional strategies during the rehabilitation phase of musculoskeletal injuries in elite athletes. After searching the following databases: PubMed/Medline, Scopus, PEDro, and Google Scholar, a total of 18 studies met the inclusion criteria (Price Index: 66.6%). The risk of bias assessment for randomized controlled trials was performed using the RoB 2.0 tool while review articles were evaluated using the AMSTAR 2.0 items. Based on the main findings of the selected studies, nutritional strategies that benefit the rehabilitation process in injured athletes include balanced energy intake, and a high-protein and carbohydrate-rich diet. Supportive supervision should be provided to avoid low energy availability. The potential of supplementation with collagen, creatine monohydrate, omega-3 (fish oils), and vitamin D requires further research although the effects are quite promising. It is worth noting the lack of clinical research in injured athletes and the higher number of reviews in the last 10 years. After analyzing the current quantitative and non-quantitative evidence, we encourage researchers to conduct further clinical research studies evaluating doses of the discussed nutrients during the rehabilitation process to confirm findings, but also follow international guidelines at the time to review scientific literature.
Collapse
Affiliation(s)
- John E. Giraldo-Vallejo
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Miguel Á. Cardona-Guzmán
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Ericka J. Rodríguez-Alcivar
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Jana Kočí
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
| | - Roberto Cannataro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Galascreen Laboratories, Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Diego A. Bonilla
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
29
|
Kim JY, Kim HM, Kim JH, Guo S, Lee DH, Lim GM, Kim W, Kim CY. Salvia plebeia R.Br. and Rosmarinic Acid Attenuate Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023; 24:ijms24031876. [PMID: 36768200 PMCID: PMC9915874 DOI: 10.3390/ijms24031876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 μM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wondong Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| | - Chul Young Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| |
Collapse
|
30
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
31
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
32
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
33
|
El-Bestawy EM, Tolba AM, Rashad WA. Morphological, ultrastructural, and biochemical changes induced by sodium fluoride in the tongue of adult male albino rat and the ameliorative effect of resveratrol. Anat Cell Biol 2022; 55:483-496. [PMID: 36168808 PMCID: PMC9747341 DOI: 10.5115/acb.22.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 01/02/2023] Open
Abstract
Little knowledge is available about the effects of fluoride exposure on the tongue. This study evaluated the effects of sodium fluoride (NaF) on the tongue ultrastructure and detected the ameliorative effects of resveratrol. Forty adult albino rats were separated into 4 groups: the control group was given a balanced diet and purified water. The NaF treated group: received 10 mg/kg/d dissolved in 2.5 ml distilled water once daily for 30 days orally. The NaF+resveratrol group: received NaF 10 mg/kg/d orally together with resveratrol in a dose of 30 mg/kg daily for 30 days. The resveratrol group was subjected to resveratrol in a dose of 30 mg/kg/d by oral gavage for 30 days. Sections were stained with hematoxylin & eosin, and Masson's trichrome. Tumor necrosis factor α immunohistochemical study and electron microscopic examinations were done. The oxidative stress markers malondialdehyde, antioxidant reduced glutathione, and the total antioxidant capacity were measured. The NaF group revealed ulceration, necrotic muscle fibers, distorted papillae and a significant increase in malondialdehyde level, and a significant decrease in glutathione and the total antioxidant levels. In the NaF+resveratrol group, pathological changes were less, and the oxidant levels were decreased by the administration of resveratrol with NaF. In conclusion, NaF adversely affects the ultrastructure of the adult rat tongue and resveratrol can ameliorate this effect.
Collapse
Affiliation(s)
- Emtethal M. El-Bestawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Asmaa M. Tolba
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Walaa A. Rashad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| |
Collapse
|
34
|
Edwards SJ, Carter S, Nicholson T, Allen SL, Morgan PT, Jones SW, Rendeiro C, Breen L. (-)-Epicatechin and its colonic metabolite hippuric acid protect against dexamethasone-induced atrophy in skeletal muscle cells. J Nutr Biochem 2022; 110:109150. [PMID: 36049668 DOI: 10.1016/j.jnutbio.2022.109150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Cocoa flavanols have been shown to improve muscle function and may offer a novel approach to protect against muscle atrophy. Hippuric acid (HA) is a colonic metabolite of (-)-epicatechin (EPI), the primary bioactive compound of cocoa, and may be responsible for the associations between cocoa supplementation and muscle metabolic alterations. Accordingly, we investigated the effects of EPI and HA upon skeletal muscle morphology and metabolism within an in vitro model of muscle atrophy. Under atrophy-like conditions (24h 100μM dexamethasone (DEX)), C2C12 myotube diameter was significantly greater following co-incubation with either 25μM HA (11.19±0.39μm) or 25μM EPI (11.01±0.21μm) compared to the vehicle control (VC; 7.61±0.16μm, both P < .001). In basal and leucine-stimulated states, there was a significant reduction in myotube protein synthesis (MPS) rates following DEX treatment in VC (P = .024). Interestingly, co-incubation with EPI or HA abrogated the DEX-induced reductions in MPS rates, whereas no significant differences versus control treated myotubes (CTL) were noted. Furthermore, co-incubation with EPI or HA partially attenuated the increase in proteolysis seen in DEX-treated cells, preserving LC3 α/β II:I and caspase-3 protein expression in atrophy-like conditions. The protein content of PGC1α, ACC, and TFAM (regulators of mitochondrial function) were significantly lower in DEX-treated versus. CTL cells (all P < .050). However, co-incubation with EPI or HA was unable to prevent these DEX-induced alterations. For the first time we demonstrate that EPI and HA exert anti-atrophic effects on C2C12 myotubes, providing novel insight into the association between flavanol supplementation and favourable effects on muscle health.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Steven Carter
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Department for Health, University of Bath, Bath, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sophie Louise Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Simon Wyn Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK.
| |
Collapse
|
35
|
Kim JY, Kim HM, Kim JH, Lee JH, Zhang K, Guo S, Lee DH, Gao EM, Son RH, Kim SM, Kim CY. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022; 8:e11597. [DOI: 10.1016/j.heliyon.2022.e11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
36
|
Chen TH, Koh KY, Lin KMC, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci 2022; 23:12926. [PMID: 36361713 PMCID: PMC9653750 DOI: 10.3390/ijms232112926] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kok-Yean Koh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
37
|
Seo E, Truong CS, Jun HS. Psoralea corylifolia L. seed extract attenuates dexamethasone-induced muscle atrophy in mice by inhibition of oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115490. [PMID: 35728709 DOI: 10.1016/j.jep.2022.115490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Psoralea corylifolia (PCS), also called "Boh-Gol-Zhee" in Korean, have been used in traditional medicine. PCS is effective for the treatment of vitiligo, cancer, inflammatory diseases, neurodegenerative diseases, kidney diseases, and musculoskeletal diseases. AIM OF THE STUDY In this study, we validated the beneficial effects of PCS extract on dexamethasone (DEX)-induced muscle atrophy in mice. MATERIALS AND METHODS DEX (20 mg/kg/day, 10 days) was intraperitoneally injected into C57BL/6 male mice to induce muscular atrophy. Oral administration of PCS extract (200 or 500 mg/kg/day) was started 2 days before DEX injection and continued for 12 days. RESULTS PCS extract inhibited DEX-induced decrease in body and muscle weight, grip strength, and cross-sectional area of the tibialis anterior. PCS extract significantly increased the mRNA and protein expression levels of myosin heavy chain 1, 2A, and 2X in DEX-administered mice. DEX administration significantly increased the levels of muscle atrophy factors atrogin-1, muscle RING-finger protein-1, and myostatin, which were inhibited by the PCS extract. Additionally, PCS extract increased the expression of muscle regeneration factors, such as myoblast determination protein 1, myogenin, and embryonic myosin heavy chain, and muscle synthesis markers, such as protein kinase B and mammalian target of rapamycin signaling molecules. PCS extract also significantly decreased the DEX-induced production of 4-hydroxynonenal, an oxidative stress marker. Furthermore, PCS extract recovered superoxide dismutase 2, glutathione peroxidase, and catalase activities, which were significantly reduced by DEX administration. Moreover, DEX-induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells and expression of cytokines, such as tumor necrosis factor α and monocyte chemoattractant protein-1, significantly decreased after PCS extract administration. CONCLUSIONS Here, we demonstrated that PCS extract administration protected against DEX-induced muscle atrophy. This beneficial effect was mediated by suppressing the expression of muscle degradation factors and increasing the expression of muscle regeneration and synthesis factors. This effect was probably due to the inhibition of oxidative stress and inflammation. These results highlight the potential of PCS extract as a protective and therapeutic agent against muscle dysfunction and atrophy.
Collapse
Affiliation(s)
- Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.
| | - Cao-Sang Truong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea.
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea; Gachon Medical Research Institute, Gil Hospital, Incheon, 21565, Republic of Korea.
| |
Collapse
|
38
|
Zhang L, Wu HX, Li WJ, Qiao F, Zhang WB, Du ZY, Zhang ML. Partial replacement of soybean meal by yellow mealworm ( Tenebrio molitor) meal influences the flesh quality of Nile tilapia ( Oreochromis niloticus). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:108-115. [PMID: 36632619 PMCID: PMC9826948 DOI: 10.1016/j.aninu.2022.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
This study investigated the effects of yellow mealworm meal (YM) replacing soybean meal (SBM) at different proportions (0%, 15%, 30% and 45%, referred as YM0, YM15, YM30 and YM45, respectively) on the flesh quality of Nile tilapia. A total of 360 fish (70.0 ± 0.12 g) were randomly divided into 4 groups (3 tanks per group). Fish were fed the experimental diet twice daily for 10 wk. The results showed that muscle protein content significantly decreased in YM30 and YM45, while the lipid content significantly decreased in YM45 (P < 0.05). The essential amino acids and flavor amino acids of the muscle were not affected by the YM substitution, while saturated fatty acid content decreased in YM30 and YM45 compared with YM0 (P < 0.05). Fillets in YM45 had higher hardness, gumminess, and a higher proportion of thin myofibers (≤100 μm, P < 0.05) than those in other groups. Further analysis revealed that apoptosis and atrophy related genes were up-regulated, while the muscle antioxidant capacity decreased significantly in YM45 (P < 0.05), which may be related to the high acid value in YM45 diet. Our findings indicated that YM could replace up to 30% SBM without substantially altering the flesh quality. When the replacement ratio increased to 45%, the flesh quality would change. Special attention should be paid to avoid feed rancidity which may affect the flesh quality of fish.
Collapse
Affiliation(s)
- Le Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hong-Xia Wu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei-Jie Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wen-Bing Zhang
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China,Corresponding author.
| |
Collapse
|
39
|
Metabolic Pathways and Ion Channels Involved in Skeletal Muscle Atrophy: A Starting Point for Potential Therapeutic Strategies. Cells 2022; 11:cells11162566. [PMID: 36010642 PMCID: PMC9406740 DOI: 10.3390/cells11162566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle tissue has the important function of supporting and defending the organism. It is the largest apparatus in the human body, and its function is important for contraction and movements. In addition, it is involved in the regulation of protein synthesis and degradation. In fact, inhibition of protein synthesis and/or activation of catabolism determines a pathological condition called muscle atrophy. Muscle atrophy is a reduction in muscle mass resulting in a partial or complete loss of function. It has been established that many physiopathological conditions can cause a reduction in muscle mass. Nevertheless, it is not well known that the molecular mechanisms and signaling processes caused this dramatic event. There are multiple concomitant processes involved in muscle atrophy. In fact, the gene transcription of some factors, oxidative stress mechanisms, and the alteration of ion transport through specific ion channels may contribute to muscle function impairment. In this review, we focused on the molecular mechanisms responsible for muscle damage and potential drugs to be used to alleviate this disabling condition.
Collapse
|
40
|
CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488905. [PMID: 35815279 PMCID: PMC9262520 DOI: 10.1155/2022/1488905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of sarcopenia and can increase morbidity and mortality in specific patient populations. The aim of this study was to identify novel prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods. The samples were first divided into different age groups and different muscle type groups, respectively, and each of these samples was analyzed for differences to obtain two groups of differentially expressed genes (DEGs). The two groups of DEGs were intersected using Venn diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO) functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Subsequently, WGCNA (weighted gene coexpression network analysis) was used to find gene modules associated with both the age and muscle type to obtain the lightgreen module. The genes in the key modules were analyzed using PPI, and the top five genes were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In conclusion, we identified that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.
Collapse
|
41
|
Lee H, Kim YI, Kim MJ, Hahm JH, Seo HD, Ha TY, Jung CH, Ahn J. Castor Oil Plant (Ricinus communis L.) Leaves Improve Dexamethasone-Induced Muscle Atrophy via Nrf2 Activation. Front Pharmacol 2022; 13:891762. [PMID: 35865958 PMCID: PMC9294160 DOI: 10.3389/fphar.2022.891762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy is characterized by reduced muscle function and size. Oxidative stress contributes to muscle atrophy but can be treated with antioxidants. This study investigated the antioxidant activity of a castor oil plant leaf (Ricinus communis L.) extract (RC) and its effects on muscle atrophy. Rutin was identified as the major compound among the thirty compounds identified in RC via LC-MS/MS and was found to inhibit dexamethasone (DEX)-induced muscle atrophy and mitochondrial oxidative stress. Rutin-rich RC showed DPPH and ABTS radical scavenging activities and efficiently reduced the DEX-induced myotube atrophy and mitochondrial oxidative damage in C2C12 cells. RC supplementation prevented the loss of muscle function and muscle mass in DEX-administered mice and ameliorated DEX-induced oxidative stress via Nrf2 signaling. Taken together, both RC and rutin ameliorated muscle atrophy and helped in maintaining redox homeostasis; hence, rutin-rich RC could be a promising functional food that is beneficial for muscle health.
Collapse
Affiliation(s)
- Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young In Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyo Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Tae Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
- *Correspondence: Jiyun Ahn,
| |
Collapse
|
42
|
Liu B, Chen D, Wang Y, Li Q, Zhu L, Yang Z, Chen X. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol 2022; 149:106246. [PMID: 35738524 DOI: 10.1016/j.biocel.2022.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Muscular dysplasia is a common muscle disease, but its pathological mechanism is still unclear. Adipose is originally identified as a highly conservative and widely expressed anti-obesity gene, and our previous study has reported that Adipose is also a positive regulator of myogenesis. Considering the vital role of during muscle development, this study was to demonstrate a potential relationship between Sirtuin1 and Adipose and clarified the mechanism by which Adipose regulated muscle development. Our results showed that the muscle fiber cross-sectional area and myosin heavy chain protein level were significantly reduced in Sirtuin1+/- mice. Moreover, the longitudinal section of muscle fibers was obviously irregular. Sirtuin1 knockdown significantly reduced the expression levels of Adipose and its upstream transcriptional regulator Kruppel like factor 15 and notably inhibited the AMP-activated protein kinase α-peroxisome proliferator-activated receptor gamma coactivator 1α signaling pathway in skeletal muscle. However, Adipose over-expression activated this signaling pathway and promoted mitochondrial biosynthesis in C2C12 myoblasts. Adipose over-expression also enhanced glucose absorption of C2C12 cells, suggesting the increased needs for cells for metabolic substrates. In C2C12 cells with hydrogen peroxide treatment, Adipose over-expression repressed hydrogen peroxide-elicited apoptosis and mitochondrial loss, while Sirtuin1-specific inhibitor dramatically weakened these roles of Adipose. Taken together, our findings reveal that Adipose rescues the adverse effects of Sirtuin1 deficiency or hydrogen peroxide on muscle development by activating the AMP-activated protein kinase α- peroxisome proliferator-activated receptor gamma coactivator 1α pathway to promote mitochondria synthesis, which provides theoretical basis for developing new therapeutic targets against some muscle diseases.
Collapse
Affiliation(s)
- Bingbing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiqing Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
43
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
44
|
Bettiol NB, Regalo SCH, Cecilio FA, Gonçalves LMN, de Vasconcelos PB, Lopes CGG, Andrade LM, Regalo IH, Siéssere S, Palinkas M. Intervertebral Disc Degeneration: Functional Analysis of Bite Force and Masseter and Temporal Muscles Thickness. Prague Med Rep 2022; 123:101-112. [PMID: 35507943 DOI: 10.14712/23362936.2022.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intervertebral disc degeneration is a pathological condition associated with the intervertebral disc and is related to functional alterations in the human body. This study aimed to evaluate the maximum molar bite force and masseter and temporal muscles thickness in individuals with intervertebral disc degeneration. Thirty-two individuals were divided into two groups: those with degeneration of intervertebral discs (n=16) and those without degeneration (n=16). The maximum molar bite force (on the right and left sides) was measured using a dynamometer. Masseter and temporal muscle thickness during mandibular task rest and dental clenching in maximum voluntary contraction were analysed using ultrasound. Significant differences in the left molar bite force (p=0.04) were observed between the groups (Student's t-test, p<0.05). The intervertebral disc degeneration group had a lower maximum molar bite force. No significant differences in muscle thickness were observed between the masseter and temporal muscles in either group. However, based on clinical observations, the group with intervertebral disc degeneration presented less masseter muscle thickness and greater temporal muscle thickness in both mandibular tasks. Degenerative disease of the intervertebral discs promoted morphofunctional changes in the stomatognathic system, especially in maximum molar bite force and masticatory muscle thickness. This study provides insight into the interaction between spinal pathology and the stomatognathic system, which is important for healthcare professionals who treat patients with functional degeneration.
Collapse
Affiliation(s)
- Nicole Barbosa Bettiol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Simone Cecilio Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Flávia Argentato Cecilio
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Batista de Vasconcelos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Claire Genoveze Gauch Lopes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lilian Mendes Andrade
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Isabela Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Selma Siéssere
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Marcelo Palinkas
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil.
| |
Collapse
|
45
|
Rosales-Antequera C, Viscor G, Araneda OF. Inflammation and Oxidative Stress as Common Mechanisms of Pulmonary, Autonomic and Musculoskeletal Dysfunction after Spinal Cord Injury. BIOLOGY 2022; 11:biology11040550. [PMID: 35453749 PMCID: PMC9032591 DOI: 10.3390/biology11040550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary When a spinal cord injury occurs, the neurons that regulate our voluntary movements, those involved in environment and somatic perception and those that regulate vegetative functions are affected. Once neuronal damage is established, the cells of other tissues are also affected in their functions, altering the interaction between organs and altering the proper functioning of the organism. Multiple studies in animal models, as well as in humans, have recognized as factors involved in organ damage the imbalance between the formation of highly reactive molecules called pro-oxidants and defensive mechanisms called antioxidants. Closely associated with this phenomenon, the inflammatory response is also pathologically activated. In this narrative review, we have analyzed the information involving these pathological processes at the level of the lung, the autonomic nervous system and the skeletal musculature after spinal cord injury. Knowing the abnormal functioning mechanisms that occur after a spinal cord injury not only offers a better understanding of the organic events but also offers future possibilities for therapeutic interventions that may benefit the thousands of patients suffering this pathology. Abstract One of the etiopathogenic factors frequently associated with generalized organ damage after spinal cord injury corresponds to the imbalance of the redox state and inflammation, particularly of the respiratory, autonomic and musculoskeletal systems. Our goal in this review was to gain a better understanding of this phenomenon by reviewing both animal and human studies. At the respiratory level, the presence of tissue damage is notable in situations that require increased ventilation due to lower thoracic distensibility and alveolar inflammation caused by higher levels of leptin as a result of increased fatty tissue. Increased airway reactivity, due to loss of sympathetic innervation, and levels of nitric oxide in exhaled air that are similar to those seen in asthmatic patients have also been reported. In addition, the loss of autonomic control efficiency leads to an uncontrolled release of catecholamines and glucocorticoids that induce immunosuppression, as well as a predisposition to autoimmune reactions. Simultaneously, blood pressure regulation is altered with vascular damage and atherogenesis associated with oxidative damage. At the muscular level, chronically elevated levels of prooxidants and lipoperoxidation associated with myofibrillar atrophy are described, with no reduction or reversibility of this process through antioxidant supplementation.
Collapse
Affiliation(s)
- Cristián Rosales-Antequera
- Physical Medicine and Rehabilitation Unit, Clínica Universidad de los Andes, Santiago 8320000, Chile;
- Integrative Laboratory of Biomechanics and Physiology of Effort, LIBFE, School of Kinesiology, Faculty of Medicine, Universidad de los Andes, Santiago 8320000, Chile
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Oscar F. Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, LIBFE, School of Kinesiology, Faculty of Medicine, Universidad de los Andes, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
46
|
Kasai A, Jee E, Tamura Y, Kouzaki K, Kotani T, Nakazato K. Aldehyde dehydrogenase 2 deficiency promotes skeletal muscle atrophy in aged mice. Am J Physiol Regul Integr Comp Physiol 2022; 322:R511-R525. [PMID: 35318866 DOI: 10.1152/ajpregu.00304.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) detoxifies acetaldehyde produced from ethanol. A missense single nucleotide polymorphism (SNP) rs671 in ALDH2 exhibits a dominant-negative form of the ALDH2 protein. Nearly 40% of people in East Asia carry an inactive ALDH2*2 mutation. Previous studies reported that ALDH2*2 is associated with increased risk of several diseases. In this study, we examined the effect of ALDH2 deficiency on age-related muscle atrophy and its underlying mechanisms. We found that ALDH2 deficiency promotes age-related loss of muscle fiber cross-sectional areas, especially in oxidative fibers. Furthermore, ALDH2 deficiency exacerbated age-related accumulation of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress in the gastrocnemius muscle. Similarly, mitochondrial reactive oxygen species (ROS) production increased in aged ALDH2-knockout mice, indicating that ALDH2 deficiency induced mitochondrial dysfunction. In summary, ALDH2 deficiency promotes age-related muscle loss, especially in oxidative fibers, which may be associated with an increased accumulation of oxidative stress via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Akane Kasai
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Eunbin Jee
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Reaseach Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Reaseach Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Reaseach Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Reaseach Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
47
|
Effect of C60 Fullerene on Recovery of Muscle Soleus in Rats after Atrophy Induced by Achillotenotomy. Life (Basel) 2022; 12:life12030332. [PMID: 35330083 PMCID: PMC8949448 DOI: 10.3390/life12030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.
Collapse
|
48
|
Jiang S, Cui J, Zhang LQ, Liu Z, Zhang Y, Shi Y, Cai JP. Role of a Urinary Biomarker in the Common Mechanism of Physical Performance and Cognitive Function. Front Med (Lausanne) 2022; 9:816822. [PMID: 35252255 PMCID: PMC8894651 DOI: 10.3389/fmed.2022.816822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionHealthy aging is described as a process of developing and maintaining intrinsic abilities, including physical and cognitive functions. Although oxidative stress is a common mechanism shared by loss of muscle strength and dementia, its relationship with decreased physical performance and cognitive impairment remains unclear. We aimed to investigate the role of urinary 8-oxo-7, 8-dihydroguanosine (8-oxoGsn), a biomarker of oxidative damage to RNA, in physical and cognitive decline.MethodsThe study followed a cross-sectional design and recruited 40–94-year-old inhabitants of Beijing, China (471 men and 881 women). The physical performance of the participants was assessed using handgrip strength, walking speed, and the repeated chair stand test. The cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) 5-min protocol. Urinary 8-oxoGsn levels were measured for all participants.ResultsParticipants with high urinary 8-oxoGsn levels were more likely to have low grip strength, slow walking speed, poor performance in the repeated chair stand test, and low scores on the MoCA 5-min protocol (odds ratio [OR] 3.43, 95% confidence interval [CI]: 1.52–7.76; OR 1.71, 95% CI: 1.16–2.53; OR 2.06, 95% CI: 0.92–4.63; OR 1.75, 95% CI: 1.18–2.58), after adjusting for age, sex, smoking habits, alcohol consumption, hypertension, diabetes, cerebro-cardiovascular disease, and chronic kidney disease.ConclusionElevated levels of oxidative stress are independently associated with cognitive and physical impairment. Thus, these results can help in the early identification and development of strategies for the prevention and treatment of intrinsic capacity decline.
Collapse
Affiliation(s)
- Shan Jiang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Shi
- Department of Geriatric Medicine, Longtan Community Health Service Center, Beijing, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China
- National Center of Gerontology, National Health Commission, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jian-Ping Cai
| |
Collapse
|
49
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
50
|
Shinohara I, Kataoka T, Mifune Y, Inui A, Sakata R, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Matsushita T, Kuroda R. Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle. Sci Rep 2022; 12:1557. [PMID: 35091650 PMCID: PMC8799651 DOI: 10.1038/s41598-022-05608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Tendon rupture and nerve injury cause fatty infiltration of the skeletal muscle, and the adipokines secreted from the infiltrated adipocytes are known to contribute to chronic inflammation. Therefore, in this study, we evaluated the effects of the adipokines on chronic inflammation using a rat sciatic nerve-crushed injury model. In vitro and in vivo experiments showed that the expression of adiponectin was decreased (0.3-fold) and the expression of Il6 (~ 3.8-fold) and Tnf (~ 6.2-fold) was increased in the nerve-crushed group compared to that in the control group. It was also observed that the administration of an adiponectin receptor agonist decreased the levels of Il6 (0.38-fold) and Tnf (0.28-fold) and improved cellular viability (~ 1.9-fold) in vitro. Additionally, in the fatty infiltrated skeletal muscle, low adiponectin levels were found to be associated with chronic inflammation. Therefore, the local administration of adiponectin receptor agonists would prevent chronic inflammation.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| |
Collapse
|