1
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
2
|
Biesiekierska M, Strigini M, Śliwińska A, Pirola L, Balcerczyk A. The Impact of Ketogenic Nutrition on Obesity and Metabolic Health: Mechanisms and Clinical Implications. Nutr Rev 2025:nuaf010. [PMID: 40036324 DOI: 10.1093/nutrit/nuaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
The ketogenic diet (KD) has recently gained increasing popularity. This high-fat, adequate-protein, and carbohydrate-poor eating pattern leads to nutritional ketosis. The KD has long been known for its antidiabetic and antiepileptic effects and has been used therapeutically in these contexts. Recently, the KD, due to its effectiveness in inducing weight loss, has also been proposed as a possible approach to treat obesity. Likewise, a KD is currently explored as a supporting element in the treatment of obesity-associated metabolic disorders and certain forms of cancer. Here, we discuss the metabolic and biochemical mechanisms at play during the shift of metabolism to fatty acids and fatty acid-derived ketone bodies as main fuel molecules, in the substitution of carbohydrates, in ketogenic nutrition. Different sources of ketone bodies and KDs as alternatives to glucose and carbohydrates as main energy substrates are discussed, together with an attempt to weigh the benefits and risks posed by the chronic use of a KD in the context of weight loss, and also considering the molecular effects that ketone bodies exert on metabolism and on the endocrine system.
Collapse
Affiliation(s)
- Marta Biesiekierska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Maura Strigini
- University Jean Monnet Saint-Etienne, INSERM, Mines Saint Etienne, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, F-69495 Pierre Bénite, France
| | - Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Zemer A, Samaei S, Yoel U, Biderman A, Pincu Y. Ketogenic diet in clinical populations-a narrative review. Front Med (Lausanne) 2024; 11:1432717. [PMID: 39534224 PMCID: PMC11554467 DOI: 10.3389/fmed.2024.1432717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Ketogenic diet (KD) is a high-fat, low-carbohydrate (CHO) diet, designed to induce a metabolic state of ketosis in which the body metabolizes primarily lipids for energy production. Various forms of KD are being promoted as promising treatments for numerous health conditions from chronic headaches to weight-loss and even different forms of cancer and are becoming increasingly more popular. KD appears to be an efficacious approach for weight-loss, and maintenance, improved glycemia, cognitive function and cancer prognosis. However, there is a controversy regarding the safety of KD, and the potential health risks that might be associated with long-term exposure to KD. There is a gap between the acceptance and utilization of KD in individuals with health conditions and the criticism and negative attitudes toward KD by some clinicians. Many individuals choose to follow KD and are encouraged by the positive results they experience. Although the medical establishment does not endorse KD as a first line of treatment, clinicians need to be informed about KD, and offer support and medical supervision for patients who self-select to follow KD. This can ensure that within the boundaries of KD, patients will make good and healthy dietary choices and prevent clinical disengagement in extreme cases. To that end, there is an urgent need for good quality research to address the issues of long-term safety of KD in different clinical populations and for standardization of KD both in research and in the clinic.
Collapse
Affiliation(s)
- Alon Zemer
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shabnam Samaei
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Uri Yoel
- Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Aya Biderman
- Department of Family Medicine, Goldman Medical School, Ben-Gurion University of the Negev and Clalit Health Services, Beer Sheva, Israel
| | - Yair Pincu
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Li Z, Li A, Liu P, Zhang B, Yan Y. Mapping the evolution and impact of ketogenic diet research on diabetes management: a comprehensive bibliometric analysis from 2005 to 2024. Front Nutr 2024; 11:1485642. [PMID: 39483785 PMCID: PMC11527367 DOI: 10.3389/fnut.2024.1485642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Objective The ketogenic diet (KD) has been explored for diabetes management; however, a quantitative synthesis of its specific effects on diabetes has not yet been conducted. This study aims to examine the current status and research hotspots of KD in diabetes management from 2005 to 2024, providing a reference for future research. Methods We retrieved articles published between 2005 and 2024 from the Web of Science database and analyzed them using R software, VOSviewer, and CiteSpace. Results This study includes 432 relevant publications. From 2005 to 2024, the volume of literature in this field has shown a steady upward trend, with a notable increase from 2017 to 2021, and a slight decline observed from 2021 to 2023. The United States is the leading country in terms of the number of publications, followed by China, Australia, and Canada. The United States not only leads in publication volume but also maintains a broader international collaboration network. Nutrients and the American Journal of Clinical Nutrition are the most frequently published and cited journals. Current research hotspots primarily focus on the impact of KD on blood glucose control, insulin resistance, and lipid metabolism in diabetic patients. Mechanistic studies on KD in diabetes management concentrate on aspects such as the "regulation of genes by β-hydroxybutyrate," "anti-inflammatory effects," and "oxidative stress." The role of the gut microbiome is also emerging as an important research area. Currently, exploring the application of KD in managing different age groups and types of diabetes has become a significant research trend. Conclusion As an emerging dietary intervention, KD is gradually attracting widespread attention from researchers around the world and is expected to become a major research focus in the future for diabetes management and control. This paper provides a systematic review and analysis of the current research status and hotspots of KD in diabetes management, offering important references and insights for future research in related fields.
Collapse
Affiliation(s)
- Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Anxia Li
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya, Hainan, China
| | - Pingping Liu
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya, Hainan, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanyuan Yan
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya, Hainan, China
| |
Collapse
|
5
|
Keating SE, Chawla Y, De A, George ES. Lifestyle intervention for metabolic dysfunction-associated fatty liver disease: a 24-h integrated behavior perspective. Hepatol Int 2024; 18:959-976. [PMID: 38717691 PMCID: PMC11450077 DOI: 10.1007/s12072-024-10663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The prevalence, health and socioeconomic burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is growing, increasing the need for novel evidence-based lifestyle approaches. Lifestyle is the cornerstone for MAFLD management and co-existing cardiometabolic dysfunction. The aim of this review was to evaluate the evidence for lifestyle management of MAFLD, with a specific lens on 24-hour integrated behaviour and provide practical recommendations for implementation of the evidence. RESULTS Weight loss ≥ 7-10% is central to lifestyle management; however, liver and cardiometabolic benefits are attainable with improved diet quality and exercise even without weight loss. Lifestyle intervention for MAFLD should consider an integrated '24-h' approach that is cognisant of diet, physical activity/exercise, sedentary behavior, smoking, alcohol intake and sleep. Dietary management emphasises energy deficit and improved diet quality, especially the Mediterranean diet, although sociocultural adaptations to meet preferences should be considered. Increasing physical activity and reducing sedentary behavior can prevent MAFLD, with strongest evidence in MAFLD supporting regular structured moderate-vigorous aerobic exercise for 150-240 min/week. Resistance training in addition to aerobic exercise should be considered and prioritised for those who are losing body mass via diet and/or pharmacological approaches and those with sarcopenia, to minimise bone and lean mass loss. Limited evidence suggests that sleep is important for MAFLD prevention. Emerging novel approaches to diet and exercise may address some of the key barriers to behaviour change (e.g. lack of time, access to resources and social support). FUTURE DIRECTIONS Large-scale multidisciplinary trials in people with MAFLD with long-term follow-up, that can be scaled up into mainstream healthcare, are required. Future management guidelines should consider the heterogeneity of MAFLD and specialised models of care that coordinate the health workforce to manage the increased and growing MAFLD population.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Yogesh Chawla
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneshwar, India
| | - Arka De
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Tsushima Y, Nachawi N, Pantalone KM, Griebeler ML, Alwahab UA. Ketogenic diet improves fertility in patients with polycystic ovary syndrome: a brief report. Front Nutr 2024; 11:1395977. [PMID: 39328462 PMCID: PMC11424527 DOI: 10.3389/fnut.2024.1395977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) affects up to 20 % of reproductive-age individuals and is strongly linked to obesity. The impacts of ketogenic diet on fertility in people with PCOS are unknown. This study aims to determine the effect of a ketogenic diet on restoration of regular menstrual cycles and fertility. Methods After approval from the Institutional Review Boards of Cleveland Clinic, a retrospective analysis was conducted using the electronic health record system. We analyzed data from thirty patients (n = 30) with polycystic ovary syndrome who followed a ketogenic diet for at least 3 months at the Cleveland Clinic, Cleveland, Ohio, USA. Main outcomes were percentage of women with restoration of regular menstrual cycles and pregnancy rate. Results All women (n = 30) had restoration of regular menstrual cycles. The overall pregnancy rate of women desiring pregnancy (n = 18) was 55.6% (n = 10). Pregnancy rate was 38.5% for women on metformin and 100% for those who were not (P = 0.036). Pregnancy rate was 62.5% for women using ovulation induction agents and 50.0% for those who did not (P = 0.66). Percent weight change between the pregnant and non-pregnant groups did not significantly differ [-8.1 ± 6.2, vs -6.4 ± 8.4, P = 0.64, respectively]. Conclusion This study reports a higher rate of pregnancy with the ketogenic diet in women with PCOS compared to existing literature.
Collapse
Affiliation(s)
- Yumiko Tsushima
- Department of Medicine, Diabetes and Metabolic Care Center, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Noura Nachawi
- Department of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Kevin M. Pantalone
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Marcio L. Griebeler
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ula Abed Alwahab
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
Meeusen H, Kalf RS, Broekaart DWM, Silva JP, Verkuyl JM, van Helvoort A, Gorter JA, van Vliet EA, Aronica E. Effective reduction in seizure severity and prevention of a fatty liver by a novel low ratio ketogenic diet composition in the rapid kindling rat model of epileptogenesis. Exp Neurol 2024; 379:114861. [PMID: 38876196 DOI: 10.1016/j.expneurol.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Drug-resistant epilepsy patients may benefit from non-pharmacological therapies, such as the ketogenic diet (KD). However, its high fat content poses compliance challenges and metabolic risks. To mitigate this, we developed a novel KD composition with less fat and additional nutrients (citrate, nicotinamide riboside, and omega-3 fatty acids) for ketone-independent neuroprotection. The efficacy, metabolic and neuropathological effects of the novel KD and a classic KD were compared to a control diet in the rapid kindling model of temporal lobe epilepsy. Both KD groups entered ketosis before kindling onset, with higher ketone levels in the classic KD group. Remarkably, rats on the novel KD had slower progression of behavioral seizures as compared to rats on a control diet, while this was not the case for rats on a classic KD. Both KDs reduced electrographic after-discharge duration, preserved neurons in the dorsal hippocampus, and normalized activity in open field tests. The novel KD, despite lower fat and ketone levels, demonstrated effective reduction of behavioral seizure severity while the classic KD did not, suggesting alternative mode(s) of action are involved. Additionally, the novel KD significantly mitigated liver triglyceride and plasma fatty acid levels compared to the classic KD, indicating a reduced risk of long-term liver steatosis. Our findings highlight the potential of the novel KD to enhance therapeutic efficacy and compliance in epilepsy patients.
Collapse
Affiliation(s)
- Hester Meeusen
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Rozemarijn S Kalf
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jose P Silva
- Danone Research & Innovation, Utrecht, the Netherlands
| | | | - Ardy van Helvoort
- Danone Research & Innovation, Utrecht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
8
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
9
|
Di Lorenzo M, Cacciapuoti N, Lonardo MS, Nasti G, Gautiero C, Belfiore A, Guida B, Chiurazzi M. Pathophysiology and Nutritional Approaches in Polycystic Ovary Syndrome (PCOS): A Comprehensive Review. Curr Nutr Rep 2023; 12:527-544. [PMID: 37213054 PMCID: PMC10444658 DOI: 10.1007/s13668-023-00479-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age worldwide. This disease causes menstrual, metabolic, and biochemical abnormalities such as hyperandrogenism, oligo-anovulatory menstrual cycles, polycystic ovary, hyperleptinemia, insulin resistance (IR), and cardiometabolic disorders, often associated with overweight or obesity and visceral adiposity. RECENT FINDINGS The etiology and pathophysiology of PCOS are not yet fully understood, but insulin seems to play a key role in this disease. PCOS shares an inflammatory state with other chronic diseases such as obesity, type II diabetes, and cardiovascular diseases; however, recent studies have shown that a healthy nutritional approach can improve IR and metabolic and reproductive functions, representing a valid therapeutic strategy to ameliorate PCOS symptomatology. This review aimed to summarize and collect evidence about different nutritional approaches such as the Mediterranean diet (MedDiet) and the ketogenic diet (KD), as well as bariatric surgery and nutraceutical supplementation as probiotics, prebiotics, and synbiotics, among the others, used in patients with PCOS.
Collapse
Affiliation(s)
- M Di Lorenzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Infectious Diseases and Gender Medicine Unit, Cotugno Hospital, AO Dei Colli, Naples, Italy
| | - N Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M S Lonardo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - G Nasti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - C Gautiero
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - A Belfiore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - B Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- Department of Medical Oncology, AO "A. Cardarelli", Naples, Italy.
| |
Collapse
|
10
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Ketogenic diet restrains herpes simplex encephalitis via gut microbes. Microbes Infect 2023; 25:105061. [PMID: 36270600 DOI: 10.1016/j.micinf.2022.105061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infection-associated herpes simplex encephalitis (HSE) is an occasionally but severe neuronal disease that causes behavioral disorder and impairs cognition. Herein, we demonstrate that the consumption of ketogenic diet (KD), a low-carbohydrate high-fat diet, restricts the neurotropic infection of HSV-1 and HSE progression in mice. KD reduced weight loss, neurodegenerative symptoms, virus production and neuroinflammation, resulting in the enhanced survival rate of HSE mice. Notably, depletion of gut microbes by antibiotics attenuated the protective function of KD on HSV-1-related neuroinflammation and HSE development. Therefore, KD represents as an alternative therapeutic strategy to alleviate or prevent HSE via gut microbiota.
Collapse
|
12
|
Clinical Evidence of Low-Carbohydrate Diets against Obesity and Diabetes Mellitus. Metabolites 2023; 13:metabo13020240. [PMID: 36837859 PMCID: PMC9962697 DOI: 10.3390/metabo13020240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The popularity of low-carbohydrate diets (LCDs) in the last few decades has motivated several research studies on their role in a variety of metabolic and non-morbid conditions. The available data of the results of these studies are put under the research perspective of the present literature review of clinical studies in search of the effects of LCDs on Obesity and Diabetes Mellitus. The electronic literature search was performed in the databases PubMed, Cochrane, and Embase. The literature search found seven studies that met the review's inclusion and exclusion criteria out of a total of 2637 studies. The included studies involved randomized controlled trials of at least 12 weeks' duration, in subjects with BMI ≥ 25 kg/m2, with dietary interventions. The results of the study on the effects of LCDs on obesity showed their effectiveness in reducing Body Mass Index and total body fat mass. In addition, LCDs appear to cause drops in blood pressure, low-density lipoprotein (LDL), and triglycerides, and seem to improve high-density lipoprotein (HDL) values. Regarding the effectiveness of LCDs in Diabetes Mellitus, their effect on reducing insulin resistance and fasting blood glucose and HbA1c values are supported. In conclusion, the results suggest the critical role of LCDs to improve the health of people affected by obesity or diabetes.
Collapse
|
13
|
Hui D, Liu L, Azami NLB, Song J, Huang Y, Xu W, Wu C, Xie D, Jiang Y, Bian Y, Sun M. The spleen-strengthening and liver-draining herbal formula treatment of non-alcoholic fatty liver disease by regulation of intestinal flora in clinical trial. Front Endocrinol (Lausanne) 2023; 13:1107071. [PMID: 36743913 PMCID: PMC9892935 DOI: 10.3389/fendo.2022.1107071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE As a metabolic disease, one important feature of non-alcoholic fatty liver disease (NAFLD) is the disturbance of the intestinal flora. Spleen-strengthening and liver-draining formula (SLF) is a formula formed according to the theory of "One Qi Circulation" (Qing Dynasty, 1749) of Traditional Chinese Medicine (TCM), which has shown significant therapeutic effect in patients with NAFLD in a preliminary clinical observation. In this study, we aim to explore the mechanism of SLF against NAFLD, especially its effect on glucolipid metabolism, from the perspective of intestinal flora. METHODS A prospective, randomized, controlled clinical study was designed to observe the efficacy and safety of SLF in the treatment of NAFLD. The study participants were randomly and evenly divided into control group and treatment group (SLF group). The control group made lifestyle adjustments, while the SLF group was treated with SLF on top of the control group. Both groups were participated in the study for 12 consecutive weeks. Furthermore, the feces of the two groups were collected before and after treatment. The intestinal flora of each group and healthy control (HC) were detected utilizing 16S rRNA gene sequencing. RESULTS Compared with the control group, the SLF group showed significant improvements in liver function, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), meanwhile, patients had significantly lower lipid and homeostasis model assessment of insulin resistance (HOMA-IR) with better security. Intestinal flora 16S rRNA gene sequencing results indicated reduced flora diversity and altered species abundance in patients with NAFLD. At the phylum level, Desulfobacterota levels were reduced. Although Firmicutes and Bacteroidetes did not differ significantly between HC and NAFLD, when grouped by alanine transaminase (ALT) and aspartate transaminase (AST) levels in NAFLD, Firmicutes levels were significantly higher in patients with ALT or AST abnormalities, while Bacteroidetes was significantly lower. Clinical correlation analysis showed that Firmicutes positively correlated with gender, age, ALT, AST, LSM, and Fibroscan-AST (FAST) score, while the opposite was true for Bacteroidetes. At the genus level, the levels of Alistipes, Bilophila, Butyricimonas, Coprococcus, Lachnospiraceae_NK4A136 group Phascolarctobacterium, Ruminococcus, UCG-002, and UCG-003 were reduced, whereas abundance of Tyzzerella increased. There was no statistically significant difference in Firmicutes and Bacteroidota levels in the SLF group before and after treatment, but both bacteria tended to retrace. At the genus level, Coprococcus (Lachnospiraceae family), Lachnospiraceae_NK4A136 group (Lachnospiraceae family), and Ruminococcus (Ruminococcaceae family) were significantly higher in the SLF group after treatment, and there was also a tendency for Bilophila (Desulfovibrionaceae family) to be back-regulated toward HC. CONCLUSIONS SLF can improve liver function and glucolipid metabolism in patients with NAFLD and lower down liver fat content to some extent. SLF could be carried out by regulating the disturbance of intestinal flora, especially Coprococcus, Lachnospiraceae_NK4A136 group, and Ruminococcus genus.
Collapse
Affiliation(s)
- Dengcheng Hui
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingru Song
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanping Huang
- Department of Good Clinical Practice Office, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Wu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Arthritis Institute of Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Yaghoubi F, Darand M, Vasmehjani AA, Darabi Z, Talenezhad N, Mirzavandi F, Hosseinzadeh M. Adherence to low carbohydrate diets and non-alcoholic fatty liver disease: a case control study. BMC Nutr 2022; 8:140. [PMID: 36447244 PMCID: PMC9706826 DOI: 10.1186/s40795-022-00625-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined as the excessive accumulation of fat in the liver cells of people who do not drink alcohol. The aim of study is investigated the association between low carbohydrate diets (LCDs) and NAFLD. METHODS This age and gender-matched case-control study was conducted on 120 patients newly diagnosed with NAFLD and 120 adults without NAFLD. Diagnosis of NAFLD based on laboratory tests and abdominal ultrasound. Low carbohydrate diets score calculated on the percentage of energy as carbohydrate, fat, and protein. Participants in the highest rank intake of fat and protein and lowest intake of carbohydrate received 10 points. Multivariable logistic odds ratio was used for examine the relation between LCDs and NAFLD. RESULTS This study showed subjects in the highest tertile of LCD has more intake of zinc and vitamin B12 compare to lowest. Also, intake of protein (p = 0.02) carbohydrate (p < 0.02) and cholesterol (p = 0.02) were significantly higher in patient with NAFLD compare to control subjects. There was no significant association between LCD and risk of NAFLD (OR: 1.36; 95% CI: 0.97-1.92; P-trend = 0.13) in crude and adjusted (OR: 1.31; 95% CI: 0.84-2.04; P-trend = 0.23) model. CONCLUSION However, we showed that intake of protein, carbohydrate and cholesterol are higher in NAFLD, but our results of study showed that LCDs with higher proportion intakes of protein and fat was not associated with NAFLD. Further prospective studies are required for confirm these associations.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- grid.412505.70000 0004 0612 5912Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mina Darand
- grid.411036.10000 0001 1498 685XDepartment of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aazam Ahmadi Vasmehjani
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Zahra Darabi
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Nasir Talenezhad
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Farhang Mirzavandi
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Nilsson MI, Crozier M, Di Carlo A, Xhuti D, Manta K, Roik LJ, Bujak AL, Nederveen JP, Tarnopolsky MG, Hettinga B, Meena NK, Raben N, Tarnopolsky MA. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol Genet Metab 2022; 137:228-240. [PMID: 35718712 DOI: 10.1016/j.ymgme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Donald Xhuti
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Liza J Roik
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adam L Bujak
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Bart Hettinga
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
17
|
Adaptation to short-term extreme fat consumption alters intestinal lipid handling in male and female mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159208. [PMID: 35926775 DOI: 10.1016/j.bbalip.2022.159208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
The small intestine is a highly adaptable organ serving as both a barrier to the external environment and a conduit for nutrient absorption. Enterocytes package dietary triglycerides (TG) into chylomicrons for transport into circulation; the remaining TGs are stored in cytosolic lipid droplets (CLDs). The current study aimed to characterize the impact of diet composition on intestinal lipid handling in male and female wild-type mice. Mice were continued on their grain-based diet (GBD) and switched to a high-fat, high cholesterol Western-style diet (WD) or a ketogenic diet (KD) for 3 or 5 weeks. KD-fed mice displayed significantly higher plasma TG levels in response to an olive oil gavage than WD- and GBD-fed mice; TG levels were ~2-fold higher in male KD-fed mice than female KD-fed mice. Poloxamer-407 experiments revealed enhanced intestinal-TG secretion rates in male mice fed a KD upon olive oil gavage, whereas secretion rates were unchanged in female mice. Surprisingly, jejunal CLD size and TG mass after oil gavage were similar among the groups. At fasting, TG mass was significantly higher in the jejunum of male KD-fed mice and the duodenum of female KD-fed mice, providing increased substrate for chylomicron formation. In addition to greater fasting intestinal TG stores, KD-fed male mice displayed longer small intestinal lengths, while female mice displayed markedly longer jejunal villi lengths. After 5 week of diet, 12 h fasting-2 h refeeding experiments revealed jejunal TG levels were similar between diet groups in male mice; however, in female mice, jejunal TG mass was significantly higher in KD-fed mice compared to GBD- and WD-fed mice. These experiments reveal that KD feeding promotes distinct morphological and functional changes to the small intestine compared to the WD diet. Moreover, changes to intestinal lipid handling in response to carbohydrate and protein restriction manifest differently in male and female mice.
Collapse
|
18
|
Katsiki N, Stoian AP, Rizzo M. Dietary patterns in non-alcoholic fatty liver disease (NAFLD): Stay on the straight and narrow path! CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34 Suppl 1:S24-S31. [PMID: 35131122 DOI: 10.1016/j.arteri.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic disease globally. NAFLD patients are at an increased risk of both liver and cardiovascular morbidity and mortality, as well as all-cause death. NAFLD prevalence is rapidly increasing worldwide and, thus, there is an urgent need for health policies to tackle its development and complications. Currently, since there is no drug therapy officially indicated for this disease, lifestyle interventions remain the first-line therapeutic option. In the present narrative review, we discuss the effects of certain dietary patterns on NAFLD incidence and progression. The Mediterranean diet is regarded as the diet of choice for the prevention/treatment of NAFLD and its complications, based on the available evidence. Other plant-based dietary patterns (poor in saturated fat, refined carbohydrates, red and processed meats) are also beneficial [i.e., Dietary Approaches to Stop Hypertension (DASH) and vegetarian/vegan diets], whereas more data are needed to establish the role of ketogenic, intermittent fasting and paleo diets in NAFLD. Nevertheless, there is no "one-size-fits-all" dietary intervention for NAFLD management. Clinicians should discuss with their patients and define the diet that each individual prefers and is able to implement in his/her daily life.
Collapse
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece.
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
19
|
Lan Y, Jin C, Kumar P, Yu X, Lenahan C, Sheng J. Ketogenic Diets and Hepatocellular Carcinoma. Front Oncol 2022; 12:879205. [PMID: 35600387 PMCID: PMC9115558 DOI: 10.3389/fonc.2022.879205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate, high-fat diet regarded as a potential intervention for cancers owing to its effects on tumor metabolism and behavior. Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, and its management is worth investigating because of the high fatality rate. Additionally, as the liver is the glucose and lipid metabolism center where ketone bodies are produced, the application of KD to combat HCC is promising. Prior studies have reported that KD could reduce the energy supply and affect the proliferation and differentiation of cancer cells by lowering the blood glucose and insulin levels. Furthermore, KD can increase the expression of hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in hepatocytes and regulate lipid metabolism to inhibit the progression of HCC. In addition, β-hydroxybutyrate can induce histone hyperacetylation and reduce the expression of inflammatory factors to alleviate damage to hepatocytes. However, there are few relevant studies at present, and the specific effects and safety of KD on HCC warrant further research. Optimizing the composition of KD and combining it with other therapies to enhance its anti-cancer effects warrant further exploration.
Collapse
Affiliation(s)
- Yan Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaonan Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Pavitra Kumar
- Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Aboubakr A, Stroud A, Kumar S, Newberry C. Dietary Approaches for Management of Non-Alcoholic Fatty Liver Disease: A Clinician's Guide. Curr Gastroenterol Rep 2021; 23:21. [PMID: 34654976 DOI: 10.1007/s11894-021-00827-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with obesity, insulin resistance, and hyperlipidemia. There is strong clinical evidence that reduction in at least 5-7% total body weight is associated with improvement in hepatic steatosis and regression of fibrosis, with weight loss representing the primary approach to treatment. This guide reviews recent data on dietary approaches studied in NAFLD management. The strongest evidence currently supports a hypocaloric diet to induce weight loss and subsequent improvement in liver enzymes and histology, as well as a Mediterranean diet, which can lead to improvement in steatosis even in the absence of weight reduction. The purpose of this paper is to provide clinicians with tools to engage patients in conversations about nutrition in the setting of NAFLD, ultimately guiding suitable personalized dietary recommendations.
Collapse
Affiliation(s)
- Aiya Aboubakr
- Department of Internal Medicine, Weill Cornell Medical Center, 1320 York Avenue, Suite HT-621, New York, NY, 10021, USA.,Division of Bariatric Surgery, Oregon Health & Science University, 3485 S. Bond Avenue, Portland, OR, 97239, USA
| | - Andrea Stroud
- Division of Bariatric Surgery, Oregon Health & Science University, 3485 S. Bond Avenue, Portland, OR, 97239, USA
| | - Sonal Kumar
- Division of Gastroenterology, Weill Cornell Medical Center, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA
| | - Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Che X, Chen Z, Liu M, Mo Z. Dietary Interventions: A Promising Treatment for Polycystic Ovary Syndrome. ANNALS OF NUTRITION AND METABOLISM 2021; 77:313-323. [PMID: 34610596 DOI: 10.1159/000519302] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dietary interventions as a first-line treatment for patients with polycystic ovary syndrome (PCOS) have been evaluated, but the optimal diet has not been determined. Proper diet and the maintenance of adequate nutritional status are of great importance in the prevention of this disorder, and therapeutics and dietary habits play an important role in the recovery of patients with PCOS. SUMMARY A range of dietary patterns have been shown to impact weight loss and insulin resistance (IR) and improve reproductive function, including the Mediterranean diet, the ketogenic diet, Dietary Approaches to Stop Hypertension, and other dietary patterns. Key Messages: Diets that can reduce rates of obesity and IR are beneficial to women with PCOS, the status of obesity and IR should be determined at the early stage of the disease, so as to develop individualized and sustainable dietary intervention. The long-term efficacy, safety, and health benefits of diet management in patients with PCOS need to be tested by further researches.
Collapse
Affiliation(s)
- Xuan Che
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China, .,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China,
| | - Zhuo Chen
- Guangxi Province Postgraduate Cotraining Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Yueyang, China
| | - Mingqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China.,Guangxi Province Postgraduate Cotraining Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Yueyang, China
| |
Collapse
|
22
|
Sridharan B, Lee MJ. Ketogenic diet: A promising neuroprotective composition for managing Alzheimer's diseases and its pathological mechanisms. Curr Mol Med 2021; 22:640-656. [PMID: 34607541 DOI: 10.2174/1566524021666211004104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
Ketogenic diet and ketone bodies gained significant attention in recent years due to their ability to influence the specific energy metabolism and restoration of mitochondrial homeostasis that can help in hindering the progression of many metabolic diseases including diabetes and neurodegenerative diseases. Ketogenic diet consists of high fat and low carbohydrate contents which makes the body glucose deprived and rely on alternative sources (ketone bodies) for energy. It has been initially designed and supplemented for the treatment of epilepsy and later its influence on many energy-deriving biochemical pathways made it a highly sorted food supplement for many metabolic diseases and even by healthy individuals for body building and calorie restriction. Among the reported therapeutic action over a range of diseases, neurodegenerative disorders especially Alzheimer's disease gained the attention of many researchers and clinicians because of its potency and its easier supplementation as a food additive. Complex pathology and multiple influencing factors of Alzheimer's disease make exploration of its therapeutic strategies a demanding task. It was a common phenomenon that energy deprivation in neurological disorders including Alzheimer's disease, to progress rapidly. The ability of ketone bodies to stabilize the mitochondrial energy metabolism makes it a suitable intervening agent. In this review, we will discuss various research progress made with regards to ketone bodies/ketogenic diet for management of Alzheimer's disease and elaborate in detail about the mechanisms that are influenced during their therapeutic action.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| |
Collapse
|
23
|
Crosby L, Davis B, Joshi S, Jardine M, Paul J, Neola M, Barnard ND. Ketogenic Diets and Chronic Disease: Weighing the Benefits Against the Risks. Front Nutr 2021; 8:702802. [PMID: 34336911 PMCID: PMC8322232 DOI: 10.3389/fnut.2021.702802] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Very-low-carbohydrate ketogenic diets have been long been used to reduce seizure frequency and more recently have been promoted for a variety of health conditions, including obesity, diabetes, and liver disease. Ketogenic diets may provide short-term improvement and aid in symptom management for some chronic diseases. Such diets affect diet quality, typically increasing intake of foods linked to chronic disease risk and decreasing intake of foods found to be protective in epidemiological studies. This review examines the effects of ketogenic diets on common chronic diseases, as well as their impact on diet quality and possible risks associated with their use. Given often-temporary improvements, unfavorable effects on dietary intake, and inadequate data demonstrating long-term safety, for most individuals, the risks of ketogenic diets may outweigh the benefits.
Collapse
Affiliation(s)
- Lee Crosby
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Brenda Davis
- Brenda Davis Nutrition Consulting, Kelowna, BC, Canada
| | - Shivam Joshi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.,Department of Medicine, New York City Health + Hospitals/Bellevue, New York, NY, United States
| | - Meghan Jardine
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Jennifer Paul
- Physicians Committee for Responsible Medicine, Washington, DC, United States.,College of Liberal and Professional Studies, University of Pennsylvania, Philadelphia, PA, United States.,School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Maggie Neola
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Neal D Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, United States.,Adjunct Faculty, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
24
|
Kading J, Finck BN, DeBosch BJ. Targeting hepatocyte carbohydrate transport to mimic fasting and calorie restriction. FEBS J 2021; 288:3784-3798. [PMID: 32654397 PMCID: PMC8662989 DOI: 10.1111/febs.15482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
The pervasion of three daily meals and snacks is a relatively new introduction to our shared experience and is coincident with an epidemic rise in obesity and cardiometabolic disorders of overnutrition. The past two decades have yielded convincing evidence regarding the adaptive, protective effects of calorie restriction (CR) and intermittent fasting (IF) against cardiometabolic, neurodegenerative, proteostatic, and inflammatory diseases. Yet, durable adherence to intensive lifestyle changes is rarely attainable. New evidence now demonstrates that restricting carbohydrate entry into the hepatocyte by itself mimics several key signaling responses and physiological outcomes of IF and CR. This discovery raises the intriguing proposition that targeting hepatocyte carbohydrate transport to mimic fasting and caloric restriction can abate cardiometabolic and perhaps other fasting-treatable diseases. Here, we review the metabolic and signaling fates of a hepatocyte carbohydrate, identify evidence to target the key mediators within these pathways, and provide rationale and data to highlight carbohydrate transport as a broad, proximal intervention to block the deleterious sequelae of hepatic glucose and fructose metabolism.
Collapse
Affiliation(s)
- Jacqueline Kading
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients 2021; 13:nu13041187. [PMID: 33916669 PMCID: PMC8066770 DOI: 10.3390/nu13041187] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Diets have been a central component of lifestyle modification for decades. The Low-Carbohydrate Diet (LCD), originally conceived as a treatment strategy for intractable epilepsy (due to its association with ketogenesis), became popular in the 1970s and since then has risen to prominence as a weight loss strategy. Objective: To explore the efficacy, limitations and potential safety concerns of the LCD. Data Sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the terms ‘low carbohydrate diet and metabolic health’. Results: Evidence supports the efficacy of the LCD in the short-term (up to 6-months) for reduction in fat mass and remission of Type 2 Diabetes Mellitus (T2D). However, the longer-term efficacy of the LCD is disappointing, with diminishment of weight loss potential and metabolic benefits of the LCD beyond 6-months of its adoption. Furthermore, practical limitations of the LCD include the associated restriction of food choices that restrict the acceptability of the LCD for the individual, particularly over the longer term. There are also safety concerns of the LCD that stem from nutritional imbalances (with a relative excess of dietary fat and protein intake with associated dyslipidaemia and increased risk of insulin resistance and T2D development) and ketotic effects. Finally, the LCD often results in a reduction in dietary fibre intake, with potentially serious adverse consequences for overall health and the gut microbiota. Conclusions: Although widely adopted, the LCD usually has short-lived metabolic benefits, with limited efficacy and practicality over the longer term. Dietary modification needs tailoring to the individual, with careful a priori assessments of food preferences to ensure acceptability and adherence over the longer term, with avoidance of dietary imbalances and optimization of dietary fibre intake (primarily from plant-based fruit and vegetables), and with a posteriori assessments of the highly individual responses to the LCD. Finally, we need to change our view of diets from simply an excipient for weight loss to an essential component of a healthy lifestyle.
Collapse
|
26
|
Moore MP, Cunningham RP, Davis RAH, Deemer SE, Roberts BM, Plaisance EP, Rector RS. A dietary ketone ester mitigates histological outcomes of NAFLD and markers of fibrosis in high-fat diet fed mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G564-G572. [PMID: 33501889 PMCID: PMC8238172 DOI: 10.1152/ajpgi.00259.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Nutritional ketosis as a therapeutic tool has been extended to the treatment of metabolic diseases, including obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to determine whether dietary administration of the ketone ester (KE) R,S-1,3-butanediol diacetoacetate (BD-AcAc2) attenuates markers of hepatic stellate cell (HSC) activation and hepatic fibrosis in the context of high-fat diet (HFD)-induced obesity. Six-week-old male C57BL/6J mice were placed on a 10-wk ad libitum HFD (45% fat, 32% carbohydrates, 23% proteins). Mice were then randomized to one of three groups (n = 10 per group) for an additional 12 wk: 1) control (CON), continuous HFD; 2) pair-fed (PF) to KE, and 3) KE (HFD + 30% energy from BD-AcAc2, KE). KE feeding significantly reduced histological steatosis, inflammation, and total NAFLD activity score versus CON, beyond improvements observed for calorie restriction alone (PF). Dietary KE supplementation also reduced the protein content and gene expression of profibrotic markers (α-SMA, COL1A1, PDGF-β, MMP9) versus CON (P < 0.05), beyond reductions observed for PF versus CON. Furthermore, KE feeding increased hepatic markers of anti-inflammatory M2 macrophages (CD163) and also reduced proinflammatory markers [tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and cellular communication network factor 1 (CCN1)] versus CON and PF (P ≤ 0.05), in the absence of changes in markers of total hepatic macrophage content (F4/80 and CD68; P > 0.05). These data highlight that the dietary ketone ester BD-AcAc2 ameliorates histological NAFLD and inflammation and reduces profibrotic and proinflammatory markers. Future studies to further explore potential mechanisms are warranted.NEW & NOTEWORTHY To our knowledge, this is the first study focusing on hepatic outcomes in response to dietary ketone ester feeding in male mice with HFD-induced NAFLD. Novel findings include that dietary ketone ester feeding ameliorates NAFLD outcomes via reductions in histological steatosis and inflammation. These improvements were beyond those observed for caloric restriction alone. Furthermore, dietary ketone ester feeding was associated with greater reductions in markers of hepatic fibrogenesis and inflammation compared with control and calorie-restricted mice.
Collapse
Affiliation(s)
- Mary P Moore
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rory P Cunningham
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rachel A H Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah E Deemer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon M Roberts
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama
| | - R Scott Rector
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
27
|
Ketogenic Diet Enhances the Cholesterol Accumulation in Liver and Augments the Severity of CCl 4 and TAA-Induced Liver Fibrosis in Mice. Int J Mol Sci 2021; 22:ijms22062934. [PMID: 33805788 PMCID: PMC7998170 DOI: 10.3390/ijms22062934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Persistent chronic liver diseases increase the scar formation and extracellular matrix accumulation that further progress to liver fibrosis and cirrhosis. Nevertheless, there is no antifibrotic therapy to date. The ketogenic diet is composed of high fat, moderate to low-protein, and very low carbohydrate content. It is mainly used in epilepsy and Alzheimer’s disease. However, the effects of the ketogenic diet on liver fibrosis remains unknown. Through ketogenic diet consumption, β-hydroxybutyrate (bHB) and acetoacetate (AcAc) are two ketone bodies that are mainly produced in the liver. It is reported that bHB and AcAc treatment decreases cancer cell proliferation and promotes apoptosis. However, the influence of bHB and AcAc in hepatic stellate cell (HSC) activation and liver fibrosis are still unclear. Therefore, this study aimed to investigate the effect of the ketogenic diet and ketone bodies in affecting liver fibrosis progression. Our study revealed that feeding a high-fat ketogenic diet increased cholesterol accumulation in the liver, which further enhanced the carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis. In addition, more severe liver inflammation and the loss of hepatic antioxidant and detoxification ability were also found in ketogenic diet-fed fibrotic mouse groups. However, the treatment with ketone bodies (bHB and AcAc) did not suppress transforming growth factor-β (TGF-β)-induced HSC activation, platelet-derived growth factor (PDGF)-BB-triggered proliferation, and the severity of CCl4-induced liver fibrosis in mice. In conclusion, our study demonstrated that feeding a high-fat ketogenic diet may trigger severe steatohepatitis and thereby promote liver fibrosis progression. Since a different ketogenic diet composition may exert different metabolic effects, more evidence is necessary to clarify the effects of a ketogenic diet on disease treatment.
Collapse
|
28
|
Kim A, Krishnan A, Hamilton JP, Woreta TA. The Impact of Dietary Patterns and Nutrition in Nonalcoholic Fatty Liver Disease. Gastroenterol Clin North Am 2021; 50:217-241. [PMID: 33518166 DOI: 10.1016/j.gtc.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic liver disease worldwide. The prevalence of NAFLD has grown proportionally with the rise in obesity, sedentary lifestyle, unhealthy dietary patterns, and metabolic syndrome. Currently, in the absence of approved pharmacologic treatment, the keystone of treatment is lifestyle modification focused on achieving a weight loss of 7%-10%, cardiovascular exercise, and improving insulin sensitivity. The primary aim of this review is to outline the effect of different dietetic approaches against NAFLD and highlight the important micronutrient components in the management of NAFLD.
Collapse
Affiliation(s)
- Ahyoung Kim
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arunkumar Krishnan
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tinsay A Woreta
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Ma S, Yang J, Tominaga T, Liu C, Suzuki K. A Low-Carbohydrate Ketogenic Diet and Treadmill Training Enhanced Fatty Acid Oxidation Capacity but Did Not Enhance Maximal Exercise Capacity in Mice. Nutrients 2021; 13:nu13020611. [PMID: 33668504 PMCID: PMC7918427 DOI: 10.3390/nu13020611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
The low-carbohydrate ketogenic diet (LCKD) is a dietary approach characterized by the intake of high amounts of fat, a balanced amount of protein, and low carbohydrates, which is insufficient for metabolic demands. Previous studies have shown that an LCKD alone may contribute to fatty acid oxidation capacity, along with endurance. In the present study, we combined a 10-week LCKD with an 8-week forced treadmill running program to determine whether training in conjunction with LCKD enhanced fatty acid oxidation capacity, as well as whether the maximal exercise capacity would be affected by an LCKD or training in a mice model. We found that the lipid pool and fatty acid oxidation capacity were both enhanced following the 10-week LCKD. Further, key fatty acid oxidation related genes were upregulated. In contrast, the 8-week training regimen had no effect on fatty acid and ketone body oxidation. Key genes involved in carbohydrate utilization were downregulated in the LCKD groups. However, the improved fatty acid oxidation capacity did not translate into an enhanced maximal exercise capacity. In summary, while favoring the fatty acid oxidation system, an LCKD, alone or combined with training, had no beneficial effects in our intensive exercise-evaluation model. Therefore, an LCKD may be promising to improve endurance in low- to moderate-intensity exercise, and may not be an optimal choice for those partaking in high-intensity exercise.
Collapse
Affiliation(s)
- Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo 1020083, Japan;
| | - Jiao Yang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Takaki Tominaga
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo 1020083, Japan;
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
| | - Chunhong Liu
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
- Correspondence: (C.L.); (K.S.); Tel.: +86-020-8528-3448 (C.L.); +81-04-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- Correspondence: (C.L.); (K.S.); Tel.: +86-020-8528-3448 (C.L.); +81-04-2947-6898 (K.S.)
| |
Collapse
|
30
|
Zhang W, Guo X, Chen L, Chen T, Yu J, Wu C, Zheng J. Ketogenic Diets and Cardio-Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:753039. [PMID: 34795641 PMCID: PMC8594484 DOI: 10.3389/fendo.2021.753039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
While the prevalence of cardio-metabolic diseases (CMDs) has become a worldwide epidemic, much attention is paid to managing CMDs effectively. A ketogenic diet (KD) constitutes a high-fat and low-carbohydrate diet with appropriate protein content and calories. KD has drawn the interests of clinicians and scientists regarding its application in the management of metabolic diseases and related disorders; thus, the current review aimed to examine the evidences surrounding KD and the CMDs to draw the clinical implications. Overall, KD appears to play a significant role in the therapy of various CMDs, which is manifested by the effects of KDs on cardio-metabolic outcomes. KD therapy is generally promising in obesity, heart failure, and hypertension, though different voices still exist. In diabetes and dyslipidemia, the performance of KD remains controversial. As for cardiovascular complications of metabolic diseases, current evidence suggests that KD is generally protective to obese related cardiovascular disease (CVD), while remaining contradictory to diabetes and other metabolic disorder related CVDs. Various factors might account for the controversies, including genetic background, duration of therapy, food composition, quality, and sources of KDs. Therefore, it's crucial to perform more rigorous researches to focus on clinical safety and appropriate treatment duration and plan of KDs.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| |
Collapse
|
31
|
Fernandes GW, Bocco BMLC. Hepatic Mediators of Lipid Metabolism and Ketogenesis: Focus on Fatty Liver and Diabetes. Curr Diabetes Rev 2021; 17:e110320187539. [PMID: 33143628 DOI: 10.2174/1573399816999201103141216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic disorder that it is caused by the absence of insulin secretion due to the inability of the pancreas to produce it (type 1 diabetes; T1DM), or due to defects of insulin signaling in the peripheral tissues, resulting in insulin resistance (type 2 diabetes; T2DM). Commonly, the occurrence of insulin resistance in T2DM patients reflects the high prevalence of obesity and non-alcoholic fatty liver disease (NAFLD) in these individuals. In fact, approximately 60% of T2DM patients are also diagnosed to have NAFLD, and this condition is strongly linked with insulin resistance and obesity. NAFLD is the hepatic manifestation of obesity and metabolic syndrome and includes a spectrum of pathological conditions, which range from simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. NAFLD manifestation is followed by a series of hepatic lipid deregulations and the main abnormalities are increased triglyceride levels, increased hepatic production of VLDL and a reduction in VLDL catabolism. During the progression of NAFLD, the production of ketone bodies progressively reduces while hepatic glucose synthesis and output increases. In fact, most of the fat that enters the liver can be disposed of through ketogenesis, preventing the development of NAFLD and hyperglycemia. OBJECTIVE This review will focus on the pathophysiological aspect of hepatic lipid metabolism deregulation, ketogenesis, and its relevance in the progression of NAFLD and T2DM. CONCLUSION A better understanding of the molecular mediators involved in lipid synthesis and ketogenesis can lead to new treatments for metabolic disorders in the liver, such as NAFLD.
Collapse
Affiliation(s)
- Gustavo W Fernandes
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| | - Barbara M L C Bocco
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| |
Collapse
|
32
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
33
|
Moore MP, Cunningham RP, Dashek RJ, Mucinski JM, Rector RS. A Fad too Far? Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity (Silver Spring) 2020; 28:1843-1852. [PMID: 32893456 PMCID: PMC7511422 DOI: 10.1002/oby.22964] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health problem, and its prevalence has increased in recent years, concurrent with rising rates of obesity and other metabolic diseases. Currently, there are no FDA-approved pharmacological therapies for NAFLD, and lifestyle interventions, including weight loss and exercise, remain the cornerstones for treatment. Manipulating diet composition and eating patterns may be a sustainable approach to NAFLD treatment. Dietary strategies including Paleolithic, ketogenic, Mediterranean, high-protein, plant-based, low-carbohydrate, and intermittent fasting diets have become increasingly popular because of their purported benefits on metabolic disease. This review highlights what is currently known about these popular dietary approaches in the management of NAFLD in clinical populations with mechanistic insight from animal studies. It also identifies key knowledge gaps to better inform future preclinical and clinical studies aimed at the treatment of NAFLD.
Collapse
Affiliation(s)
- Mary P. Moore
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| | - Rory P. Cunningham
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| | - Ryan J. Dashek
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, 65211
- Comparative Medicine Program, University of Missouri, Columbia, MO 65211
| | - Justine M. Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| | - R. Scott Rector
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
- Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
34
|
Muyyarikkandy MS, McLeod M, Maguire M, Mahar R, Kattapuram N, Zhang C, Surugihalli C, Muralidaran V, Vavilikolanu K, Mathews CE, Merritt ME, Sunny NE. Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD. FASEB J 2020; 34:14832-14849. [PMID: 32918763 DOI: 10.1096/fj.202001495r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial adaptation during non-alcoholic fatty liver disease (NAFLD) include remodeling of ketogenic flux and sustained tricarboxylic acid (TCA) cycle activity, which are concurrent to onset of oxidative stress. Over 70% of obese humans have NAFLD and ketogenic diets are common weight loss strategies. However, the effectiveness of ketogenic diets toward alleviating NAFLD remains unclear. We hypothesized that chronic ketogenesis will worsen metabolic dysfunction and oxidative stress during NAFLD. Mice (C57BL/6) were kept (for 16-wks) on either a low-fat, high-fat, or high-fat diet supplemented with 1.5X branched chain amino acids (BCAAs) by replacing carbohydrate calories (ketogenic). The ketogenic diet induced hepatic lipid oxidation and ketogenesis, and produced multifaceted changes in flux through the individual steps of the TCA cycle. Higher rates of hepatic oxidative fluxes fueled by the ketogenic diet paralleled lower rates of de novo lipogenesis. Interestingly, this metabolic remodeling did not improve insulin resistance, but induced fibrogenic genes and inflammation in the liver. Under a chronic "ketogenic environment," the hepatocyte diverted more acetyl-CoA away from lipogenesis toward ketogenesis and TCA cycle, a milieu which can hasten oxidative stress and inflammation. In summary, chronic exposure to ketogenic environment during obesity and NAFLD has the potential to aggravate hepatic mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Marc McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Meghan Maguire
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nathan Kattapuram
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Christine Zhang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Chaitra Surugihalli
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Vaishna Muralidaran
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Kruthi Vavilikolanu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Clayton E Mathews
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
35
|
High carbohydrate and noodle/meat-rich dietary patterns interact with the minor haplotype in the 22q13 loci to increase its association with non-alcoholic fatty liver disease risk in Koreans. Nutr Res 2020; 82:88-98. [PMID: 32977255 DOI: 10.1016/j.nutres.2020.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver(NAFLD) is prevalent in Asians despite the low obesity rate. We hypothesized that the haplotype of genetic variants in the 22q13 loci has a strong association with non-alcoholic fatty liver disease (NAFLD) that can be identified by genome-wide association study and that lifestyles may interact with the haplotype. We tested the hypothesis in middle-aged and elderly adults in a large city hospital-based cohort from the KoGES study. Men and women diagnosed with fatty liver, but who respectively consumed over 40 and 30 g ethanol per day were excluded. The haplotype of the selected SNPs from the 22q13 loci that influences NAFLD risk was generated. Among the 27374 participants, 1486 (5.4%) were diagnosed with NAFLD. LARGE_rs240072, RBFOX2_rs11089778, TRIOBP_rs12628603, PNPLA3_rs738409, and PARVB_rs2073080 in the 22q13 loci were included in the haplotype. Participants with the minor haplotype had 1.8, 2.3, and 1.8 times higher in the risk for NAFLD and serum AST and ALT activities, respectively, than those with the major haplotype. BMI, waist circumferences, serum glucose concentrations, and blood pressure interacted with the haplotype for NAFLD risk. We also found that a high carbohydrate intake and a dietary pattern characterized by high noodle and meat consumption significantly interacted with the minor haplotype to increase the risk of NAFLD. We hypothesized that the high incidence of NAFLD among Koreans, despite a relatively low incidence of obesity, might be due to genetic factors and perhaps their interactions with dietary patterns. The hypothesis was accepted since this study confirmed that participants with the minor allele of the haplotype in the 22q13 loci had a higher NAFLD risk that was exacerbated by high intakes of carbohydrates and a dietary pattern characterized by high noodle and meat consumption.
Collapse
|
36
|
Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, Spera G, Lubrano C, Gnessi L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev 2020; 21:e13024. [PMID: 32207237 PMCID: PMC7379247 DOI: 10.1111/obr.13024] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease, characterized by hepatic fat accumulation and possible development of inflammation, fibrosis, and cancer. The ketogenic diet (KD), with its drastic carbohydrate reduction, is a now popular weight loss intervention, despite safety concerns on a possible association with fatty liver. However, KDs were also reported to be beneficial on hepatic pathology, with ketone bodies recently proposed as effective modulators of inflammation and fibrosis. If the beneficial impact of weight loss on NAFLD is established, less is known on the effect of macronutrient distribution on such outcome. In a hypocaloric regimen, the latter seems not to be crucial, whereas at higher calorie intake, macronutrient ratio and, theoretically, ketosis, may become important. KDs could positively impact NAFLD for their very low carbohydrate content, and whether ketosis plays an additional role is unknown. Indeed, several mechanisms may directly link ketosis and NAFLD improvement, and elucidating these aspects would pave the way for new therapeutic strategies. We herein aimed at providing an accurate revision of current literature on KDs and NAFLD, focusing on clinical evidence, metabolic pathways involved, and strict categorization of dietary interventions.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Rossella Tozzi
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Dario Tuccinardi
- Department of Endocrinology and DiabetesUniversity Campus Bio‐Medico of RomeRomeItaly
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Giovanni Spera
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly
| |
Collapse
|
37
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
38
|
Loss of HMGCS2 Enhances Lipogenesis and Attenuates the Protective Effect of the Ketogenic Diet in Liver Cancer. Cancers (Basel) 2020; 12:cancers12071797. [PMID: 32635582 PMCID: PMC7408319 DOI: 10.3390/cancers12071797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor with limited treatment. The ketogenic diet (KD) emerged as a metabolic therapy for cancer; however, the antitumor effect on HCC remains controversial. We previously reported that the ketogenesis rate-limiting enzyme, 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2), was downregulated in most patients with HCC. The knockdown of HMGCS2 enhanced the proliferation and metastasis ability of HCC cells. However, the role of HMGCS2 in affecting KD-mediated metabolic effects remains unclear. Here, we report that KD feeding upregulates HMGCS2 expression and inhibits HCC tumor growth, while a reverse correlation between tumor size and HMGCS2 expression was observed. We found that HCC cells with HMGCS2 downregulation possess altered lipid metabolism that increases fatty acid, triglyceride, and cholesterol synthesis. Under KD feeding, a higher tumor growth rate was observed in HMGCS2 knockdown tumors, which had increased lipid synthesis-related marker expression and a positive correlation between lipid quantity and tumor weight. In conclusion, these results demonstrate that the downregulation of HMGCS2 attenuates the protective effect of the KD by shifting ketone production to enhance de novo lipogenesis in HCC. Our study elucidates a new molecular mechanism underlying the crosstalk between HMGCS2 expression and the KD in cancer treatment, which provides more information for precision medicine in developing personalized treatment strategies.
Collapse
|
39
|
Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Nutrients 2019; 11:nu11123064. [PMID: 31888132 PMCID: PMC6950283 DOI: 10.3390/nu11123064] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Lifestyle interventions, namely optimizing nutrition and increasing physical activity, remain the cornerstone of therapy for non-alcoholic fatty liver disease (NAFLD), as this can lead to the significant improvement or resolution of disease. The optimal nutritional approach to treat NAFLD remains unclear. The aim of this systematic review is to evaluate the effectiveness of different nutritional patterns on hepatic, metabolic, and weight-loss endpoints. MEDLINE via PubMed, Embase, Scopus, and Google Scholar were searched. Randomized trials of dietary interventions alone for adults with NAFLD were selected. Two authors independently reviewed articles, to select eligible studies, and performed data abstraction. Six studies, representing 317 patients, were included. The participants had a median age of 46, mean body mass index (BMI) 31.5 and were 64.3% male. The mean study duration was 16.33 ± 8.62 weeks. Reduction in hepatic steatosis (HS) was statistically significant in 3/5 Mediterranean Diet (MD), one low-carbohydrate, one intermittent fasting (IF) and 1/2 low fat (LF) diet interventions. A total of 3/5 studies using MD, 1/2 LF interventions, and the one IF intervention demonstrated significant reductions in weight. In conclusion, there appears to be most data in support of MD-based interventions, though further randomized trials are needed to assess comparative effectiveness for NAFLD.
Collapse
|
40
|
A low-carbohydrate ketogenic diet induces the expression of very-low-density lipoprotein receptor in liver and affects its associated metabolic abnormalities. NPJ Sci Food 2019; 3:25. [PMID: 31815184 PMCID: PMC6889268 DOI: 10.1038/s41538-019-0058-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
A low-carbohydrate ketogenic diet (LCKD) promotes the progression of hepatic steatosis in C57BL/6 wild-type mice, but improves the condition in leptin-deficient obese (ob/ob) mice. Here, we show a novel effect of LCKD associated with the conflicting effects on these mice. Gene expression microarray analyses showed that expression of the Vldlr gene, which encodes the very-low-density lipoprotein receptor (VLDLR), was induced in LCKD-fed ob/ob mice. Although the VLDLR is not normally expressed in the liver, the LCKD led to VLDLR expression in both ob/ob and wild-type mice. To clarify this effect on VLDL dynamics, we analyzed the lipid content of serum lipoproteins and found a marked decrease in VLDL-triglycerides only in LCKD-fed wild-type mice. Further analyses suggested that transport of triglycerides via VLDL from the liver to extrahepatic tissues was inhibited by LCKD-induced hepatic VLDLR expression, but rescued under conditions of leptin deficiency.
Collapse
|
41
|
Chester B, Babu JR, Greene MW, Geetha T. The effects of popular diets on type 2 diabetes management. Diabetes Metab Res Rev 2019; 35:e3188. [PMID: 31121637 DOI: 10.1002/dmrr.3188] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes can be managed with the use of diabetes self-management skills. Diet and exercise are essential segments of the lifestyle changes necessary for diabetes management. However, diet recommendations can be complicated in a world full of different diets. This review aims to evaluate the evidence on the effects of three popular diets geared towards diabetes management: low-carbohydrate and ketogenic diet, vegan diet, and the Mediterranean diet. While all three diets have been shown to assist in improving glycaemic control and weight loss, patient adherence, acceptability, and long-term manageability play essential roles in the efficacy of each diet.
Collapse
Affiliation(s)
- Brittannie Chester
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama
| | - Michael W Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama
| |
Collapse
|
42
|
Duarte SMB, Stefano JT, Vanni DS, Carrilho FJ, Oliveira CPMSD. IMPACT OF CURRENT DIET AT THE RISK OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD). ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:431-439. [PMID: 31721969 DOI: 10.1590/s0004-2803.201900000-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
The nonalcoholic fatty liver disease (NAFLD) affects approximately 20%-30% of general population and is even more prevalent among obese individuals. The risk factors mainly associated with NAFLD are diseases related to the metabolic syndrome, genetics and environment. In this review, we provide a literature compilation evaluating the evidence behind dietary components, including calories intake, fat, protein, fibers and carbohydrate, especially fructose which could be a trigger to development and progression of the NAFLD. In fact, it has been demonstrated that diet is an important factor for the development of NAFLD and its association is complex and extends beyond total energy intake.
Collapse
Affiliation(s)
| | - José Tadeu Stefano
- Universidade de São Paulo, Hospital das Clínicas, Laboratório de Gastroenterologia Clínica e Experimental (LIM-07) do Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Denise Siqueira Vanni
- Universidade de São Paulo, Hospital das Clínicas, Divisão de Gastroenterologia e Hepatologia Clínica e Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Flair José Carrilho
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil
- Universidade de São Paulo, Hospital das Clínicas, Divisão de Gastroenterologia e Hepatologia Clínica e Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Claudia Pinto Marques Souza de Oliveira
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil
- Universidade de São Paulo, Hospital das Clínicas, Laboratório de Gastroenterologia Clínica e Experimental (LIM-07) do Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| |
Collapse
|
43
|
Gupta L, Khandelwal D, Kalra S, Gupta P, Dutta D, Aggarwal S. Ketogenic diet in endocrine disorders: Current perspectives. J Postgrad Med 2019; 63:242-251. [PMID: 29022562 PMCID: PMC5664869 DOI: 10.4103/jpgm.jpgm_16_17] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has beneficial effects on cardiac ischemic preconditioning, improves oxygenation in patients with respiratory failure, improves glycemic control in diabetics, is associated with significant weight loss, and has a beneficial impact on polycystic ovarian syndrome. Multivitamin supplementations are recommended with KD. Recently, ketones are being proposed as super-metabolic fuel; and KD is currently regarded as apt dietary therapy for "diabesity."
Collapse
Affiliation(s)
- L Gupta
- Department of Dietetics, Maharaja Agrasen Hospital, New Delhi, India
| | - D Khandelwal
- Department of Endocrinology, Maharaja Agrasen Hospital, New Delhi, India
| | - S Kalra
- Department of Endocrinology, Bharti Hospital and Bharti Research Institute of Diabetes and Endocrinology, Karnal, Haryana, India
| | - P Gupta
- Department of Paediatrics, Maharaja Agrasen Hospital, New Delhi, India
| | - D Dutta
- Department of Endocrinology, Venkateshwar Hospitals, New Delhi, India
| | - S Aggarwal
- Department of Medicine, Division of Endocrinology, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
44
|
Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 2019; 10:607. [PMID: 31406105 PMCID: PMC6690951 DOI: 10.1038/s41419-019-1822-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Rapamycin (Sirolimus) slows aging, extends life span, and prevents age-related diseases, including diabetic complications such as retinopathy. Puzzlingly, rapamycin can induce insulin sensitivity, but may also induce insulin resistance or glucose intolerance without insulin resistance. This mirrors the effect of fasting and very low calorie diets, which improve insulin sensitivity and reverse type 2 diabetes, but also can cause a form of glucose intolerance known as benevolent pseudo-diabetes. There is no indication that starvation (benevolent) pseudo-diabetes is detrimental. By contrast, it is associated with better health and life extension. In transplant patients, a weak association between rapamycin/everolimus use and hyperglycemia is mostly due to a drug interaction with calcineurin inhibitors. When it occurs in cancer patients, the hyperglycemia is mild and reversible. No hyperglycemic effects of rapamycin/everolimus have been detected in healthy people. For antiaging purposes, rapamycin/everolimus can be administrated intermittently (e.g., once a week) in combination with intermittent carbohydrate restriction, physical exercise, and metformin.
Collapse
|
45
|
Abstract
Designed a century ago to treat epilepsy, the ketogenic diet (KD) is also effective against obesity and diabetes. Paradoxically, some studies in rodents have found that the KD seemingly causes diabetes, contradicting solid clinical data in humans. This paradox can be resolved by applying the concept of starvation pseudo-diabetes, which was discovered in starved animals almost two centuries ago, and has also been observed in some rapamycin-treated rodents. Intriguingly, use of the KD and rapamycin is indicated for a similar spectrum of diseases, including Alzheimer's disease and cancer. Even more intriguingly, benevolent (starvation) pseudo-diabetes may counteract type 2 diabetes or its complications.
Collapse
|
46
|
Moore MP, Cunningham RP, Kelty TJ, Boccardi LR, Nguyen NY, Booth FW, Rector RS. Ketogenic diet in combination with voluntary exercise impacts markers of hepatic metabolism and oxidative stress in male and female Wistar rats. Appl Physiol Nutr Metab 2019; 45:35-44. [PMID: 31116955 DOI: 10.1139/apnm-2019-0042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ketogenic diets (KDs) are shown to benefit hepatic metabolism; however, their effect on the liver when combined with exercise is unknown. We investigated the effects of a KD versus a "western" diet (WD) on markers of hepatic lipid metabolism and oxidative stress in exercising rats. Male and female Wistar rats with access to voluntary running wheels were randomized to 3 groups (n = 8-14 per group): standard chow (SC; 17% fat), WD (42% fat), or KD (90.5% fat) for 7 weeks. Body fat percentage (BF%) was increased in WD and KD versus SC, although KD females displayed lower BF% versus WD (p ≤ 0.05). Liver triglycerides were higher in KD and WD versus SC but were attenuated in KD females versus WD (p ≤ 0.05). KD suppressed hepatic markers of de novo lipogenesis (fatty acid synthase, acetyl coenzyme A carboxylase) and increased markers of mitochondrial biogenesis/content (peroxisome proliferator activated receptor-1α, mitochondrial transcription factor A (TFAM), and citrate synthase activity). KD also increased hepatic glutathione peroxidase 1 and lowered oxidized glutathione. Female rats exhibited elevated hepatic markers of mitochondrial biogenesis (TFAM), mitophagy (light chain 3 II/I ratio, autophagy-related protein 12:5), and cellular energy homeostasis (phosphorylated 5'AMP-activated protein kinase/5'AMP-activated protein kinase) versus males. These data highlight that KD and exercise beneficially impacts hepatic metabolism and oxidative stress and merits further investigation. Novelty KD feeding combined with exercise improved hepatic oxidative stress, suppressed markers of de novo lipogenesis, and increased markers of mitochondrial content versus WD feeding. Males and females responded similarly to combined KD feeding and exercise. Female rats exhibited elevated hepatic markers of autophagy/mitophagy and energy homeostasis compared with male rats.
Collapse
Affiliation(s)
- Mary P Moore
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65203, USA
| | - Rory P Cunningham
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65203, USA
| | - Taylor J Kelty
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Luigi R Boccardi
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65203, USA.,Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - Nhu Y Nguyen
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65203, USA
| | - Frank W Booth
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - R Scott Rector
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65203, USA.,Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
47
|
Ministrini S, Calzini L, Nulli Migliola E, Ricci MA, Roscini AR, Siepi D, Tozzi G, Daviddi G, Martorelli EE, Paganelli MT, Lupattelli G. Lysosomal Acid Lipase as a Molecular Target of the Very Low Carbohydrate Ketogenic Diet in Morbidly Obese Patients: The Potential Effects on Liver Steatosis and Cardiovascular Risk Factors. J Clin Med 2019; 8:jcm8050621. [PMID: 31067824 PMCID: PMC6571559 DOI: 10.3390/jcm8050621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
A very low carbohydrate ketogenic diet (VLCKD) is an emerging technique to induce a significant, well-tolerated, and rapid loss of body weight in morbidly obese patients. The low activity of lysosomal acid lipase (LAL) could be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is a common feature in morbidly obese patients. Fifty-two obese patients suitable for a bariatric surgery intervention underwent a 25-day-long VLCKD. The biochemical markers of glucose and lipid metabolism, and flow-mediated dilation (FMD) of the brachial artery were measured before and after VLCKD. LAL activity was measured using the dried blood spot technique in 20 obese patients and in a control group of 20 healthy, normal-weight subjects. After VLCKD, we observed a significant reduction in body mass index, fasting glucose, insulinemia, and lipid profile parameters. No significant variation in FMD was observed. The number of patients with severe liver steatosis significantly decreased. LAL activity significantly increased, although the levels were not significantly different as compared to the control group. In conclusion, VLCKD induces the activity of LAL in morbidly obese subjects and reduces the secretion of all circulating lipoproteins. These effects could be attributed to the peculiar composition of the diet, which is particularly poor in carbohydrates and relatively rich in proteins.
Collapse
Affiliation(s)
- Stefano Ministrini
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Lucia Calzini
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Elisa Nulli Migliola
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Maria Anastasia Ricci
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Anna Rita Roscini
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Donatella Siepi
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Giulia Tozzi
- Hepatology, Gastroenterology and Nutrition Unit, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy.
| | - Giulia Daviddi
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Eva-Edvige Martorelli
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | | | - Graziana Lupattelli
- Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy.
| |
Collapse
|
48
|
Huang J, Li YQ, Wu CH, Zhang YL, Zhao ST, Chen YJ, Deng YH, Xuan A, Sun XD. The effect of ketogenic diet on behaviors and synaptic functions of naive mice. Brain Behav 2019; 9:e01246. [PMID: 30848079 PMCID: PMC6456772 DOI: 10.1002/brb3.1246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Beyond its application as an epilepsy therapy, the ketogenic diet (KD) has been considered a potential treatment for a variety of other neurological and metabolic disorders. However, whether KD promotes functional restoration by reducing the pathological processes underlying individual diseases or through some independent mechanisms is not clear. METHODS In this study, we evaluated the effect of KD on a series of behaviors and synaptic functions of young adult naive mice. Wild-type C57BL/6J mice at age of 2-3 months were fed with control diet or KD for three months. Body weight and caloric intake were monitored throughout the experiments. We assessed behavioral performance with seizure induction, motor coordination and activity, anxiety level, spatial learning and memory, sociability, and depression. Synaptic transmission and long-term potentiation were also recorded. RESULTS KD-fed mice performed equivalent to control-diet-fed mice in the behavioral tests and electrophysiological assays except exhibiting slower weight gain and increased seizure threshold. CONCLUSIONS Our results contribute to the better understanding of effects of the KD on physiological behaviors and synaptic functions.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Long Zhang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Hong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aiguo Xuan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang-Dong Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
49
|
Ullah R, Rauf N, Nabi G, Ullah H, Shen Y, Zhou YD, Fu J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int J Biol Sci 2019; 15:265-276. [PMID: 30745819 PMCID: PMC6367556 DOI: 10.7150/ijbs.30121] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an acquired metabolic disease characterized by triglycerides (TGs) deposition in liver induced by other factors rather than alcohol consumption. NAFLD significantly contributes to liver diseases in children and adults. NAFLD pathogenesis is associated with age, gender, race and ethnicity. Insulin resistance, hyperinsulinemia, elevated plasma free fatty acids (FFAs), fatty liver, hepatocyte injury, liver inflammation, oxidative stress, mitochondrial dysfunction, imbalanced pro-inflammatory cytokines, and fibrosis are the characteristics of NAFLD. Factors including genetic and epigenetic pathways, sedentary lifestyle, sleep, and diet composition affect NAFLD pathogenesis. In this review, we discuss the aetiology, risk factors and pathogenesis of NAFLD. Special focus is given to macro and micro nutrition as causing factors and their role in the prevention of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ghulam Nabi
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Shen
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| |
Collapse
|
50
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|