1
|
Getu MA, Zhang X, Ying Y, Gong P. A two-sample Mendelian randomization study of type 1 diabetes and the risk of 22 site-specific cancers. Sci Rep 2025; 15:11371. [PMID: 40175445 PMCID: PMC11965372 DOI: 10.1038/s41598-025-89288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
Previous observational studies have suggested a potential link between Type 1 Diabetes (T1D) and site-specific cancer risk. However, the nature of this association remains uncertain due to confounding factors, reverse causation, and biases inherent in observational research. To address this gap, we conducted a two-sample Mendelian randomization (MR) study to assess the causal relationship between T1D and 22 site-specific cancers. Using summary statistics from large-scale genome-wide association studies of European ancestry, comprising data on T1D (N = 520,580) and the 22 site-specific cancers, we selected single nucleotide polymorphisms strongly associated with T1D as instruments for our analysis. Causal relationships were primarily evaluated through inverse-variance weighting-based analyses, supplemented by three additional methods: MR-Egger, weighted median, and mode-based estimate. Sensitivity analyses were performed, excluding genetic variants with potential pleiotropic effects. The finding demonstrated a causal association between T1D and increased risks of lung cancer (OR = 1.018, 95% CI 1.004-1.033, p = 0.011), colorectal cancer (OR = 1.022, 95% CI 1.003-1.041, p = 0.019), and prostate cancer (OR = 1.018, 95% CI 1.005-1.030, p = 0.006). Conversely, T1D was associated with decreased risks of breast cancer (OR = 0.989, 95% CI 0.981-0.998, p = 0.016), lymphoma (OR = 0.999, 95% CI 0.974-0.999, p = 0.003), malignant melanoma (OR = 0.999, 95% CI 0.989-0.999, p = 0.001), and non-melanoma skin cancer (OR = 0.999, 95% CI 0.899-0.999, p = 0.003). Our MR study provides an evidence of causal association between T1D and altered risks of various site-specific cancers. Further research is recommended to validate this finding in diverse populations to enhance the generalizability of findings across different ethnic groups.
Collapse
Affiliation(s)
- Mikiyas Amare Getu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Woldia University, Woldia, Ethiopia
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China.
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Quecchia C, Vianello A. The Therapeutic Potential of Myo-Inositol in Managing Patients with Respiratory Diseases. Int J Mol Sci 2025; 26:2185. [PMID: 40076806 PMCID: PMC11901072 DOI: 10.3390/ijms26052185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Respiratory diseases are major health concerns worldwide. Chronic respiratory diseases (CRDs) are the third leading cause of death worldwide and some of the most common are chronic obstructive pulmonary disease (COPD), asthma, occupational lung diseases, and pulmonary hypertension. Despite having different etiology and characteristics, these diseases share several features, such as a persistent inflammatory state, chronic oxidative stress, impaired mucociliary clearance, and increased alveolar surface tension. CRDs are not curable; however, various forms of treatment, that help restore airway patency and reduce shortness of breath, can improve daily life for people living with these conditions. In this regard myo-inositol may represent a valid therapeutic adjuvant approach due to its properties. Being a redox balancer, an inflammation modulator, and, most importantly, a component of pulmonary surfactant, it may improve lung function and counteract symptoms associated with respiratory diseases, as recently evidenced in patients with COPD, COVID-19, asthma, and bronchiectasis. The aim of this review is to evaluate the potential therapeutic role of myo-inositol supplementation in the management of patients with respiratory diseases.
Collapse
Affiliation(s)
- Cristina Quecchia
- Pediatric Allergy Service, Children’s Hospital, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
3
|
Oh JH, Lee SJ, Park YJ. F-18 FDG PET-derived imaging biomarkers of airway inflammation and their clinical associations in patients with non-small cell lung cancer. BMC Cancer 2025; 25:379. [PMID: 40022020 PMCID: PMC11871754 DOI: 10.1186/s12885-025-13727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Airway inflammation is believed to play a crucial role in the development and progression of non-small cell lung cancer (NSCLC). However, no study has yet employed quantified imaging biomarkers to assess airway inflammation in patients with NSCLC. This study aimed to validate the hypothesis that airway inflammation is more pronounced in a large cohort of patients with NSCLC compared to controls, using airway imaging biomarkers derived from fluorine-18-fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET), as well as to explore their associations with clinical parameters. METHODS We retrospectively enrolled 618 patients with NSCLC and 441 controls who underwent F-18 FDG PET/computed tomography (CT). The F-18 FDG PET/CT images were subjected to airway segmentation to determine the airway maximum standardized uptake value (SUVmax) and total lesion glycolysis (TLG). We compared the airway PET parameters between patients with NSCLC and controls. Additionally, we investigated the associations between airway PET parameters and tumor SUVmax, stages, smoking pack-years, histological subtypes, systemic inflammation, and lung function in patients with NSCLC. RESULTS The median airway SUVmax (P < 0.0001) and TLG (P < 0.0001) were significantly higher in patients with NSCLC than in controls. The median airway SUVmax (P = 0.0098) and TLG (P < 0.0001) were significantly higher in patients with squamous cell carcinoma than in those with adenocarcinoma. Airway SUVmax and TLG showed weak positive correlations with tumor SUVmax, stages, white blood cell count, and neutrophil-to-lymphocyte ratio, but weak to moderate negative correlations with lung function parameters. Airway TLG showed a moderate positive correlation with smoking pack-years. CONCLUSIONS F-18 FDG PET-derived airway imaging biomarkers were higher in patients with NSCLC than in controls. Additionally, these biomarkers were associated with tumor SUVmax, stages, histological subtypes, serologic inflammatory markers, lung function, and smoking, suggesting their potential to provide insights into the development and severity of NSCLC.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
- Department of Pulmonology and Critical Care Medicine, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Su Jin Lee
- Department of Nuclear Medicine, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong-Jin Park
- Department of Nuclear Medicine, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Deng X, Gui Y, Zhao L. The micro(nano)plastics perspective: exploring cancer development and therapy. Mol Cancer 2025; 24:30. [PMID: 39856719 PMCID: PMC11761189 DOI: 10.1186/s12943-025-02230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Microplastics, as an emerging environmental pollutant, have received widespread attention for their potential impact on ecosystems and human health. Microplastics are defined as plastic particles less than 5 millimeters in diameter and can be categorized as primary and secondary microplastics. Primary microplastics usually originate directly from industrial production, while secondary microplastics are formed by the degradation of larger plastic items. Microplastics are capable of triggering cytotoxicity and chronic inflammation, and may promote cancer through mechanisms such as pro-inflammatory responses, oxidative stress and endocrine disruption. In addition, improved microplastics bring new perspectives to cancer therapy, and studies of microplastics as drug carriers are underway, showing potential for high targeting and bioavailability. Although current studies suggest an association between microplastics and certain cancers (e.g., lung, liver, and breast cancers), the long-term effects and specific mechanisms still need to be studied. This review aimed at exploring the carcinogenicity of microplastics and their promising applications in cancer therapy provides important directions for future research and emphasizes the need for multidisciplinary collaboration to address this global health challenge.
Collapse
Affiliation(s)
- Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China.
| |
Collapse
|
5
|
Huang Y, Zhang L, Zhang W, Lv N, Wang T. Diagnostic and prognostic values of NSCLC patients with or without obstructive pneumonia after sleeve lobectomy. Front Cell Infect Microbiol 2024; 14:1474998. [PMID: 39735257 PMCID: PMC11682716 DOI: 10.3389/fcimb.2024.1474998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Objective We aimed to identify the diagnostic value of next-generation sequencing (NGS) of bronchoalveolar lavage fluid (BALF) from patients with non-small-cell lung cancer (NSCLC). Methods Forty patients who were initially diagnosed with pulmonary nodules were enrolled. Frozen section histology was used to identify the NSCLC cell types. NGS of collected BALF samples was used for microbial identification. We compared the bacterial and viral distributions in BALF samples from patients with NSCLC with and without obstructive pneumonia as well as their NSCLC drainage times following surgery. Results Of the 29 patients with NSCLC, eight had obstructive pneumonia. Streptococcus pneumoniae, Streptococcus pseudopneumoniae, and Haemophilus parainfluenzae were the top three bacteria present in almost 50% of patients, both with and without obstructive pneumonia. The viral detection rate was higher in the BALF of patients with NSCLC who did not have obstructive pneumonia. However, in patients with NSCLC and drain times of >5 days, the human herpes virus type 7 detection rate was higher following surgery than it was in patients with NSCLC who had drain times of ≤5 days. Conclusion Viral imbalance in NSCLC is closely related to the occurrence of obstructive pneumonia and postoperative drainage time.
Collapse
Affiliation(s)
- Yuxia Huang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhang
- Department of Operating Room, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Lv
- Department of Operating Room, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lim WH, Lee JH, Park H, Park CM, Yoon SH. Effect of smoking on the diagnostic results and complication rates of percutaneous transthoracic needle biopsy. Eur Radiol 2024; 34:6514-6526. [PMID: 38528137 PMCID: PMC11399209 DOI: 10.1007/s00330-024-10705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To investigate the association of smoking with the outcomes of percutaneous transthoracic needle biopsy (PTNB). METHODS In total, 4668 PTNBs for pulmonary lesions were retrospectively identified. The associations of smoking status (never, former, current smokers) and smoking intensity (≤ 20, 21-40, > 40 pack-years) with diagnostic results (malignancy, non-diagnostic pathologies, and false-negative results in non-diagnostic pathologies) and complications (pneumothorax and hemoptysis) were assessed using multivariable logistic regression analysis. RESULTS Among the 4668 PTNBs (median age of the patients, 66 years [interquartile range, 58-74]; 2715 men), malignancies, non-diagnostic pathologies, and specific benign pathologies were identified in 3054 (65.4%), 1282 (27.5%), and 332 PTNBs (7.1%), respectively. False-negative results for malignancy occurred in 20.5% (236/1153) of non-diagnostic pathologies with decidable reference standards. Current smoking was associated with malignancy (adjusted odds ratio [OR], 1.31; 95% confidence interval [CI]: 1.02-1.69; p = 0.03) and false-negative results (OR, 2.64; 95% CI: 1.32-5.28; p = 0.006), while heavy smoking (> 40 pack-years) was associated with non-diagnostic pathologies (OR, 1.69; 95% CI: 1.19-2.40; p = 0.003) and false-negative results (OR, 2.12; 95% CI: 1.17-3.92; p = 0.02). Pneumothorax and hemoptysis occurred in 21.8% (1018/4668) and 10.6% (495/4668) of PTNBs, respectively. Heavy smoking was associated with pneumothorax (OR, 1.33; 95% CI: 1.01-1.74; p = 0.04), while heavy smoking (OR, 0.64; 95% CI: 0.40-0.99; p = 0.048) and current smoking (OR, 0.64; 95% CI: 0.42-0.96; p = 0.04) were inversely associated with hemoptysis. CONCLUSION Smoking history was associated with the outcomes of PTNBs. Current and heavy smoking increased false-negative results and changed the complication rates of PTNBs. CLINICAL RELEVANCE STATEMENT Smoking status and intensity were independently associated with the outcomes of PTNBs. Non-diagnostic pathologies should be interpreted cautiously in current or heavy smokers. A patient's smoking history should be ascertained before PTNB to predict and manage complications. KEY POINTS • Smoking status and intensity might independently contribute to the diagnostic results and complications of PTNBs. • Current and heavy smoking (> 40 pack-years) were independently associated with the outcomes of PTNBs. • Operators need to recognize the association between smoking history and the outcomes of PTNBs.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyungin Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Mahooti M, Abdolalipour E, Sanami S, Zare D. Inflammatory Modulation Effects of Probiotics: A Safe and Promising Modulator for Cancer Prevention. Curr Microbiol 2024; 81:372. [PMID: 39312034 DOI: 10.1007/s00284-024-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Chronic inflammation is the gate of many human illnesses and happens when the immune system is unable to suppress external attacks in the correct form. Nonetheless, the gut microbiome plays a pivotal role in keeping homeostasis in the human body and preventing inflammation. Imbalanced microbiota and many diseases can result in inflammation, which when not taken seriously, can be turned into chronic ones and ultimately lead to serious diseases such as cancer. One approach to maintaining hemostasis in the human body is consumption of probiotics as a supplement. Probiotics impact the immune functions of dendritic cells (DCs), T cells, and B cells in the gut-associated lymphoid tissue by inducing the secretion of an array of cytokines. They activate the innate immune response through their microbial-associated molecular pattern, and this activation is followed by multiple cytokine secretion and adaptive elicitation that mitigates pro-inflammatory expression levels and tumor incidence. Thus, according to several studies showing the benefit of probiotics application, alone or in combination with other agents, to induce potent immune responses in individuals against some inflammatory disorders and distinct types of cancers, this review is devoted to surveying the role of probiotics and the modulation of inflammation in some cancer models.
Collapse
Affiliation(s)
- Mehran Mahooti
- Department of Biotechnology, Iranian Research Organization for Science and Technology, P. O. Box 3353-5111, Tehran, Iran
| | - Elahe Abdolalipour
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Samira Sanami
- Ubnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Zare
- Department of Biotechnology, Iranian Research Organization for Science and Technology, P. O. Box 3353-5111, Tehran, Iran.
| |
Collapse
|
8
|
Park JE, Lee E, Singh D, Kim EK, Park B, Park JH. The effect of inhaler prescription on the development of lung cancer in COPD: a nationwide population-based study. Respir Res 2024; 25:229. [PMID: 38822332 PMCID: PMC11140980 DOI: 10.1186/s12931-024-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/04/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND COPD is associated with the development of lung cancer. A protective effect of inhaled corticosteroids (ICS) on lung cancer is still controversial. Hence, this study investigated the development of lung cancer according to inhaler prescription and comorbidties in COPD. METHODS A retrospective cohort study was conducted based on the Korean Health Insurance Review and Assessment Service database. The development of lung cancer was investigated from the index date to December 31, 2020. This cohort included COPD patients (≥ 40 years) with new prescription of inhalers. Patients with a previous history of any cancer during screening period or a switch of inhaler after the index date were excluded. RESULTS Of the 63,442 eligible patients, 39,588 patients (62.4%) were in the long-acting muscarinic antagonist (LAMA) and long-acting β2-agonist (LABA) group, 22,718 (35.8%) in the ICS/LABA group, and 1,136 (1.8%) in the LABA group. Multivariate analysis showed no significant difference in the development of lung cancer according to inhaler prescription. Multivariate analysis, adjusted for age, sex, and significant factors in the univariate analysis, demonstrated that diffuse interstitial lung disease (DILD) (HR = 2.68; 95%CI = 1.86-3.85), a higher Charlson Comorbidity Index score (HR = 1.05; 95%CI = 1.01-1.08), and two or more hospitalizations during screening period (HR = 1.19; 95%CI = 1.01-1.39), along with older age and male sex, were independently associated with the development of lung cancer. CONCLUSION Our data suggest that the development of lung cancer is not independently associated with inhaler prescription, but with coexisting DILD, a higher Charlson Comorbidity Index score, and frequent hospitalization.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, US
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Eun Kyung Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bumhee Park
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
9
|
Dang Z, Liu S, Wang X, Ren F, Hussain SA, Jia D. Protective effect of avicularin against lung cancer via inhibiting inflammation, oxidative stress, and induction of apoptosis: an in vitro and in vivo study. In Vitro Cell Dev Biol Anim 2024; 60:374-381. [PMID: 38592596 DOI: 10.1007/s11626-024-00854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/06/2023] [Indexed: 04/10/2024]
Abstract
The purpose of this research was to investigate whether or not avicularin (AVL) possesses any anticancer properties when tested against lung cancer. In the beginning, the effect that it had on the cellular viability of A549 cells was investigated, and it was discovered that AVL has a considerable negative impact on cellular viability. Following that, an investigation using flow cytometry was carried out to investigate its function in the process of apoptosis and the cell cycle of A549 cells. It has been discovered that AVL significantly promotes apoptosis and stops the cell cycle at the G2/M phase. The colony-forming capacity of A549 cells was observed to be greatly suppressed as the AVL concentration increased compared to the group that received no treatment. In addition to this, the benzo(a)pyrene in vivo model was established in order to investigate the pharmacological value of AVL. The findings revealed that AVL greatly prevented the formation of pro-inflammatory cytokines, in addition to the reduction in oxidative stress, which was evidenced by a reduction in the concentration of TNF-α, IL-1β, IL-6, and MDA with an improvement in the concentration of SOD and GPx, respectively. Our results successfully demonstrated the pharmacological benefit of avicularin against lung cancer, and it has been suggested that it showed a multifactorial effect.
Collapse
Affiliation(s)
- Zhiguo Dang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Baoji, Baoji, 721000, China
| | - Songbo Liu
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China
| | - XiaoJuan Wang
- Endoscopy Room, People's Hospital of Baoji, Baoji, 721000, China
| | - Fangfang Ren
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, 11451, Riyadh, Saudi Arabia
| | - Dong Jia
- Department of Respiratory and Critical Care Medicine, Xi'an North Hospital, Xi'an, China.
| |
Collapse
|
10
|
Arjsri P, Srisawad K, Semmarath W, Umsumarng S, Rueankham L, Saiai A, Rungrojsakul M, Katekunlaphan T, Anuchapreeda S, Dejkriengkraikul P. Suppression of inflammation-induced lung cancer cells proliferation and metastasis by exiguaflavanone A and exiguaflavanone B from Sophora exigua root extract through NLRP3 inflammasome pathway inhibition. Front Pharmacol 2023; 14:1243727. [PMID: 38026959 PMCID: PMC10667455 DOI: 10.3389/fphar.2023.1243727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Non-small cell lung cancer (NSCLC) is recognized for its aggressive nature and propensity for high rates of metastasis. The NLRP3 inflammasome pathway plays a vital role in the progression of NSCLC. This study aimed to investigate the effects of S. exigua extract and its active compounds on NLRP3 regulation in NSCLC using an in vitro model. Methods: S. exigua was extracted using hexane, ethyl acetate and ethanol to obtain S. exigua hexane fraction (SE-Hex), S. exigua ethyl acetate fraction (SE-EA), and S. exigua ethanol fraction (SE-EtOH) respectively. The active compounds were identified using column chromatography and NMR analysis. A549 cells were primed with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for activated NLRP3 inflammasome. The anti-inflammatory properties were determined using ELISA assay. The anti-proliferation and anti-metastasis properties against LPS-ATP-induced A549 cells were determined by colony formation, cell cycle, wound healing, and trans-well migration and invasion assays. The inflammatory gene expressions and molecular mechanism were determined using RT-qPCR and Western blot analysis, respectively. Results: SE-EA exhibited the greatest anti-inflammation properties compared with other two fractions as evidenced by the significant inhibition of IL-1β, IL-18, and IL-6, cytokine productions from LPS-ATP-induced A549 cells in a dose-dependent manner (p < 0.05). The analysis of active compounds revealed exiguaflavanone A (EGF-A) and exiguaflavanone B (EGF-B) as the major compounds present in SE-EA. Then, SE-EA and its major compound were investigated for the anti-proliferation and anti-metastasis properties. It was found that SE-EA, EGF-A, and EGF-B could inhibit the proliferation of LPS-ATP-induced A549 cells through cell cycle arrest induction at the G0/G1 phase and reducing the expression of cell cycle regulator proteins. Furthermore, SE-EA and its major compounds dose-dependently suppressed migration and invasion of LPS-ATP-induced A549 cells. At the molecular level, SE-EA, EGF-A, and EGF-B significantly downregulated the mRNA expression of IL-1β, IL-18, IL-6, and NLRP3 in LPS-ATP-induced A549 cells. Regarding the mechanistic study, SE-EA, EGF-A, and EGF-B inhibited NLRP3 inflammasome activation through suppressing NLRP3, ASC, pro-caspase-1(p50 form), and cleaved-caspase-1(p20 form) expressions. Conclusion: Targeting NLRP3 inflammasome pathway holds promise as a therapeutic approach to counteract pro-tumorigenic inflammation and develop novel treatments for NSCLC.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
- Division of Veterinary Preclinical Sciences, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lapamas Rueankham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Methee Rungrojsakul
- Department of Traditional Chinese Medicine, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Trinnakorn Katekunlaphan
- Department of Chemistry, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Nam JH, Yeo CD, Park CK, Kim SK, Kim JS, Kim YH, Kim JW, Kim SJ, Lee SH, Kang HS. Identification of predictive factors for early relapse in patients with unresectable stage III non-small cell lung cancer receiving consolidation durvalumab after concurrent chemoradiation therapy. Thorac Cancer 2023; 14:2657-2664. [PMID: 37519059 PMCID: PMC10493476 DOI: 10.1111/1759-7714.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Patients with locally advanced, unresectable, non-small cell lung cancer (NSCLC) receiving definitive concurrent chemoradiation therapy (CCRT) benefit from durvalumab consolidation therapy. However, predictive factors for early relapse during durvalumab maintenance have not yet been identified. METHODS The present study included the lung cancer cohort of the Catholic Medical Centers at the Catholic University of Korea from January 2018 to December 2021. A total of 51 NSCLC patients treated with durvalumab consolidation therapy after definitive CCRT were included in the analysis. Early relapse was defined as patients experiencing relapse within 6 months of starting initial durvalumab therapy. RESULTS Among the 51 patients, 15 (29.4%) relapsed during the study period. Median time from initial therapy of durvalumab to progression was 451.00 ± 220.87 days (95% confidence interval [CI]: 18.10-883.90) in overall patients. In multivariate analysis, younger age (adjusted odds ratio [aOR], 0.792; 95% CI: 0.642-0.977; p = 0.030), higher pack-years (aOR, 1.315; 95% CI: 1.058-1.635; p = 0.014), non-COPD (aOR, 0.004; 95% CI: 0.000-0.828; p = 0.004) and anemia (aOR, 234.30; 95% CI: 1.212-45280.24; p = 0.042), were independent predictive factors for early relapse during durvalumab consolidation therapy. CONCLUSION Younger age, higher number of pack-years, non-COPD, and anemia were independent predictive factors for early relapse during durvalumab consolidation therapy in patients with unresectable stage III NSCLC after definitive CCRT. Careful patient selection and clinical attention are needed for high-risk individuals.
Collapse
Affiliation(s)
- Jung Hyun Nam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Chan Kwon Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Sung Kyoung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Yong Hyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Jin Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Seung Joon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Hye Seon Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
12
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
Boo HJ, Min HY, Park CS, Park JS, Jeong JY, Lee SY, Kim WY, Lee JW, Oh SR, Park RW, Lee HY. Dual Impact of IGF2 on Alveolar Stem Cell Function during Tobacco-Induced Injury Repair and Development of Pulmonary Emphysema and Cancer. Cancer Res 2023; 83:1782-1799. [PMID: 36971490 DOI: 10.1158/0008-5472.can-22-3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.
Collapse
Affiliation(s)
- Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Cao X, Wang Y, Chen Y, Zhao M, Liang L, Yang M, Li J, Peng M, Li W, Yue Y, Zhang H, Li C, Shu Z. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116229. [PMID: 36773789 DOI: 10.1016/j.jep.2023.116229] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and thus imposes heavy economic burden on patients, their families, and society. Furthermore, COPD seriously affects the quality of life of patients. The concept of "overall regulation" of traditional Chinese medicine (TCM) plays an important role in the prevention and treatment of COPD. AIM OF THE STUDY The objective of this review is to summarize the TCM theories, experimental methods, TCM extracts, active TCM ingredients, and TCM formulas for the treatment of COPD and reveal the effects and mechanisms of TCM treatments on COPD. MATERIALS AND METHODS This article reviewed literature on TCM-based treatments for COPD reported from 2016 to 2021. Relevant scientific studies were obtained from databases that included PubMed, China National Knowledge Infrastructure, Web of Science, Google Scholar, The Plant List, ScienceDirect, and SciFinder. RESULTS This review summarized TCM-based theory, experimental methods, active ingredients, and potential toxicities, the effects of TCM extracts and formulations, and their mechanisms for the treatment of COPD. Most investigators have used in vivo models of cigarette smoke combined with lipopolysaccharide induction in rats and in vitro models of cigarette smoke extract induction. The active ingredients of TCM used for the treatment of COPD in relevant studies were triterpenoids, flavonoids, phenolics, quinones, glycosides, and alkaloids. TCMs commonly used in the treatment of COPD include antipyretic drugs, tonic medicines, anticough medications, and asthma medications. TCM can treat COPD by suppressing inflammation, reducing oxidative stress, inhibiting apoptosis, and improving airway remodeling. CONCLUSIONS This review enriches the theory of COPD treatments based on TCM, established the clinical significance and development prospects of TCM-based COPD treatments, and provided the necessary theoretical support for the further development of TCM resources for the treatment of COPD.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154000, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Wu S, Jiang H, Chen Z, Lu W, Chen Q. Network Pharmacology-Based Study on the Active Ingredients and Mechanism of Pan Ji Sheng Traditional Chinese Medicine Formula in the Treatment of Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5340933. [PMID: 36212968 PMCID: PMC9534616 DOI: 10.1155/2022/5340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Background Pan Ji Sheng Formula is a Chinese medicine formula that enables heat-free detoxification as well as anti-inflammatory and immune-boosting properties. This formula contains eight herbs. Its underlying mechanism is unknown. The bioactive ingredients were screened in our work, and the mechanism of this formula was investigated. Methods Using traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), ingredients in Pan Ji Sheng Chinese medicine formula were screened, and we selected the main bioactive ingredients for web-based research. The targets of bioactive ingredients are primarily obtained from the SwissTargetPrediction and TCMSP databases, and the text mining method is used. STRING and Cytoscape were then used to examine the protein-protein interaction (PPI) networks. To explore the biological function and related pathways, functional annotation and pathway analysis were performed. Results This research discovered 96 bioactive ingredients. Then, 215 potential targets of bioactive ingredients were screened. Through the analysis of the PPI network, we discovered 25 key target genes, which can be described as hub target genes regulated by bioactive ingredients. Bioactive ingredients primarily regulate CASP3, AKT1, JUN, and other proteins. The formula works synergistically to enhance immune response and antiinfection by regulating immune-related pathways, TNF signaling pathways, and apoptosis. Conclusions A variety of bioactive ingredients in the formula could play roles in regulating CASP3, AKT1, and other genes in immune, infection, apoptosis, and tumor-related signaling pathways. Our data point the way forward for future studies on the mechanism of action of this formula.
Collapse
Affiliation(s)
- Shiji Wu
- Gaozhou Hospital of Traditional Chinese Medicine, No. 32 Maoming Avenue, Gaozhou 525200, Guangdong, China
| | - Hongliang Jiang
- Gaozhou Hospital of Traditional Chinese Medicine, No. 32 Maoming Avenue, Gaozhou 525200, Guangdong, China
| | - Zongwen Chen
- Gaozhou Hospital of Traditional Chinese Medicine, No. 32 Maoming Avenue, Gaozhou 525200, Guangdong, China
| | - Weining Lu
- Gaozhou Hospital of Traditional Chinese Medicine, No. 32 Maoming Avenue, Gaozhou 525200, Guangdong, China
| | - Qin Chen
- Gaozhou Hospital of Traditional Chinese Medicine, No. 32 Maoming Avenue, Gaozhou 525200, Guangdong, China
| |
Collapse
|
16
|
Yi X, Gao J, Wang Z. The human lung microbiome-A hidden link between microbes and human health and diseases. IMETA 2022; 1:e33. [PMID: 38868714 PMCID: PMC10989958 DOI: 10.1002/imt2.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Once thought to be sterile, the human lung is now well recognized to harbor a consortium of microorganisms collectively known as the lung microbiome. The lung microbiome is altered in an array of lung diseases, including chronic lung diseases such as chronic obstructive pulmonary disease, asthma, and bronchiectasis, acute lung diseases caused by pneumonia, sepsis, and COVID-19, and other lung complications such as those related to lung transplantation, lung cancer, and human immunodeficiency virus. The effects of lung microbiome in modulating host immunity and inflammation in the lung and distal organs are being elucidated. However, the precise mechanism by which members of microbiota produce structural ligands that interact with host genes and pathways remains largely uncharacterized. Multiple unique challenges, both technically and biologically, exist in the field of lung microbiome, necessitating the development of tailored experimental and analytical approaches to overcome the bottlenecks. In this review, we first provide an overview of the principles and methodologies in studying the lung microbiome. We next review current knowledge of the roles of lung microbiome in human diseases, highlighting mechanistic insights. We finally discuss critical challenges in the field and share our thoughts on broad topics for future investigation.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
17
|
The Prognostic Role of Chronic Obstructive Pulmonary Disease for Lung Cancer After Pulmonary Resection. J Surg Res 2022; 275:137-148. [DOI: 10.1016/j.jss.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
|
18
|
Pezzuto A, Trabalza Marinucci B, Ricci A, Ciccozzi M, Tonini G, D'Ascanio M, Guerrieri G, Chianese M, Castelli S, Rendina EA. Predictors of respiratory failure after thoracic surgery: a retrospective cohort study with comparison between lobar and sub-lobar resection. J Int Med Res 2022; 50:3000605221094531. [PMID: 35768901 PMCID: PMC9251996 DOI: 10.1177/03000605221094531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Only approximately 15% of patients with lung cancer are suitable for surgery and clinical postoperative outcomes vary. The aim of this study was to investigate variables associated with post-surgery respiratory failure in this patient cohort. Methods Patients who underwent surgery for lung cancer were retrospectively studied for respiratory function. All patients had undergone lung resection by a mini-thoracotomy approach. The study population was divided into two subgroups for comparison: lobectomy group, who underwent lobar resection; and sub-lobar resection group. Results A total of 85 patients were included, with a prevalence of lung cancer stage IA and adenocarcinoma histotype. Lobectomy (versus sub-lobar resection), the presence of chronic obstructive pulmonary disease (COPD), and a COPD assessment test (CAT) score >10, were all associated with an increased risk of respiratory failure. The partial pressure of arterial oxygen decreased more in the lobectomy group than in the sub-lobar resection group following surgery, with a significant postoperative between-group difference in values. Postoperative CAT scores were also better in the sub-lobar resection group. Conclusions Post-surgical variations in functional parameters were greater in the group treated by lobectomy. COPD, high CAT score and surgery type were associated with postoperative development of respiratory failure.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Department of Cardiovascular and Respiratory Sciences, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Massimo Ciccozzi
- Department of Epidemiology, Campus Bio-Medico University, Rome, Italy
| | - Giuseppe Tonini
- Department of Oncology, Campus Bio-Medico University, Rome, Italy
| | - Michela D'Ascanio
- Department of Cardiovascular and Respiratory Sciences, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giulio Guerrieri
- Department of Cardiovascular and Respiratory Sciences, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Maria Chianese
- Department of Cardiovascular and Respiratory Sciences, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Silvia Castelli
- Department of Cardiovascular and Respiratory Sciences, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Erino Angelo Rendina
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Sun R, Tanino R, Tong X, Isomura M, Chen LJ, Hotta T, Okimoto T, Hamaguchi M, Hamaguchi S, Taooka Y, Isobe T, Tsubata Y. The Association Between Cyclooxygenase-2 -1195G/A (rs689466) Gene Polymorphism and the Clinicopathology of Lung Cancer in the Japanese Population: A Case-Controlled Study. Front Genet 2022; 13:796444. [PMID: 35450217 PMCID: PMC9016323 DOI: 10.3389/fgene.2022.796444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
The single nucleotide polymorphisms of COX-2 gene, also known as PTGS2, which encodes a pro-inflammatory factor cyclooxygenase-2, alter the risk of developing multiple tumors, but these findings are not consistent for lung cancer. We previously reported that the homozygous COX-2 –1195A genotype is associated with an increased risk for chronic obstructive pulmonary disease (COPD) in Japanese individuals. COPD is a significant risk factor for lung cancer due to genetic susceptibility to cigarette smoke. In this study, we investigated the association between COX-2 –1195G/A polymorphism and lung cancer susceptibility in the Japanese population. We evaluated the genotype distribution of COX-2 –1195G/A using a polymerase chain reaction-restriction fragment length polymorphism assay for 330 newly diagnosed patients with lung cancer and 162 healthy controls. Our results show that no relationship exists between the COX-2 –1195G/A polymorphism and the risk of developing lung cancer. However, compared to the control group, the homozygous COX-2 –1195A genotype increased the risk for lung squamous cell carcinoma (odds ratio = 2.902; 95% confidence interval, 1.171–7.195; p = 0.021), whereas no association is observed with the risk for adenocarcinoma. In addition, Kaplan-Meier analysis shows that the genotype distribution of homozygous COX-2 –1195A does not correlate with the overall survival of patients with lung squamous cell carcinoma. Thus, we conclude that the homozygous COX-2 –1195A genotype confers an increased risk for lung squamous cell carcinoma in Japanese individuals and could be used as a predictive factor for early detection of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Rong Sun
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Ryosuke Tanino
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Xuexia Tong
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Minoru Isomura
- Department of Pathology, Shimane University Faculty of Medicine, Shimane University, Shimane, Japan
| | - Li-Jun Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Takamasa Hotta
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Tamio Okimoto
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Megumi Hamaguchi
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Shunichi Hamaguchi
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yasuyuki Taooka
- Division of Internal Medicine, Department of Respiratory Medicine, Medical Corporation JR Hiroshima Hospital, Hiroshima, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|
20
|
Gunawan W, doewes RI, Rudiansyah M, Sultan MQ, Ansari MJ, Izzat SE, Al Jaber MS, Kzar HH, Mustafa YF, Hammid AT, Turki Jalil A, Aravindhan S. Effect of tomato consumption on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clin Nutr ESPEN 2022; 50:93-100. [DOI: 10.1016/j.clnesp.2022.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
21
|
Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol (Lausanne) 2022; 13:800995. [PMID: 35222270 PMCID: PMC8873103 DOI: 10.3389/fendo.2022.800995] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies suggest associations between diabetes mellitus and some cancers. The risk of a number of cancers appears to be increased in diabetes mellitus. On the other hand, some cancer and cancer therapies could lead to diabetes mellitus. Genetic factors, obesity, inflammation, oxidative stress, hyperglycemia, hyperinsulinemia, cancer therapies, insulin and some oral hypoglycemic drugs appear to play a role in the crosstalk between diabetes mellitus and cancers. This review summarized the associations between various types of diabetes and cancers and updated available evidence of underlying mechanisms between diabetes and cancers.
Collapse
Affiliation(s)
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Survival impact of treatment for chronic obstructive pulmonary disease in patients with advanced non-small-cell lung cancer. Sci Rep 2021; 11:23677. [PMID: 34880386 PMCID: PMC8654854 DOI: 10.1038/s41598-021-03139-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) may coexist with lung cancer, but the impact on prognosis is uncertain. Moreover, it is unclear whether pharmacological treatment for COPD improves the patient's prognosis. We retrospectively investigated patients with advanced non-small-cell lung cancer (NSCLC) who had received chemotherapy at Kyoto University Hospital. Coexisting COPD was diagnosed by spirometry, and the association between pharmacological treatment for COPD and overall survival (OS) was assessed. Of the 550 patients who underwent chemotherapy for advanced NSCLC between 2007 and 2014, 347 patients who underwent spirometry were analyzed. Coexisting COPD was revealed in 103 patients (COPD group). The median OS was shorter in the COPD group than the non-COPD group (10.6 vs. 16.8 months). Thirty-seven patients had received COPD treatment, and they had a significantly longer median OS than those without treatment (16.7 vs. 8.2 months). Multivariate Cox regression analysis confirmed the positive prognostic impact of COPD treatment. Additional validation analysis revealed similar results in patients treated with immune checkpoint inhibitors (ICIs). Coexisting COPD had a significant association with poor prognosis in advanced NSCLC patients if they did not have pharmacological treatment for COPD. Treatment for coexisting COPD has the potential to salvage the prognosis.
Collapse
|
23
|
Tantipaiboonwong P, Chaiwangyen W, Suttajit M, Kangwan N, Kaowinn S, Khanaree C, Punfa W, Pintha K. Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells. Molecules 2021; 26:6757. [PMID: 34833849 PMCID: PMC8622939 DOI: 10.3390/molecules26226757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.
Collapse
Affiliation(s)
- Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Pathiu, Chumphon 86160, Thailand;
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Wanisa Punfa
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| |
Collapse
|
24
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
25
|
Role of Annual Influenza Vaccination against Lung Cancer in Type 2 Diabetic Patients from a Population-Based Cohort Study. J Clin Med 2021; 10:jcm10153434. [PMID: 34362218 PMCID: PMC8347140 DOI: 10.3390/jcm10153434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (DM) patients are at a higher risk for developing lung cancer due to immune dysfunction and chronic inflammation. They also have increased morbidity and mortality related to influenza, and it is recommended that they receive an annual influenza vaccination. In this study, we evaluate whether influenza vaccination could reduce the incidence of lung cancer in DM patients. This cohort study included DM patients (≥55 years old) between 1 January 2002 and 31 December 2012 by using the Taiwan Health Insurance Database. Cox proportional hazard regression method was used to compare the relation between the influenza vaccination and lung cancer incidence after adjusting for potential confounders. Sub-group analyses were done according to vaccination status (unvaccinated, total number of vaccinations: 1, 2–3, ≥4) and evaluated the dose-dependent effects on lung cancer events. Among 22,252 eligible DM patients, 7860 (35.32%) received an influenza vaccination and 67.68% (14392) did not receive an influenza vaccination. Lung cancer incidence was significantly lower in the vaccinated group versus the unvaccinated group (adjusted HR 0.77; 95% CI 0.62–0.95, p < 0.05). Significant protective effects were observed among male sex (adjusted HR 0.72; 95% CI 0.55–0.94, p < 0.05) and 55–64 year (adjusted HR 0.61; 95% CI 0.40–0.94, p < 0.05) and ≥75 year (adjusted HR 0.63; 95% CI 0.42–0.92, p < 0.05) age groups, respectively. A dose-dependent protective effect was noted with a significant protective effect in those that received ≥4 vaccinations (adjusted HR 0.42; 95% CI 0.29–0.61, p < 0.001). In sub-group analysis, elder patients with ≥65 years of age were significantly protected from ≥4 vaccinations (adjusted HR 0.37; 95% CI 0.23–0.62, p < 0.001 in 65–74 years and adjusted HR 0.31; 95% CI 0.15–0.66, p = 0.002 in ≥75 years group, respectively). Male sex with ≥4 vaccinations had a significantly lower risk of lung cancer (adjusted HR 0.35; 95% CI 0.21–0.57, p < 0.001). Patients with comorbid conditions that received ≥4 vaccinations were also protected, and was especially significant among those with CCI ≥ 3 (adjusted HR 0.38; 95% CI 0.18–0.80, p = 0.009) as compared to 1 and 2–3 vaccination groups, including those with hypertension (adjusted HR 0.35; 95% CI 0.22–0.57, p < 0.001). This population-based cohort study demonstrated that annual influenza vaccination significantly reduced the lung cancer risk in DM patients and specifically demonstrates that a higher number of vaccinations is related with a more protective effect. Whether this is due to vaccine booster effects on anti-tumor immune regulation among DM patients still needs to be explored.
Collapse
|
26
|
Dettorre GM, Patel M, Gennari A, Pentheroudakis G, Romano E, Cortellini A, Pinato DJ. The systemic pro-inflammatory response: targeting the dangerous liaison between COVID-19 and cancer. ESMO Open 2021; 6:100123. [PMID: 33932622 PMCID: PMC8026271 DOI: 10.1016/j.esmoop.2021.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins, tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to a source of therapeutic targets.
Collapse
Affiliation(s)
- G M Dettorre
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - M Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - A Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece; Chief Medical Officer, European Society for Medical Oncology, Lugano, Switzerland
| | - E Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - A Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - D J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy.
| |
Collapse
|
27
|
Zhou J, Qi C, Fang X, Wang Z, Zhang S, Li D, Song J. DJ-1 modulates Nrf2-mediated MRP1 expression by activating Wnt3a/β-catenin signalling in A549 cells exposed to cigarette smoke extract and LPS. Life Sci 2021; 276:119089. [PMID: 33476627 DOI: 10.1016/j.lfs.2021.119089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory disease characterized by airway obstruction and abnormal inflammatory responses. Multidrug resistance-related protein 1 (MRP1) can reduce lung inflammation and damage by excreting various toxic exogenous substances and certain pro-inflammatory molecules. AIMS We studied whether DJ-1 modulates nuclear factor erythroid 2-related factor 2 (Nrf2) by activating the Wnt3a/β-catenin signalling pathway to further regulate MRP1 expression and pulmonary antioxidant defences in alveolar epithelial (A549) cells treated with smoke extract (CSE) and lipopolysaccharide (LPS). MAIN METHODS Marker expression was studied by western blot analysis, quantitative real-time PCR and immunofluorescence staining of A549 cells. KEY FINDINGS A549 cells exposed to CSE and LPS showed downregulation of DJ-1, Wnt3a, MRP1 and haem oxygenase-1 (HO-1) and upregulation of inflammatory factors. Additionally, Nrf2 protein levels were significantly decreased, while there was no change in Nrf2 mRNA levels. Overexpression of DJ-1 and Wnt3a activated Nrf2 signalling, increased MRP1 and HO-1 levels and decreased IL-6 protein expression, while knockdown of DJ-1 and Wnt3a had the opposite effects. Furthermore, DJ-1 overexpression and DJ-1 knockdown increased and decreased, respectively, the levels of Wnt3a and β-catenin. Interestingly, Nrf2 and Wnt3a deficiency reduced the protective effects of Wnt3a and DJ-1, respectively, in A549 cells. However, the levels of DJ-1 and Wnt3a were not altered by Wnt3a and Nrf2 deletion, respectively. SIGNIFICANCE In A549 cells treated with CSE and LPS, DJ-1 regulates Nrf2-mediated MRP1 expression and antioxidant defences by activating the Wnt3a/β-catenin signalling pathway. These findings may provide potential therapeutic targets for COPD intervention.
Collapse
Affiliation(s)
- Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Dalang Li
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
28
|
Lavrynenko O, Titz B, Dijon S, Santos DD, Nury C, Schneider T, Guedj E, Szostak J, Kondylis A, Phillips B, Ekroos K, Martin F, Peitsch MC, Hoeng J, Ivanov NV. Ceramide ratios are affected by cigarette smoke but not heat-not-burn or e-vapor aerosols across four independent mouse studies. Life Sci 2020; 263:118753. [PMID: 33189821 DOI: 10.1016/j.lfs.2020.118753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
AIMS Smoking is an important risk factor for the development of chronic obstructive pulmonary disease and cardiovascular diseases. This study aimed to further elucidate the role of ceramides, as a key lipid class dysregulated in disease states. MAIN METHODS In this article we developed and validated LC-MS/MS method for ceramides (Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1(15Z)) for the absolute quantification. We deployed it together with proteomics and transcriptomic analysis to assess the effects of cigarette smoke (CS) from the reference cigarette as well as aerosols from heat-not-burn (HnB) tobacco and e-vapor products in apolipoprotein E-deficient (ApoE-/-) mice over several time points. KEY FINDINGS In the lungs, CS exposure substantially elevated the ratios of Cer(d18:1/24:0) and Cer(d18:1/24:1) to Cer(d18:1/18:0) in two independent ApoE-/- mouse inhalation studies. Data from previous studies, in both ApoE-/- and wild-type mice, further confirmed the reproducibility of this finding. Elevation of these ceramide ratios was also observed in plasma/serum, the liver, and-for the Cer(d18:1/24:1(15Z)) to Cer(d18:1/18:0) ratio-the abdominal aorta. Also, the levels of acid ceramidase (Asah1) and glucocerebrosidase (Gba)-lysosomal enzymes involved in the hydrolysis of glucosylceramides-were consistently elevated in the lungs after CS exposure. In contrast, exposure to HnB tobacco product and e-vapor aerosols did not induce significant changes in the ceramide profiles or associated enzymes. SIGNIFICANCE Our work in mice contributes to the accumulating evidence on the importance of ceramide ratios as biologically relevant markers for respiratory disorders, adding to their already demonstrated role in cardiovascular disease risk assessment in humans.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Daniel Dos Santos
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
29
|
Zhou Y, Zheng X, Xu B, Deng H, Chen L, Jiang J. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma. Aging (Albany NY) 2020; 12:25189-25206. [PMID: 33223508 PMCID: PMC7803529 DOI: 10.18632/aging.104120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be frequently mutated or deleted in many types of human cancer. However, the role of SETD2 in lung adenocarcinoma (LUAD) has not been well documented. In the present study, we found that SETD2 was significantly down-regulated both in LUAD tissues and cell lines. Functionally, the increased expression of SETD2 significantly attenuated the proliferation of cancer cells by affecting the cell cycle, whereas SETD2 deficiency dramatically improved these proliferative abilities of cancer cells. Through conjoint analysis of RNA-seq and ChIP data, we identified a functional target gene of SETD2, CXCL1, and its expression was negatively correlated with that of SETD2. Moreover, SETD2 deletion stimulated cell cycle-related proteins to promote LUAD. Further mechanistic studies demonstrated that histone H3 lysine 36 trimethylation (H3K36me3) catalyzed by SETD2 interacted with the promoter of CXCL1 to regulate its transcription and downstream signaling pathways, contributing to tumorigenesis in vitro and in vivo. Our findings suggested that SETD2 inhibited tumor growth via suppressing CXCL1-mediated activation of cell cycle, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream CXCL1 might represent a potential therapeutic way for new treatment in LUAD.
Collapse
Affiliation(s)
- You Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Haifeng Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
30
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
31
|
Yougbare I, Belemnaba L, Morin C, Abusnina A, Senouvo YF, Keravis T, Lugnier C, Rousseau E. NCS 613, a Potent PDE4 Inhibitor, Displays Anti-Inflammatory and Anti-Proliferative Properties on A549 Lung Epithelial Cells and Human Lung Adenocarcinoma Explants. Front Pharmacol 2020; 11:1266. [PMID: 32973507 PMCID: PMC7466439 DOI: 10.3389/fphar.2020.01266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a deleterious process occurring in several pulmonary diseases; it is a driving force promoting tumorigenesis. By regulating local cyclic nucleotide concentration, cyclic nucleotide phosphodiesterases (PDE) govern important biological processes, including inflammation and proliferation. The aim of this study was to investigate the anti-inflammatory and anti-proliferative effects of NCS 613, a specific PDE4 inhibitor, on TNFα-treated human lung adenocarcinoma cell line (A549) and on human lung adenocarcinoma explants. PDE4 isoforms and inflammatory pathways mediated by p38 MAPK, ERK1/2, and IκBα were analyzed by Western blot and immunostainings. Proliferation were performed using [3H]-thymidine incorporation under different experimental conditions. TNFα-stimulation increased p38 MAPK phosphorylation and NF-κB translocation into the nucleus, which was abolished by NCS 613 treatment. Concomitantly, NCS 613 restores IκBα detection level in human adenocarcinoma. An IC50 value of 8.5 μM was determined for NCS 613 on anti-proliferative properties while ERK1/2 signaling was down-regulated in A549 cells and lung adenocarcinoma explants. These findings shed light on PDE4 signaling as a key regulator of chronic inflammation and cancer epithelial cell proliferation. It suggests that PDE4 inhibition by NCS 613 represent potential and interesting strategy for therapeutic intervention in tackling chronic inflammation and cell proliferation.
Collapse
Affiliation(s)
- Issaka Yougbare
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,UMR CNRS 7213, Biophotonics and Pharmacology Laboratory, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Lazare Belemnaba
- UMR CNRS 7213, Biophotonics and Pharmacology Laboratory, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Caroline Morin
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abdurazzag Abusnina
- UMR CNRS 7213, Biophotonics and Pharmacology Laboratory, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Yannick F Senouvo
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thérèse Keravis
- UMR CNRS 7213, Biophotonics and Pharmacology Laboratory, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Claire Lugnier
- UMR CNRS 7213, Biophotonics and Pharmacology Laboratory, Faculty of Pharmacy, University of Strasbourg, Illkirch, France.,Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Eric Rousseau
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
32
|
Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo(a)pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 2020; 45:741-749. [PMID: 32506967 DOI: 10.1080/01480545.2020.1774602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) compound, which has been implicated in cancer initiation and promotion. Although BaP is one of the most extensively studied pollutants, the underlying mechanisms through which BaP affects reactive oxygen species (ROS)/hypoxia-inducible factor 1α (HIF-1α)/heme oxygenase 1(HO-1) signaling during lung or breast carcinogenesis are not yet fully understood. In this study, we analyzed the effects of 0 (control), 1, 5, or 25 µM BaP exposure on A549 and MCF-7 cancer cells, by evaluating cell viability, cell cycle, and regulatory protein expression, metabolic gene expression, and ROS/HIF-1α/HO-1 signaling. Cell viability increased following exposure to 1 and 5 µM BaP in A549 cells but decreased following exposure to all concentrations of BaP in MCF-7 cells. BaP significantly increased the proportions of cells in S and G2/M phases, with concomitant reductions in the proportions of cells in G0/G1 phase, following 5 and 25 µM exposure, which was accompanied by the upregulation of the regulatory proteins cyclin A, cyclin B, cyclin-dependent kinase (CDK)1, and CDK2. The subsequent upregulation of cytochrome p450 (CYP)1A1, CYP1B1, CYP3A4, epoxide hydrolase (EH), aldo-keto reductase (AKRC1) expression, and the attenuation of multi-drug resistance protein 4 (MRP4), glutathione-S-transferase (GST)1A1, and GST1B1 were also observed in both cell lines. Moreover, the induction of ROS and the modulation of HIF-1α and HO-1 were observed after BaP exposure. Taken together, these findings suggest that BaP affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, PR China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaojing Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianghong Gao
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
33
|
Zhou J, Wang C, Wu J, Fukunaga A, Cheng Z, Wang J, Yamauchi A, Yodoi J, Tian H. Anti-Allergic and Anti-Inflammatory Effects and Molecular Mechanisms of Thioredoxin on Respiratory System Diseases. Antioxid Redox Signal 2020; 32:785-801. [PMID: 31884805 DOI: 10.1089/ars.2019.7807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The pathogenesis and progression of allergic inflammation in the respiratory system are closely linked to oxidative stress. Thioredoxin (TRX) is an essential redox balance regulator in organisms and is induced by various oxidative stress factors, including ultraviolet rays, radiation, oxidation, viral infections, ischemia reperfusion, and anticancer agents. Recent Advances: We demonstrated that systemic administration and transgenic overexpression of TRX is useful in a wide variety of in vivo inflammatory respiratory diseases models, such as viral pneumonia, interstitial lung disease, chronic obstructive pulmonary disease, asthma, acute respiratory distress syndrome, and obstructive sleep apnea syndrome, by removing reactive oxygen species, blocking production of inflammatory cytokines, inhibiting migration and activation of neutrophils and eosinophils, and regulating the cellular redox status. In addition, TRX's anti-inflammatory mechanism is different from the mechanisms associated with anti-inflammatory agents, such as glucocorticoids, which regulate the inflammatory reaction in association with suppressing immune responses. Critical Issues: Understanding the molecular mechanism of TRX is very helpful for understanding the role of TRX in respiratory diseases. In this review, we show the protective effect of TRX in various respiratory diseases. In addition, we discuss its anti-allergic and anti-inflammatory molecular mechanism in detail. Future Directions: The application of TRX may be useful for treating respiratory allergic inflammatory disorders. Antioxid. Redox Signal. 32, 785-801.
Collapse
Affiliation(s)
- JieDong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - CuiXue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - JiaLin Wu
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - ZuSheng Cheng
- Department of Radiology, Shaoxing Seventh People's Hospital, Shaoxing, China
| | - JinQuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Akira Yamauchi
- Department of Breast Surgery, Nara Prefectural General Medical Center, Nara, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China.,Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China
| |
Collapse
|
34
|
Sun B, Shi Y, Li Y, Jiang J, Liang S, Duan J, Sun Z. Short-term PM 2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121566. [PMID: 31761645 DOI: 10.1016/j.jhazmat.2019.121566] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/05/2023]
Abstract
Up to now, while some toxicological studies have identified pulmonary fibrosis immediately induced by long-term PM2.5 exposure, there has been no evidence indicating, whether short-term exposure can lead to post-exposure development of pulmonary fibrosis. Here, we treated rats with PM2.5 for 1 month (10 times), followed by normal feeding for 18 months. 18F-FDG intake, which is linked with the initiation and development of pulmonary fibrosis in living bodies, was found to gradually increase in lung following exposure through micro PET/CT imaging. Histolopathological examination revealed continuous deterioration of pulmonary injury post-exposure. Collagen deposition and hydroxyproline content continued to increase all along in the post-exposure duration, indicating pulmonary fibrosis development. Chronic and persistent induction of pulmonary inflammatory gene expression (Tnf, Il1b, Il6, Ccl2, and Icam1), epithelial mesenchymal transition (EMT, reduction of E-cadherin and elevation of fibronectin) and RelA/p65 upregulation, as well as serum inflammatory cytokine production, were also found in PM2.5-treated rats. Pulmonary oxidative stress, manifested by increase of MDA and decrease of GSH and SOD, was induced during exposure but disappeared in later post-exposure duration. These results suggested that short-term PM2.5 exposure could lead to sustained post-exposure pulmonary fibrosis development, which was mediated by oxidative-stress-initiated NF-κB/inflammation/EMT pathway.
Collapse
Affiliation(s)
- Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
35
|
Afsharinasab A, Moayer F, Amini M, Choopani S, Tahmasvand R, dehghani S, Mousavi SZ, Salimi M. Two Novel Compounds with Tri-aryl Structures as Effective Anti-Breast Cancer Candidates In-vivo. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:145-152. [PMID: 33224219 PMCID: PMC7667539 DOI: 10.22037/ijpr.2019.111802.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prognosis of metastatic breast cancer is very poor which urges the necessity to develop novel potential drug candidates. We assessed two compounds with tri-aryl structures (A and B) for their potency to reduce primary breast tumor growth and lung metastasis in 4T1 mice model. MTT assay, 4T1 mammary mouse model, and immunohistochemistry experiments were used in this study. In-vitro results exhibited an anti-proliferative effect for compounds A and B towards MDA-MB-231 cancer cells. Our in-vivo results displayed that administered compounds A and B could suppress the size of the primary tumor and the number of lung metastatic foci in 4T1 BALB/c mice model. Histopathological analysis revealed that treatment of both compounds resulted in necrosis. Our findings provide new evidence that compound B may be promising for slowing the growth of tumor along with metastatic foci via COX-2 independent pathway.
Collapse
Affiliation(s)
- Ahoo Afsharinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran (IAUPS).
- Department of Physiology and pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| | - Fariborz Moayer
- Department of Pathobiology, College of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran.
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Samira Choopani
- Department of Physiology and pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| | - Raheleh Tahmasvand
- Department of Physiology and pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| | - Soudeh dehghani
- Department of Physiology and pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyede Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran (IAUPS).
| | - Mona Salimi
- Department of Physiology and pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
36
|
Dicentrine Potentiates TNF-α-Induced Apoptosis and Suppresses Invasion of A549 Lung Adenocarcinoma Cells via Modulation of NF-κB and AP-1 Activation. Molecules 2019; 24:molecules24224100. [PMID: 31766230 PMCID: PMC6891634 DOI: 10.3390/molecules24224100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous studies have indicated that tumor necrosis factor-alpha (TNF-α) could induce cancer cell survival and metastasis via activation of transcriptional activity of NF-κB and AP-1. Therefore, the inhibition of TNF-α-induced NF-κB and AP-1 activity has been considered in the search for drugs that could effectively treat cancer. Dicentrine, an aporphinic alkaloid, exerts anti-inflammatory and anticancer activities. Therefore, we investigated the effects of dicentrine on TNF-α-induced tumor progression in A549 lung adenocarcinoma cells. Our results demonstrated that dicentrine effectively sensitizes TNF-α-induced apoptosis in A549 cells when compared with dicentrine alone. In addition, dicentrine increases caspase-8, -9, -3, and poly (ADP-ribose) polymerase (PARP) activities by upregulating the death-inducing signaling complex and by inhibiting the expression of antiapoptotic proteins including cIAP2, cFLIP, and Bcl-XL. Furthermore, dicentrine inhibits the TNF-α-induced A549 cells invasion and migration. This inhibition is correlated with the suppression of invasive proteins in the presence of dicentrine. Moreover, dicentrine significantly blockes TNF-α-activated TAK1, p38, JNK, and Akt, leading to reduced levels of the transcriptional activity of NF-κB and AP-1. Taken together, our results suggest that dicentrine could enhance TNF-α-induced A549 cell death by inducing apoptosis and reducing cell invasion due to, at least in part, the suppression of TAK-1, MAPK, Akt, AP-1, and NF-κB signaling pathways.
Collapse
|
37
|
Mei L, Huang C, Wang A, Zhang X. Association between ADRB2, IL33, and IL2RB gene polymorphisms and lung cancer risk in a Chinese Han population. Int Immunopharmacol 2019; 77:105930. [PMID: 31685439 DOI: 10.1016/j.intimp.2019.105930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to explore the associations between polymorphisms of a very important pharmacogene, ADRB2, two inflammation-related genes, IL33 and IL2RB, and the risk of lung cancer. METHODS Six polymorphisms of ADRB2, IL33, and IL2RB were genotyped in 300 lung cancer patients and 300 healthy controls using MassARRAY. The relationship between genotypes and lung cancer risk was evaluated using chi-square tests. RESULTS The minor allele of rs1042711 was a risk allele for lung cancer, whereas the minor alleles of rs7025417 and rs5756523 had protective effects against lung cancer (p<0.05). The CT genotype of rs1042711 and the GT genotype of rs1560642 were associated with increased risk of lung cancer, whereas the CC and AA genotypes of rs7025417 and the CT and CC genotypes of rs5756523 were associated with decreased disease risk (p < 0.05). Genetic model analysis shows that rs1042711 and rs1560642 were associated with increased risk of lung cancer; whereas rs7025417, rs5756523, and rs2284033 were associated with decreased disease risk (p < 0.05). Stratification analysis showed that rs1042711 and rs1560642 were associated with increased risk of lung cancer in nonsmokers and smokers, respectively, whereas rs7025417 and rs5756523 were associated with decreased disease risk in both subgroups (p<0.05). CONCLUSION Our results shed new light on the association between polymorphisms of ADRB2, IL33, and IL2RB and the risk of lung cancer.
Collapse
Affiliation(s)
- Lijun Mei
- Department of Blood Transfusion, Ankang Central Hospital, Ankang, Shaanxi 725000, China
| | - Chongya Huang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ajing Wang
- Department of Outpatient, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xian Zhang
- Department of Clinic Laboratory, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
38
|
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 2019; 156:33-46. [PMID: 31421589 DOI: 10.1016/j.rmed.2019.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
39
|
Jia Z, Zhang Z, Yang Q, Deng C, Li D, Ren L. Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk. Int Immunopharmacol 2019; 74:105716. [PMID: 31279323 DOI: 10.1016/j.intimp.2019.105716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is crucial for lung cancer development. Variants of multiple genes in inflammation pathways may lead to susceptibility to lung cancer. In the present study, we aimed to assess the influence of polymorphisms in inflammation-related genes (IL2RA and IL2RB) on lung cancer risk. METHODS A total of 507 patients with lung cancer and 503 healthy controls were genotyped for seven polymorphisms of IL2RA and IL2RB using the Agena MassARRAY platform. We evaluated the relationship of the genotypes with lung cancer susceptibility using odds ratio (OR), 95% confidence interval (95% CI) and chi square test. RESULTS We found that IL2RA rs12722498 was significantly associated with a decreased risk of lung cancer in dominant (p = 0.040, OR = 0.71, 95% CI = 0.51-0.98), additive (p = 0.016, OR = 0.68, 95% CI = 0.50-0.93) and allele (p = 0.019, OR = 0.69, 95% CI = 0.51-0.94) models. After stratification analysis, the results showed that IL2RA rs12569923 (non-smokers), IL2RA rs791588 (≤60 years old, non-drinkers, BMI < 24 kg/m2), IL2RA rs12722498 (≤60 years old, non-drinkers, BMI < 24 kg/m2, female) and IL2RB rs2281089 (female, stage) significantly decreased the risk of lung cancer. Additionally, the haplotypes of rs12569923 and rs791588 in IL2RA had strong relationships with lung cancer in the subgroups of BMI < 24 kg/m2, age ≤ 60 years old, non-smokers and non-drinkers. CONCLUSION Our results showed that the IL2RA and IL2RB polymorphisms were associated with lung cancer risk in the Chinese Han population, which suggests roles for IL2RA and IL2RB polymorphisms in lung cancer.
Collapse
Affiliation(s)
- Zhuoqi Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chunni Deng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Daxu Li
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Le Ren
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
40
|
Lou Y, Guo Z, Zhu Y, Kong M, Zhang R, Lu L, Wu F, Liu Z, Wu J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:242. [PMID: 31174565 PMCID: PMC6556055 DOI: 10.1186/s13046-019-1255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Background Lung cancer remains the most common cause of cancer-related deaths, with a high incidence and mortality in both sexes worldwide. Chemoprevention has been the most effective strategy for lung cancer prevention. Thus, exploring novel and effective candidate agents with low toxicity for chemoprevention is essential and urgent. Houttuynia cordata Thunb. (Saururaceae) (H. cordata), which is a widely used herbal medicine and is also popularly consumed as a healthy vegetable, exhibits anti-inflammatory, antioxidant and antitumor activity. However, the chemopreventive effect of H. cordata against benzo(a)pyrene (B[a]P)-initiated lung tumorigenesis and the underlying mechanism remain unclear. Methods A B[a]P-stimulated lung adenocarcinoma animal model in A/J mice in vivo and a normal lung cell model (BEAS.2B) in vitro were established to investigate the chemopreventive effects of H. cordata and its bioactive compound 2-undecanone against lung tumorigenesis and to clarify the underlying mechanisms. Results H. cordata and 2-undecanone significantly suppressed B[a]P-induced lung tumorigenesis without causing obvious systemic toxicity in mice in vivo. Moreover, H. cordata and 2-undecanone effectively decreased B[a]P-induced intracellular reactive oxygen species (ROS) overproduction and further notably protected BEAS.2B cells from B[a]P-induced DNA damage and inflammation by significantly inhibiting phosphorylated H2A.X overexpression and interleukin-1β secretion. In addition, H. cordata and 2-undecanone markedly activated the Nrf2 pathway to induce the expression of the antioxidative enzymes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Nrf2 silencing by transfection with Nrf2 siRNA markedly decreased the expression of HO-1 and NQO-1 to diminish the reductions in B[a]P-induced ROS overproduction, DNA damage and inflammation mediated by H. cordata and 2-undecanone. Conclusions H. cordata and 2-undecanone could effectively activate the Nrf2-HO-1/NQO-1 signaling pathway to counteract intracellular ROS generation, thereby attenuating DNA damage and inflammation induced by B[a]P stimulation and playing a role in the chemoprevention of B[a]P-induced lung tumorigenesis. These findings provide new insight into the pharmacological action of H. cordata and indicate that H. cordata is a novel candidate agent for the chemoprevention of lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuanfeng Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Feichi Wu
- Hunan Zhengqing Pharmaceutical Group Limited, Huaihua, 418005, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
41
|
A model of NSCLC microenvironment predicts optimal receptor targets. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Ren Y, Kong J, Xue J, Shi X, Li H, Qiao J, Lu Y. Effects of ozonation on the activity of endotoxin and its inhalation toxicity in reclaimed water. WATER RESEARCH 2019; 154:153-161. [PMID: 30782557 DOI: 10.1016/j.watres.2019.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Aerosolized reclaimed water can cause inflammatory responses in lung after inhalation, and endotoxin has been identified as the main inducer. Since the effects of disinfection treatments on endotoxins had conflicting results, this study explored the changes of endotoxin activity and inflammation inducing ability of reference endotoxin, gram-negative bacteria solutions and reclaimed water after ozonation respectively, and found that LAL assay based endotoxin activity and mouse inhalation exposure based inflammation examination had inconsistent results. The excessive ozone could not remove the endotoxin activity, but was able to reduce the inflammation inducing ability of free endotoxin. When treating on gram-negative strains, ozone first released the cell-bound endotoxin and caused the dramatic increase of endotoxin activity. But for the inflammatory response, despite the rapid increase at the very beginning, it immediately dropped back with further ozonation. The endotoxin aggregate size was proposed as a key regulator of the toxicity of endotoxin, which was modified by ozone oxidation. In real reclaimed water, insufficient ozone significantly enhanced the inflammatory response, but when the ozone dosages were large enough, the inflammation could be drawn back to the original level, which was consistent with the observations from pure endotoxin and bacteria. This work demonstrates that the endotoxin activity cannot predict the endotoxin-induced toxicity of ozone treated water, and low dosage of ozone treatment may even increase the health risk of reclaimed water.
Collapse
Affiliation(s)
- Yunru Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaojie Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijun Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
43
|
Oxidative stress in lung cancer patients is associated with altered serum markers of lipid metabolism. PLoS One 2019; 14:e0215246. [PMID: 30973911 PMCID: PMC6459492 DOI: 10.1371/journal.pone.0215246] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/28/2019] [Indexed: 11/22/2022] Open
Abstract
In lung cancer (LC), alterations in redox balance are extensively observed and are a consequence of disease as well as co-occurrent with smoking. We previously demonstrated that metabolic disturbances such as trace element status and carbohydrate metabolism alterations are linked with redox status. The aim of this study was to evaluate relationships between the serum parameters of lipid metabolism and redox balance in LC patients. Serum parameters of lipid metabolism, i.e. total cholesterol (T-C), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglycerides (TG), T-C:HDL-C ratio, non-HDL-C, apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B) and Apo-B:Apo-A1 ratio, as well as systemic redox status, i.e. total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), vitamin E (VE), vitamin C (VC), malonyldialdehyde (MDA), conjugated dienes (CD), and 4-hydroxynonenal (4-HNE) were determined in 92 LC patients and 82 control subjects (CS). LC women had significantly lower T-C and LDL-C, and higher TG, while HDL-C, Apo-A1 and Apo-B were significantly decreased in LC patients regardless of sex, when compared to CS. LC men had alterations in the systemic total redox balance such as lower TAS and higher OSI than CS men. LC women had lower VC, but VE was decreased in LC patients, regardless of sex. We observed higher lipid peroxidation in LC patients expressed via higher 4-HNE and CD. Systemic redox disturbances were associated with serum lipid alterations: TOS and OSI were positively correlated with T-C:HDL-C ratio and Apo-B:Apo-A1 ratio and negatively with HDL-C. The parameters of lipid peroxidation CD and MDA were significantly associated with variables reflecting lipid disturbances. The observed correlations were strengthened by general overweight/obesity, abdominal obesity, hypertriglyceridemia and non-smoking status. In conclusion, parameters related to lipid alterations are associated with oxidative stress in LC patients. The largest contribution from lipid parameters was revealed for T-C:HDL-C ratio, HDL-C and Apo-B:Apo-A1 ratio, while the largest contribution from redox status was revealed for OSI and VE. Overweight, obesity, hypertriglyceridemia and non-smoking status intensified these relationships.
Collapse
|
44
|
Lin H, Lu Y, Lin L, Meng K, Fan J. Does chronic obstructive pulmonary disease relate to poor prognosis in patients with lung cancer?: A meta-analysis. Medicine (Baltimore) 2019; 98:e14837. [PMID: 30882673 PMCID: PMC6426564 DOI: 10.1097/md.0000000000014837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nowadays, there is growing recognition that chronic obstructive pulmonary disease (COPD) may have influence on lung cancer. However, coexisted COPD related to prognosis of lung cancer is still elusive. We conducted this meta-analysis to examine the association between COPD and 5-year overall survival (OS) and postoperative pulmonary complications of patients with lung cancer. METHODS A comprehensive computer-based online search was conducted using PubMed, Embase, Medline, and the Cochrane Library for articles published before September 30, 2017. We identified 29 eligible studies, which included 70,111 patients in the related literature. RESULTS Twenty-two of the 29 studies provided hazard ratio for OS (1.18, 95% confidence interval: 1.11-1.25; P < .001), it suggested that the presence of COPD indicated poor survival for the patients with lung cancer. In subgroup analysis, the relationship between COPD and OS occurrence remained statistically prominent in the subgroups stratified by study designs, COPD diagnosis timing, lung cancer surgery, cancer stage, and origins of patients. The presence of COPD increased the risk of bronchopleural fistula, pneumonia, prolonged air leakage, and prolonged mechanical ventilation. CONCLUSIONS The present meta-analysis suggested that coexisting COPD is associated with poor survival outcomes in patients with lung cancer and higher rates of postoperative pulmonary complications.
Collapse
Affiliation(s)
- Hefeng Lin
- The Second Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlong Lu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Meng
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Junqiang Fan
- The Second Affiliated Hospital, School of Medicine
| |
Collapse
|
45
|
Kaluza J, Håkansson N, Harris HR, Orsini N, Michaëlsson K, Wolk A. Influence of anti-inflammatory diet and smoking on mortality and survival in men and women: two prospective cohort studies. J Intern Med 2019; 285:75-91. [PMID: 30209831 DOI: 10.1111/joim.12823] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The associations between an anti-inflammatory diet and both all-cause and cause-specific mortality have been studied previously; however, the influence of an anti-inflammatory diet on survival time has not been investigated. Moreover, the potential modification of these associations by smoking status remains unclear. OBJECTIVE The aims of this study were to examine the associations between an anti-inflammatory diet index (AIDI) and all-cause and cause-specific mortality, to determine the association between the AIDI and differences in survival time and to assess effect modification by smoking status. METHODS The study population included 68 273 Swedish men and women (aged 45-83 years) at baseline. The anti-inflammatory potential of the diet was estimated using the validated AIDI, which includes 11 potential anti-inflammatory and five potential pro-inflammatory foods. Cox proportional hazards and Laplace regression were used to estimate hazard ratios and differences in survival time. RESULTS During 16 years of follow-up (1 057 959 person-years), 16 088 deaths [5980 due to cardiovascular disease (CVD) and 5252 due to cancer] were recorded. Participants in the highest versus lowest quartile of the AIDI had lower risks of all-cause (18% reduction, 95% CI: 14-22%), CVD (20%, 95% CI: 14-26%) and cancer (13%, 95% CI: 5-20%) mortality. The strongest inverse associations between the highest and lowest quartiles of AIDI and risk of mortality were observed in current smokers: 31%, 36% and 22% lower risks of all-cause, CVD and cancer mortality, respectively. The difference in survival time between current smokers in the lowest AIDI quartile and never smokers in the highest quartile was 4.6 years. CONCLUSION Adherence to a diet with high anti-inflammatory potential may reduce all-cause, CVD and cancer mortality and prolong survival time especially amongst smokers.
Collapse
Affiliation(s)
- J Kaluza
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Nutrition Research Laboratory, Department of Human Nutrition, Warsaw, University of Life Sciences-SGGW, Warsaw, Poland.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - N Håkansson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - N Orsini
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - K Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A Wolk
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res 2019; 68:59-74. [PMID: 30306206 DOI: 10.1007/s00011-018-1191-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation in the lung is the body's natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF). FINDINGS In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases. CONCLUSION The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways' inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.
Collapse
Affiliation(s)
| | - Uduak George
- College of Engineering, University of Georgia, Athens, GA, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
47
|
Wang W, Dou S, Dong W, Xie M, Cui L, Zheng C, Xiao W. Impact of COPD on prognosis of lung cancer: from a perspective on disease heterogeneity. Int J Chron Obstruct Pulmon Dis 2018; 13:3767-3776. [PMID: 30538439 PMCID: PMC6251360 DOI: 10.2147/copd.s168048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background COPD is an important comorbidity of lung cancer, but the impact of COPD on the outcomes of lung cancer remains uncertain. Because both COPD and lung cancer are heterogeneous diseases, we evaluated the link between COPD phenotypes and the prognosis of different histological subtypes of lung cancer. Methods In this retrospective study, subjects with a newly and pathologically confirmed diagnosis of lung cancer were enrolled from patients preparing for lung cancer surgery. All participants underwent pulmonary function test (PFT). The diagnosis of COPD was based on GOLD criteria. Lung cancer subtypes and COPD phenotypes were categorized by WHO classification of lung tumors and computer quantitative analysis of PFT. The HRs were estimated by Cox regression analysis. Results Among 2,222 lung cancer patients, 32.6% coexisted with COPD. After adjustment for age, sex, body mass index (BMI), smoking status, and therapy method, COPD was significantly associated with the decreased overall survival (OS) of lung cancer (HR 1.28, 95% CI 1.05-1.57). With the increased severity of COPD, the OS of lung cancer was gradually worsened (HR 1.23, 95% CI 1.08-1.39). But surgical treatment and high BMI were independent prognostic protective factors (HR 0.46, 95% CI 0.37-0.56; HR 0.96, 95% CI 0.94-0.99). Moreover, in terms of disease heterogeneity, emphysema-predominant phenotype of COPD was an independent prognostic risk factor for squamous carcinoma (HR 2.53, 95% CI 1.49-4.30). No significant relationship between COPD phenotype and lung cancer prognosis was observed among adenocarcinoma, small cell lung cancer, large cell lung cancer, and other subtype patients. Conclusion These findings suggest that COPD, especially emphysema-predominant phenotype, is an independent prognostic risk factor for squamous carcinoma only.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| | - Shuang Dou
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| | - Wenyan Dong
- Department of Geriatric Medicine, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengshuang Xie
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| | - Liwei Cui
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| | - Chunyan Zheng
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| | - Wei Xiao
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China, ,
| |
Collapse
|
48
|
Wang X, Tao YX, Zhang M, Wu WB, Yang DP, Wang M. Solitary thin-walled cystic lung cancer with extensive extrapulmonary metastasis: A case report and review of the literature. Medicine (Baltimore) 2018; 97:e12950. [PMID: 30412112 PMCID: PMC6221603 DOI: 10.1097/md.0000000000012950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Asymptomatic, isolated, and thin-walled cystic lung cancer with extensive extrapulmonary metastasis is rare, and the risk of pulmonary cyst developing into lung cancer is poorly understood. The efficacy of apatinib for end-stage pulmonary adenosquamous carcinoma has not been clarified yet. PATIENT CONCERNS We herein report a rare case of primary lung cancer that appeared as an isolated thin-walled cystic lesion on computed tomography (CT) image, who was initially misdiagnosed as having pulmonary cyst empirically. DIAGNOSES Fluorine-18-fluorodeoxyglucose-positron emission tomography and CT-guided liver biopsy of the patient revealed extra-pulmonary metastasis of lung cancer. INTERVENTIONS Eight cycles of cisplatin-based chemotherapy were administered, followed by oral apatinib for 6 months. Thereafter, best supportive care was given for this patient. OUTCOMES The pulmonary cystic lesion indicated stable disease through the therapy, but the hepatic tumors were progressed gradually after anticancer treatment. The patient died 16 months after the correct diagnosis. LESSONS Solitary thin-walled cystic lung cancer should be kept in mind during the differential diagnosis of pulmonary cavitary lesions. Chest CT alone is insufficient for surveillance of these cystic diseases. Timely biopsy and resection are essential to avoid delayed management. Besides, apatinib may play a role in the treatment of end-stage pulmonary adenosquamous carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wang
- Department of Respiratory Medicine, Xuzhou Central Hospital of Southeast University, Xuzhou, China
| |
Collapse
|
49
|
Xue J, Zhang J, Wu QY, Lu Y. Sub-chronic inhalation of reclaimed water-induced fibrotic lesion in a mouse model. WATER RESEARCH 2018; 139:240-251. [PMID: 29655095 DOI: 10.1016/j.watres.2018.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
When reclaimed water is used as municipal miscellaneous water, acute exposure of the generated aerosol with high levels of endotoxins can cause severe inflammation in the lungs. However, the potential risks of long-term inhalation of reclaimed water remains unclear. To identify the adverse effects of sub-chronic reclaimed water inhalation and explain the underlying mechanisms, a mouse model of 12-week sub-chronic exposure was established, and wastewater before a membrane bioreactor (MBR, positive control) and the MBR effluent (reclaimed water, which met the quality standard of urban use and was currently used for landscape irrigation) were tested in this study. The exposure dose was set to approach the real working scenarios. Lung lavage and histology were analyzed. Obvious epithelial cell apoptosis in the bronchi was observed, along with the accumulation of myofibroblasts and the collagen deposition both in main bronchi and terminal bronchioles. All these symptoms were persistent after 4 weeks of recovery. Inflammation and induced bronchus-associated lymphoid tissues (iBALT) were also observed but diminished after recovery indicating inflammation may not be the direct cause of the symptom. Furthermore, two fibrogenic cytokines (TNF-α and TGF-β) were constantly high in the lung during the study. They might be the biomarkers of lung damage after the inhalation of reclaimed water. Adaptive immune responses were also detected as elevated levels of IgG and IgA, but not for IgE. Inhalation of reclaimed water causes sustained fibrotic lesions in the lungs, which suggests potential health risks during urban application where aerosols generated.
Collapse
Affiliation(s)
- Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinshan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Lee YM, Kim SJ, Lee JH, Ha E. Inhaled corticosteroids in COPD and the risk of lung cancer. Int J Cancer 2018; 143:2311-2318. [DOI: 10.1002/ijc.31632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/23/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Min Lee
- Department of Occupational and Environmental Medicine, College of Medicine; Ewha Womans University; Seoul Korea
| | - Soo Jung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine; Ewha Womans University; Seoul Republic of Korea
| | - Jin Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine; Ewha Womans University; Seoul Republic of Korea
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, College of Medicine; Ewha Womans University; Seoul Korea
| |
Collapse
|