1
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T, Zou D. Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl) 2025; 138:883-893. [PMID: 40012095 PMCID: PMC12037091 DOI: 10.1097/cm9.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), leading to a high incidence of surgical interventions and significant disability. Despite its clinical relevance, no targeted pharmacological therapies are currently available. This review aims to explore the underlying mechanisms driving intestinal fibrosis and address unresolved scientific questions, offering insights into potential future therapeutic strategies. We conducted a literature review using data from PubMed up to October 2024, focusing on studies related to IBD and fibrosis. Intestinal fibrosis results from a complex network involving stromal cells, immune cells, epithelial cells, and the gut microbiota. Chronic inflammation, driven by factors such as dysbiosis, epithelial injury, and immune activation, leads to the production of cytokines like interleukin (IL)-1β, IL-17, and transforming growth factor (TGF)-β. These mediators activate various stromal cell populations, including fibroblasts, pericytes, and smooth muscle cells. The activated stromal cells secrete excessive extracellular matrix components, thereby promoting fibrosis. Additionally, stromal cells influence the immune microenvironment through cytokine production. Future research would focus on elucidating the temporal and spatial relationships between immune cell-driven inflammation and stromal cell-mediated fibrosis. Additionally, investigations are needed to clarify the differentiation origins of excessive extracellular matrix-producing cells, particularly fibroblast activation protein (FAP) + fibroblasts, in the context of intestinal fibrosis. In conclusion, aberrant stromal cell activation, triggered by upstream immune signals, is a key mechanism underlying intestinal fibrosis. Further investigations into immune-stromal cell interactions and stromal cell activation are essential for the development of therapeutic strategies to prevent, alleviate, and potentially reverse fibrosis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danshu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Verma RK, Srivastava PK, Singh A. Comprehensive analysis of inhibin-β A as a potential biomarker for gastrointestinal tract cancers through bioinformatics approaches. Sci Rep 2025; 15:1090. [PMID: 39774945 PMCID: PMC11707248 DOI: 10.1038/s41598-024-72679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied. By utilizing GEPIA2, which uses transcriptomic data from TCGA, we examined the expression of INHBA across different GI tract cancers. The results revealed consistent upregulation of INHBA in all TCGA GI tract cancers, except for liver hepatocellular carcinoma, where it showed downregulation compared to normal tissues, along with GTEx normal samples. Significant differences in INHBA expression were noted in adenocarcinomas of the colon, pancreas, rectum, and stomach, while no such differences were observed in cholangiocarcinoma and liver cancer. Moreover, a comprehensive bioinformatics analysis has been done to demonstrate that the differences in expression levels are significantly related to pathological tumor stages and prognosis in different GI tract cancers. Mucinous adenocarcinoma, esophageal squamous cell carcinoma, and stomach adenocarcinoma show a higher frequency of INHBA alteration and are primarily linked to mutations and amplifications. DNA methylation, immune infiltration, functional enrichment analysis, the genes associated with INHBA, and survival analysis in all TCGA GI tract cancers have been extensively analyzed. In colon and stomach cancers, increased INHBA expression significantly correlates with poorer overall survival (OS). However, in colon and pancreatic adenocarcinoma, higher expression is significantly associated with worse disease-free survival (DFS). Additionally, INHBA expression exhibited a positive correlation with cancer-associated fibroblasts across all gastrointestinal (GI) tract cancers. The KEGG pathway analysis revealed that INHBA and its interacting proteins are involved in several pathways, including TGF-beta signaling, Signalling pathways regulating pluripotency of stem cells, colorectal cancer, pancreatic cancer, AGE-RAGE signaling, and so on as major pathways. These findings demonstrate that INHBA could serve as a potential biomarker therapeutic target for GI tract cancer.
Collapse
Affiliation(s)
- Rohit Kumar Verma
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India
| | | | - Ashutosh Singh
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India.
| |
Collapse
|
3
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
4
|
Li X, Jin Y, Xue J. Unveiling Collagen's Role in Breast Cancer: Insights into Expression Patterns, Functions and Clinical Implications. Int J Gen Med 2024; 17:1773-1787. [PMID: 38711825 PMCID: PMC11073151 DOI: 10.2147/ijgm.s463649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
Collapse
Affiliation(s)
- Xia Li
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou, People’s Republic of China
| |
Collapse
|
5
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
6
|
Jimenez SA, Piera-Velazquez S. Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis. Curr Rheumatol Rev 2024; 20:388-404. [PMID: 37921216 DOI: 10.2174/0115733971261932231025045400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| | - Sonsoles Piera-Velazquez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| |
Collapse
|
7
|
Yuan X, He Y, Wang W. ceRNA network-regulated COL1A2 high expression correlates with poor prognosis and immune infiltration in colon adenocarcinoma. Sci Rep 2023; 13:16932. [PMID: 37805556 PMCID: PMC10560230 DOI: 10.1038/s41598-023-43507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Collagen type I α 2 (COL1A2) is a major component of collagen type I. Recently, abnormal COL1A2 expression has been reported in human cancers. However, the specific role and mechanism of COL1A2 in colon adenocarcinoma (COAD) remain unclear. We performed the pan-cancer analysis of COL1A2 expression in 33 types of human cancers from TIMER database and integrated data combined TCGA with GTEx. The prognostic values of COL1A2 for 17 cancer types of interest were estimated from GEPIA database. The results showed that COL1A2 was significantly upregulated in COAD tissues and that higher COL1A2 expression predicted unfavorable prognosis for patients with COAD. Next, COL1A2-related functional pathways in COAD were analyzed with TCGA data using R package. Additionally, we constructed a ceRNA network that LINC00638/hsa-miR-552-3p axis served as a potential regulatory pathway of COL1A2 in COAD. Furthermore, our findings showed that COL1A2 positively associated with immune infiltration and that tumor immune escape might be involved in COL1A2-mediated carcinogenesis in COAD. For the first time, we constructed a ceRNA prediction network of COL1A2 and explored the association of COL1A2 with tumor immune microenvironment remodeling. The findings may advance our understanding of the pathogenesis mechanism in COAD and paves the way for further cancer therapeutics.
Collapse
Affiliation(s)
- Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, People's Republic of China
- Clinical Research Center for Gastrointestinal Cancer in Hunan Province, Changsha, People's Republic of China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, People's Republic of China
- Clinical Research Center for Gastrointestinal Cancer in Hunan Province, Changsha, People's Republic of China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, People's Republic of China.
- Clinical Research Center for Gastrointestinal Cancer in Hunan Province, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel) 2023; 14:1167. [PMID: 37372347 DOI: 10.3390/genes14061167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic diseases characterized by recurring periods of exacerbation and remission. Fibrosis of the intestine is one of the most common complications of IBD. Based on current analyses, it is evident that genetic factors and mechanisms, as well as epigenetic factors, play a role in the induction and progression of intestinal fibrosis in IBD. Key genetic factors and mechanisms that appear to be significant include NOD2, TGF-β, TLRs, Il23R, and ATG16L1. Deoxyribonucleic acid (DNA) methylation, histone modification, and ribonucleic acid (RNA) interference are the primary epigenetic mechanisms. Genetic and epigenetic mechanisms, which seem to be important in the pathophysiology and progression of IBD, may potentially be used in targeted therapy in the future. Therefore, the aim of this study was to gather and discuss selected mechanisms and genetic factors, as well as epigenetic factors.
Collapse
Affiliation(s)
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| |
Collapse
|
9
|
SESN2 Could Be a Potential Marker for Diagnosis and Prognosis in Glioma. Genes (Basel) 2023; 14:genes14030701. [PMID: 36980973 PMCID: PMC10048065 DOI: 10.3390/genes14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial and unclear. (2) Methods: We downloaded related RNA-seq data from the TCGA and GTEx databases. Bioinformatic analyses including differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, gene function enrichment analysis, and immune cell infiltration analysis were conducted. In addition, data from the Human Protein Atlas (HPA) database were collected to validate SESN2 expression in glioma. (3) Results: In comparison with normal tissue, expression of SESN2 in glioma tissue was higher, and those with higher expressions had significantly lower overall survival rates. The results of univariate Cox regression analyses showed that SESN2 can be a disadvantageous factor in poor glioma prognosis. Both nomograms and ROC curves confirmed these findings. Meanwhile, according to gene function analysis, SESN2 may be involved in immune responses and the tumor microenvironment (TME). Based on the HPA database results, SESN2 is localized in the cytosol and shows high expression in glioma. (4) Conclusions: The expression of SESN2 in gliomas was positively relevant to a poorer prognosis, suggesting that SESN2 could be used as a prognostic gene.
Collapse
|
10
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
11
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Jin H, Guo J, Liu J, Lyu B, Foreman RD, Shi Z, Yin J, Chen JDZ. Autonomically mediated anti-inflammatory effects of electrical stimulation at acupoints in a rodent model of colonic inflammation. Neurogastroenterol Motil 2019; 31:e13615. [PMID: 31117153 DOI: 10.1111/nmo.13615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acupuncture has been widely accepted for treatments of many diseases. This study was performed to determine effects and mechanisms of electroacupuncture (EA) by chronically implanted electrodes at acupoint ST36 on colonic inflammation induced by TNBS in rats. METHODS After intrarectal administration of TNBS, the rats were treated with sham-EA, EA1/EA2 (two sets of parameters) for 3 weeks. Disease activity index (DAI), macroscopic and microscopic lesions, plasma levels of TNF-α, IL-1β and IL-6 were observed as evaluation of inflammatory responses. The autonomic function was assessed by analysis of the heart rate variability. RESULTS (a) Vagal activity was significantly increased with both acute and chronic EA1/EA2; (b) DAI was significantly decreased with both chronic EA1 and EA2, and EA2 was more potent than EA1 (P < 0.05); (c) The macroscopic score was 6.4 ± 0.6 with sham-EA and reduced to 4.9 ± 0.1 with EA1 (P < 0.05) and 4.0 ± 0.2 with EA2 (all P < 0.05). The histological score was 4.05 ± 0.58 with sham-EA and remained unchanged (3.71 ± 0.28) with EA1 (P > 0.05) but reduced to 3.0 ± 0.3 with EA2 (P < 0.01); (d) The plasma levels of TNF-α, IL-1β and IL-6 were significantly decreased with EA2. CONCLUSIONS Electrical stimulation at ST36 improves colonic inflammation in TNBS-treated rats by inhibiting pro-inflammatory cytokines via the autonomic mechanism.
Collapse
Affiliation(s)
- Haifeng Jin
- Veterans Affairs Medical Center, Veterans Research and Education Foundation, Oklahoma City, Oklahoma.,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China.,University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jie Guo
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland.,The First Hospital of Wuhan, Wuhan, China
| | - Jiemin Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Bin Lyu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Robert D Foreman
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhaohong Shi
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland.,The First Hospital of Wuhan, Wuhan, China
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jiande D Z Chen
- Veterans Affairs Medical Center, Veterans Research and Education Foundation, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Lovisa S, Genovese G, Danese S. Role of Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:659-668. [PMID: 30520951 DOI: 10.1093/ecco-jcc/jjy201] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn's disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
14
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Yun SM, Kim SH, Kim EH. The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Front Pharmacol 2019; 10:162. [PMID: 30873033 PMCID: PMC6400889 DOI: 10.3389/fphar.2019.00162] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease is known as the most chronic inflammatory disorder in colon, which subsequently progresses to intestinal obstruction and fistula formation. Many studies to date for the treatment of IBD have been focused on inflammation. However, most of the anti-inflammatory agents do not have anti-fibrotic effects and could not relieve intestinal stricture in IBD patients. Because preventing or reversing intestinal fibrosis in IBD is a major therapeutic target, we analyzed the papers focusing on TGF-β signaling in intestinal fibrosis. TGF-β is a good candidate to treat the intestinal fibrosis in IBD which involves TGF-β signaling pathway, EMT, EndMT, ECM, and other regulators. Understanding the mechanism involved in TGF-β signaling will contribute to the treatment and diagnosis of intestinal fibrosis occurring in IBD as well as the understanding of the molecular mechanisms underlying the pathogenesis.
Collapse
Affiliation(s)
- Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
16
|
Li M, Zheng Y, Yuan H, Liu Y, Wen X. Effects of dynamic changes in histone acetylation and deacetylase activity on pulmonary fibrosis. Int Immunopharmacol 2017; 52:272-280. [PMID: 28961490 DOI: 10.1016/j.intimp.2017.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Histone deacetylases (HDACs) play an important role in dysregulation of histone acetylation/deacetylation, which is the main driving force of the progression of pulmonary fibrosis. Here we investigated the changes in histone acetylation/deacetylation, and the contribution of specific class I and class II HDACs in the progression of pulmonary fibrosis. METHODS Male C57BL/6J mice received a single dose of tracheal administration of bleomycin to establish the pulmonary fibrosis model. The changes in acetylation rate of histone 3 (H3) and histone 4 (H4), and the activity of HDAC2 and HDAC4 in the lung tissue during the progression from alveolitis to pulmonary fibrosis were measured. RESULTS The acetylation rate of H3/H4 significantly decreased during alveolitis and the early and middle stages of fibrosis, but restored in the late stage of fibrosis. Correlation analysis showed that H4 deacetylation affected both alveolitis and pulmonary fibrosis. H3 deacetylation only affected alveolitis. HDAC2 activity significantly increased in the middle and late stages of pulmonary fibrosis. There was no significant difference in HDAC4 activity between bleomycin and saline groups. However, HDAC4 activity changed significantly with the progression of the disease in bleomycin group. The changes in HDAC2 and HDAC4 activity were different. HDAC2 had long-lasting effects, while HDAC4 had transient effects. Correlation analysis showed that HDAC2 and HDAC4 activity was positively correlated with alveolitis score and fibrosis score. CONCLUSIONS The changes in histone acetylation may directly regulate the gene expression of inflammatory cytokines/fibronectin and thus affect the progression of pulmonary fibrosis. The injury-induced histone deacetylation switched into acetylation at the late stage of pulmonary fibrosis, which may be involved in the repair process. HDAC2 is mainly involved in the chronic progression of pulmonary fibrosis, and HDAC4 is mainly involved in early stress response to pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Rheumatology and Immunology, Fu Xing Hospital, Capital Medical University, China
| | - Yi Zheng
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Science, Capital Medical University, China
| | - Yuan Liu
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, China
| | - Xiaohong Wen
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
17
|
Recent Advances in the Etiopathogenesis of Inflammatory Bowel Disease: The Role of Omics. Mol Diagn Ther 2017; 22:11-23. [DOI: 10.1007/s40291-017-0298-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J, Shi Z, Chen JDZ. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G192-G202. [PMID: 28546285 DOI: 10.1152/ajpgi.00254.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to determine the effects and mechanisms of vagal nerve stimulation (VNS) and additive effects of electroacupuncture (EA) on colonic inflammation in a rodent model of IBD. Chronic inflammation in rats was induced by intrarectal TNBS (2,4,6-trinitrobenzenesulfonic acid). The rats were then treated with sham ES (electrical stimulation), VNS, or VNS + EA for 3 wk. Inflammatory responses were assessed by disease activity index (DAI), macroscopic scores and histological scores of colonic tissues, plasma levels of TNFα, IL-1β, and IL-6, and myeloperoxidase (MPO) activity of colonic tissues. The autonomic function was assessed by the spectral analysis of heart rate variability (HRV) derived from the electrocardiogram. It was found that 1) the area under curve (AUC) of DAI was substantially decreased with VNS + EA and VNS, with VNS + EA being more effective than VNS (P < 0.001); 2) the macroscopic score was 6.43 ± 0.61 in the sham ES group and reduced to 1.86 ± 0.26 with VNS (P < 0.001) and 1.29 ± 0.18 with VNS + EA (P < 0.001); 3) the histological score was 4.05 ± 0.58 in the sham ES group and reduced to 1.93 ± 0.37 with VNS (P < 0.001) and 1.36 ± 0.20 with VNS + EA (P < 0.001); 4) the plasma levels of TNFα, IL-1β, IL-6, and MPO were all significantly decreased with VNS and VNS + EA compared with the sham ES group; and 5) autonomically, both VNS + EA and VNS substantially increased vagal activity and decreased sympathetic activity compared with sham EA (P < 0.001, P < 0.001, respectively). In conclusion, chronic VNS improves inflammation in TNBS-treated rats by inhibiting proinflammatory cytokines via the autonomic mechanism. Addition of noninvasive EA to VNS may enhance the anti-inflammatory effect of VNS.NEW & NOTEWORTHY This is the first study to address and compare the effects of vagal nerve stimulation (VNS), electrical acupuncture (EA) and VNS + EA on TNBS (2,4,6-trinitrobenzenesulfonic acid)-induced colitis in rats. The proposed chronic VNS + EA, VNS, and EA were shown to decrease DAI and ameliorate macroscopic and microscopic damages in rats with TNBS-induced colitis via the autonomic pathway. The addition of EA to VNS provided a significant effect on the behavioral assessment of inflammation (DAI, CMDI, and histological score) but not on cytokines or mechanistic measurements, suggesting an overall systemic effect of EA.View this article's corresponding video summary at https://youtu.be/-rEz6HMkErM.
Collapse
Affiliation(s)
- Haifeng Jin
- Veterans Research and Education Foundation, Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jie Guo
- The First Hospital of Wuhan, Wuhan, China.,Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Jiemin Liu
- Veterans Research and Education Foundation, Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Bin Lyu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Robert D Foreman
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jieyun Yin
- Veterans Research and Education Foundation, Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,Ningbo Pace Medical Research Center, Beilun, Ningbo, China; and
| | - Zhaohong Shi
- The First Hospital of Wuhan, Wuhan, China.,Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Jiande D Z Chen
- Veterans Research and Education Foundation, Veterans Affairs Medical Center, Oklahoma City, Oklahoma; .,Ningbo Pace Medical Research Center, Beilun, Ningbo, China; and.,Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| |
Collapse
|
19
|
Curciarello R, Docena GH, MacDonald TT. The Role of Cytokines in the Fibrotic Responses in Crohn's Disease. Front Med (Lausanne) 2017; 4:126. [PMID: 28824915 PMCID: PMC5545939 DOI: 10.3389/fmed.2017.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease is an idiopathic disorder of the gut thought to be caused by a combination of environmental and genetic factors in susceptible individuals. It is characterized by chronic transmural inflammation of the terminal ileum and colon, with typical transmural lesions. Complications, including fibrosis, mean that between 40 and 70% of patients require surgery in the first 10 years after diagnosis. Presently, there is no evidence that the current therapies which dampen inflammation modulate or reverse intestinal fibrosis. In this review, we focus on cytokines that may lead to fibrosis and stenosis and the contribution of experimental models for understanding and treatment of gut fibrosis.
Collapse
Affiliation(s)
- Renata Curciarello
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Gabbani T, Deiana S, Marocchi M, Annese V. Genetic risk variants as therapeutic targets for Crohn's disease. Expert Opin Ther Targets 2017; 21:381-390. [PMID: 28281904 DOI: 10.1080/14728222.2017.1296431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.
Collapse
Affiliation(s)
- Tommaso Gabbani
- a Gastroenterology UO , Azienda Unita Sanitaria Locale della Romagna , Forlì , Italy
| | - Simona Deiana
- b Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Margherita Marocchi
- c Division of Gastroenterology , AOU Modena University Hospital , Modena , Italy
| | - Vito Annese
- d Department of Gastroenterology , Valiant Clinic , Dubai , UAE
| |
Collapse
|
21
|
Gabbani T, Deiana S, Annese AL, Lunardi S, Annese V. The genetic burden of inflammatory bowel diseases: implications for the clinic? Expert Rev Gastroenterol Hepatol 2016; 10:1109-1117. [PMID: 27258545 DOI: 10.1080/17474124.2016.1196131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic intestinal inflammation. Their etiology is multifactorial, with complex interactions between genetic and environmental factors, which are still largely unclear. Areas covered: The influence of genetics is clearly demonstrated by important epidemiological data, including familial aggregation and concordance in twins. In 2001, the first genetic susceptibility gene for IBD, the NOD2 gene, was identified. Currently, thanks to genetic wide association studies, over 200 susceptibility genetic markers are know. Expert commentary: However, clinically highly relevant gene associations are still very limited and the usefulness of these information in the current clinical strategies for treatment and surveillance of IBD is weak. Nevertheless, the recent identification of some genetic risk variants has clarified some newbiological pathways of these diseases thus paving the way for the discoveries in the near future of new targeted therapies.
Collapse
Affiliation(s)
- Tommaso Gabbani
- a Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Simona Deiana
- a Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Antonio Luca Annese
- a Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Sarah Lunardi
- b Division of Internal Medicine 4 , AOU Careggi University Hospital , Florence , Italy
| | - Vito Annese
- a Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| |
Collapse
|
22
|
Li C, Kuemmerle JF. Genetic and epigenetic regulation of intestinal fibrosis. United European Gastroenterol J 2016; 4:496-505. [PMID: 27536359 DOI: 10.1177/2050640616659023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Crohn's disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn's disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn's disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn's disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn's disease and contrast that with other fibrotic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| | - John F Kuemmerle
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA; Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
23
|
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 2016; 5:jcm5040045. [PMID: 27077889 PMCID: PMC4850468 DOI: 10.3390/jcm5040045] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Fibrotic diseases encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis, sclerodermatous graft versus host disease, nephrogenic systemic fibrosis, and IgG₄-associated sclerosing disease, as well as numerous organ-specific disorders including radiation-induced fibrosis, and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrous tissue macromolecules in affected organs leading to their dysfunction and ultimate failure. The pathogenesis of fibrotic diseases is complex and despite extensive investigation has remained elusive. Numerous studies have identified myofibroblasts as the cells responsible for the establishment and progression of the fibrotic process. Tissue myofibroblasts in fibrotic diseases originate from several sources including quiescent tissue fibroblasts, circulating CD34+ fibrocytes, and the phenotypic conversion of various cell types including epithelial and endothelial cells into activated myofibroblasts. However, the role of the phenotypic transition of endothelial cells into mesenchymal cells (Endothelial to Mesenchymal Transition or EndoMT) in the pathogenesis of fibrotic disorders has not been fully elucidated. Here, we review the evidence supporting EndoMT's contribution to human fibrotic disease pathogenesis.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Lee YU, de Dios Ruiz-Rosado J, Mahler N, Best CA, Tara S, Yi T, Shoji T, Sugiura T, Lee AY, Robledo-Avila F, Hibino N, Pober JS, Shinoka T, Partida-Sanchez S, Breuer CK. TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB J 2016; 30:2627-36. [PMID: 27059717 DOI: 10.1096/fj.201500179r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/28/2016] [Indexed: 01/10/2023]
Abstract
Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-β receptor 1 (TGF-βR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-βR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-βR1 inhibitor systemic treatment for the first 2 wk. The TGF-βR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-β to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-βR1 inhibition (P < 0.0001). These findings suggest that the TGF-β signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-βR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.
Collapse
Affiliation(s)
- Yong-Ung Lee
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Nathan Mahler
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron A Best
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shuhei Tara
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshihiro Shoji
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tadahisa Sugiura
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Avione Y Lee
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Narutoshi Hibino
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Cardiothoracic Surgery-The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA; and
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Toshiharu Shinoka
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Cardiothoracic Surgery-The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA; and
| | | | - Christopher K Breuer
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
25
|
Sadler T, Bhasin JM, Xu Y, Barnholz-Sloan J, Chen Y, Ting AH, Stylianou E. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn's disease-associated fibrosis. Clin Epigenetics 2016; 8:30. [PMID: 26973718 PMCID: PMC4789277 DOI: 10.1186/s13148-016-0193-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/29/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibrosis of the intestine is a common and poorly understood complication of Crohn's disease (CD) characterized by excessive deposition of extracellular matrix and accompanied by narrowing and obstruction of the gut lumen. Defining the molecular characteristics of this fibrotic disorder is a vital step in the development of specific prediction, prevention, and treatment strategies. Previous epigenetic studies indicate that alterations in DNA methylation could explain the mechanism by which mesenchymal cells adopt the requisite pro-fibrotic phenotype that promotes fibrosis progression. However, to date, genome-wide analysis of the DNA methylome of any type of human fibrosis is lacking. We employed an unbiased approach using deep sequencing to define the DNA methylome and transcriptome of purified fibrotic human intestinal fibroblasts (HIF) from the colons of patients with fibrostenotic CD. RESULTS When compared with normal fibroblasts, we found that the majority of differential DNA methylation was within introns and intergenic regions and not associated with CpG islands. Only a low percentage occurred in the promoters and exons of genes. Integration of the DNA methylome and transcriptome identified regions in three genes that inversely correlated with gene expression: wingless-type mouse mammary tumor virus integration site family, member 2B (WNT2B) and two eicosanoid synthesis pathway enzymes (prostacyclin synthase and prostaglandin D2 synthase). These findings were independently validated by RT-PCR and bisulfite sequencing. Network analysis of the data also identified candidate molecular interactions relevant to fibrosis pathology. CONCLUSIONS Our definition of a genome-wide fibrosis-specific DNA methylome provides new gene networks and epigenetic states by which to understand mechanisms of pathological gene expression that lead to fibrosis. Our data also provide a basis for development of new fibrosis-specific therapies, as genes dysregulated in fibrotic Crohn's disease, following functional validation, can serve as new therapeutic targets.
Collapse
Affiliation(s)
- Tammy Sadler
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Jeffrey M Bhasin
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jill Barnholz-Sloan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH USA
| | - Yanwen Chen
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH USA
| | - Angela H Ting
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Eleni Stylianou
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA.,Department of Gastroenterology and Hepatology, Digestive Diseases Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
26
|
Kalmár A, Péterfia B, Hollósi P, Galamb O, Spisák S, Wichmann B, Bodor A, Tóth K, Patai ÁV, Valcz G, Nagy ZB, Kubák V, Tulassay Z, Kovalszky I, Molnár B. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer 2015; 15:736. [PMID: 26482433 PMCID: PMC4612409 DOI: 10.1186/s12885-015-1687-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence. METHODS Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed. RESULTS A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence. CONCLUSION Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.
Collapse
Affiliation(s)
- Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
- Tumour Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Sándor Spisák
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - András Bodor
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary.
| | - Kinga Tóth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Árpád V Patai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | - Vivien Kubák
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Béla Molnár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
27
|
Muylaert DEP, de Jong OG, Slaats GGG, Nieuweboer FE, Fledderus JO, Goumans MJ, Hierck BP, Verhaar MC. Environmental Influences on Endothelial to Mesenchymal Transition in Developing Implanted Cardiovascular Tissue-Engineered Grafts. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:58-67. [PMID: 26414174 DOI: 10.1089/ten.teb.2015.0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-engineered grafts for cardiovascular structures experience biochemical stimuli and mechanical forces that influence tissue development after implantation such as the immunological response, oxidative stress, hemodynamic shear stress, and mechanical strain. Endothelial cells are a cell source of major interest in vascular tissue engineering because of their ability to form a luminal antithrombotic monolayer. In addition, through their ability to undergo endothelial to mesenchymal transition (EndMT), endothelial cells may yield a cell type capable of increased production and remodeling of the extracellular matrix (ECM). ECM is of major importance to the mechanical function of all cardiovascular structures. Tissue engineering approaches may employ EndMT to recapitulate, in part, the embryonic development of cardiovascular structures. Improved understanding of how the environment of an implanted graft could influence EndMT in endothelial cells may lead to novel tissue engineering strategies. This review presents an overview of biochemical and mechanical stimuli capable of influencing EndMT, discusses the influence of these stimuli as found in the direct environment of cardiovascular grafts, and discusses approaches to employ EndMT in tissue-engineered constructs.
Collapse
Affiliation(s)
- Dimitri E P Muylaert
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Olivier G de Jong
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Gisela G G Slaats
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Frederieke E Nieuweboer
- 2 Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Joost O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marie-Jose Goumans
- 3 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, The Netherlands
| | - Beerend P Hierck
- 4 Department of Anatomy and Embryology, Leiden University Medical Center , Leiden, The Netherlands
| | - Marianne C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
28
|
Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1850-8. [PMID: 25956031 DOI: 10.1016/j.ajpath.2015.03.019] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/03/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Normally, the endothelium forms an integral cellular barrier to regulate vascular homeostasis. During embryogenesis endothelial cells exhibit substantial plasticity that contribute to cardiac development by undergoing endothelial-to-mesenchymal transition (EndoMT). We determined the presence of EndoMT in the pulmonary vasculature in vivo and the functional effects on pulmonary artery endothelial cells (PAECs) undergoing EndoMT in vitro. Histologic assessment of patients with systemic sclerosis-associated PAH and the hypoxia/SU5416 mouse model identified the presence von Willebrand factor/α-smooth muscle actin-positive endothelial cells in up to 5% of pulmonary vessels. Induced EndoMT in PAECs by inflammatory cytokines IL-1β, tumor necrosis factor α, and transforming growth factor β led to actin cytoskeleton reorganization and the development of a mesenchymal morphology. Induced EndoMT cells exhibited up-regulation of mesenchymal markers, including collagen type I and α-smooth muscle actin, and a reduction in endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin, and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable biological barriers and induced enhanced leak in co-culture with PAECs. Induced EndoMT cells secreted significantly elevated proinflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α, and supported higher immune transendothelial migration compared with PAECs. These findings suggest that EndoMT may contribute to the development of PAH.
Collapse
Affiliation(s)
- Robert B Good
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Adrian J Gilbane
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Sarah L Trinder
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Christopher P Denton
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Gerry Coghlan
- National Pulmonary Hypertension Service, Royal Free Hospital National Health Service Foundation Trust, London, United Kingdom
| | - David J Abraham
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Alan M Holmes
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
29
|
Scarpa M, Kessler S, Sadler T, West G, Homer C, McDonald C, de la Motte C, Fiocchi C, Stylianou E. The epithelial danger signal IL-1α is a potent activator of fibroblasts and reactivator of intestinal inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1624-37. [PMID: 25864926 DOI: 10.1016/j.ajpath.2015.02.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC-released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α-positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α-mediated IEC-fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD.
Collapse
Affiliation(s)
- Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Tammy Sadler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Craig Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio
| | - Eleni Stylianou
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio.
| |
Collapse
|
30
|
Abstract
Most of what is known about the pathogenesis of inflammatory bowel disease (IBD) pertains to complex interplay between host genetics, immunity, and environmental factors. Epigenetic modifications play pivotal roles in intestinal immunity and mucosal homeostasis as well as mediating gene-environment interactions. In this article, we provide a historical account of epigenetic research either directly related or pertinent to the pathogenesis and management of IBD. We further collate emerging evidence supporting roles for epigenetic mechanisms in relevant aspects of IBD biology, including deregulated immunity, host-pathogen recognition and mucosal integrity. Finally, we highlight key epigenetic mechanisms that link chronic inflammation to specific IBD comorbidities, including colitis-associated cancer and discuss their potential utility as novel biomarkers or pharmacologic targets in IBD therapy.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Ulcerative colitis and Crohn's disease are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the United States. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response, and the microbiome, through an unknown sequence of events. The purpose of this review is to describe a systems biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular 'omics' data. RECENT FINDINGS Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic, and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types including fibroblasts, epithelial, immune, and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high-throughput molecular data. SUMMARY A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network.
Collapse
|
32
|
Curci C, Castellano G, Stasi A, Divella C, Loverre A, Gigante M, Simone S, Cariello M, Montinaro V, Lucarelli G, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, van Amersfoort E, Gesualdo L, Grandaliano G. Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transplant 2014; 29:799-808. [PMID: 24463188 DOI: 10.1093/ndt/gft516] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increasing evidence demonstrates a phenotypic plasticity of endothelial cells (ECs). Endothelial-to-mesenchymal transition (EndMT) contributes to the development of tissue fibrosis. However, the pathogenic factors and signalling pathways regulating this process in ischaemia/reperfusion (I/R) injury are still poorly understood. METHODS We investigated the possible role of complement in the induction of this endothelial dysfunction in a swine model of renal I/R injury by using recombinant C1 inhibitor in vivo. RESULTS Here, we showed that I/R injury reduced the density of renal peritubular capillaries and induced tissue fibrosis with generation of CD31(+)/α-SMA(+) and CD31(+)/FPS-1(+) cells indicating EndMT. When we inhibited complement, the process of EndMT became rare, with preserved density of peritubular capillaries and significant reduction in renal fibrosis. When we activated ECs by anaphylatoxins in vitro, C3a and C5a led to altered endothelial phenotype with increased expression of fibroblast markers and decrease expression of specific endothelial markers. The activation of Akt pathway was pivotal for the C3a and C5a-induced EndMT in vitro. In accordance, inhibition of complement in vivo led to the abrogation of Akt signalling, with hampered EndMT and tissue fibrosis. CONCLUSIONS Our data demonstrate a critical role for complement in the acute induction of EndMT via the Akt pathway. Therapeutic inhibition of these systems may be essential to prevent vascular damage and tissue fibrosis in transplanted kidney.
Collapse
Affiliation(s)
- Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The clinical course of inflammatory bowel disease (IBD) is highly heterogeneous and often unpredictable, with multiple and serious complications that range from stricture formation to bowel obstruction or perforation, fistula formation and the need for surgery. All these problems are manifestations of tissue remodeling, a secondary but universal response to the insults of chronic inflammation. The factors involved in tissue remodeling are several, including the site and duration of inflammation, soluble molecules, the gut microbiota, and the type of mesenchymal cell response. The prototypical and most common type of tissue remodeling in IBD, and Crohn's disease (CD) in particular, is a fibrotic response, and this review will focus on the factors and mechanisms involved in fibrogenesis, and speculate on what is needed for the development of a rational treatment of intestinal fibrosis.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Pathobiology, Lerner Research Institute, and Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|