1
|
Zhang C, Xiang Z, Yang P, Zhang L, Deng J, Liao X. Advances in Nano-Immunomodulatory Systems for the Treatment of Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409190. [PMID: 40145715 PMCID: PMC12061249 DOI: 10.1002/advs.202409190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/26/2025] [Indexed: 03/28/2025]
Abstract
Acute kidney injury (AKI) occurs when there is an imbalance in the immune microenvironment, leading to ongoing and excessive inflammation. Numerous immunomodulatory therapies have been suggested for the treatment of AKI, the current immunomodulatory treatment delivery systems are suboptimal and lack efficiency. Given the lack of effective treatment, AKI can result in multi-organ dysfunction and even death, imposing a significant healthcare burden on both the family and society. This underscores the necessity for innovative treatment delivery systems, such as nanomaterials, to better control pathological inflammation, and ultimately enhance AKI treatment outcomes. Despite the modification of numerous immunomodulatory nanomaterials to target the AKI immune microenvironment with promising therapeutic results, the literature concerning their intersection is scarce. In this article, the pathophysiological processes of AKI are outlined, focusing on the immune microenvironment, discuss significant advances in the comprehension of AKI recovery, and describe the multifunctionality and suitability of nanomaterial-based immunomodulatory treatments in managing AKI. The main obstacles and potential opportunities in the swiftly advancing research field are also clarified.
Collapse
Affiliation(s)
- Chenli Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Zeli Xiang
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Pengfei Yang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jun Deng
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Institute of Burn Research, Southwest HospitalState Key Lab of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| |
Collapse
|
2
|
Liang J, Zhao J, Yang L, Wang Q, Liao J, Li J, Zhuang W, Li F, He J, Tang Y, Chen H, Huang C. MSC-exosomes pretreated by Danshensu extracts pretreating to target the hsa-miR-27a-5p and STAT3-SHANK2 to enhanced antifibrotic therapy. Stem Cell Res Ther 2025; 16:40. [PMID: 39901236 PMCID: PMC11792327 DOI: 10.1186/s13287-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a serious complication commonly associated with prolonged peritoneal dialysis. Mesenchymal stem cells (MSCs) and their exosomes (Exo) have shown significant therapeutic promise in treating fibrotic conditions. Danshensu (DSS), a bioactive compound from the traditional Chinese herb Danshen reverses fibrosis. This study aims to investigate a novel strategy to enhance the therapeutic efficacy against PF by DSS preconditioning MSCs-derived exosomes (DSS-Exo). METHODS The in vitro studies included the effects of DSS duration on MSCs, and the characterization of DSS-Exo and Exo, followed by the assessment of RNA and protein expression levels of peritoneal fibrosis markers and inflammatory cytokines levels after treating human peritoneal mesothelial (HMrSV5) cells. In vivo experiments were conducted on a PF mouse model to observe cell morphology, collagen deposition, fibrosis localization, and to evaluate peritoneal functions such as filtration rate, urea nitrogen clearance, peritoneal thickness, and protein leakage. Mechanistic insights were gained through the analysis of the STAT3/HIF-1α/VEGF signaling pathway, tissue dual-fluorescence localization,chromatin immunoprecipitation sequencing (ChIP-seq), and dual-luciferase reporter (DLR) assays. Additionally, the differential expression of miRNAs between DSS-Exo and Exo was explored and validation of key miRNA. RESULTS DSS-Exo significantly upregulated E-cadherin, downregulated VEGFA, α-SMA, CTGF and Fibronectin expression in HMrSV5 cells compared to untreated Exo. In vivo studies revealed that DSS-Exo enhanced the ability of Exo to improve peritoneal function,such as the peritoneal filtration rate and urea nitrogen, glucose clearance, while reducing peritoneal thickness and protein leakage, and cell morphology, reduce collagen deposition, and decrease the degree of fibrosis. Mechanistically, these exosomes inhibited the STAT3/HIF-1α/VEGF signaling pathway within peritoneal mesothelial tissues. Furthermore, ChIP-seq and DLR demonstrated that DSS-Exo affected STAT3 directly binds to SHANK2 promoter regions, forming hydrogen bonds between 5 key amino acids such as GLN-344, HIS-332 and 6 key bases such as DG-258, DG-261. miRNA profiling identified DSS-Exo increased hsa-miR-27a-5p_R-1 to regulated STAT3-SHANK2 and modulating the EMT. CONCLUSION This study highlighted the innovative use of Danshensu in enhancing MSC-derived exosome therapy for PF. The identification of the hsa-miR-27a-5p_R-1-STAT3-SHANK2 axis may reveal new molecular mechanisms underlying fibrosis, further research is needed to fully elucidate its impact on PF. The integration of Danshensu from traditional Chinese medicine into modern MSC exosome therapy represents a promising frontier in the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxiu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Science, ShunDe Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jianhao Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhao Zhuang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxian He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Panyu Health Management Center, Guangzhou, 511400, China.
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, 511400, China.
| |
Collapse
|
3
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Zhao Q, Mo Z, Zeng L, Yuan Y, Wang Y, Wang Y. Construction and Evaluation of Hepatic Targeted Drug Delivery System with Hydroxycamptothecin in Stem Cell-Derived Exosomes. Molecules 2024; 29:5174. [PMID: 39519815 PMCID: PMC11547497 DOI: 10.3390/molecules29215174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Hydroxycamptothecin (HCPT) is commonly used in the treatment of liver cancer; however, its low water solubility and poor stability significantly limit its clinical application. In recent years, research on exosomes has deepened considerably. Exosomes possess a unique phospholipid bilayer structure, enabling them to traverse tissue barriers, which provides natural advantages as drug carriers. Nevertheless, delivering exosomes safely and efficiently to target cells remains a major challenge. In this study, we utilized the affinity of the SP94 peptide for human liver cancer cell receptors. HCPT was coated with exosomes in our experimental design, and the exosome membrane was modified with SP94 peptide to facilitate drug delivery to liver cancer cells. Exosomes were purified from bone marrow mesenchymal stem cells, and targeted peptides were attached to their surfaces via post-insertion techniques. Subsequently, HCPT was incorporated into the exosomes through electroporation. Using the HepG2 hepatoma cell line, we evaluated a series of in vitro pharmacodynamics and studied pharmacokinetics and tissue distribution in animal models. The results indicated that ligand-targeted, modified drug-carrying exosomes significantly enhance drug bioavailability, prolong retention time in vivo, and facilitate liver targeting. Moreover, this approach reduces drug nephrotoxicity, enhances anti-tumor efficacy, and lays the groundwork for the development of novel liver cancer-targeting agents.
Collapse
Affiliation(s)
- Qiongjun Zhao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Zixuan Mo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Liuting Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Yue Yuan
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Yan Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Ying Wang
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528453, China
| |
Collapse
|
5
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Li Z, Ding H, Dong L, Jiang X, Xu X, Yu Z, Xing Q, Tang H, Wei Z, Wang J. Umbilical Cord Mesenchymal Stem Cells‐Derived Exosomes Promote the Repair of Endometrial Injury via the miR‐21‐5p/PTEN/AKT Axis. Stem Cells Int 2024; 2024. [DOI: 10.1155/sci/7674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/11/2024] [Indexed: 05/04/2025] Open
Abstract
Background: Endometrial injury contributes to the reduction of endometrial receptivity and is widely recognized as a critical factor in implantation failure. Increasing evidence suggests that the therapeutic effects of mesenchymal stem cells (MSCs) mainly depend on their capacity to secrete paracrine factors specifically MSC‐derived exosomes (MSC‐Exos), which are regulated by exosomal miRNA. In this study, we investigated the effects of human umbilical cord MSC‐Exos (hUCMSC‐Exos) on injured endometrium and the potential mechanisms.Methods: To observe the distribution of exosomes in vivo, DIR‐labeled hUCMSC‐Exos were injected into the tail vein of endometrium‐injured mice. The recovery of mice damaged endometrium after exosome treatment was detected by hematoxylin–eosin (HE), TUNEL staining, and immunohistochemistry. Then, western blot measured the expression of Bcl‐2, Bax, and cleaved caspase‐3. The mRNA expression of vascular endothelial growth factor (VEGF) and insulin‐like growth factor‐1 (IGF‐1) was evaluated by quantitative real‐time PCR (qRT‐PCR). Furthermore, miR‐21‐5p was checked in mifepristone‐injured endometrial stromal cells (EndoSC) after the hUCMSC‐Exos addition. The cell viability and apoptosis were analyzed and phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine/threonine kinase (AKT) pathway were confirmed with hUCMSC‐Exos transfected the miR‐21‐5p.Results: hUCMSC‐Exos migrated to the damaged endometrium, and the endometrial thickness, the number of glands as well as embryo implantation rate were significantly increased (p < 0.05). hUCMSC‐Exos could inhibit apoptosis in our mouse endometrial injury model. Besides, the expression of Ki67 and cluster of differentiation 31 (CD31) was significantly increased (p < 0.05). The VEGF and IGF‐1 expression was significantly upregulated in the exosome group (p < 0.05). The repair effect of exosomes on damaged cells was further enhanced after transfection with miR‐21‐5p mimics and counteracted after transfection with inhibitors. The repair of damaged cells is related to decreased PTEN level and activated the PI3K/AKT signaling pathway.Conclusion: hUCMSC‐Exos ameliorated the damaged uterus, increased the number of glands and embryo implantation rates, suppressed apoptosis, and improved the cell proliferation in the mouse injured endometrium model. Exosomal miR‐21‐5p positively regulated the repair of endometrial injury and enhances the therapeutic effect of hUCMSC‐Exos by activate the PTEN/AKT signaling pathways.
Collapse
|
7
|
Beltramo E, Mazzeo A, Porta M. Release of Pro-Inflammatory/Angiogenic Factors by Retinal Microvascular Cells Is Mediated by Extracellular Vesicles Derived from M1-Activated Microglia. Int J Mol Sci 2023; 25:15. [PMID: 38203187 PMCID: PMC10778795 DOI: 10.3390/ijms25010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The interactions between the neuronal and vascular sides of the retina during diabetic retinopathy (DR) have gained increasing attention. Microglia is responsible for the immune response to inflammation inside the retina, which could be mediated by paracrine signals carried by extracellular vesicles (EVs). We aimed to characterize EVs released from immortalized human microglial cells in inflammation and investigate their effects on the retinal microvasculature and the anti-inflammatory potential of thiamine in this context. M1 pro-inflammatory polarization in microglia was induced through a cytokine cocktail. EVs were isolated from the supernatants, characterized, and used to stimulate human retinal endothelial cells (HRECs) and pericytes (HRPs). Microvascular cell functions and their release of pro-inflammatory/angiogenic factors were assessed. M1-derived EVs showed increased content of miR-21, miR-155, CCL2, MMP2, and MMP9, and enhanced apoptosis, proliferation, migration, and ROS production in HRPs and HRECs. IL-1β, IL-6, MMP9, CCL2, and VEGF release increased in HRPs exposed to M1-derived EVs, while HRECs showed augmented IL-6, Ang2, VEGF, and PDFG-B. Addition of thiamine to M1-microglial cultures reverted most of these effects. In conclusion, M1-derived EVs stimulate functional changes and secretion of pro-inflammatory/angiogenic molecules in microvascular cells, exacerbating inflammatory damage and retinopathy features. Thiamine added to microglia exerts anti-inflammatory effects.
Collapse
Affiliation(s)
- Elena Beltramo
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy; (A.M.); (M.P.)
| | | | | |
Collapse
|
8
|
Zhang Y, Li X, Xing J, Zhou J, Li H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023; 11:2913. [PMID: 38001913 PMCID: PMC10669320 DOI: 10.3390/biomedicines11112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical transdifferentiation is a technique that utilizes small molecules to directly convert one cell type into another without passing through an intermediate stem cell state. This technique offers several advantages over other methods of cell reprogramming, such as simplicity, standardization, versatility, no ethical and safety concern and patient-specific therapies. Chemical transdifferentiation has been successfully applied to various cell types across different tissues and organs, and its potential applications are rapidly expanding as scientists continue to explore new combinations of small molecules and refine the mechanisms driving cell fate conversion. These applications have opened up new possibilities for regenerative medicine, disease modeling, drug discovery and tissue engineering. However, there are still challenges and limitations that need to be overcome before chemical transdifferentiation can be translated into clinical practice. These include low efficiency and reproducibility, incomplete understanding of the molecular mechanisms, long-term stability and functionality of the transdifferentiated cells, cell-type specificity and scalability. In this review, we compared the commonly used methods for cell transdifferentiation in recent years and discussed the current progress and future perspective of the chemical transdifferentiation of somatic cells and its potential impact on biomedicine. We believe that with ongoing research and technological advancements, the future holds tremendous promise for harnessing the power of small molecules to shape the cellular landscape and revolutionize the field of biomedicine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jianyu Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150006, China;
| | - Jinsong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
9
|
Singh J, Singh S. Review on kidney diseases: types, treatment and potential of stem cell therapy. RENAL REPLACEMENT THERAPY 2023; 9:21. [PMID: 37131920 PMCID: PMC10134709 DOI: 10.1186/s41100-023-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Renal disorders are an emerging global public health issue with a higher growth rate despite progress in supportive therapies. In order to find more promising treatments to stimulate renal repair, stem cell-based technology has been proposed as a potentially therapeutic option. The self-renewal and proliferative nature of stem cells raised the hope to fight against various diseases. Similarly, it opens a new path for the treatment and repair of damaged renal cells. This review focuses on the types of renal diseases; acute and chronic kidney disease-their statistical data, and the conventional drugs used for treatment. It includes the possible stem cell therapy mechanisms involved and outcomes recorded so far, the limitations of using these regenerative medicines, and the progressive improvement in stem cell therapy by adopting approaches like PiggyBac, Sleeping Beauty, and the Sendai virus. Specifically, about the paracrine activities of amniotic fluid stem cells, renal stem cells, embryonic stem cells, mesenchymal stem cell, induced pluripotent stem cells as well as other stem cells.
Collapse
Affiliation(s)
- Jaspreet Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| | - Sanjeev Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| |
Collapse
|
10
|
Han L, Zhao Z, Chen X, Yang K, Tan Z, Huang Z, Zhou L, Dai R. Human umbilical cord mesenchymal stem cells-derived exosomes for treating traumatic pancreatitis in rats. Stem Cell Res Ther 2022; 13:221. [PMID: 35619158 PMCID: PMC9137180 DOI: 10.1186/s13287-022-02893-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The therapeutic and protective effects of human umbilical cord mesenchymal stem cells-exosomes (hucMSC-Exs) on traumatic pancreatitis (TP) remain unknown. Here, we established a rat model of TP and evaluated and compared the therapeutic effects of hUC-MSCs and hucMSC-Exs. METHODS HucMSC-Exs were obtained by ultracentrifugation and identified using transmission electron microscopy and western blot analysis. TP rats were treated by tail vein injection of hUC-MSCs and hucMSC-Exs. Their homing in rats was observed by performing fluorescence microscopy. The degree of pancreatic tissue damage was assessed by HE staining, the expression levels of amylase, lipase, and inflammatory cytokines were detected by ELISA, apoptosis was detected by TUNEL assay, and the expression levels of various apoptosis-related proteins were detected by western-blot. The expression levels of apoptosis-related molecular markers were detected by RT-qPCR. RESULTS The colonization of exosomes was observed in pancreatic tissue. Compared to TP group, the histopathological score of pancreas was significantly decreased in the TP + hUC-MSCs group and TP + hucMSC-Exs group (P < 0.05). Compared to TP group, the activity of serum amylase and lipase was significantly decreased (P < 0.05). The expression levels of IL-6 and TNF-α were significantly decreased, while those of IL-10 and TGF-β were significantly increased (P < 0.05). The apoptosis index of the TP group was significantly increased (P < 0.05), whereas that of the TP + hUC-MSCs and TP + hucMSC-Exs groups was significantly decreased (P < 0.05). Compared to TP group, the expression levels of Bax, Bcl-2, and Caspase-3 were significantly decreased in the TP + hUC-MSCs group and TP + hucMSC-Exs group (P < 0.05). CONCLUSION HucMSC-Exs can colonize injured pancreatic tissue, inhibit the apoptosis of acinar cells, and control the systemic inflammatory response to facilitate the repair of pancreatic tissue.
Collapse
Affiliation(s)
- Li Han
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhirong Zhao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingyun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Integrated Traditional Chinese and Western Medicine Hospital of Liangshan Yi Autonomous Prefecture, Xichang, 615000, Sichuan Province, China
| | - Ke Yang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, 610083, Sichuan Province, China
| | - Zhen Tan
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan Province, China
| | - Zhu Huang
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan Province, China
| | - Lichen Zhou
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan Province, China
- College of Clinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ruiwu Dai
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan Province, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
- College of Clinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
11
|
Niazi V, Ghafouri-Fard S, Verdi J, Jeibouei S, Karami F, Pourhadi M, Ahani M, Atarodi K, Soleimani M, Zali H, Zomorrod MS. Hypoxia preconditioned mesenchymal stem cell-derived exosomes induce ex vivo expansion of umbilical cord blood hematopoietic stem cells CD133+ by stimulation of Notch signaling pathway. Biotechnol Prog 2021; 38:e3222. [PMID: 34734683 DOI: 10.1002/btpr.3222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are crucial cells that play an essential role in the maintenance, self-renewal, and proliferation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow niche. It has been proven that MSCs can be used as a feeder layer for the proliferation of HSCs to enhance the number of HPCs and HSCs. Recently, it has been demonstrated that MSC-derived exosome (MSC-DE) has critical roles in different biological processes in bone marrow (BM). In the current research, we examined the importance of hypoxia-preconditioned MSC-derived exosomes (HP-MSC-DE) and normoxia-preconditioned MSC-derived exosomes (NP-MSC-DE) in the self-renewal and long-term clonogenic potential of umbilical cord blood hematopoietic stem cells (UCB-HSCs). We showed that the secretion rate and component of the exosome (EXO) were changed in HP-MSC-DE compared to NP-MSC-DE. Notably, the Jagged-1 (Notch ligand) content of EXO was much more plentiful in HP-MSC-DE compared to NP-MSC-DE. The addition of HP-MSC-DE enriched by Jagged-1 to the co-culture system stimulates the Notch pathway on the membrane of UCB-HSCs CD133+ and enhances proliferation. HP-MSC-DE induction using an anti-Jagged-1 antibody suppresses all biological functions of the Jagged-1 protein. Importantly, HP-MSC-DE containing Jagged-1 could change the biology of HSCs CD133+ and increase the self-renewal capacity, quiescence, and clonogenic potential of CD133+ cells. Moreover, they support generating a large number of primitive cells. Our study signified the importance of HP-MSC-DE in the proliferation of UCB-HSCs CD133+, which manifested therapeutic applications of EXO in the enhanced number of HSCs and subsequently alleviated bone marrow transplantation.
Collapse
Affiliation(s)
- Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Jeibouei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Karami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Atarodi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Lee PW, Wu BS, Yang CY, Lee OKS. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int J Mol Sci 2021; 22:11406. [PMID: 34768837 PMCID: PMC8583897 DOI: 10.3390/ijms222111406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs' therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.
Collapse
Grants
- Yin Yen-Liang Foundation Development and Construction Plan (107F-M01-0504) National Yang-Ming University
- MOST 108-2923-B-010-002-MY3, MOST 109-2314-B-010-053-MY3, MOST 109-2811-B-010-532, MOST 109-2926-I-010-502, MOST 109-2823-8-010-003-CV, MOST 109-2622-B-010-006, MOST 109-2321-B-010-006, MOST 110-2923-B-A49A-501-MY3, and MOST 110-2321-B-A49-003 Ministry of Science and Technology, Taiwan
- V106D25-003-MY3, VGHUST107-G5-3-3, VGHUST109-V5-1-2, and V110C-194 Taipei Veterans General Hospital
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) Ministry of Education
Collapse
Affiliation(s)
- Pei-Wen Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Hong Deh Clinic, Taipei 11251, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
13
|
Exosomes Derived from lncRNA TCTN2-Modified Mesenchymal Stem Cells Improve Spinal Cord Injury by miR-329-3p/IGF1R Axis. J Mol Neurosci 2021; 72:482-495. [PMID: 34623606 DOI: 10.1007/s12031-021-01914-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes play significant roles in alleviating spinal cord injury (SCI). Previous study showed that long non-coding RNA tectonic family member 2 (TCTN2) was able to relieve SCI. Herein, whether TCTN2 exerted its roles in functional recovery after SCI via exosomes derived from MSCs was explored. The SCI model was established in rats, and the neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scoring. Lipopolysaccharide (LPS)-induced differentiated PC12 cells were used as an in vitro model for neurotoxicity research. The expression of genes and proteins was detected by qRT-PCR and Western blot. Exosomes were isolated by ultracentrifugation and qualified by TEM and Western blot. In vitro assays were performed using CCK-8 assay, EdU assay, and flow cytometry, respectively. Dual-luciferase reporter assay and RIP assay were used to confirm the target relationship between miR-329-3p and TCTN2 or insulin-like growth factor1 receptor (IGF1R). TCTN2 expression was down-regulated in SCI model rat and lipopolysaccharide (LPS)-stimulated PC12 cells. MSCs produced exosomes and could package TCTN2 into secreted exosomes. Tail vein injection of TCTN2 exosomes into rats significantly improved functional recovery of SCI. Meanwhile, TCTN2 exosomes treatment alleviated LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro. Additionally, TCTN2 targeted miR-329-3p and subsequently regulated the expression of its target IGF1R. Rescue assays suggested that miR-329-3p/IGF1R axis mediated the beneficial effects of TCTN2 exosomes on LPS-treated PC12 cells. In all, exosomes derived from TCTN2-modified MSCs could improve functional recovery of SCI in vivo and attenuate LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro via miR-329-3p/IGF1R axis, suggesting a novel insight into the development of MSC-exosomes-based therapy for SCI.
Collapse
|
14
|
Ying W, Hengqin W, Xiaomei W, Yunqi Z, Yong Z, Fusheng Q. Extracellular vesicles of bovine small follicular fluid promote ovarian cortical stromal cell proliferation and steroidogenesis. Reprod Domest Anim 2021; 56:1425-1434. [PMID: 34402549 DOI: 10.1111/rda.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023]
Abstract
The aim of this study was to investigate the effects of extracellular vesicles (EVs) on the proliferation and steroid hormone synthesis of bovine ovarian cortical stromal cells in vitro. The release and uptake of EVs are the new mechanisms of cell-to-cell communication. Using reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, TUNEL and other experiments, we found that EVs in bovine follicular fluid can promote the proliferation and synthesis of androstenedione and progesterone in ovarian cortical stromal cells. Moreover, 100 μg/ml EVs caused the most significant effect. We conclude that EVs at 100 μg/ml can significantly promote the proliferation and synthesis of androstenedione and progesterone in ovarian cortical stromal cells. This research is of great significance for further elucidating the regulatory role of follicular fluid EVs in follicular development and atresia and for research on the interaction of ovarian stromal cells, granulosa cells and oocytes.
Collapse
Affiliation(s)
- Wang Ying
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wang Hengqin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wang Xiaomei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhao Yunqi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhang Yong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Quan Fusheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
He Q, Song J, Cui C, Wang J, Hu H, Guo X, Yang M, Wang L, Yan F, Liang K, Liu Z, Liu F, Sun Z, Dong M, Hou X, Chen L. Mesenchymal stem cell-derived exosomal miR-146a reverses diabetic β-cell dedifferentiation. Stem Cell Res Ther 2021; 12:449. [PMID: 34380570 PMCID: PMC8356465 DOI: 10.1186/s13287-021-02371-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating type 2 diabetes mellitus (T2DM) in clinical studies. Accumulating evidence has suggested that the therapeutic effects of MSCs are not due to their direct differentiation into functional β-cells but are instead mediated by their paracrine functions. Among them, exosomes, nano-sized extracellular vesicles, are important substances that exert paracrine functions. However, the underlying mechanisms of exosomes in ameliorating T2DM remain largely unknown. Methods Bone marrow mesenchymal stem cell (bmMSC)-derived exosomes (bmMDEs) were administrated to T2DM rats and high-glucose-treated primary islets in order to detect their effects on β-cell dedifferentiation. Differential miRNAs were then screened via miRNA sequencing, and miR-146a was isolated after functional verification. TargetScan, reporter gene detection, insulin secretion assays, and qPCR validation were used to predict downstream target genes and involved signaling pathways of miR-146a. Results Our results showed that bmMDEs reversed diabetic β-cell dedifferentiation and improved β-cell insulin secretion both in vitro and in vivo. Results of miRNA sequencing in bmMDEs and subsequent functional screening demonstrated that miR-146a, a highly conserved miRNA, improved β-cell function. We further found that miR-146a directly targeted Numb, a membrane-bound protein involved in cell fate determination, leading to activation of β-catenin signaling in β-cells. Exosomes derived from miR-146a-knockdown bmMSCs lost the ability to improve β-cell function. Conclusions These findings demonstrate that bmMSC-derived exosomal miR-146a protects against diabetic β-cell dysfunction by acting on the NUMB/β-catenin signaling pathway, which may represent a novel therapeutic strategy for T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02371-0.
Collapse
Affiliation(s)
- Qin He
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jinbang Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhaojian Liu
- Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zheng Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ming Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China.
| |
Collapse
|
16
|
Ramasamy TS, Yee YM, Khan IM. Chondrocyte Aging: The Molecular Determinants and Therapeutic Opportunities. Front Cell Dev Biol 2021; 9:625497. [PMID: 34336816 PMCID: PMC8318388 DOI: 10.3389/fcell.2021.625497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a joint degenerative disease that is an exceedingly common problem associated with aging. Aging is the principal risk factor for OA, but damage-related physiopathology of articular chondrocytes probably drives the mechanisms of joint degeneration by a progressive decline in the homeostatic and regenerative capacity of cells. Cellular aging is the manifestation of a complex interplay of cellular and molecular pathways underpinned by transcriptional, translational, and epigenetic mechanisms and niche factors, and unraveling this complexity will improve our understanding of underlying molecular changes that affect the ability of the articular cartilage to maintain or regenerate itself. This insight is imperative for developing new cell and drug therapies for OA disease that will target the specific causes of age-related functional decline. This review explores the key age-related changes within articular chondrocytes and discusses the molecular mechanisms that are commonly perturbed as cartilage ages and degenerates. Current efforts and emerging potential therapies in treating OA that are being employed to halt or decelerate the aging processes are also discussed.
Collapse
Affiliation(s)
- Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Cell and Molecular Biology Laboratory, The Dean's Office, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yong Mei Yee
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ilyas M Khan
- Centre of NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
17
|
Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ, Marofi F, Nikoo M, Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12:297. [PMID: 34020704 PMCID: PMC8138094 DOI: 10.1186/s13287-021-02378-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30100nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | | | - Judi Januadi Endjun
- Medical Faculty, UPN Veteran, Jakarta, Indonesia.,Gatot Soebroto Indonesia Army Hospital, Jakarta, Indonesia
| | | | | | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Flanagan M, Pathak I, Gan Q, Winter L, Emnet R, Akel S, Montaño AM. Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Res Ther 2021; 12:276. [PMID: 33957983 PMCID: PMC8101245 DOI: 10.1186/s13287-021-02355-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which results in the accumulation of the glycosaminoglycans (GAGs), keratan sulfate, and chondroitin-6-sulfate in the lysosomes of all tissues causing systemic dysfunction. Current treatments include enzyme replacement therapy (ERT) which can treat only certain aspects of the disease such as endurance-related biological endpoints. A key challenge in ERT is ineffective enzyme uptake in avascular tissues, which makes the treatment of the corneal, cartilage, and heart valvular tissue difficult. The aim of this study was to culture human umbilical mesenchymal stem cells (UMSC), demonstrate presence of GALNS enzyme activity within the extracellular vesicles (EVs) derived from these UMSC, and study how these secreted EVs are taken up by GALNS-deficient cells and used by the deficient cell's lysosomes. METHODS We obtained and cultured UMSC from the umbilical cord tissue from anonymous donors from the Saint Louis Cord Blood Bank. We characterized UMSC cell surface markers to confirm phenotype by cell sorting analyses. In addition, we confirmed that UMSC secrete GALNS enzyme creating conditioned media for co-culture experiments with GALNS deficient cells. Lastly, we isolated EVs derived from UMSC by ultracentrifugation to confirm source of GALNS enzyme. RESULTS Co-culture and confocal microscopy experiments indicated that the lysosomal content from UMSC migrated to deficient cells as evidenced by the peak signal intensity occurring at 15 min. EVs released by UMSC were characterized indicating that the EVs contained the active GALNS enzyme. Uptake of GALNS within EVs by deficient fibroblasts was not affected by mannose-6-phosphate (M6P) inhibition, suggesting that EV uptake by these fibroblasts is gradual and might be mediated by a different means than the M6P receptor. CONCLUSIONS UMSC can deliver EVs containing functional GALNS enzyme to deficient cells. This enzyme delivery method, which was unaffected by M6P inhibition, can function as a novel technique for reducing GAG accumulation in cells in avascular tissues, thereby providing a potential treatment option for Morquio A syndrome.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Isha Pathak
- School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Linda Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Ryan Emnet
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Salem Akel
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
19
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
20
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Ramírez-Bajo MJ, Banon-Maneus E, Rovira J, Campistol JM, Diekmann F. Isolation of Extracellular Vesicles Derived from Mesenchymal Stromal Cells by Ultracentrifugation. Bio Protoc 2020; 10:e3860. [PMID: 33855106 DOI: 10.21769/bioprotoc.3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/25/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membranous vesicles that differ on their biogenesis and release pathways, such as exosomes, microvesicles and apoptotic bodies. They are involved in cell-to-cell communication delivering signal molecules (proteins, nucleic acids, lipids, etc.) that can regulate different physiological processes, as well as the development and progression of several diseases. There are different methods and commercial kits to isolate EVs and depending on the methodology one could obtain EVs with different degrees of efficiency, purity and it can be more or less time-consuming. Then, the choice has to be according to the different advantages and disadvantages, and their use for downstream applications. Here, we describe the EVs isolation method from mesenchymal stromal cells by ultracentrifugation. This EVs isolation can be performed using common media and buffers, and only with the requirement of an analytical ultracentrifuge. Moreover, this method can be used to obtain large quantity of EVs with a good reproducibility for developing in vitro and in vivo experiments and studying their biological actions.
Collapse
Affiliation(s)
- María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
22
|
Exosome and Melatonin Additively Attenuates Inflammation by Transferring miR-34a, miR-124, and miR-135b. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1621394. [PMID: 33299858 PMCID: PMC7707940 DOI: 10.1155/2020/1621394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
The positive effects of mesenchymal stem cells (MSCs) are primarily activated through molecular secretions known as paracrine activity, which regulates the function of various cell types including immune cells. Accumulating evidence shows that exosomes of soluble factors released from MSCs are potential alternative agents for stem cell-based therapy, although the exact underlying mechanism has not been elucidated. The purpose of this study was to evaluate the potential effects of exosomes produced by adipose-derived MSCs and to examine the changes in anti-inflammatory genes in concurrence with the polarization of M2 macrophages in cellular models ex vivo. Isolated exosomes were used to investigate the inflammatory modulation in pro-inflammatory cytokine-treated fibroblasts and THP-1 cells. The anti-inflammatory mRNA expression associated with M2 macrophages was significantly upregulated after exosome treatment in an interferon gamma and tumor necrosis factor alpha-treated inflammatory environment. Furthermore, melatonin-stimulated exosomes exerted superior anti-inflammatory modulation via exosomal miRNAs miR-34a, miR-124, and miR-135b, compared with exosomes. Our results indicate that melatonin-stimulated exosomes originating from adipose-derived MSCs are safe and efficient tools for regenerative medicine to treat inflammatory diseases.
Collapse
|
23
|
High Dose of Intravenous Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells (CLV-100) Infusion Displays Better Immunomodulatory Effect among Healthy Volunteers: A Phase 1 Clinical Study. Stem Cells Int 2020; 2020:8877003. [PMID: 33061992 PMCID: PMC7539086 DOI: 10.1155/2020/8877003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) express growth factors and other cytokines that stimulate repair and control the immune response. MSCs are also immunoprivileged with low risk of rejection. Umbilical cord-derived MSCs (UCMSCs) are particularly attractive as an off-the-shelf allogeneic treatment in emergency medical conditions. We aim to determine the safety and efficacy of intravenous allogeneic infusion of UCMSCs (CLV-100) by Cytopeutics® (Selangor, Malaysia) in healthy volunteers, and to determine the effective dose at which an immunomodulatory effect is observed. Methodology. Umbilical cord samples were collected after delivery of full-term, healthy babies with written consent from both parents. All 3 generations (newborn, parents, and grandparents) were screened for genetic mutations, infections, cancers, and other inherited diseases. Samples were transferred to a certified Good Manufacturing Practice laboratory for processing. Subjects were infused with either low dose (LD, 65 million cells) or high dose (HD, 130 million cells) of CLV-100 and followed up for 6 months. We measured cytokines using ELISA including anti-inflammatory cytokines interleukin 1 receptor antagonist (IL-1RA), interleukin 10 (IL-10), pro-/anti-inflammatory cytokine interleukin 6 (IL-6), and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Results 11 healthy subjects (LD, n = 5; HD, n = 6; mean age of 55 ± 13 years) were recruited. All subjects tolerated the CLV-100 infusion well with no adverse reaction throughout the study especially in vital parameters and routine blood tests. At 6 months, the HD group had significantly higher levels of anti-inflammatory markers IL1-RA (705 ± 160 vs. 306 ± 36 pg/mL; p = 0.02) and IL-10 (321 ± 27 vs. 251 ± 28 pg/mL; p = 0.02); and lower levels of proinflammatory marker TNF-α (74 ± 23 vs. 115 ± 15 pg/mL; p = 0.04) compared to LD group. Conclusion Allogeneic UCMSCs CLV-100 infusion is safe and well-tolerated in low and high doses. Anti-inflammatory effect is observed with a high-dose infusion.
Collapse
|
24
|
Kutlutürk Karagöz I, Allahverdiyev A, Bağırova M, Abamor EŞ, Dinparvar S. Current Approaches in Treatment of Diabetic Retinopathy and Future Perspectives. J Ocul Pharmacol Ther 2020; 36:487-496. [DOI: 10.1089/jop.2019.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Işıl Kutlutürk Karagöz
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
- Department of Ophthalmology, Ümraniye Trn. And Rch. Hospital, Istanbul, Turkey
| | - Adil Allahverdiyev
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Melehat Bağırova
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Sahar Dinparvar
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
25
|
Bheri S, Hoffman JR, Park HJ, Davis ME. Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine (Lond) 2020; 15:1873-1896. [PMID: 32752925 DOI: 10.2217/nnm-2020-0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Exosome therapies are promising for cardiac repair. Exosomes transfer cargo between cells, have high uptake by native cells and are ideal natural carriers for proteins and nucleic acids. Despite their proreparative potential, exosome production is dependent on parent cell state with typically low yields and cargo variability. Therefore, there is potential value in engineering exosomes to maximize their benefits by delivering customized, potent cargo for cardiovascular disease. Here, we outline several methods of exosome engineering focusing on three important aspects: optimizing cargo, homing to target tissue and minimizing clearance. Finally, we put these methods in context of the cardiac field and discuss the future potential of vesicle design.
Collapse
Affiliation(s)
- Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jessica R Hoffman
- Molecular & Systems Pharmacology Graduate Training Program, Graduate Division of Biological & Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA.,Department of Pediatrics, Division of Pediatric Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. Eur J Pharmacol 2020; 883:173343. [PMID: 32629029 DOI: 10.1016/j.ejphar.2020.173343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Renal fibrosis is a progressive pathological process that eventually leads to end-stage renal failure with limited therapeutic options. The aim of this study was to investigate the nephron-protective effect of human umbilical cord mesenchymal stem cells (ucMSCs) on renal fibrosis. UcMSCs were intravenously injected into renal fibrosis mice induced by aristolochic acid (AA) and co-cultured with HK-2 cells induced by TGF-β1, respectively. The kidney functions including serum creatinine (Scr) and blood urea nitrogen (BUN) levels, and histopathology were examined after treated with stem cells and normal saline as control. Immunohistochemical staining, immunofluorescent staining, and Western blot analysis were used to assessed the expression of proteins associated with epithelial to mesenchymal transition (EMT) and TGF-β/Smad signaling pathway. The results showed that ucMSCs effectively improved the kidney function and pathological structure, reduced AA-induced fibrosis and extracellular matrix deposition. Besides, UcMSCs significantly inhibited the EMT process and TGF-β1/Smad signaling pathway in AA-induced mice and TGF-β1-induced HK-2 cells compared to the control (p < 0.05). Our data suggested that ucMSCs play as a nephron-protective role in anti-fibrosis through inhibiting the activation of TGF-β1/Smad signaling pathway.
Collapse
|
27
|
Shi R, Lian W, Jin Y, Cao C, Han S, Yang X, Zhao S, Li M, Zhao H. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats. Acta Biochim Biophys Sin (Shanghai) 2020; 52:620-630. [PMID: 32484226 PMCID: PMC7333920 DOI: 10.1093/abbs/gmaa039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcer (DFU) is one of diabetic complications, which is frequently present and tormented in diabetes mellitus. Most multipotent mesenchymal stromal cells (MSCs) are capable of immune evasion, providing an allogeneic, ready-to-use, cell product option for therapeutic applications. The beneficial effect of MSCs for the treatment of a variety of traumatic injuries, such as open wounds, has been extensively explored. In this study, a rat DFU model was used to simulate the pathophysiology of clinical patients and to investigate the localization of human umbilical cord mesenchymal stem cells (hUC-MSCs) after intravenous transplantation and its role in DFU healing, so as to evaluate the potential of hUC-MSCs in the treatment of DFU. The diabetic rat model was established by streptozotocin injection, which was used to create full-thickness foot dorsal skin wounds to mimic DFU by a 6-mm skin biopsy punch and a Westcott scissor. The hUC-MSCs were transplanted through femoral vein, and the ulcer cicatrization situation and the fate of hUC-MSCs were evaluated. Our data suggest that intravenously transplantated hUC-MSCs have the ability to migrate and locate to the wound tissue and are helpful to wound healing in DFU rats, partly by regulating inflammation, trans-differentiation and providing growth factors that promote angiogenesis, cell proliferation and collagen deposition. Herein, we demonstrate that hUC-MSC transplantation is able to accelerate DFU healing in rats and transplantation of exogenous stem cells may be a potential strategy for clinical application in DFUs.
Collapse
Affiliation(s)
- Rongfeng Shi
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weishuai Lian
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200072, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chuanwu Cao
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200072, China
| | - Shilong Han
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200072, China
| | - Xiaohu Yang
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Suming Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maoquan Li
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200072, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells 2020; 9:cells9051163. [PMID: 32397132 PMCID: PMC7290733 DOI: 10.3390/cells9051163] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.
Collapse
|
29
|
Ramírez-Bajo MJ, Martín-Ramírez J, Bruno S, Pasquino C, Banon-Maneus E, Rovira J, Moya-Rull D, Lazo-Rodriguez M, Campistol JM, Camussi G, Diekmann F. Nephroprotective Potential of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Murine Model of Chronic Cyclosporine Nephrotoxicity. Front Cell Dev Biol 2020; 8:296. [PMID: 32432111 PMCID: PMC7214690 DOI: 10.3389/fcell.2020.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapies and derived products have a high potential in aiding tissue and organ repairing and have therefore been considered as potential therapies for treating renal diseases. However, few studies have evaluated the impact of these therapies according to the stage of chronic kidney disease. The aim of this study was to evaluate the renoprotective effect of murine bone marrow mesenchymal stromal cells (BM-MSCs), their extracellular vesicles (EVs) and EVs-depleted conditioned medium (dCM) in an aggressive mouse model of chronic cyclosporine (CsA) nephrotoxicity in a preventive and curative manner. Methods After 4 weeks of CsA-treatment (75 mg/kg daily) mice developed severe nephrotoxicity associated with a poor survival rate of 25%, and characterized by tubular vacuolization, casts, and cysts in renal histology. BM-MSC, EVs and dCM groups were administered as prophylaxis or as treatment of CsA nephrotoxicity. The effect of the cell therapies was analyzed by assessing renal function, histological damage, apoptotic cell death, and gene expression of fibrotic mediators. Results Combined administration of CsA and BM-MSCs ameliorated the mice survival rates (6-15%), but significantly renal function, and histological parameters, translating into a reduction of apoptosis and fibrotic markers. On the other hand, EVs and dCM administration were only associated with a partial recovery of renal function or histological damage. Better results were obtained when used as treatment rather than as prophylactic regimen i.e., cell therapy was more effective once the damage was established. Conclusion In this study, we showed that BM-MSCs induce an improvement in renal outcomes in an animal model of CsA nephrotoxicity, particularly if the inflammatory microenvironment is already established. EVs and dCM treatment induce a partial recovery, indicating that further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Javier Martín-Ramírez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stefania Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Chiara Pasquino
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Daniel Moya-Rull
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| | - Giovanni Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
30
|
de Jong OG, Murphy DE, Mäger I, Willms E, Garcia-Guerra A, Gitz-Francois JJ, Lefferts J, Gupta D, Steenbeek SC, van Rheenen J, El Andaloussi S, Schiffelers RM, Wood MJA, Vader P. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat Commun 2020; 11:1113. [PMID: 32111843 PMCID: PMC7048928 DOI: 10.1038/s41467-020-14977-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) form an endogenous transport system for intercellular transfer of biological cargo, including RNA, that plays a pivotal role in physiological and pathological processes. Unfortunately, whereas biological effects of EV-mediated RNA transfer are abundantly studied, regulatory pathways and mechanisms remain poorly defined due to a lack of suitable readout systems. Here, we describe a highly-sensitive CRISPR-Cas9-based reporter system that allows direct functional study of EV-mediated transfer of small non-coding RNA molecules at single-cell resolution. Using this CRISPR operated stoplight system for functional intercellular RNA exchange (CROSS-FIRE) we uncover various genes involved in EV subtype biogenesis that play a regulatory role in RNA transfer. Moreover we identify multiple genes involved in endocytosis and intracellular membrane trafficking that strongly regulate EV-mediated functional RNA delivery. Altogether, this approach allows the elucidation of regulatory mechanisms in EV-mediated RNA transfer at the level of EV biogenesis, endocytosis, intracellular trafficking, and RNA delivery.
Collapse
Affiliation(s)
- Olivier G de Jong
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Daniel E Murphy
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Imre Mäger
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Eduard Willms
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Antonio Garcia-Guerra
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Jerney J Gitz-Francois
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juliet Lefferts
- Pediatric Pulmonology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dhanu Gupta
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Sander C Steenbeek
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Raymond M Schiffelers
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Elia CA, Losurdo M, Malosio ML, Coco S. Extracellular Vesicles from Mesenchymal Stem Cells Exert Pleiotropic Effects on Amyloid-β, Inflammation, and Regeneration: A Spark of Hope for Alzheimer's Disease from Tiny Structures? Bioessays 2019; 41:e1800199. [PMID: 30919493 DOI: 10.1002/bies.201800199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Indexed: 12/15/2022]
Abstract
No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC-EVs-owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti-inflammatory, amyloid-β degrading, and neurotrophic activities-may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC-EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg.
Collapse
Affiliation(s)
- Chiara A Elia
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, Rozzano, Milano, 20089, Italy
| | - Morris Losurdo
- School of Medicine and Surgery, NeuroMI-Milan Center for Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Maria L Malosio
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, Rozzano, Milano, 20089, Italy.,CNR, Institute of Neuroscience, Via Vanvitelli 32, Milano, 20129, Italy
| | - Silvia Coco
- School of Medicine and Surgery, NeuroMI-Milan Center for Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
32
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Wang SY, Hong Q, Zhang CY, Yang YJ, Cai GY, Chen XM. miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies. Stem Cell Res Ther 2019; 10:281. [PMID: 31481100 PMCID: PMC6724288 DOI: 10.1186/s13287-019-1371-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy has been applied in many fields. Basic and clinical studies on stem cell therapy for acute kidney injury (AKI) have been conducted. Stem cells have been found to exert renal protection through a variety of mechanisms, such as regulating the immune system and secreting growth factors, cytokines, and extracellular vesicles (EVs). Among them, EVs are considered to be important mediators for stem cell protection because they contain various biological components, including microRNAs (miRNAs). miRNAs are a class of small RNAs that function in posttranscriptional gene regulation. A number of studies have confirmed that miRNAs in stem cell-derived EVs can protect from AKI. miRNAs can enter the injured renal tissue through EVs released from stem cells, thereby exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenesis effects on AKI. However, the stem cell sources and AKI models used in these studies have differed. This article will summarize the miRNAs that play a role in kidney protection in stem cell EVs and clarifies the treatment characteristics and mechanisms of different miRNAs. This may provide a reference for clinical practice for acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Si-Yang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Chao-Yang Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Yuan-Jun Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
34
|
Yang Z, Du X, Wang C, Zhang J, Liu C, Li Y, Jiang H. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther 2019; 10:250. [PMID: 31412919 PMCID: PMC6693188 DOI: 10.1186/s13287-019-1327-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is one of the leading causes of female infertility, which is caused by an abnormal ovarian reserve. Currently, there is no effective treatment to restore the fertility of POI patients. Recent studies suggested that microvesicles (MVs) released from mesenchymal stem cells (MSCs) exert therapeutic effects in various degenerative diseases. In this study, the effect of human umbilical cord MSC-derived MVs (HUCMSC-MVs) on the restoration of ovarian function in a chemotherapy-induced POI mouse model is investigated. METHODS MVs were obtained from the supernatant of cultured HUCMSCs. The localization of PKH26-labeled HUCMSC-MVs in ovarian tissues was observed by confocal laser scanning microscopy. Histomorphometric analysis was performed to count the number of ovarian follicles and vessels. The ovarian sections were stained with anti-CD34 to evaluate angiogenesis. The levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured by enzyme-linked immunosorbent serologic assay. The mRNA expression of angiogenesis-related cytokines and the protein expression of AKT in mouse ovaries were measured by quantitative RT-PCR and western blot analysis. The parametric variables were compared by Student's t test and analysis of variance. The non-parametric variables were compared by the Mann-Whitney U test. Categorical variables were compared by χ2 test. P < 0.05 was considered statistically significant. RESULTS PKH26-labeled HUCMSC-MVs were detectable within the ovaries and migrated to the ovarian follicles 24 h after transplantation. The transplantation of HUCMSC-MVs could increase the body weight and number of ovarian follicles (primordial, developing, and preovulatory follicles), induce ovarian angiogenesis, and recover the disturbed estrous cycle of POI mice. The expression levels of total AKT, p-AKT, and angiogenic cytokines (including VEGF, IGF, and angiogenin) in the ovaries of POI mice were markedly upregulated after HUCMSC-MVs transplantation, suggesting that HUCMSC-MVs transplantation might recover ovarian function by inducing angiogenesis via the PI3K/AKT signaling pathway. CONCLUSIONS This study provides valuable insight into the effects of HUCMSC-MVs on ovarian tissue angiogenesis and on the restoration of ovarian function in POI mice, which may be helpful to develop a treatment strategy for POI patients.
Collapse
Affiliation(s)
- Ziling Yang
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China.,The First affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Xin Du
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China
| | - Cunli Wang
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China
| | - Jin Zhang
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China
| | - Conghui Liu
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China
| | - Yu Li
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China
| | - Hong Jiang
- Reproductive Medicine Center, 105th Hospital of PLA, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
35
|
Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:312-329. [DOI: 10.1089/ten.teb.2018.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Mazzeo A, Lopatina T, Gai C, Trento M, Porta M, Beltramo E. Functional analysis of miR-21-3p, miR-30b-5p and miR-150-5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy. Exp Eye Res 2019; 184:56-63. [DOI: 10.1016/j.exer.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
37
|
Exosomes from Human Umbilical Cord Mesenchymal Stem Cells Reduce Damage from Oxidative Stress and the Epithelial-Mesenchymal Transition in Renal Epithelial Cells Exposed to Oxalate and Calcium Oxalate Monohydrate. Stem Cells Int 2019; 2019:6935806. [PMID: 31015841 PMCID: PMC6444261 DOI: 10.1155/2019/6935806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
Objective To investigate whether exosomes from human umbilical cord mesenchymal stem cells (hUC-MSCs) can protect against the toxic effects of oxalate and calcium oxalate monohydrate (COM) crystals in human proximal tubular epithelial (HK-2) cells. Methods Exosomes were isolated from hUC-MSCs, purified by ultracentrifugation, and verified by examination of cell morphology using transmission electron microscopy and the presence of specific biomarkers. HK-2 cells received 1 of 4 treatments: control (cells alone), hUC-MSC exosomes, oxalate+COM, or oxalate+COM and hUC-MSC exosomes. Cell viability was determined using the MTT assay. Oxidative stress was determined by measuring LDH activity and the levels of H2O2, malondialdehyde (MDA), and reactive oxygen species (ROS). Expressions of N-cadherin, TGF-β, and ZO-1 were determined by immunofluorescence. Expressions of epithelial markers, mesenchymal markers, and related signaling pathway proteins were determined by western blotting. Results After 48 h, cells in the oxalate+COM group lost their adhesion, appeared long, spindle-shaped, and scattered, and the number of cells had significantly decreased. The oxalate+COM treatment also upregulated TGF-β and mesenchymal markers, downregulated epithelial markers, increased the levels of LDH, H2O2, MDA, and ROS, decreased cell viability, and increased cell migration. The isolated exosomes had double-layer membranes, had hollow, circular, or elliptical shapes, had diameters mostly between 30 and 100 nm, and expressed CD9, CD63, and Alix. Treatment of HK-2 cells with hUC-MSC exosomes reversed or partly reversed all the effects of oxalate+COM. Conclusions Exosomes from hUC-MSCs alleviate the oxidative injury and the epithelial-mesenchymal transformation of HK-2 cells that is induced by oxalate+COM.
Collapse
|
38
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
39
|
Lange-Consiglio A, Lazzari B, Perrini C, Pizzi F, Stella A, Cremonesi F, Capra E. MicroRNAs of Equine Amniotic Mesenchymal Cell-derived Microvesicles and Their Involvement in Anti-inflammatory Processes. Cell Transplant 2019; 27:45-54. [PMID: 29562776 PMCID: PMC6434479 DOI: 10.1177/0963689717724796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-derived microvesicles (MVs) are a recently discovered mechanism of cell-to-cell communication. Our previous data show that MVs secreted by equine amniotic mesenchymal-derived cells (AMCs) are involved in downregulation of proinflammatory genes in lipopolysaccharide-stressed equine tendon and endometrial cells. The aim of the present study was to evaluate whether AMC-MVs contain selected microRNAs (miRNAs) involved in inflammation. Two pools of cells, derived from 3 amniotic membranes each, and their respective MVs were collected. Small RNAs were extracted and deep sequenced, followed by miRNA in silico detection. The analysis identified 1,285 miRNAs, which were quantified both in AMCs and MVs. Among these miRNAs, 401 were classified as Equus caballus miRNAs, 257 were predicted by homology with other species (cow, sheep, and goat), and 627 were novel candidate miRNAs. Moreover, 146 miRNAs differentially expressed (DE) in AMCs and MVs were identified, 36 of which were known and the remaining were novel. Among the known DE miRNAs, 17 showed higher expression in MVs. Three of these were validated by real time polymerase chain reaction: eca-miR-26, eca-miR-146a, and eca-miR-223. Gene ontology analysis of validated targets showed that the DE miRNAs in cells and MVs could be involved both in immune system regulation by modulating interleukin signaling and in the inflammatory process. In conclusion, this study suggests a significant role of AMCs in modulating immune response through cell–cell communication via MV-shuttling miRNAs.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Reproduction Unit, Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, Lodi, Italy
| | - Barbara Lazzari
- Parco Tecnologico Padano, Lodi, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| | - Claudia Perrini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| | - Alessandra Stella
- Parco Tecnologico Padano, Lodi, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| | - Fausto Cremonesi
- Reproduction Unit, Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, Lodi, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
- Fausto Cremonesi, Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy.
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| |
Collapse
|
40
|
Jiang L, Zhang S, Hu H, Yang J, Wang X, Ma Y, Jiang J, Wang J, Zhong L, Chen M, Wang H, Hou Y, Zhu R, Zhang Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochem Biophys Res Commun 2018; 508:735-741. [PMID: 30528233 DOI: 10.1016/j.bbrc.2018.11.189] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) play an important role in the regulation of the immune system and inflammatory responses; however, their role in acute liver failure (ALF) and related pathological conditions is unclear. In this study, we found that hUCMSC-EXOs can reduce the expression of the NLRP3 inflammasome and downstream inflammatory factors in acute liver failure. Western blot and ELISA results showed that hUCMSC-EXOs decreased the expression of NLRP3, caspase-1, IL-1β and IL-6 in LPS-stimulated RAW 264.7 macrophages. In vivo, the hUCMSC-EXOs repaired damaged liver tissue and decreased the expression of the NLRP3 inflammasome and the levels of ALT and AST in a mouse ALF model. The results of this study provide a new strategy for the application of human umbilical cord mesenchymal stem cell-derived exosomes in the treatment of ALF.
Collapse
Affiliation(s)
- Linrui Jiang
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Shuqin Zhang
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Huazhong Hu
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Yang
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - XiaoYan Wang
- Guangzhou Saliai Stem Cell Science and Technology Company Limited, China.
| | - Yanyan Ma
- Guangzhou Saliai Stem Cell Science and Technology Company Limited, China.
| | - JiaoHua Jiang
- Guangzhou Saliai Stem Cell Science and Technology Company Limited, China.
| | - JinHong Wang
- Respiratory Department, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Lin Zhong
- Pathology Department, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Ming Chen
- Intensive Care Unit, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Hong Wang
- Medical Experimental Center, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Yu Hou
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - RuiRui Zhu
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, China.
| |
Collapse
|
41
|
Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M, Porta M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res 2018; 176:69-77. [DOI: 10.1016/j.exer.2018.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
|
42
|
Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep 2018; 8:13325. [PMID: 30190615 PMCID: PMC6127134 DOI: 10.1038/s41598-018-31707-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The predominant mechanism by which adipose mesenchymal stem cells (AMSCs) participate to tissue repair is through a paracrine activity and their communication with the inflammatory microenvironment is essential part of this process. This hypothesis has been strengthened by the recent discovery that stem cells release not only soluble factors but also extracellular vesicles, which elicit similar biological activity to the stem cells themselves. We demonstrated that the treatment with inflammatory cytokines increases the immunosuppressive and anti-inflammatory potential of AMSCs-derived exosomes, which acquire the ability to shift macrophages from M1 to M2 phenotype by shuttling miRNA regulating macrophages polarization. This suggests that the immunomodulatory properties of AMSCs-derived exosomes may be not constitutive, but are instead induced by the inflammatory microenvironment.
Collapse
|
43
|
Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS NANO 2018; 12:7613-7628. [PMID: 30052036 DOI: 10.1021/acsnano.7b07643] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exosomes are nanosized extracellular vesicles (EVs) that show great promise in tissue regeneration and injury repair as mesenchymal stem cell (MSC). MSC has been shown to alleviate diabetes mellitus (DM) in both animal models and clinical trials. In this study, we aimed to investigate whether exosomes from human umbilical cord MSC (hucMSC-ex) have a therapeutic effect on type 2 DM (T2DM). We established a rat model of T2DM using a high-fat diet and streptozotocin (STZ). We found that the intravenous injection of hucMSC-ex reduced blood glucose levels as a main paracrine approach of MSC. HucMSC-ex partially reversed insulin resistance in T2DM indirectly to accelerate glucose metabolism. HucMSC-ex restored the phosphorylation (tyrosine site) of the insulin receptor substrate 1 and protein kinase B in T2DM, promoted expression and membrane translocation of glucose transporter 4 in muscle, and increased storage of glycogen in the liver to maintain glucose homeostasis. HucMSC-ex inhibited STZ-induced β-cell apoptosis to restore the insulin-secreting function of T2DM. Taken together, exosomes from hucMSC can alleviate T2DM by reversing peripheral insulin resistance and relieving β-cell destruction, providing an alternative approach for T2DM treatment.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
- Department of Clinical Laboratory , The Affiliated Yixing Hospital of Jiangsu University , Yixing , Jiangsu 214200 , China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Siqi Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| |
Collapse
|
44
|
Abbasian N, Herbert KE, Pawluczyk I, Burton JO, Bevington A. Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1430-F1443. [PMID: 30110570 DOI: 10.1152/ajprenal.00318.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including microparticles (MPs) and exosomes (EXOs), are derived from a wide range of mammalian cells including blood platelets, endothelial cells, and kidney cells and can be detected in body fluids including blood and urine. While EVs are well established as diagnostic markers under pathophysiological and stress conditions, there is also mounting evidence of their functional significance as vehicles for communication between cells mediated by the presence of nucleic acids, especially microRNAs (miRs), encapsulated in the EVs. miRs regulate gene expression, are transported both in MPs and EXOs, and exert profound effects in the kidney. Here we review current understanding of the links between EVs and miRs, discuss the importance of miRs in kidney disease, and shed light on the role of EVs in transferring miRs through the circulation among the renal, vascular, and inflammatory cell populations that are functionally important in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nima Abbasian
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| | - Karl E Herbert
- Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute of Health Research Cardiovascular Biomedical Research Unit , Leicester , United Kingdom
| | - Izabella Pawluczyk
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| | - James O Burton
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom.,John Walls Renal Unit, University Hospitals of Leicester , Leicester , United Kingdom
| | - Alan Bevington
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| |
Collapse
|
45
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|
46
|
Neural Stem Cell-Conditioned Medium Ameliorated Cerebral Ischemia-Reperfusion Injury in Rats. Stem Cells Int 2018; 2018:4659159. [PMID: 29765412 PMCID: PMC5903322 DOI: 10.1155/2018/4659159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction Our previous study suggested that NSC-CM (neural stem cell-conditioned medium) inhibited cell apoptosis in vitro. In addition, many studies have shown that neurotrophic factors and microparticles secreted into a conditioned medium by NSCs had neuroprotective effects. Thus, we hypothesized that NSC-CM had the capacity of protecting against cerebral I/R injury. Methods Adult male Sprague-Dawley rats receiving middle cerebral artery occlusion surgery as an animal model of cerebral I/R injury were randomly assigned to two groups: the control group and NSC-CM-treated group. 1.5 ml NSC-CM or PBS (phosphate buffer saline) was administrated slowly by tail vein at 3 h, 24 h, and 48 h after ischemia onset. Results NSC-CM significantly ameliorated neurological defects and reduced cerebral infarct volume, accompanied by preserved mitochondrial ultrastructure. In addition, we also found that NSC-CM significantly inhibited cell apoptosis in the ischemic hemisphere via improving the expression of Bcl-2 (B-cell lymphoma-2). Conclusion NSC-CM might be an alternative and effective therapeutic intervention for ischemic stroke.
Collapse
|
47
|
Zhou J, Benito-Martin A, Mighty J, Chang L, Ghoroghi S, Wu H, Wong M, Guariglia S, Baranov P, Young M, Gharbaran R, Emerson M, Mark MT, Molina H, Canto-Soler MV, Selgas HP, Redenti S. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Sci Rep 2018; 8:2823. [PMID: 29434302 PMCID: PMC5809580 DOI: 10.1038/s41598-018-20421-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic growth factors and morphogen proteins. mRPC EVs were shown to transfer GFP mRNA between cell populations. Finally, analysis of EV mediated functional cargo delivery, using the Cre-loxP recombination system, revealed transfer and uptake of Cre+ EVs, which were then internalized by target mRPCs activating responder loxP GFP expression. In summary, the data supports a paradigm of EV genetic material encapsulation and transfer within RPC populations. RPC EV transfer may influence recipient RPC transcriptional and post-transcriptional regulation, representing a novel mechanism of differentiation and fate determination during retinal development.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Jason Mighty
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Lynne Chang
- Nikon Instruments Inc, 1300 Walt Whitman Road, Melville, NY, 11747, USA
| | - Shima Ghoroghi
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Hao Wu
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Madeline Wong
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Sara Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - Petr Baranov
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Rajendra Gharbaran
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Mark Emerson
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.,Department of Biology, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - M Valeria Canto-Soler
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hector Peinado Selgas
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, Madrid, E28029, Spain
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA. .,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA. .,Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
48
|
Chen NX, O'Neill KD, Moe SM. Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int 2018; 93:343-354. [PMID: 29032812 PMCID: PMC8211355 DOI: 10.1016/j.kint.2017.07.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
In patients with chronic kidney and end-stage renal diseases, the major risk factor for progression of arterial calcification is the presence of existing (baseline) calcification. Here, we tested whether calcification of arteries is extended from calcified vascular smooth muscle cells (VSMCs) to adjacent normal cells by matrix vesicle-induced alteration of cell signaling. Matrix vesicles isolated from VSMC of rats with chronic kidney disease were co-cultured with VSMCs from normal littermates. Endocytosis of vesicles by recipient cells was confirmed by confocal microscopy. The addition of cellular matrix vesicles with characteristics of exosomes and low fetuin-A content enhanced the calcification of recipient VSMC. Further, only cellular-derived matrix vesicles induced an increase in intracellular calcium ion concentration, NOX1 (NADPH oxidase) and the anti-oxidant superoxide dismutase-2 in recipient normal VSMC. The increase in intracellular calcium ion concentration was due to release from endoplasmic reticulum and partially attributed to the activation of both NOX1 and mitogen-activated protein kinase (MEK1 and Erk1/2) signaling, since inhibiting both pathways blocked the increase in intracellular calcium ion in recipient VSMC. In contrast, matrix vesicles isolated from the media had no effect on the intracellular calcium ion concentration or MEK1 signaling, and did not induce calcification. However, media matrix vesicles did increase Erk1/2, although not to the level of cellular matrix vesicles, and NOX1 expression. Blockade of NOX activity further inhibited the cellular matrix vesicle-induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of such inhibition. Thus, addition of cellular-derived matrix vesicles from calcifying VSMC can accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient VSMC.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Endocytosis
- Exosomes/metabolism
- Exosomes/ultrastructure
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Extracellular Signal-Regulated MAP Kinases/metabolism
- MAP Kinase Kinase 1/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- NADPH Oxidase 1/metabolism
- Phenotype
- Rats
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Superoxide Dismutase/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kalisha D O'Neill
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Roduebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.
| |
Collapse
|
49
|
Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep 2018; 8:1171. [PMID: 29352188 PMCID: PMC5775399 DOI: 10.1038/s41598-018-19211-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Microvesicles (MVs) released by cells are involved in a multitude of physiological events as important mediators of intercellular communication. MVs derived from mesenchymal stem cells (MSCs) contain various paracrine factors from the cells that primarily contribute to their therapeutic efficacy observed in numerous clinical trials. As nano-sized and bi-lipid layered vesicles retaining therapeutic potency equivalent to that of MSCs, MSC-derived MVs have been in focus as ideal medicinal candidates for regenerative medicine, and are preferred over MSC infusion therapy with their improved safety profiles. However, technical challenges in obtaining sufficient amounts of MVs have limited further progress in studies and clinical application. Of the multiple efforts to reinforce the therapeutic capacity of MSCs, few studies have reportedly examined the scale-up of MSC-derived MV production. In this study, we successfully amplified MV secretion from MSCs compared to the conventional culture method using a simple and efficient 3D-bioprocessing method. The MSC-derived MVs produced in our dynamic 3D-culture contained numerous therapeutic factors such as cytokines and micro-RNAs, and showed their therapeutic potency in in vitro efficacy evaluation. Our results may facilitate diverse applications of MSC-derived MVs from the bench to the bedside, which requires the large-scale production of MVs.
Collapse
|
50
|
Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018; 13:e0190358. [PMID: 29293592 PMCID: PMC5749801 DOI: 10.1371/journal.pone.0190358] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration.
Collapse
Affiliation(s)
- Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Edgardo J. Arroyo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University College of Medicine, Krakow; Poland
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University College of Medicine, Krakow; Poland
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| |
Collapse
|