1
|
Du MQ. EMZL at various sites: learning from each other. Blood 2025; 145:2117-2127. [PMID: 39912633 DOI: 10.1182/blood.2024025794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (EMZL) invariably develops from a background of chronic inflammatory disorder caused by a diverse chronic microbial infection and/or autoimmunity, depending on the site. These chronic inflammatory/autoimmunity disorders trigger innate and acquired immune responses, generating a unique microenvironment at each site that drives clonal evolution of B cells, their expansion, and eventual malignant transformation. At a molecular level, this involves temporal and spatial acquisition of cooperative oncogenic events by dysregulated immune responses and somatic genetic changes. Although these events are not yet fully characterized, EMZL at several sites shows distinct genetic profiles and molecular insights, bridging the pathologic process to lymphomagenesis. For example, gastric EMZL, particularly those lacking a BCL10 or MALT1 translocation, critically depends on T-helper cell signals produced by immune responses to Helicobacter pylori infection. Likewise, thyroid EMZL may also involve exaggerated T-cell help because of highly frequent inactivating mutations in TET2, CD274 (programmed cell death 1 ligand 1), and TNFRSF14, which impede the coinhibitory interactions between the neoplastic B- and T-helper cells, thus releasing T-cell help. Ocular adnexal EMZL shows frequent TNFAIP3 (A20) mutation/deletion that significantly associates with expression of autoreactive IGHV4-34 B-cell receptor, emphasizing its potential cooperation in NF-κB pathway activation. Finally, the genesis of salivary gland EMZL may be closely associated with GPR34 activation that is caused by mutation/t(X;14)(p11;q32) and/or paracrine stimulation mediated by ligand generated by lymphoepithelial lesions. This review will focus on these novel molecular insights and how these advances may provide a paradigm for future investigations.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell, Marginal Zone/pathology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/etiology
- Animals
- Helicobacter Infections/immunology
- Helicobacter Infections/complications
- Helicobacter Infections/pathology
- Helicobacter pylori
Collapse
Affiliation(s)
- Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
AlYafie RS, Adeli M, Velayutham D, Bougarn S, Ata M, Al-Ali F, Chin-Smith E, Bauman BM, Snow AL, Boisson B, Marr N, van Panhuys N, Guennoun A, Jithesh PV. A novel CARD11 heterozygous missense variant in a CADINS patient. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100461. [PMID: 40275935 PMCID: PMC12018100 DOI: 10.1016/j.jacig.2025.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 04/26/2025]
Abstract
Background CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) is developed as a result of heterozygous loss-of-function variants in CARD11 that function as strong dominant-negative alleles. In lymphocytes, CARD11 encodes a scaffold protein that links activation of the antigen receptor with downstream signaling. Patients with CADINS generally experience severe atopic dermatitis, asthma, recurrent pneumonia and other upper respiratory tract infections, skin infections, and allergies to a variety of dietary and environmental antigens. Additionally, patients experience elevated levels of serum IgE, but low to normal levels of other immunoglobulin types. Objective We performed genetic diagnosis of a patient of nonconsanguineous descent presenting at 11 years of age with severe atopic dermatitis, asthma, food allergy, skin and recurrent infections, and an extremely elevated level of serum IgE. Methods We performed whole genome sequencing of samples obtained from the patient and his entire family. Results Clinical, laboratory, genetic, and functional findings suggested CADINS. Genetic evaluation revealed a novel heterozygous missense variant (c.2913C>G, p.Cys971Trp) in the CARD11 gene as the potential underlying defect. Expression of CARD11 variant-stimulated constitutive NF-κB activity in T-cell lines demonstrated both loss-of-function and dominant-negative activity. Conclusion A novel germline heterozygous missense variant (c.2913C>G) in CARD11 potentially leads to CADINS.
Collapse
Affiliation(s)
- Randa S. AlYafie
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | - Mehdi Adeli
- Department of Allergy and Immunology, Sidra Medicine, Doha, Qatar
- Hamad Medical Corporation, Doha, Qatar
| | - Dinesh Velayutham
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Manar Ata
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | - Bradly M. Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services, University of the Health Sciences, Bethesda, Md
| | - Andrew L. Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services, University of the Health Sciences, Bethesda, Md
| | | | - Nico Marr
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Puthen Veettil Jithesh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Kang H, Maurer LM, Cheng J, Smyers M, Klei LR, Hu D, Hofstatter Azambuja J, Murai MJ, Mady A, Ahmad E, Trotta M, Klei HB, Liu M, Ekambaram P, Nikolovska-Coleska Z, Chen BB, McAllister-Lucas LM, Lucas PC. A small-molecule inhibitor of BCL10-MALT1 interaction abrogates progression of diffuse large B cell lymphoma. J Clin Invest 2025; 135:e164573. [PMID: 40231473 PMCID: PMC11996864 DOI: 10.1172/jci164573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and the activated B cell-like subtype (ABC-DLBCL) is associated with particularly poor outcome. Many ABC-DLBCLs harbor gain-of-function mutations that cause inappropriate assembly of the CARMA1-BCL10-MALT1 (CBM) signalosome, a cytoplasmic complex that drives downstream NF-κB signaling. MALT1 is the effector protein of the CBM signalosome such that its recruitment to the signalosome via interaction with BCL10 allows it to exert both protease and scaffolding activities that together synergize in driving NF-κB. Here, we demonstrate that a molecular groove located between two adjacent immunoglobulin-like domains within MALT1 represents a binding pocket for BCL10. Leveraging this discovery, we performed an in silico screen to identify small molecules that dock within this MALT1 groove and act as BCL10-MALT1 protein-protein interaction (PPI) inhibitors. We report the identification of M1i-124 as a first-in-class compound that blocks BCL10-MALT1 interaction, abrogates MALT1 scaffolding and protease activities, promotes degradation of BCL10 and MALT1 proteins, and specifically targets ABC-DLBCLs characterized by dysregulated MALT1. Our findings demonstrate that small-molecule inhibitors of BCL10-MALT1 interaction can function as potent agents to block MALT1 signaling in selected lymphomas, and provide a road map for clinical development of a new class of precision-medicine therapeutics.
Collapse
Affiliation(s)
| | - Lisa M. Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mei Smyers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda R. Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Hu
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Juliana Hofstatter Azambuja
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcelo J. Murai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew Trotta
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hanna B. Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Minda Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Bill B. Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda M. McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Peter C. Lucas
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Lee HS, Kim BK, Lee SY, Kwon H, Park HW. Essential role of Card11 in airway hyperresponsiveness in high-fat diet-induced obese mice. Exp Mol Med 2024; 56:2747-2754. [PMID: 39672814 DOI: 10.1038/s12276-024-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 12/15/2024] Open
Abstract
A high-fat diet (HFD) can induce airway hyperresponsiveness (AHR) in obese mice, independent of allergic sensitization. This study aimed to identify the key molecules related to AHR in HFD-induced obese mice. In a cluster analysis of time series gene expression in the adipose and lung tissues of HFD-induced obese mice, we identified the Caspase Recruitment Domain Family Member 11 (Card11) gene as an essential molecule. We measured CARD11 expression in peripheral blood mononuclear cells (PBMCs) from obese individuals with asthma and performed Card11 signal inhibition in HFD-induced obese mice via Card11 siRNA. Card11 expression was significantly increased in M1 macrophages (IL-1β+CD11c+CD206- in CD11b+) in adipose tissue and in ILC3s (RORγt+ in IL7R+ of Lin-) in lung tissue from HFD-induced obese mice. In addition, CARD11+ populations among ILC3s and LPS-stimulated IL-1β+CD16+ monocytes from the PBMCs of obese individuals with asthma were significantly greater than those from obese controls or nonobese individuals with asthma. AHR in HFD-induced obese mice disappeared when we inhibited the Card11 signaling pathway by administering Card11 siRNA during the first or last seven weeks of the 13-week HFD feeding. Finally, we confirmed that Card11 siRNA decreased the number of M1 macrophages in adipose tissue and the number of ILC3s in lung tissue in vitro. Card11 significantly contributes to the development of AHR in HFD-induced obese mice by affecting immune cells in both adipose and lung tissues. The middle stage of HFD feeding seemed to be critical for these processes.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Azambuja JH, Yerneni SS, Maurer LM, Crentsil HE, Debom GN, Klei L, Smyers M, Sneiderman CT, Schwab KE, Acharya R, Wu YL, Ekambaram P, Hu D, Gough PJ, Bertin J, Melnick A, Kohanbash G, Bao R, Lucas PC, McAllister-Lucas LM. MALT1 protease inhibition restrains glioblastoma progression by reversing tumor-associated macrophage-dependent immunosuppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614808. [PMID: 39386586 PMCID: PMC11463364 DOI: 10.1101/2024.09.26.614808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
MALT1 protease is an intracellular signaling molecule that promotes tumor progression via cancer cell-intrinsic and cancer cell-extrinsic mechanisms. MALT1 has been mostly studied in lymphocytes, and little is known about its role in tumor-associated macrophages. Here, we show that MALT1 plays a key role in glioblastoma (GBM)-associated macrophages. Mechanistically, GBM tumor cells induce a MALT1-NF-κB signaling axis within macrophages, leading to macrophage migration and polarization toward an immunosuppressive phenotype. Inactivation of MALT1 protease promotes transcriptional reprogramming that reduces migration and restores a macrophage "M1-like" phenotype. Preclinical in vivo analysis shows that MALT1 inhibitor treatment results in increased immuno-reactivity of GBM-associated macrophages and reduced GBM tumor growth. Further, the addition of MALT1 inhibitor to temozolomide reduces immunosuppression in the tumor microenvironment, which may enhance the efficacy of this standard-of-care chemotherapeutic. Together, our findings suggest that MALT1 protease inhibition represents a promising macrophage-targeted immunotherapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Juliana Hofstätter Azambuja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
| | - Saigopalakrishna S. Yerneni
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Chemical Engineering, Carnegie Mellon University; Pittsburgh, Pennsylvania
| | - Lisa M. Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Hannah E. Crentsil
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Medical Scientist Training Program (MSTP), University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Gabriela N. Debom
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Linda Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Mei Smyers
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Chaim T. Sneiderman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Kristina E. Schwab
- Rangos Research Center Animal Imaging Core, UPMC Children’s Hospital of Pittsburgh; Pittsburgh, Pennsylvania
| | | | - Yijen Lin Wu
- Rangos Research Center Animal Imaging Core, UPMC Children’s Hospital of Pittsburgh; Pittsburgh, Pennsylvania
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Dong Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Pathology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Pete J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline; King of Prussia, Pennsylvania
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline; King of Prussia, Pennsylvania
| | - Ari Melnick
- Division of Hematology and Oncology, Cornell University, New York, New York
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Riyue Bao
- UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Peter C. Lucas
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Linda M. McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
8
|
Hu Y, Han L, Xu W, Li T, Zhao Q, Lu W, Sun J, Wang Y. CARD11 regulates the thymic Treg development in an NF-κB-independent manner. Front Immunol 2024; 15:1364957. [PMID: 38650932 PMCID: PMC11033321 DOI: 10.3389/fimmu.2024.1364957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.
Collapse
Affiliation(s)
- Yu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingli Han
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenwen Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianci Li
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qifan Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ying Wang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liu X, Zhang G, Li S, Liu Y, Ma K, Wang L. Identification of gut microbes-related molecular subtypes and their biomarkers in colorectal cancer. Aging (Albany NY) 2024; 16:2249-2272. [PMID: 38289597 PMCID: PMC10911361 DOI: 10.18632/aging.205480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
The role of gut microbes (GM) and their metabolites in colorectal cancer (CRC) development has attracted increasing attention. Several studies have identified specific microorganisms that are closely associated with CRC occurrence and progression, as well as key genes associated with gut microorganisms. However, the extent to which gut microbes-related genes can serve as biomarkers for CRC progression or prognosis is still poorly understood. This study used a bioinformatics-based approach to synthetically analyze the large amount of available data stored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through this analysis, this study identified two distinct CRC molecular subtypes associated with GM, as well as CRC markers related to GM. In addition, these new subtypes exhibit significantly different survival outcomes and are characterized by distinct immune landscapes and biological functions. Gut microbes-related biomarkers (GMRBs), IL7 and BCL10, were identified and found to have independent prognostic value and predictability for immunotherapeutic response in CRC patients. In addition, a systematic collection and review of prior research literature on GM and CRC provided additional evidence to support these findings. In conclusion, this paper provides new insights into the underlying pathological mechanisms by which GM promotes the development of CRC and suggests potentially viable solutions for individualized prevention, screening, and treatment of CRC.
Collapse
Affiliation(s)
- Xuliang Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guolin Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuechuan Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Ma
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
11
|
Li Q, Li S, Li Z, Xu H, Zhang W. KLF5‑mediated expression of CARD11 promotes the progression of gastric cancer. Exp Ther Med 2023; 26:422. [PMID: 37602310 PMCID: PMC10433449 DOI: 10.3892/etm.2023.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/31/2023] [Indexed: 08/22/2023] Open
Abstract
Caspase recruitment domain-containing protein 11 (CARD11) has been reported as functioning in multiple types of cancers. In the present study, the role and mechanism of CARD11 in gastric cancer was investigated. First, CARD11 expression in gastric cancer tissues and the association of CARD11 with overall survival were analyzed by the encyclopedia of RNA interactomes database. CARD11 expression in gastric cancer cells was detected by western blotting and reverse transcription-quantitative PCR analyses. After CARD11 silencing, cell proliferation was evaluated by Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining and flow cytometry analysis. Wound healing and Transwell assays were used to measure the capacities of cell migration and invasion. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins and mTOR-related proteins were detected by western blot analysis. HumanTFDB predicted the binding of the transcription factor Krüppel-like factor 5 (KLF5) to the CARD11 promoter, which was confirmed by dual luciferase reporter and chromatin immunoprecipitation assays. To explore the regulatory effects between KLF5 and CARD11, KLF5 was overexpressed to perform the rescue experiments in gastric cancer cells with CARD11 silencing. Results revealed that CARD11 was highly expressed in gastric cancer and was associated with poor prognosis. CARD11 interference inhibited the proliferation of gastric cancer cells and induced cell cycle arrest. Additionally, CARD11 silencing suppressed the migration, invasion and EMT of gastric cancer cells, accompanied by upregulated E-cadherin expression and downregulated N-cadherin and vimentin expression. Moreover, the transcription factor KLF5 positively regulated the transcription of CARD11 in gastric cancer. KLF5 overexpression reversed the effects of interference of CARD11 expression in gastric cancer cells to promote their proliferation, migration, invasion and EMT. KLF5 overexpression also led to a reduction in cell cycle arrest. Finally, interference of CARD11 expression suppressed the mTOR pathway, which was activated by KLF5. In conclusion, KLF5-mediated CARD11 promoted the proliferation, migration and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Qiusen Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Sheng Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Zongxian Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Hongyan Xu
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Wenxian Zhang
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
12
|
Chen H, Li Z, Wu F, Ji W, Lu L, Wu Z, Huang Y, Wang W, Li S. BCL10 correlates with bad prognosis and immune infiltration of tumor microenvironment in hepatocellular carcinoma. IUBMB Life 2023; 75:207-224. [PMID: 34928543 DOI: 10.1002/iub.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/07/2022]
Abstract
It has been reported that B-cell CLL-lymphoma 10 (BCL10) serves as an oncogene in cervical cancer. However, the roles of BCL10 in hepatocellular carcinoma (HCC), especially involved in immune infiltration remain not clear. This study aims to explore the relationship between BCL10 and the prognosis and clinical significance, and immune infiltration in HCC. The expression of BCL10 was analyzed between HCC samples and non-tumor samples in the multiple datasets. In addition, the prognostic values of BCL10 and its methylation in HCC were also investigated. The clinical significance of BCL10 has also been explored. Furthermore, the correlation between BCL10 and immune infiltration in HCC microenvironment was assessed. Finally, the biological behaviors of BCL10 in HCC were verified by cell function experiments. It was found that the expression levels of BCL10 were increased in HCC patients in multiple datasets. Moreover, the increased BCL10 and its reduced methylation were associated with the poor survival. BCL10 was significantly associated with immune infiltration. When BCL10 was knocked down in HCC cells, their proliferation ability was significantly inhibited, their migration was significantly decreased, their apoptosis was significantly increased, and AKT signaling pathway was inhibited. In conclusion, BCL10 is a potential prognostic and diagnostic biomarker related to immune infiltration in HCC microenvironment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, Anhui, China.,Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhenhan Li
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Fei Wu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Wenyan Ji
- Department of Ultrasound, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, Wuhu, Anhui, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Yujin Huang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Wenxiang Wang
- Department of Physical Emergency, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
13
|
Tarasov KV, Chakir K, Riordon DR, Lyashkov AE, Ahmet I, Perino MG, Silvester AJ, Zhang J, Wang M, Lukyanenko YO, Qu JH, Barrera MCR, Juhaszova M, Tarasova YS, Ziman B, Telljohann R, Kumar V, Ranek M, Lammons J, Bychkov R, de Cabo R, Jun S, Keceli G, Gupta A, Yang D, Aon MA, Adamo L, Morrell CH, Otu W, Carroll C, Chambers S, Paolocci N, Huynh T, Pacak K, Weiss R, Field L, Sollott SJ, Lakatta EG. A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8. eLife 2022; 11:e80949. [PMID: 36515265 PMCID: PMC9822292 DOI: 10.7554/elife.80949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.
Collapse
Affiliation(s)
- Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Alexey E Lyashkov
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Allwin Jennifa Silvester
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yevgeniya O Lukyanenko
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel Calvo-Rubio Barrera
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Vikas Kumar
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mark Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - John Lammons
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Seungho Jun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Walter Otu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Cameron Carroll
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Shane Chambers
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Thanh Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Robert Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loren Field
- Kraennert Institute of Cardiology, Indiana University School of MedicineIdianapolisUnited States
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
14
|
Urdinez L, Erra L, Palma AM, Mercogliano MF, Fernandez JB, Prieto E, Goris V, Bernasconi A, Sanz M, Villa M, Bouso C, Caputi L, Quesada B, Solis D, Aguirre Bruzzo A, Katsicas MM, Galluzzo L, Weyersberg C, Bocian M, Bujan MM, Oleastro M, Almejun MB, Danielian S. Expanding spectrum, intrafamilial diversity, and therapeutic challenges from 15 patients with heterozygous CARD11-associated diseases: A single center experience. Front Immunol 2022; 13:1020927. [PMID: 36405754 PMCID: PMC9668901 DOI: 10.3389/fimmu.2022.1020927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
CARD11-associated diseases are monogenic inborn errors of immunity involving immunodeficiency, predisposition to malignancy and immune dysregulation such as lymphoproliferation, inflammation, atopic and autoimmune manifestations. Defects in CARD11 can present as mutations that confer a complete or a partial loss of function (LOF) or contrarily, a gain of function (GOF) of the affected gene product. We report clinical characteristics, immunophenotypes and genotypes of 15 patients from our center presenting with CARD11-associated diseases. Index cases are pediatric patients followed in our immunology division who had access to next generation sequencing studies. Variant significance was defined by functional analysis in cultured cells transfected with a wild type and/or with mutated hCARD11 constructs. Cytoplasmic aggregation of CARD11 products was evaluated by immunofluorescence. Nine index patients with 9 unique heterozygous CARD11 variants were identified. At the time of the identification, 7 variants previously unreported required functional validation. Altogether, four variants showed a GOF effect as well a spontaneous aggregation in the cytoplasm, leading to B cell expansion with NF-κB and T cell anergy (BENTA) diagnosis. Additional four variants showing a LOF activity were considered as causative of CARD11-associated atopy with dominant interference of NF-kB signaling (CADINS). The remaining variant exhibited a neutral functional assay excluding its carrier from further analysis. Family segregation studies expanded to 15 individuals the number of patients presenting CARD11-associated disease. A thorough clinical, immunophenotypical, and therapeutic management evaluation was performed on these patients (5 BENTA and 10 CADINS). A remarkable variability of disease expression was clearly noted among BENTA as well as in CADINS patients, even within multiplex families. Identification of novel CARD11 variants required functional studies to validate their pathogenic activity. In our cohort BENTA phenotype exhibited a more severe and expanded clinical spectrum than previously reported, e.g., severe hematological and extra hematological autoimmunity and 3 fatal outcomes. The growing number of patients with dysmorphic facial features strengthen the inclusion of extra-immune characteristics as part of the CADINS spectrum. CARD11-associated diseases represent a challenging group of disorders from the diagnostic and therapeutic standpoint, especially BENTA cases that can undergo a more severe progression than previously described.
Collapse
Affiliation(s)
- Luciano Urdinez
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lorenzo Erra
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro M. Palma
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María F. Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Belén Fernandez
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emma Prieto
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea Bernasconi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Villa
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Carolina Bouso
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lucia Caputi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Belen Quesada
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Daniel Solis
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Anabel Aguirre Bruzzo
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Martha Katsicas
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Galluzzo
- Servicio de Anatomía Patológica, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Christian Weyersberg
- Servicio de Gastroenterología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marcela Bocian
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Marta Bujan
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Matías Oleastro
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María B. Almejun
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
15
|
Vanneste D, Staal J, Haegman M, Driege Y, Carels M, Van Nuffel E, De Bleser P, Saeys Y, Beyaert R, Afonina IS. CARD14 Signalling Ensures Cell Survival and Cancer Associated Gene Expression in Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10082008. [PMID: 36009554 PMCID: PMC9405774 DOI: 10.3390/biomedicines10082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients. Moreover, we showed that CARD14 is overexpressed in the LNCaP PCa cell line and that knockdown of CARD14 severely reduces LNCaP cell survival. Similarly, knockdown of BCL10 and MALT1, which are known to form a signalling complex with CARD14, also induced LNCaP cell death. MALT1 is a paracaspase that mediates downstream signalling by acting as a scaffold, as well as a protease. Recent studies have already indicated a role for the scaffold function of MALT1 in PCa cell growth. Here, we also demonstrated constitutive MALT1 proteolytic activity in several PCa cell lines, leading to cleavage of A20 and CYLD. Inhibition of MALT1 protease activity did not affect PCa cell survival nor activation of NF-κB and JNK signalling, but reduced expression of cancer-associated genes, including the cytokine IL-6. Taken together, our results revealed a novel role for CARD14-induced signalling in regulating PCa cell survival and gene expression. The epithelial cell type-specific expression of CARD14 may offer novel opportunities for more specific therapeutic targeting approaches in PCa.
Collapse
Affiliation(s)
- Domien Vanneste
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Marieke Carels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| | - Inna S. Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Xia M, David L, Teater M, Gutierrez J, Wang X, Meydan C, Lytle A, Slack GW, Scott DW, Morin RD, Onder O, Elenitoba-Johnson KS, Zamponi N, Cerchietti L, Lu T, Philippar U, Fontan L, Wu H, Melnick AM. BCL10 Mutations Define Distinct Dependencies Guiding Precision Therapy for DLBCL. Cancer Discov 2022; 12:1922-1941. [PMID: 35658124 PMCID: PMC9357155 DOI: 10.1158/2159-8290.cd-21-1566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023]
Abstract
Activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCL) have unfavorable outcomes and chronic activation of CARD11-BCL10-MALT1 (CBM) signal amplification complexes that form due to polymerization of BCL10 subunits, which is affected by recurrent somatic mutations in ABC-DLBCLs. Herein, we show that BCL10 mutants fall into at least two functionally distinct classes: missense mutations of the BCL10 CARD domain and truncation of its C-terminal tail. Truncating mutations abrogated a motif through which MALT1 inhibits BCL10 polymerization, trapping MALT1 in its activated filament-bound state. CARD missense mutations enhanced BCL10 filament formation, forming glutamine network structures that stabilize BCL10 filaments. Mutant forms of BCL10 were less dependent on upstream CARD11 activation and thus manifested resistance to BTK inhibitors, whereas BCL10 truncating but not CARD mutants were hypersensitive to MALT1 inhibitors. Therefore, BCL10 mutations are potential biomarkers for BTK inhibitor resistance in ABC-DLBCL, and further precision can be achieved by selecting therapy based on specific biochemical effects of distinct mutation classes. SIGNIFICANCE ABC-DLBCLs feature frequent mutations of signaling mediators that converge on the CBM complex. We use structure-function approaches to reveal that BCL10 mutations fall into two distinct biochemical classes. Both classes confer resistance to BTK inhibitors, whereas BCL10 truncations confer hyperresponsiveness to MALT1 inhibitors, providing a road map for precision therapies in ABC-DLBCLs. See related commentary by Phelan and Oellerich, p. 1844. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Johana Gutierrez
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Xiang Wang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ozlem Onder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S.J. Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nahuel Zamponi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Leandro Cerchietti
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tianbao Lu
- Janssen Research & Development, Springhouse, Pennsylvania
| | | | - Lorena Fontan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
17
|
Castro I, Lopes-Rodrigues V, Branco H, Vasconcelos MH, Xavier CPR. Establishing and characterizing a novel doxorubicin-resistant acute myeloid leukaemia cell line. J Chemother 2022:1-15. [PMID: 35822500 DOI: 10.1080/1120009x.2022.2097432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Drug resistance is a major setback in cancer treatment, thus models to study its mechanisms are needed. Our work aimed to establish and characterize a resistant cell line from a sensitive acute myeloid leukaemia (AML) cell line - HL60 - by treating the sensitive cells with increasing concentrations of doxorubicin. We confirmed (cell viability assays) that the established subline, HL60-CDR, was resistant to doxorubicin for at least 30 days without drug treatment. The HL60-CDR cells were also resistant to three other drugs (cisplatin, etoposide and daunorubicin), exhibiting a multidrug resistant (MDR) profile. We verified (Western Blotting) that the MDR cells do not express drug efflux pumps, nor present altered expression of apoptotic proteins, when compared with the parental cell line. HL60-CDR cells presented alterations in the cell cycle profile, and in the expression levels of proteins involved in DNA repair mechanisms and drug metabolism, when compared with their drug sensitive counterpart. Proteomic analysis revealed that HL60-CDR cells presented an upregulation of proteins involved in oncogenic pathways, such as TSC2, PDPK1, Annexin A2, among others. Overall, we established an AML MDR subline - HL60-CDR - which presents several resistance mechanisms, providing an in vitro model to test new compounds to circumvent MDR in AML.
Collapse
Affiliation(s)
- Inês Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Vanessa Lopes-Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, Dharmani-Khan P, Shameli A, Bell PA, Guilcher GMT, Lewis VA, Vasquez MR, Desai S, McGonigle L, Murguia-Favela L, Wright NAM, Sergi C, Wine E, Overall CM, Suresh S, Turvey SE. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol 2021; 148:1559-1574.e13. [PMID: 33872653 DOI: 10.1016/j.jaci.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Germline pathogenic variants impairing the caspase recruitment domain family member 11 (CARD11)-B cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) (CBM) complex are associated with diverse human diseases including combined immunodeficiency (CID), atopy, and lymphoproliferation. However, the impact of CARD11 deficiency on human B-cell development, signaling, and function is incompletely understood. OBJECTIVES This study sought to determine the cellular, immunological, and biochemical basis of disease for 2 unrelated patients who presented with profound CID associated with viral and fungal respiratory infections, interstitial lung disease, and severe colitis. METHODS Patients underwent next-generation sequencing, immunophenotyping by flow cytometry, signaling assays by immunoblot, and transcriptome profiling by RNA-sequencing. RESULTS Both patients carried identical novel pathogenic biallelic loss-of-function variants in CARD11 (c.2509C>T; p.Arg837∗) leading to undetectable protein expression. This variant prevented CBM complex formation, severely impairing the activation of nuclear factor-κB, c-Jun N-terminal kinase, and MALT1 paracaspase activity in B and T cells. This functional defect resulted in a developmental block in B cells at the naive and type 1 transitional B-cell stage and impaired circulating T follicular helper cell (cTFH) development, which was associated with impaired antibody responses and absent germinal center structures on lymph node histology. Transcriptomics indicated that CARD11-dependent signaling is essential for immune signaling pathways involved in the development of these cells. Both patients underwent hematopoietic stem cell transplantations, which led to functional normalization. CONCLUSIONS Complete human CARD11 deficiency causes profound CID by impairing naive/type 1 B-cell and cTFH cell development and abolishing activation of MALT1 paracaspase, NF-κB, and JNK activity. Hematopoietic stem cell transplantation functionally restores impaired signaling pathways.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Emory University, Atlanta, Ga
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley Szpurko
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Afshin Shameli
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Peter A Bell
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory M T Guilcher
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Victor A Lewis
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Marta Rojas Vasquez
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Desai
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Lyle McGonigle
- Department of Pediatrics, Division of General and Community Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Nicola A M Wright
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher M Overall
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sneha Suresh
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
20
|
Kuo SH, Yang SH, Wei MF, Lee HW, Tien YW, Cheng AL, Yeh KH. Contribution of nuclear BCL10 expression to tumor progression and poor prognosis of advanced and/or metastatic pancreatic ductal adenocarcinoma by activating NF-κB-related signaling. Cancer Cell Int 2021; 21:436. [PMID: 34412631 PMCID: PMC8375138 DOI: 10.1186/s12935-021-02143-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). METHOD AND MATERIALS We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. RESULTS We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). CONCLUSION Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Wei Lee
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
21
|
Shi X, Xia S, Chu Y, Yang N, Zheng J, Chen Q, Fen Z, Jiang Y, Fang S, Lin J. CARD11 is a prognostic biomarker and correlated with immune infiltrates in uveal melanoma. PLoS One 2021; 16:e0255293. [PMID: 34370778 PMCID: PMC8351993 DOI: 10.1371/journal.pone.0255293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UVM), the most common primary intraocular malignancy, has a high mortality because of a high propensity to metastasize. Our study analyzed prognostic value and immune-related characteristics of CARD11 in UVM, hoping to provide a potential management and research direction. The RNA-sequence data of 80 UVM patients were downloaded from The Cancer Genome Atlas database and divided them into high- and low-expression groups. We analyzed the differentially expressed genes, enrichment analyses and the infiltration of immune cells using the R package and Gene-Set Enrichment Analysis. A clinical prediction nomogram and protein-protein interaction network were constructed and the first 8 genes were considered as the hub-genes. Finally, we constructed a competing endogenous RNA (ceRNA) network by Cytoscape and analyzed the statistical data via the R software. Here we found that CARD11 expression had notable correlation with UVM clinicopathological features, which was also an independent predictor for overall survival (OS). Intriguingly, CARD11 had a positively correlation to autophagy, cellular senescence and apoptosis. Infiltration of monocytes was significantly higher in low CARD11 expression group, and infiltration of T cells regulatory was lower in the same group. Functional enrichment analyses revealed that CARD11 was positively related to T cell activation pathways and cell adhesion molecules. The expressions of hub-genes were all increased in the high CARD11 expression group and the ceRNA network showed the interaction among mRNA, miRNA and lncRNA. These findings show that high CARD11 expression in UVM is associated with poor OS, indicating that CARD11 may serve as a potential biomarker for the diagnosis and prognosis of the UVM.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Nan Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qianyi Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Zeng Fen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shifeng Fang
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
22
|
Gilmore TD. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021; 9:biomedicines9080889. [PMID: 34440093 PMCID: PMC8389606 DOI: 10.3390/biomedicines9080889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.
Collapse
|
23
|
CARMA1 is required for Notch1-induced NF-κB activation in SIL-TAL1-negative T cell acute lymphoblastic leukemia. J Mol Med (Berl) 2021; 99:1447-1458. [PMID: 34223928 DOI: 10.1007/s00109-021-02101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
The NF-κB signaling pathway is an important downstream pathway of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL) cells. However, the molecular mechanisms underlying the cascade activation of Notch1 in T-ALL cells are poorly understood. Here, we evaluated the role of CARMA1 in Notch1-induced NF-κB activation in T-ALL cells. CARMA1 was highly and specifically expressed in T-ALL cells and correlated with the prognosis of T-ALL patients. Interestingly, CARMA1 knockdown only inhibited the growth and proliferation of SIL-TAL1 fusion gene-negative T-ALL cells. In addition, CARMA1 knockdown arrested T-ALL cells at the G1 phase. Furthermore, CARMA1 knockdown significantly inhibited the proliferation of T-ALL cells in vivo and prolonged the survival of mice. Mechanistically, CARMA1 deficiency abolished Notch1-induced NF-κB transcriptional activation and significantly reduced expression levels of the NF-κB target genes c-Myc, Bcl-2, and CCR7. Taken together, these results of our study identify CARMA1 as one of the crucial mediators of Notch1-induced transformation of T-All cells, suggesting that CARMA1 is a promising therapeutic target for T-ALL due to its specific expression in lymphocytes. KEY MESSAGES: CARMA1 contributes to cell survival only in SIL-TAL1 negative T-ALL cells. CARMA1 is a crucial mediator of Notch1-induced activation of NF-κB pathway. CARMA1 is a promising therapeutic target for T-ALL.
Collapse
|
24
|
Qin H, Wu T, Liu J, Wang G, Fan L, Wang B, Shen Y. MALT-1 inhibition attenuates the inflammatory response of ankylosing spondylitis by targeting NF-κB activation. Injury 2021; 52:1287-1293. [PMID: 33827774 DOI: 10.1016/j.injury.2021.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 on ankylosing spondylitis and its underlying mechanisms. METHODS Proteoglycan induced ankylosing spondylitis (PGIA) mouse model was established and the expression patterns of MALT-1 were determined in joint tissue. Next, the mice were intraarticularly administrated with MALT-1 in the PGIA mouse model. Meanwhile, shRNA was intraarticularly administrated to PGIA mice. The incidence of arthritis and clinical score was evaluated. Besides, the levels of inflammatory cytokines and matrix metalloproteinases (MMPs) were measured. Protein expressions of full-length CYLD (FL-CYLD), C-terminal cleavage fragment (CYLD-CL), and nuclear factor (NF)-κB were determined. RESULTS The mRNA and protein levels of MALT1 were increased in the PGIA mouse model. The treatment of MALT-1 accelerated arthritis incidence and joint damage, whereas shMALT-1 suppressed arthritis symptoms in the PGIA mouse model. In addition, treatment of shMALT-1 suppressed the levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β), MMP-3, and MMP-9. Furthermore, the treatment of shMALT-1 suppressed the levels of CYLD and NF-κB in the joint tissues in the PGIA mouse model. CONCLUSION The inhibition of MALT-1 suppressed the inflammatory response in ankylosing spondylitis in part by the regulation of CYLD and NF-κB.
Collapse
Affiliation(s)
- Hu Qin
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Tao Wu
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China.
| | - Jun Liu
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China.
| | - Gang Wang
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Lei Fan
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Boyao Wang
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Yajun Shen
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| |
Collapse
|
25
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Pomerantz JL. Reconsidering phosphorylation in the control of inducible CARD11 scaffold activity during antigen receptor signaling. Adv Biol Regul 2021; 79:100775. [PMID: 33358178 PMCID: PMC7920944 DOI: 10.1016/j.jbior.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
Protein phosphorylation is a commonly used regulatory step that controls signal transduction pathways in a wide array of biological contexts. The finding that a residue is phosphorylated, coupled with the observation that mutation of that residue impacts signaling, often forms the basis for concluding that the phosphorylation of that residue is a key signaling step. However, in certain cases, the situation is more complicated and warrants further study to obtain a clear mechanistic understanding of whether and how the kinase-mediated modification in question is important. CARD11 is a multi-domain signaling scaffold that functions as a hub in lymphocytes to transmit the engagement of antigen receptors into the activation of NF-κB, JNK and mTOR. The phosphorylation of the CARD11 autoinhibitory Inhibitory Domain in response to antigen receptor triggering has been proposed to control the signal-induced conversion of CARD11 from an inactive to an active scaffold in a step required for lymphocyte activation. In this review, I discuss recent data that suggests that this model should be reconsidered for certain phosphorylation events in CARD11 and propose possible experimental avenues for resolution of raised issues.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Miller Research Building, Room 623, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, Klei HB, Kang H, Concel VJ, Delekta PC, Dang EV, Mintz MA, Baens M, Cyster JG, Parameswaran N, Thome M, Lucas PC, McAllister-Lucas LM. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest 2020; 130:1036-1051. [PMID: 31961340 DOI: 10.1172/jci97040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor-dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein-coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.
Collapse
Affiliation(s)
| | | | - Nathaniel E Hubel
- Department of Pediatrics and.,Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ming Zhang
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | | | | | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Eric V Dang
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Michelle A Mintz
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Mathijs Baens
- Human Genome Laboratory, VIB Center for the Biology of Disease, and.,Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jason G Cyster
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA.,Howard Hughes Medical Institute and.,Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
29
|
Demeyer A, Driege Y, Skordos I, Coudenys J, Lemeire K, Elewaut D, Staal J, Beyaert R. Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. iScience 2020; 23:101557. [PMID: 33083726 PMCID: PMC7522757 DOI: 10.1016/j.isci.2020.101557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
The protease MALT1 is a key regulator of NF-κB signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-γ-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-γ-producing CD4+ T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects. Inducible MALT1 inactivation for up to 6 months in the absence of severe toxicity MALT1 inactivation in adult mice decreases Tregs without effector T cell activation Long-term MALT1 inactivation results in tertiary lymphoid structure formation MALT1 inhibition in prenatal or adult life has a different outcome
Collapse
Affiliation(s)
- Annelies Demeyer
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Ioannis Skordos
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Julie Coudenys
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Dirk Elewaut
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|
31
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
32
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Ishikawa C, Mori N. MALT-1 as a novel therapeutic target for adult T-cell leukemia. Eur J Haematol 2020; 105:460-467. [PMID: 32574386 DOI: 10.1111/ejh.13467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES T-cell receptor (TCR) signaling-induced activation of NF-κB requires assembly of the CARD11-BCL10-MALT-1 complex and IκB kinase (IKK). Gain-of-function alterations in this component of the TCR/NF-κB pathway are associated with the development of HTLV-1-driven adult T-cell leukemia (ATL). We aimed to determine whether inhibition of MALT-1-mediated NF-κB activation could have anti-ATL activity. METHODS RT-PCR, immunoblotting, and electrophoretic mobility shift assays were performed to assess expression levels of MALT-1 and the intracellular signaling cascades. Cell proliferation, cell cycle progression, and apoptotic events were examined using WST-8 assays, flow cytometry, and Hoechst 33342 staining. RESULTS MALT-1 expression was upregulated in ATL-derived T-cell lines compared to that in normal PBMCs and uninfected or HTLV-1-transformed T-cell lines. Targeting MALT-1 with siRNA decreased cell proliferation. A MALT-1 inhibitor (MI-2) suppressed cleavage of the MALT-1-target protein, CYLD, and inhibited proliferation via G1 phase arrest. MI-2 induced apoptosis through caspase-3/8/9 activation and inhibited the phosphorylation of IKKα/β and IκBα, resulting in the accumulation of IκBα and suppression of NF-κB-DNA binding. Additionally, MI-2 inhibited the expression of apoptosis- and cell cycle-related proteins regulated by NF-κB. CONCLUSIONS MALT-1 plays an important regulatory role in NF-κB signaling during ATL-genesis, and targeting MALT-1 is a promising therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
34
|
Cheng J, Maurer LM, Kang H, Lucas PC, McAllister-Lucas LM. Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: Take-home points for the cell biologist. Cell Immunol 2020; 355:104158. [PMID: 32721634 DOI: 10.1016/j.cellimm.2020.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Host CARD11 Inhibits Newcastle Disease Virus Replication by Suppressing Viral Polymerase Activity in Neurons. J Virol 2019; 93:JVI.01499-19. [PMID: 31554683 DOI: 10.1128/jvi.01499-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Host factors play multiple essential roles in the replication and pathogenesis of mammalian neurotropic viruses. However, the cellular proteins of the central nervous system (CNS) involved in avian neurotropic virus infection have not been completely elucidated. Here, we employed a gene microarray to identify caspase recruitment domain-containing protein 11 (CARD11), a lymphoma-associated scaffold protein presenting brain-specific upregulated expression in a virulent neurotropic Newcastle disease virus (NDV)-infected natural host. Chicken primary neuronal cells infected with NDV appeared slightly syncytial and died quickly. CARD11 overexpression inhibited viral replication and delayed cytopathic effects; conversely, depletion of CARD11 enhanced viral replication and cytopathic effects in chicken primary neuronal cells. The inhibition of viral replication by CARD11 could not be blocked with CARD11-Bcl10-MALT1 (CBM) signalosome and NF-κB signaling inhibitors. CARD11 was found to interact directly with the viral phosphoprotein (P) through its CC1 domain and the X domain of P; this X domain also mediated the interaction between P and the viral large polymerase protein (L). The CARD11 CC1 domain and L competitively bound to P via the X domain that hindered the P-L interaction of the viral ribonucleoprotein (RNP) complex, resulting in a reduction of viral polymerase activity in a minigenome assay and inhibition of viral replication. Animal experiments further revealed that CARD11 contributed to viral replication inhibition and neuropathology in infected chicken brains. Taken together, our findings identify CARD11 as a brain-specific antiviral factor of NDV infection in avian species.IMPORTANCE Newcastle disease virus (NDV) substantially impacts the poultry industry worldwide and causes viral encephalitis and neurological disorders leading to brain damage, paralysis, and death. The mechanism of interaction between this neurotropic virus and the avian central nervous system (CNS) is largely unknown. Here, we report that host protein CARD11 presented brain-specific upregulated expression that inhibited NDV replication, which was not due to CARD11-Bcl10-MALT1 (CBM) complex-triggered activation of its downstream signaling pathways. The inhibitory mechanism of viral replication is through the CARD11 CC1 domain, and the viral large polymerase protein (L) competitively interacts with the X domain of the viral phosphoprotein (P), which hampers the P-L interaction, suppressing the viral polymerase activity and viral replication. An in vivo study indicated that CARD11 alleviated neuropathological lesions and reduced viral replication in chicken brains. These results provide insight into the interaction between NDV infection and the host defense in the CNS and a potential antiviral target for viral neural diseases.
Collapse
|
36
|
Martin K, Touil R, Kolb Y, Cvijetic G, Murakami K, Israel L, Duraes F, Buffet D, Glück A, Niwa S, Bigaud M, Junt T, Zamurovic N, Smith P, McCoy KD, Ohashi PS, Bornancin F, Calzascia T. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell-Mediated Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2791-2806. [PMID: 31659015 DOI: 10.4049/jimmunol.1900327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The paracaspase Malt1 is a key regulator of canonical NF-κB activation downstream of multiple receptors in both immune and nonimmune cells. Genetic disruption of Malt1 protease function in mice and MALT1 mutations in humans results in reduced regulatory T cells and a progressive multiorgan inflammatory pathology. In this study, we evaluated the altered immune homeostasis and autoimmune disease in Malt1 protease-deficient (Malt1PD) mice and the Ags driving disease manifestations. Our data indicate that B cell activation and IgG1/IgE production is triggered by microbial and dietary Ags preferentially in lymphoid organs draining mucosal barriers, likely as a result of dysregulated mucosal immune homeostasis. Conversely, the disease was driven by a polyclonal T cell population directed against self-antigens. Characterization of the Malt1PD T cell compartment revealed expansion of T effector memory cells and concomitant loss of a CD4+ T cell population that phenotypically resembles anergic T cells. Therefore, we propose that the compromised regulatory T cell compartment in Malt1PD animals prevents the efficient maintenance of anergy and supports the progressive expansion of pathogenic, IFN-γ-producing T cells. Overall, our data revealed a crucial role of the Malt1 protease for the maintenance of intestinal and systemic immune homeostasis, which might provide insights into the mechanisms underlying IPEX-related diseases associated with mutations in MALT1.
Collapse
Affiliation(s)
- Kea Martin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ratiba Touil
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Yeter Kolb
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Grozdan Cvijetic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kiichi Murakami
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Fernanda Duraes
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Buffet
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anton Glück
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Satoru Niwa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Natasa Zamurovic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Philip Smith
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kathy D McCoy
- Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University Hospital, 3010 Bern, Switzerland; and
| | - Pamela S Ohashi
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland;
| |
Collapse
|
37
|
Wang Z, Hutcherson SM, Yang C, Jattani RP, Tritapoe JM, Yang YK, Pomerantz JL. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem 2019; 294:14648-14660. [PMID: 31391255 PMCID: PMC6779434 DOI: 10.1074/jbc.ra119.009551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
The activation of key signaling pathways downstream of antigen receptor engagement is critically required for normal lymphocyte activation during the adaptive immune response. CARD11 is a multidomain signaling scaffold protein required for antigen receptor signaling to NF-κB, c-Jun N-terminal kinase, and mTOR. Germline mutations in the CARD11 gene result in at least four types of primary immunodeficiency, and somatic CARD11 gain-of-function mutations drive constitutive NF-κB activity in diffuse large B cell lymphoma and other lymphoid cancers. In response to antigen receptor triggering, CARD11 transitions from a closed, inactive state to an open, active scaffold that recruits multiple signaling partners into a complex to relay downstream signaling. However, how this signal-induced CARD11 conversion occurs remains poorly understood. Here we investigate the role of Inducible Element 1 (IE1), a short regulatory element in the CARD11 Inhibitory Domain, in the CARD11 signaling cycle. We find that IE1 controls the signal-dependent Opening Step that makes CARD11 accessible to the binding of cofactors, including Bcl10, MALT1, and the HOIP catalytic subunit of the linear ubiquitin chain assembly complex. Surprisingly, we find that IE1 is also required at an independent step for the maximal activation of HOIP and MALT1 enzymatic activity after cofactor recruitment to CARD11. This role of IE1 reveals that there is an Enzymatic Activation Step in the CARD11 signaling cycle that is distinct from the Cofactor Association Step. Our results indicate that CARD11 has evolved to actively coordinate scaffold opening and the induction of enzymatic activity among recruited cofactors during antigen receptor signaling.
Collapse
Affiliation(s)
- Zhaoquan Wang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rakhi P Jattani
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia M Tritapoe
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Voccola S, Polvere I, Madera JR, Paolucci M, Varricchio E, Telesio G, Porcaro P, Vito P, Stilo R, Zotti T. CARD14/CARMA2sh and TANK differentially regulate poly(I:C)-induced inflammatory reaction in keratinocytes. J Cell Physiol 2019; 235:1895-1902. [PMID: 31486084 DOI: 10.1002/jcp.29161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
CARD14/CARMA2sh (CARMA2sh) is a scaffold protein whose mutations are associated with the onset of human genetic psoriasis and other inflammatory skin disorders. Here we show that the immunomodulatory adapter protein TRAF family member-associated NF-κB activator (TANK) forms a complex with CARMA2sh and MALT1 in a human keratinocytic cell line. We also show that CARMA2 and TANK are individually required to activate the nuclear factor κB (NF-κB) response following exposure to polyinosinic-polycytidylic (poly [I:C]), an agonist of toll-like receptor 3. Finally, we present data indicating that TANK is essential for activation of the TBK1/IRF3 pathway following poly (I:C) stimulation, whereas CARMA2sh functions as a repressor of it. More important, we report that two CARMA2sh mutants associated with psoriasis bind less efficiently to TANK and are therefore less effective in suppressing the TBK1/IRF3 pathway. Overall, our data indicate that TANK and CARMA2sh regulate TLR3 signaling in human keratinocytes, which could play a role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Serena Voccola
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Immacolata Polvere
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Jessica R Madera
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ettore Varricchio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Gianluca Telesio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Piero Porcaro
- Genus Biotech, Università del Sannio, Benevento, Italy.,Consorzio Sannio Tech, Strada Statale Appia, Benevento, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| |
Collapse
|
39
|
Structures of autoinhibited and polymerized forms of CARD9 reveal mechanisms of CARD9 and CARD11 activation. Nat Commun 2019; 10:3070. [PMID: 31296852 PMCID: PMC6624267 DOI: 10.1038/s41467-019-10953-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
CARD9 and CARD11 drive immune cell activation by nucleating Bcl10 polymerization, but are held in an autoinhibited state prior to stimulation. Here, we elucidate the structural basis for this autoinhibition by determining the structure of a region of CARD9 that includes an extensive interface between its caspase recruitment domain (CARD) and coiled-coil domain. We demonstrate, for both CARD9 and CARD11, that disruption of this interface leads to hyperactivation in cells and to the formation of Bcl10-templating filaments in vitro, illuminating the mechanism of action of numerous oncogenic mutations of CARD11. These structural insights enable us to characterize two similar, yet distinct, mechanisms by which autoinhibition is relieved in the course of canonical CARD9 or CARD11 activation. We also dissect the molecular determinants of helical template assembly by solving the structure of the CARD9 filament. Taken together, these findings delineate the structural mechanisms of inhibition and activation within this protein family.
Collapse
|
40
|
Hatcher JM, Du G, Fontán L, Us I, Qiao Q, Chennamadhavuni S, Shao J, Wu H, Melnick A, Gray NS, Scott DA. Peptide-based covalent inhibitors of MALT1 paracaspase. Bioorg Med Chem Lett 2019; 29:1336-1339. [PMID: 30954428 DOI: 10.1016/j.bmcl.2019.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/03/2023]
Abstract
Potent and selective substrate-based covalent inhibitors of MALT1 protease were developed from the tetrapeptide tool compound Z-VRPR-fmk. To improve cell permeability, we replaced one arginine residue. We further optimized a series of tripeptides and identified compounds that were potent in both a GloSensor reporter assay measuring cellular MALT1 protease activity, and an OCI-Ly3 cell proliferation assay. Example compounds showed good overall selectivity towards cysteine proteases, and one compound was selected for further profiling in ABL-DLBCL cells and xenograft efficacy models.
Collapse
Affiliation(s)
- John M Hatcher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA
| | - Lorena Fontán
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ilkay Us
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Spandan Chennamadhavuni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA
| | - Jay Shao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 360 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Frizinsky S, Rechavi E, Barel O, Najeeb RH, Greenberger S, Lee YN, Simon AJ, Lev A, Ma CA, Sun G, Blackstone SA, Milner JD, Somech R, Stauber T. Novel MALT1 Mutation Linked to Immunodeficiency, Immune Dysregulation, and an Abnormal T Cell Receptor Repertoire. J Clin Immunol 2019; 39:401-413. [DOI: 10.1007/s10875-019-00629-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
|
42
|
Dorjbal B, Stinson JR, Ma CA, Weinreich MA, Miraghazadeh B, Hartberger JM, Frey-Jakobs S, Weidinger S, Moebus L, Franke A, Schäffer AA, Bulashevska A, Fuchs S, Ehl S, Limaye S, Arkwright PD, Briggs TA, Langley C, Bethune C, Whyte AF, Alachkar H, Nejentsev S, DiMaggio T, Nelson CG, Stone KD, Nason M, Brittain EH, Oler AJ, Veltri DP, Leahy TR, Conlon N, Poli MC, Borzutzky A, Cohen JI, Davis J, Lambert MP, Romberg N, Sullivan KE, Paris K, Freeman AF, Lucas L, Chandrakasan S, Savic S, Hambleton S, Patel SY, Jordan MB, Theos A, Lebensburger J, Atkinson TP, Torgerson TR, Chinn IK, Milner JD, Grimbacher B, Cook MC, Snow AL. Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol 2019; 143:1482-1495. [PMID: 30170123 PMCID: PMC6395549 DOI: 10.1016/j.jaci.2018.08.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.
Collapse
Affiliation(s)
- Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Chi A Ma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael A Weinreich
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bahar Miraghazadeh
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia M Hartberger
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Frey-Jakobs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lena Moebus
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Peter D Arkwright
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy A Briggs
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Langley
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Bethune
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Andrew F Whyte
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Hana Alachkar
- Immunology, Salford Royal Foundation Trust, Manchester, United Kingdom
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas DiMaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Celeste G Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kelly D Stone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Erica H Brittain
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Daniel P Veltri
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - T Ronan Leahy
- Department of Paediatric Immunology and ID, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Maria C Poli
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Arturo Borzutzky
- Department of Pediatrics, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michele P Lambert
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kenneth Paris
- Louisiana State University Health Sciences Center and Children's Hospital, New Orleans, La
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Laura Lucas
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Sinisa Savic
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, St James University Hospital, Leeds, United Kingdom
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Smita Y Patel
- Oxford University Hospitals NHS Trust and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Ala
| | - Jeffrey Lebensburger
- Department of Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Wash
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew C Cook
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md.
| |
Collapse
|
43
|
Zhang S, Lin X. CARMA3: Scaffold Protein Involved in NF-κB Signaling. Front Immunol 2019; 10:176. [PMID: 30814996 PMCID: PMC6381293 DOI: 10.3389/fimmu.2019.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Scaffold proteins are defined as pivotal molecules that connect upstream receptors to specific effector molecules. Caspase recruitment domain protein 10 (CARD10) gene encodes a scaffold protein CARMA3, belongs to the family of CARD and membrane-associated guanylate kinase-like protein (CARMA). During the past decade, investigating the function of CARMA3 has revealed that it forms a complex with BCL10 and MALT1 to mediate different receptors-dependent signaling, including GPCR and EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3 and its partners are also reported to be involved in antiviral innate immune response and DNA damage response. In this review, we summarize the biology of CARMA3 in multiple receptor-induced NF-κB signaling. Especially, we focus on discussing the function of CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent progress in the field.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
44
|
Lork M, Staal J, Beyaert R. Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cell Immunol 2018; 340:103877. [PMID: 30514565 DOI: 10.1016/j.cellimm.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Antigen receptor-induced signaling plays an important role in inflammation and immunity. Formation of a CARD11-BCL10-MALT1 (CBM) signaling complex is a key event in T- and B cell receptor-induced gene expression by regulating NF-κB activation and mRNA stability. Deregulated CARD11, BCL10 or MALT1 expression or CBM signaling have been associated with immunodeficiency, autoimmunity and cancer, indicating that CBM formation and function have to be tightly regulated. Over the past years great progress has been made in deciphering the molecular mechanisms of assembly and disassembly of the CBM complex. In this context, several posttranslational modifications play an indispensable role in regulating CBM function and downstream signal transduction. In this review we summarize how the different CBM components as well as their interplay are regulated by protein ubiquitination and phosphorylation in the context of T cell receptor signaling.
Collapse
Affiliation(s)
- Marie Lork
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.
| |
Collapse
|
45
|
Seeholzer T, Kurz S, Schlauderer F, Woods S, Gehring T, Widmann S, Lammens K, Krappmann D. BCL10-CARD11 Fusion Mimics an Active CARD11 Seed That Triggers Constitutive BCL10 Oligomerization and Lymphocyte Activation. Front Immunol 2018; 9:2695. [PMID: 30515170 PMCID: PMC6255920 DOI: 10.3389/fimmu.2018.02695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Assembly of the CARD11/CARMA1-BCL10-MALT1 (CBM) signaling complex upon T or B cell antigen receptor (TCR or BCR) engagement drives lymphocyte activation. Recruitment of pre-assembled BCL10-MALT1 complexes to CARD11 fosters activation of the MALT1 protease and canonical NF-κB signaling. Structural data and in vitro assays have suggested that CARD11 acts as a seed that nucleates the assembly of BCL10 filaments, but the relevance of these findings for CBM complex assembly in cells remains unresolved. To uncouple cellular CARD11 recruitment of BCL10 and BCL10 filament assembly, we generated a BCL10-CARD11 fusion protein that links the C-terminus of BCL10 to the N-terminus of CARD11. When stably expressed in CARD11 KO Jurkat T cells, the BCL10-CARD11 fusion induced constitutive MALT1 activation. Furthermore, in CARD11 KO BJAB B cells, BCL10-CARD11 promoted constitutive NF-κB activation to a similar extent as CARD11 containing oncogenic driver mutations. Using structure-guided destructive mutations in the CARD11-BCL10 (CARD11 R35A) or BCL10-BCL10 (BCL10 R42E) interfaces, we demonstrate that chronic activation by the BCL10-CARD11 fusion protein was independent of the CARD11 CARD. However, activation strictly relied upon the ability of the BCL10 CARD to form oligomers. Thus, by combining distinct CARD mutations in the context of constitutively active BCL10-CARD11 fusion proteins, we provide evidence that BCL10-MALT1 recruitment to CARD11 and BCL10 oligomerization are interconnected processes, which bridge the CARD11 seed to downstream pathways in lymphocytes.
Collapse
Affiliation(s)
- Thomas Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kurz
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Simone Woods
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Widmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Katja Lammens
- Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
46
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
47
|
Zotti T, Polvere I, Voccola S, Vito P, Stilo R. CARD14/CARMA2 Signaling and its Role in Inflammatory Skin Disorders. Front Immunol 2018; 9:2167. [PMID: 30319628 PMCID: PMC6168666 DOI: 10.3389/fimmu.2018.02167] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
CARMA proteins represent a family of scaffold molecules which play several crucial biological functions, including regulation of immune response and inflammation, tissue homeostasis, and modulation of G-Protein Coupled Receptor (GPCR) signaling. Among the CARMA proteins, CARD14/CARMA2 and its alternatively spliced isoforms are specifically expressed in epithelial cells and keratinocytes. Recent evidences have shown that CARD14/CARMA2 mediates induction of inflammatory response in keratinocytes, and that mutations in CARD14/CARMA2 gene segregate with familial transmission of chronic inflammatory disorders of the human skin. Similarly to CARD11/CARMA1 and CARD10/CARMA3, CARD14/CARMA2 signaling occurs trough formation of a trimeric complex which includes BCL10 and MALT1 proteins. However, it is becoming increasingly evident that in addition to the CBM complex components, a number of accessory molecules are able to finely modulate the signals conveyed on and amplified by CARD14/CARMA2. The study of these molecules is important both to understand the molecular mechanisms that underlie the role of CARMA2 in keratinocytes and because they represent potential therapeutic targets for the development of therapeutic strategies aiming at the treatment of inflammatory diseases of the human skin. In this review, we provide an overview on the molecular mechanisms mediating CARD14/CARMA2 signaling and its implication in our understanding of the pathogenesis of human inflammatory skin disorders.
Collapse
Affiliation(s)
- Tiziana Zotti
- Genus Biotechnology, Università degli Studi del Sannio, Benevento, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Immacolata Polvere
- Genus Biotechnology, Università degli Studi del Sannio, Benevento, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Serena Voccola
- Genus Biotechnology, Università degli Studi del Sannio, Benevento, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Pasquale Vito
- Genus Biotechnology, Università degli Studi del Sannio, Benevento, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Romania Stilo
- Genus Biotechnology, Università degli Studi del Sannio, Benevento, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
48
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Mellett M, Meier B, Mohanan D, Schairer R, Cheng P, Satoh TK, Kiefer B, Ospelt C, Nobbe S, Thome M, Contassot E, French LE. CARD14 Gain-of-Function Mutation Alone Is Sufficient to Drive IL-23/IL-17–Mediated Psoriasiform Skin Inflammation In Vivo. J Invest Dermatol 2018; 138:2010-2023. [DOI: 10.1016/j.jid.2018.03.1525] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|