1
|
Safi R, Mohsen-Kanson T, Kouzi F, El-Saghir J, Dermesrobian V, Zugasti I, Zibara K, Menéndez P, El Hajj H, El-Sabban M. Direct Interaction Between CD34 + Hematopoietic Stem Cells and Mesenchymal Stem Cells Reciprocally Preserves Stemness. Cancers (Basel) 2024; 16:3972. [PMID: 39682159 DOI: 10.3390/cancers16233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES A specialized microenvironment in the bone marrow, composed of stromal cells including mesenchymal stem cells (MSCs), supports hematopoietic stem cell (HSC) self-renewal, and differentiation bands play an important role in leukemia development and progression. The reciprocal direct interaction between MSCs and CD34+ HSCs under physiological and pathological conditions is yet to be fully characterized. METHODS Here, we established a direct co-culture model between MSCs and CD34+ HSCs or MSCs and acute myeloid leukemia cells (THP-1, Molm-13, and primary cells from patients) to study heterocellular communication. RESULTS Following MSCs-CD34+ HSCs co-culture, the expression of adhesion markers N-Cadherin and connexin 43 increased in both cell types, forming gap junction channels. Moreover, the clonogenic potential of CD34+ HSCs was increased. However, direct contact of acute myeloid leukemia cells with MSCs reduced the expression levels of connexin 43 and N-Cadherin in MSCs. The impairment in gap junction formation may potentially be due to a defect in the acute myeloid leukemia-derived MSCs. Interestingly, CD34+ HSCs and acute myeloid leukemia cell lines attenuated MSC osteoblastic differentiation upon prolonged direct cell-cell contact. CONCLUSIONS In conclusion, under physiological conditions, connexin 43 and N-Cadherin interaction preserves stemness of both CD34+ HSCs and MSCs, a process that is compromised in acute myeloid leukemia, pointing to the possible role of gap junctions in modulating stemness.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Tala Mohsen-Kanson
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Farah Kouzi
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Jamal El-Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vera Dermesrobian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Inés Zugasti
- Department of Hematology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Kazem Zibara
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, 28029 Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), 08028 Barcelona, Spain
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
2
|
Wu J, Lan Y, Wu J, Zhu K. Sepsis-Induced Acute Lung Injury Is Alleviated by Small Molecules from Dietary Plants via Pyroptosis Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12153-12166. [PMID: 37537751 DOI: 10.1021/acs.jafc.2c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality, and it has three major pathogeneses, namely alveolar-capillary barrier destruction, elevated gut permeability, and reduced neutrophil extracellular traps (NETS), all of which are pyroptosis-involved. Due to limitations of current agents like adverse reaction superposition, inevitable drug resistance, and relatively heavier financial burden, naturally extracted small-molecule compounds have a broad market even though chemically modified drugs have straightforward efficacy. Despite increased understanding of the molecular biology and mechanism underlying sepsis-induced ARDS, there are no specific reviews concerning how small molecules from dietary plants alleviate sepsis-induced acute lung injury (ALI) via regulating pyroptotic cell death. Herein, we traced and reviewed the molecular underpinnings of sepsis-induced ALI with a focus on small-molecule compounds from dietary plants, the top three categories of which are respectively flavonoids and flavone, terpenoids, and polyphenol and phenolic acids, and how they rescued septic ALI by restraining pyroptosis.
Collapse
Affiliation(s)
- Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejia Lan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinghan Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Keli Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Li C, Wang Z, Wei B, Liu Z, Li B, Kang H, Wang J, Liu J, Wang Q, Guo H, Wu X, Liu N, Luo J. Upregulation of ROBO3 promotes proliferation, migration and adhesion of AML cells and affects the survival of AML patients. Biochem Biophys Res Commun 2023; 661:1-9. [PMID: 37084487 DOI: 10.1016/j.bbrc.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy, which is the most common and severe acute leukemia in adults. Its occurrence, development and prognosis are affected by many factors, and more research is still needed to further guide its treatment. Here, we found that roundabout3 (ROBO3) was associated with poor prognosis in AML through bioinformatics analysis. We then found that overexpression of ROBO3 promoted AML cell proliferation, adhesion and migration while knockdown of ROBO3 had opposite effects. We subsequently found that ROBO3 regulated CD34 expression in AML cells, and this regulatory effect may be achieved through the Hippo-YAP pathway. The inhibitors of this pathway, K-975 and verteporfin, showed an inhibitory effect on AML cells with high ROBO3 expression. ROBO3 was also found to be significantly increased in bone marrow samples from AML patients. Our research indicates that ROBO3 plays an important role in the development of AML, which suggests that ROBO3 can be a prognostic biomarker and potential therapeutic target for AML.
Collapse
Affiliation(s)
- Chaonan Li
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhen Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Binghui Wei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zechen Liu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bei Li
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hening Kang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jue Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junle Liu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingyu Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongming Guo
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoli Wu
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Na Liu
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jianmin Luo
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Yang H, Zhou S, Lan D, Bin Y, Bao W, Wang M, Huang F, Peng Z. The expression of Slit2 and Robo1 increased during retinoic acid syndrome in acute promyelocytic leukemia and impacted differentiated cell migration. Transl Oncol 2022; 18:101370. [PMID: 35182953 PMCID: PMC8857660 DOI: 10.1016/j.tranon.2022.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The upregulation of Robo1 and Slit2 was first found in APL patients. The positive correlation between Robo1/Slit2 and retinoic acid syndrome was first demonstrated. It was demonstrated for the first time that Slit2 induces the migration of differentiated cells. Slit2 did not inhibit il8-induced differentiated cell migration.
Retinoic acid syndrome (RAS) is a serious complication developed during the induction therapy of acute promyelocytic leukemia (APL). Cytokines and differentiated cells migration play important roles in the development of RAS. Slit guidance ligand 2 (Slit2) and roundabout 1 (Robo1) involve in cell migration. Our study aimed to investigate the expression of Slit2 and Robo1 in APL and check whether they affected promyelocytes migration. 62 cases of newly diagnosed APL patients were involved and received all-trans retinoic acid (ATRA) and arsenic trioxide as induction therapy. Bone marrow cells (BMCs) were obtained on days 0 and 28, and promyelocytes and plasma were collected from day 1 to day 21. The expression of Robo1 in promyelocytes, and that of Slit2 and cytokines, including IL-8,IL-1β and others, in serum were monitored. 20 healthy individuals donated their cells as control. Of the 62 APL patients, 16 (25.81%) patients developed RAS. The expression of Robo1, Slit2 and IL-8 increased significantly with the development of RAS. In the 16 patients with RAS, levels of Slit2, Robo1 and IL-8 were higher during the development of RAS than before or after the RAS (P < 0.05). RhSlit2-N and rhIL-8 induced cells migration, and the migration induced by IL-8 was not inhibited by rhSlit2-N. Elevated Slit2 and Robo1 levels might be useful markers for the diagnosis and treatment of RAS. The levels of Slit2, Robo1 and IL-8 showed a positive correlation with the severity of RAS. Slit2 and IL-8 promoted the migration of differentiated cells.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shengsheng Zhou
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dong Lan
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yehong Bin
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenguang Bao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Man Wang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengxiang Huang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhigang Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Reece AS, Hulse GK. Geotemporospatial and causal inference epidemiological analysis of US survey and overview of cannabis, cannabidiol and cannabinoid genotoxicity in relation to congenital anomalies 2001–2015. BMC Pediatr 2022; 22:47. [PMID: 35042455 PMCID: PMC8767720 DOI: 10.1186/s12887-021-02996-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Cannabinoids including cannabidiol have recognized genotoxic activities but their significance has not been studied broadly epidemiologically across the teratological spectrum. We examined these issues including contextual space-time relationships and formal causal inferential analysis in USA.
Methods
State congenital anomaly (CA) rate (CAR) data was taken from the annual reports of the National Birth Defects Prevention Network 2001–2005 to 2011–2015. Substance abuse rates were from the National Survey of Drug Use and Health a nationally representative longitudinal survey of the non-institutionalized US population with 74.1% response rate. Drugs examined were cigarettes, monthly and binge alcohol, monthly cannabis and analgesic and cocaine abuse. Early termination of pregnancy for abortion (ETOPFA) rates were taken from the published literature. Cannabinoid concentrations were from Drug Enforcement Agency. Ethnicity and income data were from the US Census Bureau. Inverse probability weighted (IPW) regressions and geotemporospatial regressions conducted for selected CAs.
Results
Data on 18,328,529 births from an aggregated population of 2,377,483,589 for mid-year analyses 2005–2013 comprehending 12,611 CARs for 62 CAs was assembled and ETOPFA-corrected (ETOPFACAR) where appropriate. E-Values for ETOPFACARs by substance trends were elevated for THC (40 CAs), cannabis (35 CAs), tobacco (11 CAs), cannabidiol (8 CAs), monthly alcohol (5 CAs) and binge alcohol (2 CAs) with minimum E-Values descending from 16.55, 1.55x107, 555.10, 7.53x1019, 9.30 and 32.98. Cardiovascular, gastrointestinal, chromosomal, limb reductions, urinary, face and body wall CAs particularly affected. Highest v. lowest substance use quintile CAR prevalence ratios 2.84 (95%C.I. 2.44, 3.31), 4.85 (4.08, 5.77) and 1.92 (1.63, 2.27) and attributable fraction in exposed 0.28 (0.27, 0.28), 0.57 (0.51, 0.62) and 0.47 (0.38, 0.55) for tobacco, cannabis and cannabidiol. Small intestinal stenosis or atresia and obstructive genitourinary defect were studied in detail in lagged IPW pseudo-randomized causal regressions and spatiotemporal models confirmed the causal role of cannabinoids. Spatiotemporal predictive modelling demonstrated strongly sigmoidal non-linear cannabidiol dose-response power-function relationships (P = 2.83x10−60 and 1.61x10−71 respectively).
Conclusions
Data implicate cannabinoids including cannabidiol in a diverse spectrum of heritable CAs. Sigmoidal non-linear dose-response relationships are of grave concern.
These transgenerational genotoxic, epigenotoxic, chromosomal-toxic putatively causal teratogenic effects strongly indicate tight restrictions on community cannabinoid penetration.
Collapse
|
6
|
Schnabl J, Litz MPH, Schneider C, PenkoffLidbeck N, Bashiruddin S, Schwartz MS, Alligood K, Devoto SH, Barresi MJF. Characterizing the diverse cells that associate with the developing commissures of the zebrafish forebrain. Dev Neurobiol 2021; 81:671-695. [PMID: 33314626 DOI: 10.1002/dneu.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
During embryonic development of bilaterally symmetrical organisms, neurons send axons across the midline at specific points to connect the two halves of the nervous system with a commissure. Little is known about the cells at the midline that facilitate this tightly regulated process. We exploit the conserved process of vertebrate embryonic development in the zebrafish model system to elucidate the identity of cells at the midline that may facilitate postoptic (POC) and anterior commissure (AC) development. We have discovered that three different gfap+ astroglial cell morphologies persist in contact with pathfinding axons throughout commissure formation. Similarly, olig2+ progenitor cells occupy delineated portions of the postoptic and anterior commissures where they act as multipotent, neural progenitors. Moreover, we conclude that both gfap+ and olig2+ progenitor cells give rise to neuronal populations in both the telencephalon and diencephalon; however, these varied cell populations showed significant developmental timing differences between the telencephalon and diencephalon. Lastly, we also showed that fli1a+ mesenchymal cells migrate along the presumptive commissure regions before and during midline axon crossing. Furthermore, following commissure maturation, specific blood vessels formed at the midline of the POC and immediately ventral and parallel to the AC. This comprehensive account of the cellular populations that correlate with the timing and position of commissural axon pathfinding has supported the conceptual modeling and identification of the early forebrain architecture that may be necessary for proper commissure development.
Collapse
Affiliation(s)
- Jake Schnabl
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mackenzie P H Litz
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Schneider
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,McGill University, Montreal, QC, Canada
| | | | - Sarah Bashiruddin
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Family Medicine Assoc, Westfield, MA, USA
| | - Morgan S Schwartz
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristin Alligood
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Farmers Conservation Alliance, Hood River, OR, USA
| | | | - Michael J F Barresi
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA.,Department of Biological Sciences, Smith College, Northampton, MA, USA
| |
Collapse
|
7
|
Abstract
Endothelial cells (ECs) are vascular, nonconventional immune cells that play a major role in the systemic response after bacterial infection to limit its dissemination. Triggered by exposure to pathogens, microbial toxins, or endogenous danger signals, EC responses are polymorphous, heterogeneous, and multifaceted. During sepsis, ECs shift toward a proapoptotic, proinflammatory, proadhesive, and procoagulant phenotype. In addition, glycocalyx damage and vascular tone dysfunction impair microcirculatory blood flow, leading to organ injury and, potentially, life-threatening organ failure. This review aims to cover the current understanding of the EC adaptive or maladaptive response to acute inflammation or bacterial infection based on compelling recent basic research and therapeutic clinical trials targeting microvascular and endothelial alterations during septic shock.
Collapse
Affiliation(s)
- Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Can Ince
- Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Hafid Ait-Oufella
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,INSERM U970, Cardiovascular Research Center, Université de Paris, Paris, France
| |
Collapse
|
8
|
Kellermeyer R, Heydman LM, Gillis T, Mastick GS, Song M, Kidd T. Proteolytic cleavage of Slit by the Tolkin protease converts an axon repulsion cue to an axon growth cue in vivo. Development 2020; 147:dev.196055. [PMID: 32994163 PMCID: PMC7648596 DOI: 10.1242/dev.196055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
Slit is a secreted protein that has a canonical function of repelling growing axons from the CNS midline. The full-length Slit (Slit-FL) is cleaved into Slit-N and Slit-C fragments, which have potentially distinct functions via different receptors. Here, we report that the BMP-1/Tolloid family metalloprotease Tolkin (Tok) is responsible for Slit proteolysis in vivo and in vitro. In Drosophilatok mutants lacking Slit cleavage, midline repulsion of axons occurs normally, confirming that Slit-FL is sufficient to repel axons. However, longitudinal axon guidance is highly disrupted in tok mutants and can be rescued by midline expression of Slit-N, suggesting that Slit is the primary substrate for Tok in the embryonic CNS. Transgenic restoration of Slit-N or Slit-C does not repel axons in Slit-null flies. Slit-FL and Slit-N are both biologically active cues with distinct axon guidance functions in vivo Slit signaling is used in diverse biological processes; therefore, differentiating between Slit-FL and Slit fragments will be essential for evaluating Slit function in broader contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Kidd
- Department of Biology/MS 314, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
9
|
Isumi Y, Hayashi S, Inoue T, Yoshigae Y, Sato T, Hasegawa J, Agatsuma T. DS-7080a, a Selective Anti-ROBO4 Antibody, Shows Anti-Angiogenic Efficacy with Distinctly Different Profiles from Anti-VEGF Agents. Transl Vis Sci Technol 2020; 9:7. [PMID: 32879763 PMCID: PMC7442859 DOI: 10.1167/tvst.9.9.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) results from choroidal neovascularization (CNV) and causes severe vision loss. Intravitreal anti-vascular endothelial growth factor (VEGF) therapies have significantly improved therapeutic outcomes; however, a substantial number of patients experience disease progression. Roundabout 4 (ROBO4) has been reported to be a vascular-specific protein that stabilizes vasculature in ocular pathological angiogenesis. To explore ROBO4 targeting as a novel treatment against neovascularization, we generated a humanized anti-human ROBO4 antibody, DS-7080a, and evaluated its efficacy. Methods ROBO4 mRNA in human whole eye cross-sections was examined by in situ hybridization. Human umbilical vein endothelial cell (HUVEC) migration was measured in the presence of VEGF, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), or conditioned medium of primary human retinal pigment epithelial (HRPE) cells. CNV was induced in cynomolgus monkeys by laser irradiation. Vascular leakage was measured by fluorescein angiography, and pathological changes were determined by histology. Results ROBO4 mRNA was detected in choroidal vessels of nAMD patients. DS-7080a suppressed HGF- or bFGF-induced HUVEC migration in addition to that induced by VEGF. Further, HUVEC migration induced by HRPE-conditioned medium was inhibited by either DS-7080a or ranibizumab in a similar manner, and the combination of these showed further inhibition. In a laser-induced CNV monkey model, single intravitreous administration of 1.1 mg/eye of DS-7080a reduced the incidence of grade 4 leakage from 44.45% in control eyes to 1.85% (P < 0.05 by Dunnett's test). Conclusions Anti-ROBO4 antibody DS-7080a suppressed HUVEC migration in a distinctly different fashion from anti-VEGF agents and improved laser-induced CNV in non-human primates. Translational Relevance DS-7080a may be a novel treatment option for nAMD.
Collapse
Affiliation(s)
- Yoshitaka Isumi
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinko Hayashi
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tatsuya Inoue
- Specialty Medicine Research Laboratories I, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yasushi Yoshigae
- Research Planning Group, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiyuki Sato
- Specialty Medicine Research Laboratories II, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshinori Agatsuma
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
10
|
Koohini Z, Koohini Z, Teimourian S. Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathol Oncol Res 2019; 25:1285-1293. [PMID: 30610466 DOI: 10.1007/s12253-018-00568-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Structural model of a2-subunit N-terminus and its binding interface for Arf-GEF CTH2: Implication for regulation of V-ATPase, CTH2 function and rational drug design. CURRENT TOPICS IN MEMBRANES 2019; 83:77-106. [PMID: 31196611 DOI: 10.1016/bs.ctm.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have previously identified the interaction between mammalian V-ATPase a2-subunit isoform and cytohesin-2 (CTH2) and studied molecular details of binding between these proteins. In particular, we found that six peptides derived from the N-terminal cytosolic domain of a2 subunit (a2N1-402) are involved in interaction with CTH2 (Merkulova, Bakulina, Thaker, Grüber, & Marshansky, 2010). However, the actual 3D binding interface was not determined in that study due to the lack of high-resolution structural information about a-subunits of V-ATPase. Here, using a combination of homology modeling and NMR analysis, we generated the structural model of complete a2N1-402 and uncovered the CTH2-binding interface. First, using the crystal-structure of the bacterial M. rubber Icyt-subunit of A-ATPase as a template (Srinivasan, Vyas, Baker, & Quiocho, 2011), we built a homology model of mammalian a2N1-352 fragment. Next, we combined it with the determined NMR structures of peptides a2N368-395 and a2N386-402 of the C-terminal section of a2N1-402. The complete molecular model of a2N1-402 revealed that six CTH2 interacting peptides are clustered in the distal and proximal lobe sub-domains of a2N1-402. Our data indicate that the proximal lobe sub-domain is the major interacting site with the Sec7 domain of first CTH2 protein, while the distal lobe sub-domain of a2N1-402 interacts with the PH-domain of second CTH2. Indeed, using Sec7/Arf-GEF activity assay we experimentally confirmed our model. The interface formed by peptides a2N1-17 and a2N35-49 is involved in specific interaction with Sec7 domain and regulation of GEF activity. These data are critical for understanding of the cross-talk between V-ATPase and CTH2 as well as for the rational drug design to regulate their function.
Collapse
|
12
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
13
|
Liu KY, Sengillo JD, Velez G, Jauregui R, Sakai LY, Maumenee IH, Bassuk AG, Mahajan VB, Tsang SH. Missense mutation in SLIT2 associated with congenital myopia, anisometropia, connective tissue abnormalities, and obesity. Orphanet J Rare Dis 2018; 13:138. [PMID: 30111362 PMCID: PMC6094464 DOI: 10.1186/s13023-018-0885-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Background SLIT2 is a protein ligand for the Roundabout (ROBO) receptor and was found to play a major role in repulsive midline axon guidance in central nervous system development. Based on studies utilizing knockout models, it has been postulated that SLIT2 is important for preventing inappropriate axonal routing during mammalian optic chiasm development. Methods Case report. Results Here, we report a case of congenital myopia, anisometropia, and obesity in a patient with a SLIT2 point mutation. Examination of the patient’s skin biopsy revealed abnormalities in elastin and collagen fibrils that suggest an underlying connective tissue disorder. Structural modeling placed the novel mutation (p.D1407G) in the EGF-like domain 8 and was predicted to affect interactions with SLIT2 binding partners. Conclusions To the authors’ knowledge, this is the first report of a SLIT2 variant in the context of these ocular findings. Electronic supplementary material The online version of this article (10.1186/s13023-018-0885-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine Y Liu
- Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Jesse D Sengillo
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Medicine, Reading Hospital, West Reading, PA, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Ruben Jauregui
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Lynn Y Sakai
- Departments of Molecular and Medical Genetics and Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Portland, USA
| | - Irene H Maumenee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, New York, USA. .,Department of Ophthalmology, Columbia University, New York, NY, USA. .,Department of Pathology and Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA. .,Harkness Eye Institute, Columbia University Medical Center, 635 West 165th Street, Box 212, New York, NY, 10032, USA.
| |
Collapse
|
14
|
Li G, He X, Li H, Wu Y, Guan Y, Liu S, Jia H, Li Y, Wang L, Huang R, Pei Z, Lan Y, Zhang Y. Overexpression of Slit2 improves function of the paravascular pathway in the aging mouse brain. Int J Mol Med 2018; 42:1935-1944. [PMID: 30085336 PMCID: PMC6108881 DOI: 10.3892/ijmm.2018.3802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with impairment of the paravascular pathway caused by the activation of astrocytes and depolarization of protein aquaporin-4 (AQP4) water channels, resulting in the accumulation of protein waste, including amyloid β (Aβ), in the brain parenchyma. The secreted glycoprotein slit guidance ligand 2 (Slit2) is important in regulating the function of the central nervous system and inflammatory response process. In the present study, 15-month-old Slit2 overexpression transgenic mice (Slit2-Tg mice) and two-photon fluorescence microscopy were used to evaluate the dynamic clearance of the paravascular pathway and the integrity of the blood-brain barrier (BBB). The reactivity of astrocytes, polarity of AQP4 and deposition of Aβ in the brain parenchyma were analyzed by immunofluorescence. A Morris water maze test was used to examine the effect of Slit2 on spatial memory cognition in aging mice. It was found that the overexpression of Slit2 improved the clearance of the paravascular pathway by inhibiting astrocyte activation and maintaining AQP4 polarity on the astrocytic endfeet in Slit2-Tg mice. In addition, Slit2 restored the disruption of the BBB caused by aging. The accumulation of Aβ was significantly reduced in the brain of Slit2-Tg mice. Furthermore, the water maze experiment showed that Slit2 improved spatial memory cognition in the aging mice. These results indicated that Slit2 may have the potential to be used in the prevention and treatment of neurodegenerative diseases in the elderly.
Collapse
Affiliation(s)
- Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Xiaofei He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yu'e Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Huanhuan Jia
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| |
Collapse
|
15
|
Dou C, Wang H, Zhou G, Zhu H, Wen H, Xu S. Slit3 regulates migration of endothelial progenitor cells by activation of the RhoA/Rho kinase pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3398-3404. [PMID: 31949717 PMCID: PMC6962882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/15/2018] [Indexed: 06/10/2023]
Abstract
Nerves and blood vessels are in close proximity, indicating possible biomolecular interactions. Slit/Robo signaling pathways play critical roles in cell proliferation and motility. Endothelial progenitor cells (EPCs) participate in angiogenesis and vascular homeostasis. EPC migration induced by Slit3 has not been fully characterized. Thus, the expression of Slit and Robo in EPCs was examined, and the chemotactic functions of Slit3 and the Slit/Robo signaling pathway regulatory mechanisms were explored. We observed that EPCs express mainly the Robo4 receptor, and its ligand Slit3 plays roles in regulation of EPCs migration through activating the RhoA/Rho related kinases. Regulation of Slit3/-Robo4 signaling in EPCs may provide a new therapeutic target for ischemic disease.
Collapse
Affiliation(s)
- Chunjiang Dou
- Medical College, Northwest University for NationalitiesLanzhou, China
| | - Haixia Wang
- Department of Cardiology, Lanzhou University Second HospitalLanzhou, China
| | - Gang Zhou
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Hai Zhu
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Huazhi Wen
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Shengkai Xu
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| |
Collapse
|
16
|
Abstract
Compromised vascular integrity is associated with capillary leakage in sepsis, but effective therapies stabilizing the vasculature are lacking. Here, we show that targeting β1-integrin in vivo with inhibitory antibodies or deletion of a single allele of endothelial β1-integrin inhibits lipopolysaccharide (LPS)-induced vascular leakage in murine endotoxemia. The inflammatory agents IL-1β, thrombin, and LPS induced changes in endothelial cell–extracellular matrix (ECM) adhesion via β1-integrin, angiopoietin-2, and the adapter protein tensin-1, leading to increased endothelial cell contractility and permeability. These results indicate that β1-integrin actively promotes vascular leakage and that targeting β1-integrin signaling could be a novel means of achieving vascular stabilization in pathological vascular leak. Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK receptor tyrosine kinase (TIE2) and integrins. Here, we show that antibodies against β1-integrin decrease LPS-induced vascular leakage in murine endotoxemia, as either a preventative or an intervention therapy. β1-integrin inhibiting antibodies bound to the vascular endothelium in vivo improved the integrity of endothelial cell–cell junctions and protected mice from endotoxemia-associated cardiac failure, without affecting endothelial inflammation, serum proinflammatory cytokine levels, or TIE receptor signaling. Moreover, conditional deletion of a single allele of endothelial β1-integrin protected mice from LPS-induced vascular leakage. In endothelial monolayers, the inflammatory agents thrombin, lipopolysaccharide (LPS), and IL-1β decreased junctional vascular endothelial (VE)-cadherin and induced actin stress fibers via β1- and α5-integrins and ANGPT2. Additionally, β1-integrin inhibiting antibodies prevented inflammation-induced endothelial cell contractility and monolayer permeability. Mechanistically, the inflammatory agents stimulated ANGPT2-dependent translocation of α5β1-integrin into tensin-1–positive fibrillar adhesions, which destabilized the endothelial monolayer. Thus, β1-integrin promotes endothelial barrier disruption during inflammation, and targeting β1-integrin signaling could serve as a novel means of blocking pathological vascular leak.
Collapse
|
17
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
18
|
Girard R, Zeineddine HA, Koskimäki J, Fam MD, Cao Y, Shi C, Moore T, Lightle R, Stadnik A, Chaudagar K, Polster S, Shenkar R, Duggan R, Leclerc D, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 2018; 122:1716-1721. [PMID: 29720384 DOI: 10.1161/circresaha.118.312680] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE The clinical course of cerebral cavernous malformations is highly unpredictable, with few cross-sectional studies correlating proinflammatory genotypes and plasma biomarkers with prior disease severity. OBJECTIVE We hypothesize that a panel of 24 candidate plasma biomarkers, with a reported role in the physiopathology of cerebral cavernous malformations, may predict subsequent clinically relevant disease activity. METHODS AND RESULTS Plasma biomarkers were assessed in nonfasting peripheral venous blood collected from consecutive cerebral cavernous malformation subjects followed for 1 year after initial sample collection. A first cohort (N=49) was used to define the best model of biomarker level combinations to predict a subsequent symptomatic lesional hemorrhagic expansion within a year after the blood sample. We generated the receiver operating characteristic curves and area under the curve for each biomarker individually and each weighted linear combination of relevant biomarkers. The best model to predict lesional activity was selected as that minimizing the Akaike information criterion. In this cohort, 11 subjects experienced symptomatic lesional hemorrhagic expansion (5 bleeds and 10 lesional growths) within a year after the blood draw. Subjects had lower soluble CD14 (cluster of differentiation 14; P=0.05), IL (interleukin)-6 (P=0.04), and VEGF (vascular endothelial growth factor; P=0.0003) levels along with higher plasma levels of IL-1β (P=0.008) and soluble ROBO4 (roundabout guidance receptor 4; P=0.03). Among the 31 weighted linear combinations of these 5 biomarkers, the best model (with the lowest Akaike information criterion value, 25.3) was the weighted linear combination including soluble CD14, IL-1β, VEGF, and soluble ROBO4, predicting a symptomatic hemorrhagic expansion with a sensitivity of 86% and specificity of 88% (area under the curve, 0.90; P<0.0001). We then validated our best model in the second sequential independent cohort (N=28). CONCLUSIONS This is the first study reporting a predictive association between plasma biomarkers and subsequent cerebral cavernous malformation disease clinical activity. This may be applied in clinical prognostication and stratification of cases in clinical trials.
Collapse
Affiliation(s)
- Romuald Girard
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Hussein A Zeineddine
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Janne Koskimäki
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Maged D Fam
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ying Cao
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Changbin Shi
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Thomas Moore
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Rhonda Lightle
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Agnieszka Stadnik
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Kiranj Chaudagar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Sean Polster
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Robert Shenkar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ryan Duggan
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - David Leclerc
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Dean Y Li
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Issam A Awad
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| |
Collapse
|
19
|
Alsaffar H, Martino N, Garrett JP, Adam AP. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am J Physiol Cell Physiol 2018; 314:C589-C602. [PMID: 29351406 DOI: 10.1152/ajpcell.00235.2017] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular leakage is a hallmark of the inflammatory response. Acute changes in endothelial permeability are due to posttranslational changes in intercellular adhesion and cytoskeleton proteins. However, little is known about the mechanisms leading to long-term changes in vascular permeability. Here, we show that interleukin-6 (IL-6) promotes an increase in endothelial monolayer permeability that lasts over 24 h and demonstrate that activation of Src and MEK/ERK pathways is required only for short-term increases in permeability, being dispensable after 2 h. In contrast, Janus kinase (JAK)-mediated STAT3 phosphorylation at Y705 (but not S727) and de novo synthesis of RNA and proteins are required for the sustained permeability increases. Loss of junctional localization of VE-cadherin and ZO-1 is evident several hours after the maximal IL-6 response, thus suggesting that these events are a consequence of IL-6 signaling, but not a cause of the increased permeability. Understanding the mechanisms involved in sustaining vascular permeability may prove crucial to allow us to directly target vascular leakage and minimize tissue damage, thus reducing the rates of mortality and chronic sequelae of excessive edema. Targeting endothelial-specific mechanisms regulating barrier function could provide a new therapeutic strategy to prevent vascular leakage while maintaining the immune response and other beneficial aspects of the inflammatory response that are required for bacterial clearance and tissue repair.
Collapse
Affiliation(s)
- Hiba Alsaffar
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Joshua P Garrett
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York.,Department of Ophthalmology, Albany Medical Center, Albany, New York
| |
Collapse
|
20
|
Girard R, Zeineddine HA, Fam MD, Mayampurath A, Cao Y, Shi C, Shenkar R, Polster SP, Jesselson M, Duggan R, Mikati AG, Christoforidis G, Andrade J, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl Stroke Res 2017; 9:34-43. [PMID: 28819935 DOI: 10.1007/s12975-017-0561-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
The clinical course of cerebral cavernous malformations (CCMs) is highly variable. Based on recent discoveries implicating angiogenic and inflammatory mechanisms, we hypothesized that serum biomarkers might reflect chronic or acute disease activity. This single-site prospective observational cohort study included 85 CCM patients, in whom 24 a priori chosen plasma biomarkers were quantified and analyzed in relation to established clinical and imaging parameters of disease categorization and severity. We subsequently validated the positive correlations in longitudinal follow-up of 49 subjects. Plasma levels of matrix metalloproteinase-2 and intercellular adhesion molecule 1 were significantly higher (P = 0.02 and P = 0.04, respectively, FDR corrected), and matrix metalloproteinase-9 was lower (P = 0.04, FDR corrected) in patients with seizure activity at any time in the past. Vascular endothelial growth factor and endoglin (both P = 0.04, FDR corrected) plasma levels were lower in patients who had suffered a symptomatic bleed in the prior 3 months. The hierarchical clustering analysis revealed a cluster of four plasma inflammatory cytokines (interleukin 2, interferon gamma, tumor necrosis factor alpha, and interleukin 1 beta) separating patients into what we designated "high" and "low" inflammatory states. The "high" inflammatory state was associated with seizure activity (P = 0.02) and more than one hemorrhagic event during a patient's lifetime (P = 0.04) and with a higher rate of new hemorrhage, lesion growth, or new lesion formation (P < 0.05) during prospective follow-up. Peripheral plasma biomarkers reflect seizure and recent hemorrhagic activity in CCM patients. In addition, four clustered inflammatory biomarkers correlate with cumulative disease aggressiveness and predict future clinical activity.
Collapse
Affiliation(s)
- Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Maged D Fam
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Anoop Mayampurath
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Michael Jesselson
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ryan Duggan
- Flow Cytometry Facility, The University of Chicago, Chicago, IL, USA
| | - Abdul-Ghani Mikati
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Gregory Christoforidis
- Section Neuroradiology, Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dean Y Li
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep 2016; 6:31412. [PMID: 27503415 PMCID: PMC4977545 DOI: 10.1038/srep31412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022] Open
Abstract
Hematopoietic stem cells (HSC) demonstrate natural variation in number and function. The genetic factors responsible for the variations (or quantitative traits) are largely unknown. We previously identified a gene whose differential expression underlies the natural variation of HSC numbers in C57BL/6 (B6) and DBA/2 (D2) mice. We now report the finding of another gene, Slit2, on chromosome 5 that also accounts for variation in HSC number. In reciprocal chromosome 5 congenic mice, introgressed D2 alleles increased HSC numbers, whereas B6 alleles had the opposite effect. Using gene array and quantitative polymerase chain reaction, we identified Slit2 as a quantitative trait gene whose expression was positively correlated with the number of HSCs. Ectopic expression of Slit2 not only increased the number of the long-term colony forming HSCs, but also enhanced their repopulation capacity upon transplantation. Therefore, Slit2 is a novel quantitative trait gene and a positive regulator of the number and function of murine HSCs. This finding suggests that Slit2 may be a potential therapeutic target for the effective in vitro and in vivo expansion of HSCs without compromising normal hematopoiesis.
Collapse
|
22
|
Li Y, Cheng H, Xu W, Tian X, Li X, Zhu C. Expression of Robo protein in bladder cancer tissues and its effect on the growth of cancer cells by blocking Robo protein. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9932-40. [PMID: 26617702 PMCID: PMC4637787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to detect the expression of Slit signaling protein ligand Robo protein in human bladder cancer and para-carcinoma tissue, and observe the tumor cell survival and growth by inoculating the bladder cancer cells with the blocked signaling protein into the subcutaneous tissue of nude mice. The expression of Robo protein was detected in T24 cells in human bladder uroepithelium carcinoma and cultivated human bladder uroepithelium carcinoma confirmed by pathological diagnosis. The cultivated T24 cells were coated by the protein antibody and human bladder uroepithelium carcinoma T24 tumor-bearing mice model was established. The tumor cell survival and growth were observed in the antibody coating group and non-coating group. The tumor body size was measured. The immunohistochemical detection showed that Robo protein isoforms Robo1 and Robo 4 were expressed in T24 cells of cancer tissues, paracarcinoma tissues and cultured human uroepithelium carcinoma. The expression of Robo1 was significantly higher than that of Robo4 (P<0.05). The cancer cells could be detected in nodular tumor of mice in each group. The volume of the tumor-bearing mice in the nodular tumor of the non-coating group was larger than that of anti-Robol antibody coating group and the difference was statistically significant (P<0.01). There was no significant difference in tumor volume between anti-Robo4 antibody coating group and non-coating group (P>0.05); The difference was statistically significant compared with the anti-Robo1 antibody coating group (P<0.01). In conclusion, Robo protein isoforms Robo1 and Robo4 were expressed in human bladder cancer T24 cells. To block Robo4 signal protein had little effect on the survival and growth of the transplantation tumor and to block Robo1 signal protein would seriously affect the survival and growth of the transplantation tumor, suggesting that Robo1 might play an important role in the growth and metastasis of bladder cancer, and might become a new target for the treatment of human bladder cancer and drug research.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| | - Hepeng Cheng
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| | - Weibo Xu
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| | - Xin Tian
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| | - Xiaodong Li
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| | - Chaoyang Zhu
- Department of Urology, Henan University Huaihe Hospital Kaifeng 475000, China
| |
Collapse
|
23
|
Nieminen T, Toivanen PI, Laakkonen JP, Heikura T, Kaikkonen MU, Airenne KJ, Ylä-Herttuala S. Slit2 modifies VEGF-induced angiogenic responses in rabbit skeletal muscle via reduced eNOS activity. Cardiovasc Res 2015; 107:267-76. [DOI: 10.1093/cvr/cvv161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/17/2015] [Indexed: 01/31/2023] Open
|
24
|
Ouyang Z, Buzon MJ, Zheng L, Sun H, Yu XG, Bosch RJ, Mellors JW, Eron JJ, Gandhi RT, Lichterfeld M. Transcriptional Changes in CD8(+) T Cells During Antiretroviral Therapy Intensified With Raltegravir. Open Forum Infect Dis 2015; 2:ofv045. [PMID: 26380343 PMCID: PMC4567091 DOI: 10.1093/ofid/ofv045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023] Open
Abstract
Using an unbiased, microarray-based transcriptional profiling approach, this study identified a total of 121 gene transcripts in CD8 T cells that change significantly during intensification of antiretroviral therapy with Raltegravir. Background. Intensification of antiretroviral therapy with raltegravir does not affect levels of residual human immunodeficiency virus (HIV)-1 viremia, but it has led to increased levels of episomal HIV-1 DNA in some patients, suggesting antiviral activity against otherwise unresponsive components of the viral reservoir. Effects of raltegravir on host cells remain less well understood. Methods. We used comprehensive and unbiased microarray-based transcriptional profiling to analyze gene expression changes in CD8+ T cells from participants in a randomized clinical trial (AIDS Clinical Trials Group [ACTG] A5244) comparing raltegravir-intensified to nonintensified antiretroviral therapy. Results. Although raltegravir intensification failed to induce statistically significant changes in HIV-1 DNA or residual plasma viremia, we observed significant increases in the expression intensity of 121 host gene transcripts. In functional annotations of these transcripts, we found that they were mainly involved in glucose and carbohydrate metabolism, immune regulation, control of cell proliferation, and tumor suppression. Two of the raltegravir-responsive gene transcripts were statistically correlated with levels of residual HIV-1 RNA, but none of the remaining 119 transcripts were associated with immunologic or virologic characteristics of the study patients. Conclusions. Together, these findings demonstrate that raltegravir intensification can induce previously unrecognized, statistically significant gene expression changes in host CD8+ T lymphocytes.
Collapse
Affiliation(s)
- Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Maria J Buzon
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts ; Division of Infectious Diseases , Massachusetts General Hospital , Boston
| | - Lu Zheng
- Center for Biostatistics in AIDS Research , Harvard School of Public Health , Boston, Massachusetts
| | - Hong Sun
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research , Harvard School of Public Health , Boston, Massachusetts
| | - John W Mellors
- Division of Infectious Diseases , University of Pittsburgh , Pennsylvania
| | - Joseph J Eron
- Division of Infectious Diseases , University of North Carolina , Chapel Hill
| | - Rajesh T Gandhi
- Ragon Institute of MGH, MIT and Harvard , Cambridge, Massachusetts ; Division of Infectious Diseases , Massachusetts General Hospital , Boston
| | | |
Collapse
|
25
|
VandenBerg P. Dr. Darren Yuen is receiving a Canadian Diabetes Association, Canadian Society of Nephrology, Kidney Foundation of Canada partnership to test new treatments for diabetes-related nephropathy. Can J Diabetes 2014; 38:300-1. [PMID: 25201775 DOI: 10.1016/j.jcjd.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Polly VandenBerg
- Manager, Research Knowledge Translation, Canadian Diabetes Association, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Yu J, Zhang X, Kuzontkoski PM, Jiang S, Zhu W, Li DY, Groopman JE. Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun Signal 2014; 12:25. [PMID: 24708522 PMCID: PMC4122147 DOI: 10.1186/1478-811x-12-25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background Signaling through vascular endothelial growth factor C (VEGF–C) and
VEGF receptor 3 (VEGFR-3) plays a central role in lymphangiogenesis and the
metastasis of several cancers via the lymphatics. Recently, the Slit2/Robo4
pathway has been recognized as a modulator of vascular permeability and
integrity. Signaling via the Robo receptor inhibits VEGF-mediated effects;
however, its effects on lymphatic endothelial cell function have not been
well characterized. Results We found that pretreatment with Slit2N, an active fragment of Slit2,
inhibited VEGF-C-mediated lung-derived lymphatic endothelial cell (L-LEC)
proliferation, migration, and in vitro tube formation. Slit2N
induced the internalization of VEGFR-3, which blocked its activation, and
inhibited the activation of the PI3K/Akt pathway by VEGF-C in L-LECs.
Moreover, we found that inhibition of VEGF-C-induced effects by Slit2N was
Robo4-dependent. Conclusion These results indicate that Slit2N/Robo4 modulates several key cellular
functions, which contribute to lymphangiogenesis, and identify this
ligand-receptor pair as a potential therapeutic target to inhibit lymphatic
metastasis of VEGF-C-overexpressing cancers and manage lymphatic
dysfunctions characterized by VEGF-C/VEGFR-3 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Ergul A, Abdelsaid M, Fouda AY, Fagan SC. Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J Cereb Blood Flow Metab 2014; 34:553-63. [PMID: 24496174 PMCID: PMC3982092 DOI: 10.1038/jcbfm.2014.18] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/30/2023]
Abstract
Neovascularization is an innate physiologic response by which tissues respond to various stimuli through collateral remodeling (arteriogenesis) and new vessel formation from existing vessels (angiogenesis) or from endothelial progenitor cells (vasculogenesis). Diabetes has a major impact on the neovascularization process but the response varies between different organ systems. While excessive angiogenesis complicates diabetic retinopathy, impaired neovascularization contributes to coronary and peripheral complications of diabetes. How diabetes influences cerebral neovascularization remained unresolved until recently. Diabetes is also a major risk factor for stroke and poor recovery after stroke. In this review, we discuss the impact of diabetes, stroke, and diabetic stroke on cerebral neovascularization, explore potential mechanisms involved in diabetes-mediated neovascularization as well as the effects of the diabetic milieu on poststroke neovascularization and recovery, and finally discuss the clinical implications of these effects.
Collapse
Affiliation(s)
- Adviye Ergul
- 1] Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA [3] Center for Pharmacy and Experimental Therapeutics, Medical College of Georgia and University of Georgia College of Pharmacy, Augusta, Georgia, USA
| | - Mohammed Abdelsaid
- 1] Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Abdelrahman Y Fouda
- 1] Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Center for Pharmacy and Experimental Therapeutics, Medical College of Georgia and University of Georgia College of Pharmacy, Augusta, Georgia, USA
| | - Susan C Fagan
- 1] Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Center for Pharmacy and Experimental Therapeutics, Medical College of Georgia and University of Georgia College of Pharmacy, Augusta, Georgia, USA [3] Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
28
|
Zhao XC, Zhang LM, Qiang-Li, Tong DY, Fan LC, An P, Wu XY, Chen WM, Zhao P, Wang J. Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Res 2013; 1537:283-9. [PMID: 23994690 PMCID: PMC3820100 DOI: 10.1016/j.brainres.2013.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
Different mechanisms have been suggested to contribute to isoflurane-mediated neuroprotection. Previous studies have suggested that the protein Slit can abrogate neuronal death in mixed neuronal-glial cultures exposed to oxygen-glucose deprivation (OGD) and reperfusion (OGD/R). We hypothesized that isoflurane increases the expression of Slit and its receptor Robo when cortical neurons are exposed to OGD/R. To test this hypothesis, we exposed primary cortical neurons to OGD for 90 min and reperfusion for 24h and investigated how isoflurane post-conditioning affected cell survival and expression of Slit2 and receptors Robo1 and Robo4. Cell survival increased after administration of isoflurane, as assessed by the lactate dehydrogenase assay, trypan blue analysis, and propidium iodide staining. Western blot analysis showed that cleaved caspase-3 was increased after OGD/R(P<0.01) but reduced by isoflurane post-conditioning. Real-time PCR and Western blot analysis showed that the expression levels of Slit2 and Robo1, but not Robo4, were increased after OGD/R (P<0.5) and increased even further by isoflurane post-conditioning (P<0.01). Our results suggest that isoflurane post-conditioning markedly attenuates apoptosis and necrosis of cortical neurons exposed to OGD/R possibly in part via elevation of Slit2 and Robo1 expression. These findings provide a novel explanation for the pleiotropic effects of isoflurane that could benefit the central nervous system.
Collapse
Affiliation(s)
- Xiao-Chun Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Li-Min Zhang
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Qiang-Li
- Department of Neurology, The Ninth People’s Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, China
| | - Dong-Yi Tong
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Long-Chang Fan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping An
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xiu-Ying Wu
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Wei-Min Chen
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013; 123:3190-200. [PMID: 23908119 DOI: 10.1172/jci70212] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Four decades ago, angiogenesis was recognized as a therapeutic target for blocking cancer growth. Because of its importance, VEGF has been at the center stage of antiangiogenic therapy. Now, several years after FDA approval of an anti-VEGF antibody as the first antiangiogenic agent, many patients with cancer and ocular neovascularization have benefited from VEGF-targeted therapy; however, this anticancer strategy is challenged by insufficient efficacy, intrinsic refractoriness, and resistance. Here, we examine recent discoveries of new mechanisms underlying angiogenesis, discuss successes and challenges of current antiangiogenic therapy, and highlight emerging antiangiogenic paradigms.
Collapse
Affiliation(s)
- Jonathan Welti
- Vesalius Research Center, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
30
|
Gorbunova EE, Gavrilovskaya IN, Mackow ER. Slit2-Robo4 receptor responses inhibit ANDV directed permeability of human lung microvascular endothelial cells. Antiviral Res 2013; 99:108-12. [PMID: 23702092 PMCID: PMC3723770 DOI: 10.1016/j.antiviral.2013.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/26/2013] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
Hantaviruses nonlytically infect human endothelial cells (ECs) and cause edematous and hemorrhagic diseases. Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), and Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses enhance vascular endothelial growth factor directed EC permeability resulting in the disassembly of inter-endothelial cell adherens junctions (AJs). Recent studies demonstrate that Slit2 binding to Robo1/Robo4 receptors on ECs has opposing effects on AJ disassembly and vascular fluid barrier functions. Here we demonstrate that Slit2 inhibits ANDV and HTNV induced permeability and AJ disassembly of pulmonary microvascular ECs (PMECs) by interactions with Robo4. In contrast, Slit2 had no effect on the permeability of ANDV infected human umbilical vein ECs (HUVECs). Analysis of Robo1/Robo4 expression determined that PMECs express Robo4, but not Robo1, while HUVECs expressed both Robo4 and Robo1 receptors. SiRNA knockdown of Robo4 in PMECs prevented Slit2 inhibition of ANDV induced permeability demonstrating that Robo4 receptors determine PMEC responsiveness to Slit2. Collectively, this data demonstrates a selective role for Slit2/Robo4 responses within PMECs that inhibits ANDV induced permeability and AJ disassembly. These findings suggest Slit2s utility as a potential HPS therapeutic that stabilizes the pulmonary endothelium and antagonizes ANDV induced pulmonary edema.
Collapse
Affiliation(s)
- Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-512, United States
| | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Vascular injury is a common contributor to, and complication of, kidney disease. Given the prevalence and importance of vascular injury in renal disease, interest has grown in a novel signaling pathway first identified in developing neurons that also has widespread effects on vascular structure and function, comprising the secreted ligand Slit2 and its cognate Roundabout (Robo) receptors. RECENT FINDINGS Although initially discovered as a modulator of neuronal migration during development, the Slit2-Robo signaling pathway has recently been found to regulate the structure and function of various subsets of vascular cells and circulating hematopoietic cells that interact with the vessel wall. Through the regulation of intermediate signaling enzymes that control the organization of the actin cytoskeleton, Slit2 and its Robo receptors regulate such diverse processes as angiogenesis, endothelial permeability, vascular smooth muscle cell migration, and thrombosis. SUMMARY Recent advances in our understanding of Slit2-Robo signaling have provided novel insights into the pathophysiology of vascular injury that is commonly associated with renal disease. These insights have created potential opportunities for the development of new therapies targeting vascular injury associated with renal disease.
Collapse
Affiliation(s)
- Darren A Yuen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR. Antiangiogenic therapy for cancer: an update. Pharmacotherapy 2013. [PMID: 23208836 DOI: 10.1002/phar.1147] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The idea of antiangiogenic therapy was the brainchild of Dr. Judah Folkman in the early 1970s. He proposed that by cutting off the blood supply, cancer cells would be deprived of nutrients and, hence, treated. His efforts paid off when bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor, was approved as antiangiogenic therapy in 2004 for the treatment of colon cancer. Since then, an array of antiangiogenic inhibitors, either as monotherapy or in combination with other cytotoxic and chemotherapy drugs, have been developed, used in clinical trials, and approved for the treatment of cancer. Despite this important breakthrough, antiangiogenic therapy for cancer met with a number of hurdles on its way to becoming an option for cancer therapy. In this article, we summarize the most current information on the mechanisms of tumor angiogenesis, proangiogenic and antiangiogenic factors, potential targets and their mechanisms of action, and experimental evidences, as well as the most recent clinical trial data on antiangiogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Belal Al-Husein
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
33
|
Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z, Ostanin K, Rogers A, Grossmann KF, Tripp SR, Thomas KR, D'Souza-Schorey C, Odelberg SJ, Li DY. The small GTPase ARF6 stimulates β-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 2013; 6:ra14. [PMID: 23462101 DOI: 10.1126/scisignal.2003398] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Catenin has a dual function in cells: fortifying cadherin-based adhesion at the plasma membrane and activating transcription in the nucleus. We found that in melanoma cells, WNT5A stimulated the disruption of N-cadherin and β-catenin complexes by activating the guanosine triphosphatase adenosine diphosphate ribosylation factor 6 (ARF6). Binding of WNT5A to the Frizzled 4-LRP6 (low-density lipoprotein receptor-related protein 6) receptor complex activated ARF6, which liberated β-catenin from N-cadherin, thus increasing the pool of free β-catenin, enhancing β-catenin-mediated transcription, and stimulating invasion. In contrast to WNT5A, the guidance cue SLIT2 and its receptor ROBO1 inhibited ARF6 activation and, accordingly, stabilized the interaction of N-cadherin with β-catenin and reduced transcription and invasion. Thus, ARF6 integrated competing signals in melanoma cells, thereby enabling plasticity in the response to external cues. Moreover, small-molecule inhibition of ARF6 stabilized adherens junctions, blocked β-catenin signaling and invasiveness of melanoma cells in culture, and reduced spontaneous pulmonary metastasis in mice, suggesting that targeting ARF6 may provide a means of inhibiting WNT/β-catenin signaling in cancer.
Collapse
Affiliation(s)
- Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
35
|
Laughlin CA, Morens DM, Cassetti MC, Costero-Saint Denis A, San Martin JL, Whitehead SS, Fauci AS. Dengue research opportunities in the Americas. J Infect Dis 2012; 206:1121-7. [PMID: 22782946 PMCID: PMC3499110 DOI: 10.1093/infdis/jis351] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/18/2012] [Indexed: 11/13/2022] Open
Abstract
Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Repeated reemergences of dengue in sudden explosive epidemics often cause public alarm and seriously stress healthcare systems. The control of dengue is further challenged by the lack of effective therapies, vaccines, and point-of-care diagnostics. Despite years of study, even its pathogenic mechanisms are poorly understood. This article discusses recent advances in dengue research and identifies challenging gaps in research on dengue clinical evaluation, diagnostics, epidemiology, immunology, therapeutics, vaccinology/clinical trials research, vector biology, and vector ecology. Although dengue is a major global tropical pathogen, epidemiologic and disease control considerations in this article emphasize dengue in the Americas.
Collapse
Affiliation(s)
- Catherine A Laughlin
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-6603, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Proliferative diabetic retinopathy (PDR), characterized by pathologic retinal angiogenesis, is a major cause of blindness in the USA and globally. Treatments targeting vascular endothelial growth factor (VEGF) have emerged as a beneficial part of the therapeutic armamentarium for this condition, highlighting the utility of identifying and targeting specific pathogenic molecules. There continues to be active research into the molecular players regulating retinal angiogenesis, including pro-angiogenic factors, anti-angiogenic factors, and integrins and matrix proteinases. New insights have been especially prominent regarding molecules which regulate specialized endothelial cells called tip cells, which play a lead role in endothelial sprouting. Together, these research efforts are uncovering new, important molecular regulators of retinal angiogenesis, which provide fertile areas for therapeutic exploration. This review discusses potential molecular targets, with an emphasis towards newer targets.
Collapse
Affiliation(s)
- Shuang Wang
- Ophthalmologic Department, China-Japan Union Hospital, Changchun City, Jilin Province, China.
| | | | | |
Collapse
|
37
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
38
|
Krüttgen A, Rose-John S. Interleukin-6 in sepsis and capillary leakage syndrome. J Interferon Cytokine Res 2011; 32:60-5. [PMID: 22136372 DOI: 10.1089/jir.2011.0062] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bacterial sepsis is one of the most frequent and dreaded causes of death in intensive care units. According to the current understanding of sepsis, bacterial components activate innate immune responses via pattern-recognition receptors that stimulate signaling pathways, thereby leading to activation of NF-κB and the release of cytokines, alarming the organism and coordinating appropriate defense mechanisms. The resulting "cytokine storm" not only restricts bacterial invasion; it also harms the host by triggering a hemodynamic collapse with a drop in blood pressure, which could lead to death. One of the cytokines released during sepsis is interleukin-6 (IL-6). Originally described as a B-cell-stimulating factor, this cytokine has since been shown to have multiple additional functions. Interestingly, there is emerging evidence of IL-6 trans-signaling in the pathogenesis of sepsis. We review recent findings and discuss whether therapeutic interference with IL-6 trans-signaling may be beneficial in this important clinical scenario.
Collapse
|