1
|
Dhar SS, Brown C, Rizvi A, Reed L, Kotla S, Zod C, Abraham J, Abe JI, Rajaram V, Chen K, Lee MG. Heterozygous Kmt2d loss diminishes enhancers to render medulloblastoma cells vulnerable to combinatory inhibition of LSD1 and OXPHOS. Cell Rep 2025; 44:115619. [PMID: 40286267 DOI: 10.1016/j.celrep.2025.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in many cancers, including medulloblastoma (MB). Notably, heterozygous KMT2D loss frequently occurs in MB and other cancers. However, its oncogenic role remains largely uncharacterized. Here, we show that heterozygous Kmt2d loss in murine cerebellar regions promotes MB genesis driven by heterozygous loss of the MB-suppressor gene Ptch via the upregulation of tumor-promoting programs (e.g., oxidative phosphorylation [OXPHOS]). Downregulation of the transcription-repressive tumor suppressor NCOR2 by heterozygous Kmt2d loss, along with Ptch+/--increased MYCN, upregulated tumor-promoting genes. Heterozygous Kmt2d loss substantially diminished enhancer marks (H3K4me1 and H3K27ac) and the H3K4me3 signature, including those for Ncor2. Combinatory pharmacological inhibition of the enhancer-decommissioning H3K4 demethylase LSD1 and OXPHOS significantly reduced the tumorigenicity of MB cells bearing heterozygous Kmt2d loss. Our findings suggest the molecular and epigenetic pathogenesis underlying the MB-promoting effect of heterozygous KMT2D loss.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Calena Brown
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ali Rizvi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lauren Reed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Constantin Zod
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Janak Abraham
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Veena Rajaram
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Zhang T, Beytullahoglu O, Tulaiha R, Luvisotto A, Szczepanski A, Tsuboyama N, Zhao Z, Wang L. An epigenetic pathway regulates MHC-II expression and function in B cell lymphoma models. J Clin Invest 2025; 135:e179703. [PMID: 39817454 PMCID: PMC11735100 DOI: 10.1172/jci179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression. Disruption of the BAP1/IRF1/CIITA axis leads to a functional attenuation of MHC-II expression and MHC-II-dependent immune cell infiltration, leading to accelerated tumor growth in immunocompetent mice. Additionally, we demonstrated that pharmacological inhibition of polycomb repressive complex 1 (PRC1) - which deposits histone H2K119Ub and opposes BAP1 activity - can restore MHC-II gene expression in BAP1-deficient B cell lymphoma cells. These findings suggest that BAP1 may function as a tumor suppressor by regulating the tumor microenvironment and immune response. Our study also establishes the rationale for therapeutic strategies to restore tumor-specific MHC-II expression and enhance immunotherapy outcomes at epigenetic levels in B cell lymphoma treatment.
Collapse
Affiliation(s)
- Te Zhang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Oguzhan Beytullahoglu
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rima Tulaiha
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amanda Luvisotto
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aileen Szczepanski
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Sadeghi L, Wright APH. GSK-J4 Inhibition of KDM6B Histone Demethylase Blocks Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells by Modulating NF-κB Signaling. Cells 2023; 12:2010. [PMID: 37566089 PMCID: PMC10416905 DOI: 10.3390/cells12152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.
Collapse
Affiliation(s)
- Laia Sadeghi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | | |
Collapse
|
4
|
Montaner-Angoiti E, Marín-García PJ, Llobat L. Epigenetic Alterations in Canine Malignant Lymphoma: Future and Clinical Outcomes. Animals (Basel) 2023; 13:468. [PMID: 36766357 PMCID: PMC9913421 DOI: 10.3390/ani13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Canine malignant lymphoma is a common neoplasia in dogs, and some studies have used dogs as a research model for molecular mechanisms of lymphomas in humans. In two species, chemotherapy is the treatment of choice, but the resistance to conventional anticancer drugs is frequent. The knowledge of molecular mechanisms of development and progression of neoplasia has expanded in recent years, and the underlying epigenetic mechanisms are increasingly well known. These studies open up new ways of discovering therapeutic biomarkers. Histone deacetylases and demethylase inhibitors could be a future treatment for canine lymphoma, and the use of microRNAs as diagnosis and prognosis biomarkers is getting closer. This review summarises the epigenetic mechanisms underlying canine lymphoma and their possible application as treatment and biomarkers, both prognostic and diagnostic.
Collapse
Affiliation(s)
| | - Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Lola Llobat
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| |
Collapse
|
5
|
Calciolari B, Scarpinello G, Tubi LQ, Piazza F, Carrer A. Metabolic control of epigenetic rearrangements in B cell pathophysiology. Open Biol 2022; 12:220038. [PMID: 35580618 PMCID: PMC9113833 DOI: 10.1098/rsob.220038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Both epigenetic and metabolic reprogramming guide lymphocyte differentiation and can be linked, in that metabolic inputs can be integrated into the epigenome to inform cell fate decisions. This framework has been thoroughly investigated in several pathophysiological contexts, including haematopoietic cell differentiation. In fact, metabolite availability dictates chromatin architecture and lymphocyte specification, a multi-step process where haematopoietic stem cells become terminally differentiated lymphocytes (effector or memory) to mount the adaptive immune response. B and T cell precursors reprogram their cellular metabolism across developmental stages, not only to meet ever-changing energetic demands but to impose chromatin accessibility and regulate the function of master transcription factors. Metabolic control of the epigenome has been extensively investigated in T lymphocytes, but how this impacts type-B life cycle remains poorly appreciated. This assay will review our current understanding of the connection between cell metabolism and epigenetics at crucial steps of B cell maturation and how its dysregulation contributes to malignant transformation.
Collapse
Affiliation(s)
- Beatrice Calciolari
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Greta Scarpinello
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), of the University of Padova, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Carrer
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
6
|
Shen Y, Wang L, Ou J, Wang B, Cen X. Loss of 5-hydroxymethylcytosine as a Poor Prognostic Factor for Primary Testicular Diffuse Large B-cell Lymphoma. Int J Med Sci 2022; 19:225-232. [PMID: 35165508 PMCID: PMC8795795 DOI: 10.7150/ijms.65517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background: 5-Hydroxymethylcytosine (5-hmC), a stable epigenetic marker, is closely related to tumor staging, recurrence and survival, but the prognostic value of 5-hmC in primary testicular diffuse large B-cell lymphoma (PT-DLBCL) remains unclear. This study aimed to investigate the 5-hmC expression in PT-DLBCL and evaluate its prognostic value. Methods: A total of 34 patients with PT-DLBCL treated in the Department of Hematology from August 2000 to August 2020 were included in this study. The expression of 5-hmC in PT-DLBCL tissues and normal testicular tissues were assessed by immunohistochemistry. 5-hmC staining is estimated as a percentage under every nuclear staining intensity score (0-3), 0 or 1 of which were regarded as 5-hmC reduction. The quantification of 5-hmC reduction is defined as the percentage of cells with 5-hmC staining scores of 0 and 1. According 5-hmC reduction of 80%, a 5-hmC reduction of <80% is regarded as "5-hmC high-level group", and a 5-hmC reduction of ≥80% is regarded as "5-hmC low-level group". Furthermore, Cox regression model was used to evaluate the prognostic value of all covariates. Results: The median percentage of 5-hmC reduction in the PT-DLBCL group was 77.50% (60%-90%), the median 5-hmC reduction in the normal testicular tissues was 30% (20%-50%). Compared with normal testicular tissue, 5-hmC levels in PT-DLBCL tissue were significantly decreased (p<0.05). Of the 34 PT-DLBCL patients, 17 had tumors with relatively low 5-hmC expression (5-hmC reduction of ≥80%) and 17 had tumors with relatively high 5-hmC expression (5-hmC reduction of < 80%). 5-hmC expression was negatively correlated with international prognostic index (p = 0.037), while there was no significant difference in 5-hmC decrease among different groups of age at diagnosis, lactate dehydrogenase, testicular lymphoma involvement (unilateral or bilateral), Ki-67 and tumor diameter. Relatively low 5-hmC expression indicated shorter overall survival (OS) (5-year OS 50.2% vs 81.3%, p=0.022) and progression-free survival (PFS) (5-year PFS 38.5% vs 70.7%, p=0.001). Cox multivariate analysis of IPI (2-3 vs. 0-1), intrathecal prophylaxis (No vs. Yes), and 5-hmC reduction (≥80% vs. <80%) showed that 5-hmC reduction ≥80% (hazard ratio: 7.252, p = 0.005) and not receiving intrathecal prophylaxis (hazard ratio: 7.207, p =0.001) are independent risk factors for poor prognosis of PT-DLBCL. Conclusion: Our results suggested that 5-hmC decline can be identified as a poor prognostic predictor for PT-DLBCL. It is necessary to further explore the underlying mechanism of this epigenetic marker to identify methods to re-establish 5-hmC levels and provide new targets for cancer therapy.
Collapse
Affiliation(s)
- Ye Shen
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Lihong Wang
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Jinping Ou
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| |
Collapse
|
7
|
Gilmore TD. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021; 9:biomedicines9080889. [PMID: 34440093 PMCID: PMC8389606 DOI: 10.3390/biomedicines9080889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.
Collapse
|
8
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
9
|
Sadeghi L, Wright AP. Migration and Adhesion of B-Lymphocytes to Specific Microenvironments in Mantle Cell Lymphoma: Interplay between Signaling Pathways and the Epigenetic Landscape. Int J Mol Sci 2021; 22:6247. [PMID: 34200679 PMCID: PMC8228059 DOI: 10.3390/ijms22126247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Lymphocyte migration to and sequestration in specific microenvironments plays a crucial role in their differentiation and survival. Lymphocyte trafficking and homing are tightly regulated by signaling pathways and is mediated by cytokines, chemokines, cytokine/chemokine receptors and adhesion molecules. The production of cytokines and chemokines is largely controlled by transcription factors in the context of a specific epigenetic landscape. These regulatory factors are strongly interconnected, and they influence the gene expression pattern in lymphocytes, promoting processes such as cell survival. The epigenetic status of the genome plays a key role in regulating gene expression during many key biological processes, and it is becoming more evident that dysregulation of epigenetic mechanisms contributes to cancer initiation, progression and drug resistance. Here, we review the signaling pathways that regulate lymphoma cell migration and adhesion with a focus on Mantle cell lymphoma and highlight the fundamental role of epigenetic mechanisms in integrating signals at the level of gene expression throughout the genome.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden;
| | | |
Collapse
|
10
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
12
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
13
|
Yang H, Green MR. Epigenetic Programing of B-Cell Lymphoma by BCL6 and Its Genetic Deregulation. Front Cell Dev Biol 2019; 7:272. [PMID: 31788471 PMCID: PMC6853842 DOI: 10.3389/fcell.2019.00272] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
B cell lymphoma is a clinically heterogeneous and pathologically diverse group of diseases with a strong epigenetic component. The B cell lymphoma 6 (BCL6) gene encodes a transcription factor that is critical for normal germinal center reaction B cell development by maintaining an epigenetic and transcriptional state that is permissive for cellular proliferation and DNA damage. The activity of BCL6 can be deregulated by a variety of mechanisms and contributes to the development of B-cell lymphoma. Here we review the direct and indirect mechanisms BCL6 dysregulation in B cell lymphoma, including transcriptional and post-translational regulation of BCL6 expression and activity, and the perturbation of BCL6-regulated epigenetic programs by cooperating chromatin modifying gene mutations. We underscore the critical importance of BCL6 and its associated epigenetic programs in the development of B-cell lymphoma, and discuss avenues for the therapeutic targeting of BCL6 in this context.
Collapse
Affiliation(s)
- Haopeng Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael R Green
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods Enzymol 2018; 611:607-675. [PMID: 30471702 DOI: 10.1016/bs.mie.2018.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and functional characterization of large multidomain signaling proteins containing long disordered linker regions represents special methodological and conceptual challenges. These proteins show extreme structural heterogeneity and have complex posttranslational modification patterns, due to which traditional structural biology techniques provide results that are often difficult to interpret. As demonstrated through the example of two such multidomain proteins, CREB-binding protein (CBP) and its paralogue, p300, even the expression and purification of such proteins are compromised by their extreme proteolytic sensitivity and structural heterogeneity. In this chapter, we describe the effective expression of CBP and p300 in a eukaryotic host, Sf9 insect cells, followed by their tandem affinity purification based on two terminal tags to ensure their structural integrity. The major focus of this chapter is on the development of novel accessory tools, single-domain camelid antibodies (nanobodies), for structural-functional characterization. Specific nanobodies against full-length CBP and p300 can specifically target their different regions and can be used for their marking, labeling, and structural stabilization in a broad range of in vitro and in vivo studies. Here, we describe four high-affinity nanobodies binding to the KIX and the HAT domains, either mimicking known interacting partners or revealing new functionally relevant conformations. As immunization of llamas results in nanobody libraries with a great sequence variation, deep sequencing and interaction analysis with different regions of the proteins provide a novel approach toward developing a panel of specific nanobodies.
Collapse
|
15
|
C677T and A1298C polymorphisms of methylene tetrahydrofolate reductase in non-Hodgkin lymphoma: southeast Iran. TUMORI JOURNAL 2018; 104:280-284. [PMID: 28430351 DOI: 10.5301/tj.5000634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Polymorphisms of the methylene tetrahydrofolate reductase (MTHFR) gene have been reported as risk factors for non-Hodgkin lymphoma (NHL) in some populations. Our goal was to evaluate the potential role of A1298C and C677T polymorphisms of MTHFR in risk of NHL in southeast Iran. METHODS In the present case-control study, 127 patients with newly diagnosed NHL along with 150 ethnicity- and age-matched controls were examined. The A1298C and C677T polymorphisms were genotyped using the Tetra Amplification Refractory Mutation System polymerase chain reaction method. RESULTS There were no significant differences in genotype frequencies between cases and controls regarding either A1298C polymorphism. For this polymorphism, 53.8% of the controls and 54.3% of the patients with NHL showed homozygous wild-type (AA) genotype. Variant 1298C allele was recognized with overall frequency of 34.6% in both groups. Frequencies of CC, CT, and TT genotypes of C677T polymorphism were observed in 73.1%, 25.8%, and 1.3% of the controls, and 64.5%, 33.1%, and 2.4% of the patients with NHL (p>0.05). In combination, CT + TT conferred a significantly higher risk of NHL (odds ratio [OR] 1.5, 95% confidence interval [CI] 0.9-2.4, p = 0.03). Overall, variant 677T allele presented with higher frequency in the patients with NHL than the controls (26.7% versus 21.3%, respectively; OR 1.3, 95% CI 0.8-2.1, p>0.05). Although statistically insignificant, the highest risk of NHL was identified in patients with C677T; A1298C: CT; CC haplotype (OR 4.7, 95% CI 0.4-46.4, p = 0.1). CONCLUSIONS Combination of CT and TT genotypes of C677T polymorphism conferred a significantly higher risk for NHL. It is recommended to investigate further the potential role of this polymorphism in NHL development.
Collapse
|
16
|
Szablewski V, Bret C, Kassambara A, Devin J, Cartron G, Costes-Martineau V, Moreaux J. An epigenetic regulator-related score (EpiScore) predicts survival in patients with diffuse large B cell lymphoma and identifies patients who may benefit from epigenetic therapy. Oncotarget 2018; 9:19079-19099. [PMID: 29721185 PMCID: PMC5922379 DOI: 10.18632/oncotarget.24901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/01/2018] [Indexed: 01/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma and shows considerable clinical and biological heterogeneity. Much research is currently focused on the identification of prognostic markers for more specific patients’ risk stratification and on the development of therapeutic approaches to improve the long-term outcome. Epigenetic alterations are involved in various cancers, including lymphoma. Interestingly, epigenetic alterations are reversible and drugs to target some of them have been developed. In this study, we demonstrated that the gene expression profile of epigenetic regulators has a prognostic value in DLBCL and identified pathways that could be involved in DLBCL poor outcome. We then designed a new risk score (EpiScore) based on the gene expression level of the epigenetic regulators DNMT3A, DOT1L, SETD8. EpiScore was predictive of overall survival in DLBCL and allowed splitting patients with DLBCL from two independent cohorts (n = 414 and n = 69) in three groups (high, intermediate and low risk). EpiScore was an independent predictor of survival when compared with previously described prognostic factors, such as the International Prognostic Index (IPI), germinal center B cell and activated B cell molecular subgroups, gene expression-based risk score (GERS) and DNA repair score. Immunohistochemistry analysis of DNMT3A in 31 DLBCL samples showed that DNMT3A overexpression (>42% of positive tumor cells) correlated with reduced overall and event-free survival. Finally, an HDAC gene signature was significantly enriched in the DLBCL samples included in the EpiScore high-risk group. We conclude that EpiScore identifies high-risk patients with DLBCL who could benefit from epigenetic therapy.
Collapse
Affiliation(s)
- Vanessa Szablewski
- University of Montpellier, UFR de Médecine, Montpellier, France.,Department of Biopathology, CHU Montpellier, Montpellier, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR 9002, Montpellier, France.,University of Montpellier, UFR de Médecine, Montpellier, France
| | - Alboukadel Kassambara
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR 9002, Montpellier, France
| | - Julie Devin
- Institute of Human Genetics, CNRS-UM UMR 9002, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier, UFR de Médecine, Montpellier, France.,CHU Montpellier, Department of Clinical Hematology, Montpellier, France.,Montpellier University, UMR CNRS 5235, Montpellier, France
| | - Valérie Costes-Martineau
- University of Montpellier, UFR de Médecine, Montpellier, France.,Department of Biopathology, CHU Montpellier, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR 9002, Montpellier, France.,University of Montpellier, UFR de Médecine, Montpellier, France
| |
Collapse
|
17
|
Analyzing DNA Methylation Patterns During Tumor Evolution. Methods Mol Biol 2018. [PMID: 29344884 DOI: 10.1007/978-1-4939-7493-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Epigenetic modifications play a key role in cellular development and tumorigenesis. Recent large-scale genomic studies have shown that mutations in players of the epigenetic machinery and concomitant perturbation of epigenomic patterning are frequent events in tumors. Among epigenetic marks, DNA methylation is one of the best studied. Hyper- and hypo-methylation events of specific regulatory elements (such as promoters and enhancers) are sometimes thought to be correlated with expression of nearby genes. High-throughput bisulfite converted sequencing is currently the technology of choice for studying DNA methylation in base-pair resolution and on whole-genome scale. Such broad and high-resolution coverage investigations of the epigenome provide unprecedented opportunities to analyze DNA methylation patterns, which are correlated with tumorigenesis, tumor evolution, and tumor progression. However, few computational pipelines are available to the public to perform systematic DNA methylation analysis. Utilizing open source tools, we here describe a comprehensive computational methodology to thoroughly analyze DNA methylation patterns during tumor evolution based on bisulfite converted sequencing data, including intra-tumor methylation heterogeneity.
Collapse
|
18
|
Mohd Ridah LJ, A Talib N, Muhammad N, Hussain FA, Zainuddin N. p16 Tumor Suppressor Gene Methylation in Diffuse Large B Cell Lymphoma: A Study of 88 Cases at Two Hospitals in the East Coast of Malaysia. Asian Pac J Cancer Prev 2017; 18:2781-2785. [PMID: 29072413 PMCID: PMC5747404 DOI: 10.22034/apjcp.2017.18.10.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction: p16 gene plays an important role in the normal cell cycle regulation. Methylation of p16 has
been reported to be one of the epigenetic events contributing to the pathogenesis of diffuse large B-cell lymphoma
(DLBCL) which occurring at varying frequency. DLBCL is an aggressive and high-grade malignancy which accounts
for approximately 30% of all non-Hodgkin lymphoma cases. However, little is known regarding the epigenetic
alterations of p16 gene in DLBCL cases in Malaysia. Therefore, the objective of this study was to examine the status
of p16 methylation in DLBCL. Methods: A total of 88 formalin-fixed paraffin-embedded DLBCL tissues retrieved
from two hospitals located in the east coast of Malaysia, namely Hospital Tengku Ampuan Afzan (HTAA) Pahang and
Hospital Universiti Sains Malaysia (HUSM) Kelantan, were chosen for this study. DNA specimens were isolated and
subsequently subjected to bisulfite treatment prior to methylation specific-PCR. Two pairs of primers were used to
amplify methylated and unmethylated regions of p16 gene. The PCR products were then separated using agarose gel
electrophoresis and visualised under UV illumination. SPSS version 12.0 was utilised to perform all statistical analysis.
Result: p16 methylation was detected in 65 of 88 (74%) samples. There was a significant association between p16
methylation status and patients aged >50 years old (p=0.04). Conclusion: Our study demonstrated that methylation of
p16 tumor suppressor gene in our DLBCL cases is common and significantly increased among patients aged 50 years
and above. Aging is known to be an important risk factor in the development of cancers and we speculate that this
might be due to the increased transformation of malignant cells in aging cell population. However, this has yet to be
confirmed with further research and correlate the findings with clinicopathological parameters.
Collapse
Affiliation(s)
- Lailatul Jalilah Mohd Ridah
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malysia.
| | | | | | | | | |
Collapse
|
19
|
Rahmani T, Azad M, Chahardouli B, Nasiri H, Vatanmakanian M, Kaviani S. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia. Int J Hematol Oncol Stem Cell Res 2017; 11:172-177. [PMID: 28989582 PMCID: PMC5625466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature T or B lymphocytes. Extensive studies have shown that the epigenetic changes, especially modified DNA methylation patterns in the regulatory regions through the DNA methyltransferase (DNMTs), play an important role in the development of genetic disorders and abnormal growth and maturation capacity of leukemic stem cells (LSCs).The aim of this study was to evaluate the changes in DNMT1 promoter methylation and its expression pattern in patients with ALL. Materials and Methods: In this experimental study, methylation specific PCR (MSP) was used to assess the methylation status of DNMT1 promoter regions in samples collected from ALL patients (n=45) and healthy control subjects. According to this method, un-methylated cytosine nucleotides are converted to uracil by sodium bisulfite and the proliferation of methylated and un-methylated regions are performed using specific primers for target sequences. Results: None of the patients with B and T-ALL showed methylated promoter regions of the DNMT1 gene, while the methylation pattern of both pre-B ALL patients and the control group showed a relative promoter methylation. Conclusion: Analysis of promoter methylation patterns in various subgroups of ALL has revealed the importance of DNMT1 in the regulation of gene expression. Likewise, extensive data have also highlighted the methylation-based mechanisms exerted by DNAM1 as one of the main participants regulating gene expression in B-ALL and T-ALL patients. Investigation of the overall DNA methylation pattern offers significant improvements in the prediction of disease prognosis and treatment response.
Collapse
Affiliation(s)
- Tirdad Rahmani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahram Chahardouli
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Nasiri
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran,Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mousa Vatanmakanian
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
The Regulatory Capacity of Bivalent Genes-A Theoretical Approach. Int J Mol Sci 2017; 18:ijms18051069. [PMID: 28513551 PMCID: PMC5454979 DOI: 10.3390/ijms18051069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023] Open
Abstract
Bivalent genes are frequently associated with developmental and lineage specification processes. Resolving their bivalency enables fast changes in their expression, which potentially can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for predictions on the occurrence, stability and regulatory capacity of this prominent modification state. We suggest that bivalency enables balanced gene expression heterogeneity that constitutes a prerequisite of robust lineage priming in somatic stem cells. Moreover, we demonstrate that interactions between the histone and DNA methylation machineries together with the proliferation activity control the stability of the bivalent state and can turn it into an unmodified state. We suggest that deregulation of these interactions underlies cell transformation processes as associated with acute myeloid leukemia (AML) and provide a model of AML blast formation following deregulation of the Ten-eleven Translocation (TET) pathway.
Collapse
|
21
|
Nguyen T, Parker R, Hawkins E, Holkova B, Yazbeck V, Kolluri A, Kmieciak M, Rahmani M, Grant S. Synergistic interactions between PLK1 and HDAC inhibitors in non-Hodgkin's lymphoma cells occur in vitro and in vivo and proceed through multiple mechanisms. Oncotarget 2017; 8:31478-31493. [PMID: 28416758 PMCID: PMC5458223 DOI: 10.18632/oncotarget.15649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Interactions between the polo-like kinase 1 (PLK1) inhibitor volasertib and the histone deacetylase inhibitor (HDACI) belinostat were examined in diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells in vitro and in vivo. Exposure of DLBCL cells to very low concentrations of volasertib in combination with belinostat synergistically increased cell death (apoptosis). Similar interactions occurred in GC-, ABC-, double-hit DLBCL cells, MCL cells, bortezomib-resistant cells and primary lymphoma cells. Co-exposure to volasertib/belinostat induced a marked increase in M-phase arrest, phospho-histone H3, mitotic errors, cell death in M-phase, and DNA damage. Belinostat diminished c-Myc mRNA and protein expression, an effect significantly enhanced by volasertib co-exposure. c-Myc knock-down increased DNA damage and cell death in response to volasertib, arguing that c-Myc down-regulation plays a functional role in the lethality of this regimen. Notably, PLK1 knock-down in DLBCL cells significantly increased belinostat-induced M-phase accumulation, phospho-histone H3, γH2AX, and cell death. Co-administration of volasertib and belinostat dramatically reduced tumor growth in an ABC-DLBCL flank model (U2932) and a systemic double-hit lymphoma model (OCI-Ly18), accompanied by a pronounced increase in survival without significant weight loss or other toxicities. Together, these findings indicate that PLK1/HDAC inhibition warrants attention as a therapeutic strategy in NHL.
Collapse
Affiliation(s)
- Tri Nguyen
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Rebecca Parker
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Elisa Hawkins
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Beata Holkova
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Victor Yazbeck
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Akhil Kolluri
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA
| | - Mohamed Rahmani
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Pharmacology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA
| |
Collapse
|
22
|
Zan H, Casali P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Front Immunol 2015; 6:631. [PMID: 26697022 PMCID: PMC4677338 DOI: 10.3389/fimmu.2015.00631] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|
23
|
Kelly RS, Roulland S, Morgado E, Sungalee S, Jouve N, Tumino R, Krogh V, Panico S, Polidoro S, Masala G, Sánchez MJ, Chirlaque MD, Sala N, Gurrea AB, Dorronsoro M, Travis RC, Riboli E, Gunter M, Murphy N, Vermeulen R, Bueno-de-Mesquita HB, Peeters PH, Trichopoulou A, Trichopoulos D, Lagiou P, Nieters A, Canzian F, Kaaks R, Boeing H, Weiderpass E, Stocks T, Melin B, Overvad K, Tjønneland A, Olsen A, Brennan P, Johansson M, Nadel B, Vineis P. Determinants of the t(14;18) translocation and their role in t(14;18)-positive follicular lymphoma. Cancer Causes Control 2015; 26:1845-55. [PMID: 26424368 DOI: 10.1007/s10552-015-0677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE The strong association between t(14;18) translocation and follicular lymphoma (FL) is well known. However, the determinants of this chromosomal aberration and their role in t(14;18) associated FL remain to be established. METHODS t(14;18) frequency within the B cell lymphoma 2 major breakpoint region was determined for 135 incident FL cases and 251 healthy controls as part of a nested case-control study within the European Prospective Investigation into Cancer cohort. Quantitative real-time PCR was performed in DNA extracted from blood samples taken at recruitment. The relationship between prevalence and frequency of the translocation with baseline anthropometric, lifestyle, and dietary factors in cases and controls was determined. Unconditional logistic regression was used to explore whether the risk of FL associated with these factors differed in t(14;18)(+) as compared to t(14;18)(-) cases. RESULTS Among incident FL cases, educational level (χ(2) p = 0.021) and height (χ(2) p = 0.025) were positively associated with t(14;18) prevalence, and cases with high frequencies [t(14;18)(HF)] were significantly taller (t test p value = 0.006). These findings were not replicated in the control population, although there were a number of significant associations with dietary variables. Further analyses revealed that height was a significant risk factor for t(14;18)(+) FL [OR 6.31 (95% CI 2.11, 18.9) in the tallest versus the shortest quartile], but not t(14;18)(-) cases. CONCLUSIONS These findings suggest a potential role for lifestyle factors in the prevalence and frequency of the t(14;18) translocation. The observation that the etiology of FL may differ by t(14;18) status, particularly with regard to height, supports the subdivision of FL by translocation status.
Collapse
Affiliation(s)
- Rachel S Kelly
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Sandrine Roulland
- Center of Immunology of Marseille-Luminy (CIML), Université de la Méditerranée, Marseille, France
- INSERM U631, Marseille, France
- CNRS UMR6102, Marseille, France
| | - Ester Morgado
- Center of Immunology of Marseille-Luminy (CIML), Université de la Méditerranée, Marseille, France
- INSERM U631, Marseille, France
- CNRS UMR6102, Marseille, France
| | - Stéphanie Sungalee
- Center of Immunology of Marseille-Luminy (CIML), Université de la Méditerranée, Marseille, France
- INSERM U631, Marseille, France
- CNRS UMR6102, Marseille, France
| | - Nathalie Jouve
- Center of Immunology of Marseille-Luminy (CIML), Université de la Méditerranée, Marseille, France
- INSERM U631, Marseille, France
- CNRS UMR6102, Marseille, France
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Ragusa, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | | | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - María-José Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria de Granada (Granada.ibs), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Aurelio Barricarte Gurrea
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarre Public Health Institute, Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Ciberesp-Biodonostia Basque Regional Health Department, Vitoria, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Elio Riboli
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus Norfolk Place, London, W2 1PG, UK
| | - Marc Gunter
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus Norfolk Place, London, W2 1PG, UK
| | - Neil Murphy
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus Norfolk Place, London, W2 1PG, UK
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - H B Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
| | - Pagona Lagiou
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrüucke, Nuthetal, Germany
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetic Epidemiology, Folkhälsan Research Center, Helsinki, Finland
| | - Tanja Stocks
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Perioperative and Surgical Sciences, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Head Regional Cancer Center North, Umeå University, Umeå, Sweden
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paul Brennan
- International Agency for Research on Cancer (IARC-WHO), 69372, Lyon, France
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC-WHO), 69372, Lyon, France
| | - Bertrand Nadel
- Center of Immunology of Marseille-Luminy (CIML), Université de la Méditerranée, Marseille, France
- INSERM U631, Marseille, France
- CNRS UMR6102, Marseille, France
| | - Paolo Vineis
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus Norfolk Place, London, W2 1PG, UK.
- HuGeF - Human Genetics Foundation, Turin, Italy.
| |
Collapse
|
24
|
Bradshaw G, Sutherland HG, Camilleri ET, Lea RA, Haupt LM, Griffiths LR. Genetic and epigenetic variants in the MTHFR gene are not associated with non-Hodgkin lymphoma. Meta Gene 2015; 6:91-5. [PMID: 26629414 PMCID: PMC4634355 DOI: 10.1016/j.mgene.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
The methylenetetrahydrofolate reductase (MTHFR) gene codes for the MTHFR enzyme which plays a key role in the pathway of folate and methionine metabolism. Polymorphisms of genes in this pathway affect its regulation and have been linked to lymphoma. In this study we examined whether we could detect an association between two common non-synonymous MTHFR polymorphisms, 677C > T (rs1801133) and 1298A > C (rs1801131), and susceptibility to non-Hodgkin lymphoma (NHL) in an Australian case-control cohort. We found no significant differences between genotype or allele frequencies for either polymorphisms between lymphoma cases and controls. We also explored whether epigenetic modification of MTHFR, specifically DNA methylation of a CpG island in the MTHFR promoter region, is associated with NHL using blood samples from patients. No difference in methylation levels was detected between the case and control samples suggesting that although hypermethylation of MTHFR has been reported in tumour tissues, particularly in the diffuse large B-cell lymphoma subtype of NHL, methylation of this MTHFR promoter CpG island is not a suitable epigenetic biomarker for NHL diagnosis or prognosis in peripheral blood samples. Further studies into epigenetic variants could focus on genes that are robustly associated with NHL susceptibility.
Collapse
Key Words
- 1298A > C polymorphism
- 677C > T polymorphism
- Bp, base pairs
- CGIs, CpG Islands
- CIMP, CpG island methylator phenotype
- DLBCL, diffuse large b-cell lymphoma
- DNA methylation
- DNA, deoxyribose nucleic acid
- EDTA, ethylenediaminetetra acetic acid
- FL, follicular lymphoma
- HRM, high resolution melt
- MTHFR
- MTHFR, methylenetetrahydrofolate reductase
- NHL, non-Hodgkin lymphoma
- Non-Hodgkin lymphoma
- OR, odds ratio
- PCR, polymerase chain reaction
- RFLP, restriction fragment length polymorphism
- SD, standard deviation
- SNP, single nucleotide polymorphism
- THF, tetrahydrofolate
- WHO, World Health Organisation
Collapse
Affiliation(s)
| | | | | | | | | | - Lyn R. Griffiths
- Corresponding author at: Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD, Australia.Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
25
|
Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers. Genes (Basel) 2015; 6:1076-112. [PMID: 26506391 PMCID: PMC4690029 DOI: 10.3390/genes6041076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.
Collapse
|
26
|
Ye H, Lu L, Ge B, Gao S, Ma Y, Liang B, Yu K, Yang K. MLL2 protein is a prognostic marker for gastrointestinal diffuse large B-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13043-13050. [PMID: 26722499 PMCID: PMC4680444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Mixed linage leukemia gene 2 (MLL2) is identified as a novel mutation gene in diffuse large B cell lymphoma (DLBCL). However, the significance of MLL2 protein expression for the prognosis of DLBCL is unclear. In this study, we detected MLL2 protein expression in primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) samples by using tissue microarray immunohistochemistry, and analyzed the correlation between MLL2 protein expression and tumor proliferation activity. In addition, we investigated clinical significance of MLL2 protein expression for PGI-DLBCL prognosis. We found that there was significant difference in MLL2 protein expression between PGI-DLBCL and reactive hyperplasia of lymph node. High expression of MLL2 protein indicated higher clinical stage. In older patients (>60 years) with PGI-DLBCL, MLL2 protein expression was positively correlated with Ki-67 expression and negatively correlated with patient survival. Our data suggest that MLL2 protein is overexpressed in PGI-DLBCL and appears as a prognostic factor for patients of PGI-DLBCL, especially for those older than 60 years old.
Collapse
Affiliation(s)
- Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Lu Lu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Bei Ge
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Kaiyan Yang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
27
|
Bachegowda LS, Barta SK. Genetic and molecular targets in lymphoma: implications for prognosis and treatment. Future Oncol 2015; 10:2509-28. [PMID: 25525858 DOI: 10.2217/fon.14.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lymphomas are the most common hematologic malignancies with approximately 79,000 new cases estimated for 2013 in the USA. Despite improved outcomes, relapse or recurrence remains a common problem with conventional cytotoxic therapy. Recently, many genetic and molecular mechanisms that drive various cellular events like apoptosis, angiogenesis and cell motility have been more clearly delineated. These new findings, coupled with the advent of high-throughput screening technology have led to the discovery of many compounds that can target specific mutations and/or influence deregulated transcription. In this review, we intend to provide a concise overview of genetic and molecular events that drive cellular processes in lymphomas and represent potential therapeutic targets. Additionally, we briefly discuss the prognostic significance of select biological markers.
Collapse
Affiliation(s)
- Lohith S Bachegowda
- Department of Oncology, Montefiore Medical Center, 110, E 210 Street, Bronx, NY 10467, USA
| | | |
Collapse
|
28
|
Sarkozy C, Salles G, Falandry C. The Biology of Aging and Lymphoma: a Complex Interplay. Curr Oncol Rep 2015; 17:32. [DOI: 10.1007/s11912-015-0457-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
ZHAO HAIFENG, ZHANG LE, GUO SHANQI, YUAN TIAN, XIA BING, ZHANG LIANYU, ZHANG YIZHUO. Overexpression of DNA methyltransferase 1 as a negative independent prognostic factor in primary gastrointestinal diffuse large B-cell lymphoma treated with CHOP-like regimen and rituximab. Oncol Lett 2015; 9:2307-2312. [PMID: 26137062 PMCID: PMC4467357 DOI: 10.3892/ol.2015.3038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
The aims of the present study were to elucidate the transcript levels of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b by quantitative polymerase chain reaction in patients with primary gastrointestinal diffuse large B-cell lymphoma (PGI-DLBCL), and determine the association of their expression with the clinical parameters and prognostic values of the disease. The results revealed that the expression of DNMT1 in patients with PGI-DLBCL was significantly higher than that in healthy controls (P=0.04), while the expression of DNMT3a and DNMT3b were significantly lower (P<0.001 and P=0.001, respectively). The increased expression of DNMT1 was significantly correlated with shorter overall survival and progression-free survival rates (P=0.018 and P=0.008, respectively). The multivariate analysis demonstrated that the level of DNMT1 was an independent prognostic factor. In conclusion, DNMT1 was identified to be an independent prognostic factor for predicting the survival of patients with PGI-DLBCL; this suggests that it could be used as a marker to indicate the prognosis of PGI-DLBCL.
Collapse
Affiliation(s)
- HAIFENG ZHAO
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - LE ZHANG
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - SHANQI GUO
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - TIAN YUAN
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - BING XIA
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - LIANYU ZHANG
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - YIZHUO ZHANG
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
30
|
Barış İC, Caner V, Şen Türk N, Sarı İ, Hacıoğlu S, Doğu MH, Çetin O, Tepeli E, Can Ö, Bağcı G, Keskin A. Possible Role of GADD45γ Methylation in Diffuse Large B-Cell Lymphoma: Does It Affect the Progression and Tissue Involvement? Turk J Haematol 2015; 32:295-303. [PMID: 25912017 PMCID: PMC4805329 DOI: 10.4274/tjh.2014.0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma among adults and is characterized by heterogeneous clinical, immunophenotypic, and genetic features. Different mechanisms deregulating cell cycle and apoptosis play a role in the pathogenesis of DLBCL. Growth arrest DNA damage-inducible 45 (GADD45γ) is an important gene family involved in these mechanisms. The aims of this study are to determine the frequency of GADD45γ methylation, to evaluate the correlation between GADD45γ methylation and protein expression, and to investigate the relation between methylation status and clinicopathologic parameters in DLBCL tissues and reactive lymphoid node tissues from patients with reactive lymphoid hyperplasia. Materials and Methods: Thirty-six tissue samples of DLBCL and 40 nonmalignant reactive lymphoid node tissues were analyzed in this study. Methylation-sensitive high-resolution melting analysis was used for the determination of GADD45γ methylation status. The GADD45γ protein expression was determined by immunohistochemistry. Results: GADD45γ methylation was frequent (50.0%) in DLBCL. It was also significantly higher in advanced-stage tumors compared with early-stage (p=0.041). In contrast, unmethylated GADD45γ was associated with nodal involvement as the primary anatomical site (p=0.040). Conclusion: The results of this study show that, in contrast to solid tumors, the frequency of GADD45γ methylation is higher and this epigenetic alteration of GADD45γ may be associated with progression in DLBCL. In addition, nodal involvement is more likely to be present in patients with unmethylated GADD45γ.
Collapse
Affiliation(s)
| | - Vildan Caner
- Pamukkale University Faculty of Medicine, Department of Medical Biology, Denizli, Turkey Phone: +90 258 296 24 94 E-mail: ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6:6921. [PMID: 25891015 PMCID: PMC4411286 DOI: 10.1038/ncomms7921] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse. The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here the authors characterize epigenetic evolution in aggressive B-cell lymphoma and find that epigenomic heterogeneity may not only support and drive the relapse phenotype but also be used to predict lymphoma relapse.
Collapse
|
32
|
Zhou Z, Gao J, Popovic R, Wolniak K, Parimi V, Winter JN, Licht JD, Chen YH. Strong expression of EZH2 and accumulation of trimethylated H3K27 in diffuse large B-cell lymphoma independent of cell of origin and EZH2 codon 641 mutation. Leuk Lymphoma 2015; 56:2895-901. [PMID: 25651430 DOI: 10.3109/10428194.2015.1006220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gain-of-function EZH2 mutation promotes H3K27 trimethylation (H3K27me3) and lymphoid transformation of germinal center (GC) derived B-cell lymphoma, such as GCB diffuse large B-cell lymphoma (DLBCL), but not activated B-cell (ABC) DLBCL. It is unclear whether expression levels of EZH2 and consequential H3K27me3 vary by EZH2 mutation and/or cell-of-origin in DLBCL. Ninety lymphoma samples including 40 DLBCLs were studied by immunohistochemistry. EZH2 Y641 mutations were detected in three of 20 (15%) GCB and none of 20 ABC types. All 40 DLBCLs showed strong EZH2, expression with high-level H3K27me3 in 90% GCBs and 95% ABCs. In 50 other B-cell lymphomas except for follicular lymphoma, strong EZH2 expression correlated with high-grade features. Immunoblot of DLBCL cell lines and microarray gene expression study of EZH2 in B-cell lymphomas were consistent with the immunohistochemistry findings. High-level EZH2 and H3K27me3 were common in DLBCL independent of cell-of-origin and EZH2 mutation. High-level EZH2 in lymphoma of aggressive features suggests additional therapeutic targets.
Collapse
Affiliation(s)
- Zheng Zhou
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Juehua Gao
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Relja Popovic
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Kristy Wolniak
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Vamsi Parimi
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Jane N Winter
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Jonathan D Licht
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Yi-Hua Chen
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
33
|
Kulkarni RA, Meier JL. Chemical cryptology of cancer's histone code. ACTA ACUST UNITED AC 2014; 21:1419-21. [PMID: 25457120 DOI: 10.1016/j.chembiol.2014.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Somatic mutations in non-Hodgkin's lymphoma frequently activate EZH2, a protein methyltransferase responsible for H3K27 trimethylation. In this issue of Chemistry and Biology, Bradley and coworkers describe a new set of EZH2 inhibitors amenable to probing the targetable role of H3K27 trimethylation in lymphoma.
Collapse
Affiliation(s)
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
34
|
Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 2014; 10:1415-25. [PMID: 24991836 DOI: 10.4161/auto.29165] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosomal degradation process that may act as a mechanism of survival in a variety of cancers. While pharmacologic inhibition of autophagy with hydroxychloroquine (HCQ) is currently being explored in human clinical trials, it has never been evaluated in canine cancers. Non-Hodgkin lymphoma (NHL) is one of the most prevalent tumor types in dogs and has similar pathogenesis and response to treatment as human NHL. Clinical trials in canine patients are conducted in the same way as in human patients, thus, to determine a maximum dose of HCQ that can be combined with a standard chemotherapy, a Phase I, single arm, dose escalation trial was conducted in dogs with spontaneous NHL presenting as patients to an academic, tertiary-care veterinary teaching hospital. HCQ was administered daily by mouth throughout the trial, beginning 72 h prior to doxorubicin (DOX), which was given intravenously on a 21-d cycle. Peripheral blood mononuclear cells and biopsies were collected before and 3 d after HCQ treatment and assessed for autophagy inhibition and HCQ concentration. A total of 30 patients were enrolled in the trial. HCQ alone was well tolerated with only mild lethargy and gastrointestinal-related adverse events. The overall response rate (ORR) for dogs with lymphoma was 93.3%, with median progression-free interval (PFI) of 5 mo. Pharmacokinetic analysis revealed a 100-fold increase in HCQ in tumors compared with plasma. There was a trend that supported therapy-induced increase in LC3-II (the cleaved and lipidated form of microtubule-associated protein 1 light chain 3/LC3, which serves as a maker for autophagosomes) and SQSTM1/p62 (sequestosome 1) after treatment. The superior ORR and comparable PFI to single-agent DOX provide strong support for further evaluation via randomized, placebo-controlled trials in canine and human NHL.
Collapse
Affiliation(s)
- Rebecca A Barnard
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Luke A Wittenburg
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Ravi K Amaravadi
- Department of Medicine Hematology Oncology Division; Pearlman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Daniel L Gustafson
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Douglas H Thamm
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| |
Collapse
|
35
|
Abstract
Non-Hodgkin lymphomas (NHLs) include any kind of lymphoma except Hodgkin's lymphoma. Mantle cell lymphoma (MCL) is a B-cell NHL and it accounts for about 6% of all NHL cases. Its epidemiologic and clinical features, as well as biomarkers, can differ from those of other NHL subtypes. This article first provides a very brief description of MCL's epidemiology and clinical features. For etiology and prognosis separately, we review clinical, environmental, and molecular risk factors that have been suggested in the literature. Among a large number of potential risk factors, only a few have been independently validated, and their clinical utilization has been limited. More data need to be accumulated and effectively analyzed before clinically useful risk factors can be identified and used for prevention, diagnosis, prediction of prognosis path, and treatment selection.
Collapse
Affiliation(s)
- Yu Wang
- School of Statistics, Renmin University of China, 59 Zhongguancun Ave. Beijing, 100872, China
| | - Shuangge Ma
- School of Public Health, Yale University, 60 College ST, New Haven CT, 06520, USA
| |
Collapse
|
36
|
O’Neill KA, Bunch KJ, Murphy MFG. Intrauterine growth and childhood leukemia and lymphoma risk. Expert Rev Hematol 2014; 5:559-76. [DOI: 10.1586/ehm.12.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Targeting the epigenome and other new strategies in diffuse large B-cell lymphoma: beyond R-CHOP. Hematology 2013; 2013:591-5. [DOI: 10.1182/asheducation-2013.1.591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diffuse large B-cell lymphoma, the most common lymphoma subtype, is curable in the majority of patients. However, one of the greatest unmet needs in lymphoma treatment remains novel approaches to prevent relapsed or refractory disease. Genomic profiling has provided important prognostic information that is being used in the development of novel therapeutic strategies currently in clinical trials. It is clear, however, that epigenetic alterations provide an additional series of targets that can be pharmacologically modified and offer great potential to improving patient outcomes. Greater understanding of this area is providing important new insights that are now being explored in the clinical setting. Demethylating agents and drugs that disrupt histone modifiers are in early clinical trials with promising results, and other approaches targeting epigenetic pathways are in active preclinical and early clinical development.
Collapse
|
38
|
Morin RD, Gascoyne RD. Newly Identified Mechanisms in B-Cell Non-Hodgkin Lymphomas Uncovered by Next-Generation Sequencing. Semin Hematol 2013; 50:303-13. [DOI: 10.1053/j.seminhematol.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, Banerjee S, Vasanthakumar A, Culjkovic B, Scott DW, Wyman S, Leser M, Shaknovich R, Chadburn A, Tabbo F, Godley LA, Gascoyne RD, Borden KL, Inghirami G, Leonard JP, Melnick A, Cerchietti L. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 2013; 3:1002-19. [PMID: 23955273 PMCID: PMC3770813 DOI: 10.1158/2159-8290.cd-13-0117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although aberrant DNA methylation patterning is a hallmark of cancer, the relevance of targeting DNA methyltransferases (DNMT) remains unclear for most tumors. In diffuse large B-cell lymphoma (DLBCL) we observed that chemoresistance is associated with aberrant DNA methylation programming. Prolonged exposure to low-dose DNMT inhibitors (DNMTI) reprogrammed chemoresistant cells to become doxorubicin sensitive without major toxicity in vivo. Nine genes were recurrently hypermethylated in chemoresistant DLBCL. Of these, SMAD1 was a critical contributor, and reactivation was required for chemosensitization. A phase I clinical study was conducted evaluating azacitidine priming followed by standard chemoimmunotherapy in high-risk patients newly diagnosed with DLBCL. The combination was well tolerated and yielded a high rate of complete remission. Pre- and post-azacitidine treatment biopsies confirmed SMAD1 demethylation and chemosensitization, delineating a personalized strategy for the clinical use of DNMTIs. SIGNIFICANCE The problem of chemoresistant DLBCL remains the most urgent challenge in the clinical management of patients with this disease. We describe a mechanism-based approach toward the rational translation of DNMTIs for the treatment of high-risk DLBCL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/adverse effects
- Azacitidine/therapeutic use
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Methylation/genetics
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Middle Aged
- RNA Interference
- RNA, Small Interfering
- Smad1 Protein/genetics
- Young Adult
Collapse
Affiliation(s)
- Thomas Clozel
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - ShaoNing Yang
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rebecca L. Elstrom
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Wayne Tam
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Peter Martin
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | | | - Samprit Banerjee
- Division of Biostatistics and Epidemiology, Public Health Department, Weill Cornell Medical College, Cornell University, United States
| | - Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Biljana Culjkovic
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sarah Wyman
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Michael Leser
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rita Shaknovich
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Amy Chadburn
- Department of Pathology, Northwestern University, Chicago, United States
| | - Fabrizio Tabbo
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Randy D. Gascoyne
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Katherine L. Borden
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - Giorgio Inghirami
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - John P. Leonard
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Ari Melnick
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, United States
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| |
Collapse
|
40
|
Li G, Zan H, Xu Z, Casali P. Epigenetics of the antibody response. Trends Immunol 2013; 34:460-70. [PMID: 23643790 PMCID: PMC3744588 DOI: 10.1016/j.it.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.
Collapse
Affiliation(s)
- Guideng Li
- Institute for Immunology and School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | |
Collapse
|
41
|
Abd Al Kader L, Oka T, Takata K, Sun X, Sato H, Murakami I, Toji T, Manabe A, Kimura H, Yoshino T. In aggressive variants of non-Hodgkin lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. VIRCHOWS ARCHIV : AN INTERNATIONAL JOURNAL OF PATHOLOGY 2013. [PMID: 23948956 DOI: 10.1007/s00428‐013‐1428‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycomb group (PcG) proteins are important for the regulation of hematopoiesis by regulating chromatin compaction and silencing genes related to differentiation and cell cycle. Overexpression of enhancer of zeste homologue 2 (Ezh2) and Bmi-1/PCGF4 has been implicated in solid organ cancers, while Mel-18/PCGF2 has been reported as a tumor suppressor. Detailed expression profiles of PcG proteins and their diagnostic significance in malignant lymphomas are still unknown. In this study, we analyzed the expression levels of Ezh2, Bmi-1, Mel-18, and Ki67 in 197 Hodgkin's and non-Hodgkin's lymphoma patient samples and in lymphoma cell lines using immunohistochemistry, fluorescent immunocytochemistry, and Western blotting. Immunohistochemical staining showed that Ezh2 expression was significantly increased in aggressive compared to indolent subtypes of B cell neoplasms (P = 0.000-0.030), while no significant differences in Bmi-1 expression were found between these subtypes. Compared to the normal counterpart, T cell lymphomas showed significant overexpression of Bmi-1 (P = 0.011) and Ezh2 (P = 0.000). The Ki67 labeling index showed a positive correlation with Ezh2 expression in B cell lymphomas (correlation coefficient (Co) = 0.983, P = 0.000) and T/NK cell lymphomas (Co = 0.629, P = 0.000). Fluorescent immunohistochemical staining showed coexpression of Ezh2 and Ki67 in the same tumor cells, indicating that Ezh2 expression correlates with cell proliferation. Both B and T/NK cell neoplasms showed low expression of Mel-18 and high expression of both Bmi-1 and Ezh2. In conclusion, in aggressive lymphoma variants, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. Coexpression of Bmi-1 and Ezh2 is a characteristic of aggressive lymphomas. Ezh2 correlates with the proliferation and aggressive nature of non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Lamia Abd Al Kader
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-chou, Kita-ku, 700-8558, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abd Al Kader L, Oka T, Takata K, Sun X, Sato H, Murakami I, Toji T, Manabe A, Kimura H, Yoshino T. In aggressive variants of non-Hodgkin lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. Virchows Arch 2013; 463:697-711. [PMID: 23948956 DOI: 10.1007/s00428-013-1428-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 01/11/2023]
Abstract
Polycomb group (PcG) proteins are important for the regulation of hematopoiesis by regulating chromatin compaction and silencing genes related to differentiation and cell cycle. Overexpression of enhancer of zeste homologue 2 (Ezh2) and Bmi-1/PCGF4 has been implicated in solid organ cancers, while Mel-18/PCGF2 has been reported as a tumor suppressor. Detailed expression profiles of PcG proteins and their diagnostic significance in malignant lymphomas are still unknown. In this study, we analyzed the expression levels of Ezh2, Bmi-1, Mel-18, and Ki67 in 197 Hodgkin's and non-Hodgkin's lymphoma patient samples and in lymphoma cell lines using immunohistochemistry, fluorescent immunocytochemistry, and Western blotting. Immunohistochemical staining showed that Ezh2 expression was significantly increased in aggressive compared to indolent subtypes of B cell neoplasms (P = 0.000-0.030), while no significant differences in Bmi-1 expression were found between these subtypes. Compared to the normal counterpart, T cell lymphomas showed significant overexpression of Bmi-1 (P = 0.011) and Ezh2 (P = 0.000). The Ki67 labeling index showed a positive correlation with Ezh2 expression in B cell lymphomas (correlation coefficient (Co) = 0.983, P = 0.000) and T/NK cell lymphomas (Co = 0.629, P = 0.000). Fluorescent immunohistochemical staining showed coexpression of Ezh2 and Ki67 in the same tumor cells, indicating that Ezh2 expression correlates with cell proliferation. Both B and T/NK cell neoplasms showed low expression of Mel-18 and high expression of both Bmi-1 and Ezh2. In conclusion, in aggressive lymphoma variants, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. Coexpression of Bmi-1 and Ezh2 is a characteristic of aggressive lymphomas. Ezh2 correlates with the proliferation and aggressive nature of non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Lamia Abd Al Kader
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-chou, Kita-ku, 700-8558, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo SQ, Zhang YZ. Histone deacetylase inhibition: an important mechanism in the treatment of lymphoma. Cancer Biol Med 2013; 9:85-9. [PMID: 23691460 PMCID: PMC3643654 DOI: 10.3969/j.issn.2095-3941.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
Lymphomas encompass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field.
Collapse
Affiliation(s)
- Shan-Qi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China
| | | |
Collapse
|
44
|
Taylor KH, Briley A, Wang Z, Cheng J, Shi H, Caldwell CW. Aberrant Epigenetic Gene Regulation in Lymphoid Malignancies. Semin Hematol 2013; 50:38-47. [DOI: 10.1053/j.seminhematol.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Kobayashi Y, Fujiwara K, Hatta Y, Takeuchi J, Shinojima Y, Kawashima H, Igarashi J, Soma M, Nagase H. Identification of novel genomic regions with aberrant cytosine methylation in hematological malignancies. ACTA ACUST UNITED AC 2013. [DOI: 10.4993/acrt.21.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Andreu-Vieyra CV, Liang G. Nucleosome occupancy and gene regulation during tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 754:109-34. [PMID: 22956498 DOI: 10.1007/978-1-4419-9967-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleosomes are the basic structural units of eukaryotic chromatin. In recent years, it has become evident that nucleosomes and their position, in concert with other epigenetic mechanisms (such as DNA methylation, histone modifications, changes in histone variants, as well as small noncoding regulatory RNAs) play essential roles in the control of gene expression. Here, we discuss the mechanisms and factors that regulate nucleosome position and gene expression in normal and cancer cells.
Collapse
|
47
|
Scarpa M, Stylianou E. Epigenetics: Concepts and relevance to IBD pathogenesis. Inflamm Bowel Dis 2012; 18:1982-96. [PMID: 22407855 DOI: 10.1002/ibd.22934] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 12/12/2022]
Abstract
The purpose of this review is to introduce the exciting field of epigenetics and to describe how it could explain the mechanisms by which environmental changes induce pathological gene expression and determine cell phenotype and function in IBD. We outline how epigenetics research in the context of a variety of clinical conditions, but mainly in cancer, has begun to define the role of multiple combinations of modifications to chromatin, diverse families of enzymes, and non-coding RNAs in determining transcriptional outcomes. These findings are applicable to understanding the context-specific events that underlie the expression of genes in diseases like IBD and have the potential to reveal new targets for improved IBD therapy. The current status of epigenetics-based therapies is also summarized.
Collapse
Affiliation(s)
- Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|
48
|
Marconato L, Gelain ME, Comazzi S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematol Oncol 2012; 31:1-9. [PMID: 22674797 DOI: 10.1002/hon.2017] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
Lymphoma represents the most frequent hematopoietic cancer in dogs, and it shows significant overlap with the human disease. Several environmental factors have been associated with canine lymphoma, suggesting that they may contribute to lymphomagenesis. Canine lymphoma often presents in advanced stage (III-V) at diagnosis and, most commonly, has an aggressive clinical course requiring prompt treatment, which relies on the use of polychemotherapy. In this review, we will summarize the state-of-the-art of canine lymphoma epidemiology, pathobiology, diagnostic work-up and therapy, and will highlight the links to the corresponding human disease, providing evidence for the use of dog as an animal model of spontaneous disease.
Collapse
|