1
|
Kwak JW, Houghton AM. Targeting neutrophils for cancer therapy. Nat Rev Drug Discov 2025:10.1038/s41573-025-01210-8. [PMID: 40374764 DOI: 10.1038/s41573-025-01210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Neutrophils are among the most abundant immune cell types in the tumour microenvironment and have been associated with poor outcomes across multiple cancer types. Yet despite mounting evidence of their role in tumour progression, therapeutic strategies targeting neutrophils have only recently gained attention and remain limited in scope. This is probably due to the increasing number of distinct neutrophil subtypes identified in cancer and the limited understanding of the mechanisms by which these subsets influence tumour progression and immune evasion. In this Review, we discuss the spectrum of neutrophil subtypes - including those with antitumour activity - and their potential to polarize towards tumour-suppressive phenotypes. We explore the molecular pathways and effector functions by which neutrophils modulate cancer progression, with an emphasis on identifying tractable therapeutic targets. Finally, we examine emerging clinical trials aimed at modulating neutrophil lineages and consider their implications for patient outcomes.
Collapse
Affiliation(s)
- Jeff W Kwak
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - A McGarry Houghton
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Anselmi NK, Vanyo ST, Visser MB. Emerging oral Treponema membrane proteins disorder neutrophil phosphoinositide signaling via phosphatidylinositol-4-phosphate 5-kinase. FRONTIERS IN ORAL HEALTH 2025; 6:1568983. [PMID: 40248422 PMCID: PMC12003349 DOI: 10.3389/froh.2025.1568983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Background Periodontitis (PD) is a group of inflammatory pathologies characterized by destruction of the tooth-supporting tissues. During PD, dysbiosis of the oral biofilm disrupts the host immune response and supports growth of pathogenic bacteria including the spirochetes Treponema denticola (Td), T. maltophilum (Tm), and T. lecithinolyticum (Tl). The outer membrane protein of Td, Msp, perturbs the function of neutrophils by modulating phosphoinositide (PIP) signaling. While Tm and Tl have similar outer membrane proteins, MspA and MspTL respectively, little is known of how these proteins affect neutrophil function. Methods This study examines putative mechanisms by which T. maltophilum MspA and T. lecithinolyticum MspTL inhibit neutrophil chemotaxis. Murine bone marrow neutrophils were treated with recombinant MspA or MspTL protein. Protein phosphorylation was assessed via immunoblot, phosphate release by malachite green assay, and PTEN and SHIP phosphatase activity through immunoprecipitation, enzymatic assays, and chemical inhibition. PIP quantification was assessed by immunofluorescence microscopy and Mass ELISAs, while small GTPase activity was measured with G-Protein Activation Assays. Neutrophil F-actin localization was determined through immunofluorescence. Results MspA and MspTL increase phosphate release in neutrophils, but unlike Msp, they do not affect PTEN or SHIP activity, despite modulating cellular levels of multiple PIP species [PI(3,4)P2, PI(4,5)P2, and PIP3]. Overall, MspA and MspTL differentially affected the metabolism of individual PIP species, but both increased PI(4,5)P2 levels in a PIP5K-dependent manner. Downstream effects of disrupted PIP signaling included inhibition of Akt and Rac1 activation and increased cortical F-actin localization. Conclusions Understanding distinct mechanistic relationships between novel Msp proteins and neutrophils provides important insight into how these understudied bacteria promote periodontitis progression.
Collapse
Affiliation(s)
| | | | - Michelle B. Visser
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Metcalfe S, Anselmi N, Escobar A, Visser MB, Kay JG. Innate Phagocyte Polarization in the Oral Cavity. Front Immunol 2022; 12:768479. [PMID: 35069541 PMCID: PMC8770816 DOI: 10.3389/fimmu.2021.768479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The oral cavity is a complex environment constantly exposed to antigens from food and the oral microbiota. Innate immune cells play an essential role in maintaining health and homeostasis in the oral environment. However, these cells also play a significant role in disease progression. This review will focus on two innate phagocytes in the oral cavity: macrophages and neutrophils, and examine their roles during homeostasis and disease development, with a focus on periodontal disease and cancer. Macrophages have a well-known ability to polarize and be activated towards a variety of phenotypes. Several studies have found that macrophages’ polarization changes can play an essential role in maintaining health in the oral cavity and contribute to disease. Recent data also finds that neutrophils display phenotypic heterogeneity in the oral cavity. In both cases, we focus on what is known about how these cellular changes alter these immune cells’ interactions with the oral microbiota, including how such changes can lead to worsening, rather than improving, disease states.
Collapse
Affiliation(s)
- Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Natalie Anselmi
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
van Beers JJBC, Damoiseaux JGMC. Treatment of Autoimmune Diseases with Therapeutic Antibodies: Lessons Learned from PID Patients Allow for Stratification of the Infection Risk. Methods Mol Biol 2022; 2313:27-44. [PMID: 34478130 DOI: 10.1007/978-1-0716-1450-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the autoimmunology clinic and many more are on the edge to follow. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas the former target results in neutralization of the soluble factor, the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency. Knowing the exact function of the respective components enables the risk stratification for possible infectious complications in patients treated with biologics. Much of the understanding of the function of immune cells and their associated molecules, in relation to redundancy in the immune system, is derived from studies in knockout mice. However, as mice are not men in terms of their life-expectancy, their infection exposure, or the composition of their immune system, the most useful knowledge for estimating the consequence of therapeutic intervention on immune competence comes from monitoring patients. In the current chapter, we focus on patients with a primary immunodeficiency (PID) because they provide us with a unique perspective to estimate the redundancy of a certain genetic defect for overall immune competence. These patients have inborn errors of the immune system that, in general, are due to single gene defects. Depending on the immunological pathway that is defective, patients can present with different types of (opportunistic) infectious diseases, as well as other clinical manifestations. Based on selected examples, we focus in this chapter on finding parallels in the infectious risk of autoimmune patients treated with biologics and PID patients with a defect in the immunological pathway that is affected by the respective biologic. The goal is to learn from the (dis)similarities between both patient populations in terms of safety profiles of biologic treatments.
Collapse
Affiliation(s)
- Joyce J B C van Beers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
7
|
Sekheri M, Othman A, Filep JG. β2 Integrin Regulation of Neutrophil Functional Plasticity and Fate in the Resolution of Inflammation. Front Immunol 2021; 12:660760. [PMID: 33859651 PMCID: PMC8043047 DOI: 10.3389/fimmu.2021.660760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils act as the first line of cellular defense against invading pathogens or tissue injury. Their rapid recruitment into inflamed tissues is critical for the elimination of invading microorganisms and tissue repair, but is also capable of inflicting damage to neighboring tissues. The β2 integrins and Mac-1 (CD11b/CD18, αMβ2 or complement receptor 3) in particular, are best known for mediating neutrophil adhesion and transmigration across the endothelium and phagocytosis of microbes. However, Mac-1 has a broad ligand recognition property that contributes to the functional versatility of the neutrophil population far beyond their antimicrobial function. Accumulating evidence over the past decade has demonstrated roles for Mac-1 ligands in regulating reverse neutrophil transmigration, lifespan, phagocytosis-induced cell death, release of neutrophil extracellular traps and efferocytosis, hence extending the traditional β2 integrin repertoire in shaping innate and adaptive immune responses. Understanding the functions of β2 integrins may partly explain neutrophil heterogeneity and may be instrumental to develop novel therapies specifically targeting Mac-1-mediated pro-resolution actions without compromising immunity. Thus, this review details novel insights on outside-in signaling through β2 integrins and neutrophil functional heterogeneity pertinent to the resolution of inflammation.
Collapse
Affiliation(s)
- Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
8
|
Pyoderma Gangrenosum with an Underlying Leukocyte Adhesion Deficiency Type 1 (LAD-1) and Pregnancy in the Shade of COVID-19 Epidemic: A Patient and Physician Experience. Dermatol Ther (Heidelb) 2021; 11:643-653. [PMID: 33686591 PMCID: PMC7939102 DOI: 10.1007/s13555-021-00507-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/06/2022] Open
Abstract
In the first part of this article, the anonymous patient diagnosed with leukocyte adhesion deficiency type 1 (LAD-1) and pyoderma gangrenosum (PG) discusses her experience of her medical history and treatment in a foreign country during her pregnancy and the coronavirus disease-19 (COVID-19) pandemic. The patient’s dermatologists, immunologist, and diagnostician refer to the epidemiology, genetics, diagnosis, morphologic manifestations, including skin lesions, treatment, and prognosis in LAD-1. The patient’s diagnostic and therapeutic process was discussed in the last part of this paper.
Collapse
|
9
|
Kambli PM, Bargir UA, Yadav RM, Gupta MR, Dalvi AD, Hule G, Kelkar M, Sawant-Desai S, Setia P, Jodhawat N, Nambiar N, Dhawale A, Gaikwad P, Shinde S, Taur P, Gowri V, Pandrowala A, Gupta A, Joshi V, Sharma M, Arora K, Pilania RK, Chaudhary H, Agarwal A, Katiyar S, Bhattad S, Ramprakash S, Cp R, Jayaram A, Gornale V, Raj R, Uppuluri R, Sivasankaran M, Munirathnam D, Lashkari HP, Kalra M, Sachdeva A, Sharma A, Balaji S, Govindraj GM, Karande S, Nanavati R, Manglani M, Subramanyam G, Sampagar A, Ck I, Gutha P, Kanakia S, Mundada SP, Krishna V, Nampoothiri S, Nemani S, Rawat A, Desai M, Madkaikar M. Clinical and Genetic Spectrum of a Large Cohort of Patients With Leukocyte Adhesion Deficiency Type 1 and 3: A Multicentric Study From India. Front Immunol 2020; 11:612703. [PMID: 33391282 PMCID: PMC7772426 DOI: 10.3389/fimmu.2020.612703] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Leukocyte adhesion deficiency (LAD) syndrome is a group of inborn errors of immunity characterized by a defect in the cascade of the activation and adhesion leading to the failure of leukocyte to migrate to the site of tissue injury. Three different types of LAD have been described. The most common subtype is LAD type 1 (LAD1) caused due to defects in the ITGβ2 gene. LAD type 2 (LAD2) is caused by mutations in the SLC35C1 gene leading to a generalized loss of expression of fucosylated glycans on the cell surface and LAD type 3 (LAD3) is caused by mutations in the FERMT3 gene resulting in platelet function defects along with immunodeficiency. There is a paucity of data available from India on LAD syndromes. The present study is a retrospective analysis of patients with LAD collated from 28 different centers across India. For LAD1, the diagnosis was based on clinical features and flow cytometric expression of CD18 on peripheral blood leukocytes and molecular confirmation by Sanger sequencing. For patients with LAD3 diagnosis was largely based on clinical manifestations and identification of the pathogenic mutation in the FERMT3 gene by next-generation Sequencing. Of the total 132 cases diagnosed with LAD, 127 were LAD1 and 5 were LAD3. The majority of our patients (83%) had CD18 expression less than 2% on neutrophils (LAD1°) and presented within the first three months of life with omphalitis, skin and soft tissue infections, delayed umbilical cord detachment, otitis media, and sepsis. The patients with CD18 expression of more than 30% (LAD1+) presented later in life with skin ulcers being the commonest manifestation. Bleeding manifestations were common in patients with LAD3. Persistent neutrophilic leukocytosis was the characteristic finding in all patients. 35 novel mutations were detected in the ITGβ2 gene, and 4 novel mutations were detected in the FERMT3 gene. The study thus presents one of the largest cohorts of patients from India with LAD, focusing on clinical features, immunological characteristics, and molecular spectrum.
Collapse
Affiliation(s)
- Priyanka Madhav Kambli
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Umair Ahmed Bargir
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Reetika Malik Yadav
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Maya Ravishankar Gupta
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Aparna Dhondi Dalvi
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Gouri Hule
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Madhura Kelkar
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Sneha Sawant-Desai
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Priyanka Setia
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Neha Jodhawat
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Nayana Nambiar
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Amruta Dhawale
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Pallavi Gaikwad
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Shweta Shinde
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Department of Bone Marrow Transplant, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Himanshi Chaudhary
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Agarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Shobita Katiyar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Sagar Bhattad
- Department of Pediatric Immunology and Rheumatology, Aster CMI Hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemat-Oncology and Bone Marrow Transplant Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram Cp
- Pediatric Hemat-Oncology and Bone Marrow Transplant Unit, Aster CMI Hospital, Bengaluru, India
| | - Ananthvikas Jayaram
- Department of Hematology and Pathology, Neuberg Anand Diagnostic and Research Centre, Bangalore, India
| | - Vinod Gornale
- Department of pediatric, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Teynampet, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Teynampet, India
| | - Meena Sivasankaran
- Department of Pediatric, Hemato-oncology, Kanchi Kamakoti Childs Trust Hospital, Chennai, India
| | | | - Harsha Prasad Lashkari
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Manas Kalra
- Department of Pediatric Hematology Oncology BMT, Sir Ganga Ram Hospital, New Delhi, India
| | - Anupam Sachdeva
- Department of Pediatric Hematology Oncology BMT, Sir Ganga Ram Hospital, New Delhi, India
| | - Avinash Sharma
- Dr. Rajendra Prasad Government Medical College, Tanda, India
| | - Sarath Balaji
- Department of Paediatrics, Institute of Child Health and Hospital for Children, Chennai, India
| | | | - Sunil Karande
- Department of Pediatrics, King Edward Memorial Hospital, Mumbai, India
| | - Ruchi Nanavati
- Department of Neonatology, King Edward Memorial Hospital, Mumbai, India
| | - Mamta Manglani
- Department of Pediatric, Oncology, Hematology & BMT, Comprehensive Thalassemia Care Center and Bone Marrow, Mumbai, India
| | | | - Abhilasha Sampagar
- Department of Pediatrics, KIES Dr. Prabhakar Kore Hospital & Medical Research, Belgaum, India
| | - Indumathi Ck
- Department of Pediatrics, St. John's Medical College, Bengaluru, India
| | - Parinitha Gutha
- Department of Paediatric Haematology and Oncology, Little Stars Children's Hospital, Hyderabad, India
| | - Swati Kanakia
- Department of Hematology-Oncology, Lilavati Hospital and Research Centre, Mumbai, India
| | | | - Vidya Krishna
- Department of Pediatrics, Sri Ramachandra Medical College, Chennai, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Science & Research Center, Cochin, India
| | - Sandeep Nemani
- Nihira Diagnostic Lab, Arihant Galaxy, Ganesh Naga, Sangli, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Manisha Madkaikar
- Center of Excellence for PIDs, Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
10
|
Pastwińska J, Żelechowska P, Walczak-Drzewiecka A, Brzezińska-Błaszczyk E, Dastych J. The Art of Mast Cell Adhesion. Cells 2020; 9:E2664. [PMID: 33322506 PMCID: PMC7764012 DOI: 10.3390/cells9122664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion is one of the basic phenomena occurring in a living organism, affecting many other processes such as proliferation, differentiation, migration, or cell viability. Mast cells (MCs) are important elements involved in defending the host against various pathogens and regulating inflammatory processes. Due to numerous mediators, they are contributing to the modulation of many basic cellular processes in a variety of cells, including the expression and functioning of different adhesive molecules. They also express themselves many adhesive proteins, including ICAM-1, ICAM-3, VCAM-1, integrins, L-selectin, E-cadherin, and N-cadherin. These molecules enable MCs to interact with other cells and components of the extracellular matrix (ECM), creating structures such as adherens junctions and focal adhesion sites, and triggering a signaling cascade. A thorough understanding of these cellular mechanisms can create a better understanding of MC biology and reveal new goals for MC targeted therapy. This review will focus on the current knowledge of adhesion mechanisms with the involvement of MCs. It also provides insight into the influence of MCs or MC-derived mediators on the adhesion molecule expression in different cells.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| |
Collapse
|
11
|
Successful reconstitution of leukocyte adhesion defect after umbilical cord blood stem cell transplant. Cent Eur J Immunol 2020; 45:117-121. [PMID: 32425689 PMCID: PMC7226562 DOI: 10.5114/ceji.2020.94713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/05/2018] [Indexed: 11/17/2022] Open
Abstract
Leukocyte adhesion deficiencies (LADs) are a type of primary immunodeficiencies characterized by delayed detachment of the umbilical cord, impaired wound healing, leukocytosis, and recurrent infections. The disease is caused by genetic defects affecting different steps in the process of leukocyte adhesion cascade such as rolling, integrin activation, and adhesion of leukocytes, resulting in the impairment of leukocyte trafficking. Till date, three types of LAD have been documented: type I, II and III. Type I LAD is caused by congenital defect in the β2 integrin receptor complex CD11/CD18 on the cell surface of leukocytes, which results in impaired leukocytes connection to endothelial cells and migration. Type II LAD is caused by defect in the fucose metabolism resulting in the absence of fucosylated selectin ligands on neutrophils and impaired rolling phase of the leukocyte adhesion cascade. Type III LAD is caused by mutations in the kindlin-3 gene resulting in defective integrin activation. In this article, we present a review of literature for type I LAD, and successful treatment of patient using umbilical cord blood stem cell transplantation.
Collapse
|
12
|
Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa. Infect Immun 2020; 88:IAI.00011-20. [PMID: 32041787 DOI: 10.1128/iai.00011-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa.
Collapse
|
13
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
14
|
Qian X, Wang P, Wang H, Jiang W, Sun J, Wang X, Zhai X. Successful umbilical cord blood transplantation in children with leukocyte adhesion deficiency type I. Transl Pediatr 2020; 9:34-42. [PMID: 32154133 PMCID: PMC7036647 DOI: 10.21037/tp.2020.01.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study aims to investigate the efficacy and safety of umbilical cord blood transplantation (UCBT) without serotherapy for treating children with leukocyte adhesion deficiency type I (LAD-I). METHODS Clinical characteristics and data of five children with LAD-I who underwent UCBT at our hospital between September 2016 and September 2018 were retrospectively analyzed. RESULTS Five (two boys and three girls) patients with LAD-I were included. The median age at UCBT was 9 months (range, 8 to 32 months). The same myeloablative conditioning regimen was administered for each patient and included busulfan, fludarabine, and cyclophosphamide. HLA matching of patients and umbilical cord blood was 8/10 to 10/10. The median dose of total nucleated cells (TNC) infused was 10.2×107/kg (range, 4.5×107 to 20.6×107/kg) and the median dose of CD34+ cells was 3.2×105/kg (range, 1.9×105 to 5.7×105/kg). The median time of neutrophil engraftment was 20 days (range, 13 to 28 days). The median time of platelet engraftment was 36 days (range, 32 to 56 days). All patients received complete donor chimerism (CDC). Four of the five patients developed grade II-IV acute graft-versus-host disease (GvHD). The median follow-up time after transplantation was 19 months (range, 8 to 38 months). Four of the patients survived and achieved complete clinical remission. The other patient died of bronchiolitis obliterans 8 months after UCBT. CONCLUSIONS UCBT is an effective treatment method for LAD-I patients. Also, severe LAD-I patients should undergo stem cell transplantation as early as possible.
Collapse
Affiliation(s)
- Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ping Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenjin Jiang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
15
|
Grosche L, Mühl-Zürbes P, Ciblis B, Krawczyk A, Kuhnt C, Kamm L, Steinkasserer A, Heilingloh CS. Herpes Simplex Virus Type-2 Paralyzes the Function of Monocyte-Derived Dendritic Cells. Viruses 2020; 12:E112. [PMID: 31963276 PMCID: PMC7019625 DOI: 10.3390/v12010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex viruses not only infect a variety of different cell types, including dendritic cells (DCs), but also modulate important cellular functions in benefit of the virus. Given the relevance of directed immune cell migration during the initiation of potent antiviral immune responses, interference with DC migration constitutes a sophisticated strategy to hamper antiviral immunity. Notably, recent reports revealed that HSV-1 significantly inhibits DC migration in vitro. Thus, we aimed to investigate whether HSV-2 also modulates distinct hallmarks of DC biology. Here, we demonstrate that HSV-2 negatively interferes with chemokine-dependent in vitro migration capacity of mature DCs (mDCs). Interestingly, rather than mediating the reduction of the cognate chemokine receptor expression early during infection, HSV-2 rapidly induces β2 integrin (LFA-1)-mediated mDC adhesion and thereby blocks mDC migration. Mechanistically, HSV-2 triggers the proteasomal degradation of the negative regulator of β2 integrin activity, CYTIP, which causes the constitutive activation of LFA-1 and thus mDC adhesion. In conclusion, our data extend and strengthen recent findings reporting the reduction of mDC migration in the context of a herpesviral infection. We thus hypothesize that hampering antigen delivery to secondary lymphoid organs by inhibition of mDC migration is an evolutionary conserved strategy among distinct members of Herpesviridae.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Barbara Ciblis
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
16
|
Abstract
Primary disorders of neutrophil function result from impairment in neutrophil responses that are critical for host defense. This chapter summarizes inherited disorders of neutrophils that cause defects in neutrophil adhesion, migration, and oxidative killing. These include the leukocyte adhesion deficiencies, actin defects and other disorders of chemotaxis, hyperimmunoglobulin E syndrome, Chédiak-Higashi Syndrome, neutrophil specific granule deficiency, chronic granulomatous disease, and myeloperoxidase deficiency. Diagnostic tests and treatment approaches are also summarized for each neutrophil disorder.
Collapse
|
17
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Reis PA, Silva TI, Nascimento DDO, Campbell RA, Estato V, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 influences cerebral edema, leukocyte accumulation and neurologic outcomes in experimental severe malaria. PLoS One 2019; 14:e0224610. [PMID: 31869339 PMCID: PMC6927624 DOI: 10.1371/journal.pone.0224610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDβ2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDβ2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany I. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle de O. Nascimento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew S. Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Konantz M, Schürch C, Hanns P, Müller JS, Sauteur L, Lengerke C. Modeling hematopoietic disorders in zebrafish. Dis Model Mech 2019; 12:12/9/dmm040360. [PMID: 31519693 PMCID: PMC6765189 DOI: 10.1242/dmm.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish offer a powerful vertebrate model for studies of development and disease. The major advantages of this model include the possibilities of conducting reverse and forward genetic screens and of observing cellular processes by in vivo imaging of single cells. Moreover, pathways regulating blood development are highly conserved between zebrafish and mammals, and several discoveries made in fish were later translated to murine and human models. This review and accompanying poster provide an overview of zebrafish hematopoiesis and discuss the existing zebrafish models of blood disorders, such as myeloid and lymphoid malignancies, bone marrow failure syndromes and immunodeficiencies, with a focus on how these models were generated and how they can be applied for translational research. Summary: This At A Glance article and poster summarize the last 20 years of research in zebrafish models for hematopoietic disorders, highlighting how these models were created and are being applied for translational research.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland.,Division of Hematology, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
19
|
Romdhane L, Mezzi N, Hamdi Y, El-Kamah G, Barakat A, Abdelhak S. Consanguinity and Inbreeding in Health and Disease in North African Populations. Annu Rev Genomics Hum Genet 2019; 20:155-179. [PMID: 31039041 DOI: 10.1146/annurev-genom-083118-014954] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
North Africa is defined as the geographical region separated from the rest of the continent by the Sahara and from Europe by the Mediterranean Sea. The main demographic features of North African populations are their familial structure and high rates of familial and geographic endogamy, which have a proven impact on health, particularly the occurrence of genetic diseases, with a greater effect on the frequency and spectrum of the rarest forms of autosomal recessive genetic diseases. More than 500 different genetic diseases have been reported in this region, most of which are autosomal recessive. During the last few decades, there has been great interest in the molecular investigation of large consanguineous North African families. The development of local capacities has brought a substantial improvement in the molecular characterization of these diseases, but the genetic bases of half of them remain unknown. Diseases of known molecular etiology are characterized by their genetic and mutational heterogeneity, although some founder mutations are encountered relatively frequently. Some founder mutations are specific to a single country or a specific ethnic or geographic group, and others are shared by all North African countries or worldwide. The impact of consanguinity on common multifactorial diseases is less evident.
Collapse
Affiliation(s)
- Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 1002 Tunis Belvédère, Tunisia; .,Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, 7021 Jarzouna, Tunisia
| | - Nessrine Mezzi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 1002 Tunis Belvédère, Tunisia;
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 1002 Tunis Belvédère, Tunisia;
| | - Ghada El-Kamah
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo 12622, Egypt
| | - Abdelhamid Barakat
- Laboratoire de Génétique Humaine et Biologie Moléculaire, Département de Recherche Scientifique, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 1002 Tunis Belvédère, Tunisia;
| |
Collapse
|
20
|
The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10:1780. [PMID: 30992428 PMCID: PMC6467905 DOI: 10.1038/s41467-019-09607-x] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza infection increases the incidence of myocardial infarction but the reason is unknown. Platelets mediate vascular occlusion through thrombotic functions but are also recognized to have immunomodulatory activity. To determine if platelet processes are activated during influenza infection, we collected blood from 18 patients with acute influenza infection. Microscopy reveals activated platelets, many containing viral particles and extracellular-DNA associated with platelets. To understand the mechanism, we isolate human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation. TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection. These findings demonstrate that the initial intrinsic defense against influenza is mediated by platelet–neutrophil cross-communication that tightly regulates host immune and complement responses but can also lead to thrombotic vascular occlusion. Influenza viremia is rare in human blood and not well studied. Here, the authors show that influenza can be found in human platelets and that platelet engulfment of influenza A results in TLR7-dependent C3 release, which in turn promotes neutrophil-DNA release and formation of platelet-DNA aggregates.
Collapse
|
21
|
Abstract
Neutrophils have always been considered as uncomplicated front-line troopers of the innate immune system equipped with limited proinflammatory duties. Yet recently, the role of the neutrophil has been undergoing a rejuvenation of sorts. Neutrophils are now considered complex cells capable of a significant array of specialized functions, and as an effector of the innate immune response, they are able to regulate many processes such as acute injury and repair, cancer, autoimmunity, and chronic inflammatory processes. Furthermore, evidence exists to indicate that neutrophils also contribute to adaptive immunity by aiding the development of specific adaptive immune responses or guiding the subsequent adaptive immune response. With this revived interest in neutrophils and their many novel functions, it is prudent to review what is currently known about neutrophils and, even more importantly, understand what information is lacking. We discuss the essential features of the neutrophil, from its origins, lifespan, subsets, margination and sequestration of the neutrophil to the death of the neutrophil. We highlight neutrophil recruitment to both infected and injured tissues and outline differences in recruitment of neutrophils between different tissues. Finally, we examine how neutrophils use different mechanisms to either bolster protective immune responses or negatively cause pathological outcomes at different locations.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Kubes
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Grabowski P, Hesse S, Hollizeck S, Rohlfs M, Behrends U, Sherkat R, Tamary H, Ünal E, Somech R, Patıroğlu T, Canzar S, van der Werff Ten Bosch J, Klein C, Rappsilber J. Proteome Analysis of Human Neutrophil Granulocytes From Patients With Monogenic Disease Using Data-independent Acquisition. Mol Cell Proteomics 2019; 18:760-772. [PMID: 30630937 PMCID: PMC6442368 DOI: 10.1074/mcp.ra118.001141] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Neutrophil granulocytes are critical mediators of innate immunity and tissue regeneration. Rare diseases of neutrophil granulocytes may affect their differentiation and/or functions. However, there are very few validated diagnostic tests assessing the functions of neutrophil granulocytes in these diseases. Here, we set out to probe omics analysis as a novel diagnostic platform for patients with defective differentiation and function of neutrophil granulocytes. We analyzed highly purified neutrophil granulocytes from 68 healthy individuals and 16 patients with rare monogenic diseases. Cells were isolated from fresh venous blood (purity >99%) and used to create a spectral library covering almost 8000 proteins using strong cation exchange fractionation. Patient neutrophil samples were then analyzed by data-independent acquisition proteomics, quantifying 4154 proteins in each sample. Neutrophils with mutations in the neutrophil elastase gene ELANE showed large proteome changes that suggest these mutations may affect maturation of neutrophil granulocytes and initiate misfolded protein response and cellular stress mechanisms. In contrast, only few proteins changed in patients with leukocyte adhesion deficiency (LAD) and chronic granulomatous disease (CGD). Strikingly, neutrophil transcriptome analysis showed no correlation with its proteome. In case of two patients with undetermined genetic causes, proteome analysis guided the targeted genetic diagnostics and uncovered the underlying genomic mutations. Data-independent acquisition proteomics may help to define novel pathomechanisms in neutrophil diseases and provide a clinically useful diagnostic dimension.
Collapse
Affiliation(s)
- Piotr Grabowski
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Sebastian Hesse
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Sebastian Hollizeck
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Meino Rohlfs
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Uta Behrends
- ‖Children's Hospital, Hematology-Oncology, Technical University Munich, 80804 Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hannah Tamary
- Schneider Children's Medical Center of Israel, Petah Tikva, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Christoph Klein
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany;.
| | - Juri Rappsilber
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany;; ¶Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;.
| |
Collapse
|
23
|
Teschner D, Cholaszczyńska A, Ries F, Beckert H, Theobald M, Grabbe S, Radsak M, Bros M. CD11b Regulates Fungal Outgrowth but Not Neutrophil Recruitment in a Mouse Model of Invasive Pulmonary Aspergillosis. Front Immunol 2019; 10:123. [PMID: 30778357 PMCID: PMC6369709 DOI: 10.3389/fimmu.2019.00123] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
ß2 integrin receptors consist of an alpha subunit (CD11a-CD11d) and CD18 as the common beta subunit, and are differentially expressed by leukocytes. ß2 integrins are required for cell-cell interaction, transendothelial migration, uptake of opsonized pathogens, and cell signaling processes. Functional loss of CD18—termed leukocyte-adhesion deficiency type 1 (LAD1)—results in an immunocompromised state characterized by frequent occurrence of severe infections. In immunosuppressed individuals Aspergillus fumigatus is a frequent cause of invasive pulmonary fungal infection, and often occurs in patients suffering from LAD1. Here, we asked for the importance of CD11b/CD18 also termed MAC-1 which is required for phagocytosis of opsonized A. fumigatus conidia by polymorphonuclear neutrophils (PMN) for control of pulmonary A. fumigatus infection. We show that CD11b−/− mice infected with A. fumigatus were unaffected in long term survival, similar to wild type (WT) mice. However, bronchoalveolar lavage (BAL) performed 1 day after infection revealed a higher lung infiltration of PMN in case of infected CD11b−/− mice than observed for WT mice. BAL derived from infected CD11b−/− mice also contained a higher amount of leukocyte-attracting CCL5 chemokine, but lower amounts of proinflammatory innate cytokines. In accordance, lung tissue of A. fumigatus infected CD11b−/− mice was characterized by lower cellular inflammation, and a higher fungal burden. In agreement, CD11b−/−PMN exerted lower phagocytic activity on serum-opsonized A. fumigatus conidia than WT PMN in vitro. Our study shows that MAC-1 is required for effective clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lung. Enhanced infiltration of CD11b−/− PMN may serve to compensate impaired PMN function.
Collapse
Affiliation(s)
- Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Cholaszczyńska
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Matthias Theobald
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat Commun 2018; 9:5058. [PMID: 30498196 PMCID: PMC6265255 DOI: 10.1038/s41467-018-07506-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Vascular-deposited IgG immune complexes promote neutrophil recruitment, but how this process is regulated is still unclear. Here we show that the CD18 integrin Mac-1, in its bent state, interacts with the IgG receptor FcγRIIA in cis to reduce the affinity of FcγRIIA for IgG and inhibit FcγRIIA-mediated neutrophil recruitment under flow. The Mac-1 rs1143679 lupus-risk variant reverses Mac-1 inhibition of FcγRIIA, as does a Mac-1 ligand and a mutation in Mac-1’s ligand binding αI-domain. Sialylated complex glycans on FcγRIIA interact with the αI-domain via divalent cations, and this interaction is required for FcγRIIA inhibition by Mac-1. Human neutrophils deficient in CD18 integrins exhibit augmented FcγRIIA-dependent recruitment to IgG-coated endothelium. In mice, CD18 integrins on neutrophils dampen IgG-mediated neutrophil accumulation in the kidney. In summary, cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 alters the threshold for IgG-mediated neutrophil recruitment. A disruption of this interaction may increase neutrophil influx in autoimmune diseases. Deposited immune complexes (IC) promote neutrophil recruitment, but the fine tuning of this process is still unclear. Here the authors show that the cis interaction of the IC receptor, FcγRIIA and CD18 integrin, Mac-1, on the neutrophil surface modulates neutrophil adhesion, with FcγRIIA sialylation specifically implicated in this interaction.
Collapse
|
25
|
Nascimento DDO, Vieira-de-Abreu A, Arcanjo AF, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin α Dβ 2 (CD11d/CD18) Modulates Leukocyte Accumulation, Pathogen Clearance, and Pyroptosis in Experimental Salmonella Typhimurium Infection. Front Immunol 2018; 9:1128. [PMID: 29881383 PMCID: PMC5977906 DOI: 10.3389/fimmu.2018.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
β2 integrins are critical in host defense responses to invading pathogens and inflammation. Previously, we reported that genetic deficiency of integrin αDβ2 in mice altered outcomes in experimental systemic infections including accelerated mortality in animals infected with Salmonella enterica serovar Typhimurium. Here, we show that deficiency of αDβ2 results in impaired accumulation of leukocytes in response to peritoneal infection by S. Typhimurium, impaired pathogen clearance in vivo, defective bacterial elimination by cultured peritoneal macrophages, and enhanced pyroptosis, a cell death process triggered by Salmonella. Salmonella-infected animals deficient in αDβ2 had increased levels of peritoneal cytokines in addition to other markers of pyroptosis, which may contribute to inflammatory injury and increased mortality in the context of impaired bacterial killing. These observations indicate important contributions of leukocyte integrins to the host response in experimental Salmonella infection and reveal previous activities of αDβ2 in bacterial infection.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Angélica F Arcanjo
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patricia Torres Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | | |
Collapse
|
26
|
Schittenhelm L, Hilkens CM, Morrison VL. β 2 Integrins As Regulators of Dendritic Cell, Monocyte, and Macrophage Function. Front Immunol 2017; 8:1866. [PMID: 29326724 PMCID: PMC5742326 DOI: 10.3389/fimmu.2017.01866] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that the β2 integrin family of adhesion molecules have an important role in suppressing immune activation and inflammation. β2 integrins are important adhesion and signaling molecules that are exclusively expressed on leukocytes. The four β2 integrins (CD11a, CD11b, CD11c, and CD11d paired with the β2 chain CD18) play important roles in regulating three key aspects of immune cell function: recruitment to sites of inflammation; cell-cell contact formation; and downstream effects on cellular signaling. Through these three processes, β2 integrins both contribute to and regulate immune responses. This review explores the pro- and anti-inflammatory effects of β2 integrins in monocytes, macrophages, and dendritic cells and how they influence the outcome of immune responses. We furthermore discuss how imbalances in β2 integrin function can have far-reaching effects on mounting appropriate immune responses, potentially influencing the development and progression of autoimmune and inflammatory diseases. Therapeutic targeting of β2 integrins, therefore, holds enormous potential in exploring treatment options for a variety of inflammatory conditions.
Collapse
Affiliation(s)
- Leonie Schittenhelm
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Catharien M Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Vicky L Morrison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|
27
|
Sharma D, Jindal AK, Rawat A, Singh S. Approach to a Child with Primary Immunodeficiency Made Simple. Indian Dermatol Online J 2017; 8:391-405. [PMID: 29204384 PMCID: PMC5707833 DOI: 10.4103/idoj.idoj_189_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary immunodeficiency disorders (PIDs) are a group of disorders affecting the capability to fight against infection. These include defects in T cells and B cells affecting cell-mediated and humoral immunity, respectively, combined humoral and cell-mediated immunodeficiency, defects in phagocytosis, complement defects, and defects in cytokine or cytokine signalling pathways which are detrimental for immune function. Depending upon the type and severity, age at onset of symptoms can vary from neonatal period to late childhood. Clinically, this group of disorders can involve any organ system of an individual such as respiratory system, gastrointestinal system, skin and mucous membrane, bone and joints, endocrine organs, and nervous system. Common dermatological manifestations include eczema, warts, molluscum contagiosum, mucocutaneous candidiasis, recurrent nonhealing ulcers, skin abscesses, erythroderma, petechiae, and nail changes. The common skin manifestations of various PIDs include eczema (seen in Wiskott-Aldrich syndrome and autosomal dominant hyper IgE syndrome); erythroderma (in Omen syndrome); viral warts or molluscum contagiosum (in autosomal recessive hyper IgE syndrome); chronic mucocutaneous candidiasis (in hyper IgE syndrome, autoimmune polyendocrinopathy candidiasis ectodermal dysplasia syndrome, Th17 cell defects); recurrent nonhealing ulcers (in leucocyte adhesion defect); skin abscesses (in antibody defects, hyper IgE syndrome, and chronic granulomatous disease); petechial or purpuric spots (in Wiskott-Aldrich syndrome).
Collapse
Affiliation(s)
- Dhrubajyoti Sharma
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K. Jindal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Barbouche MR, Mekki N, Ben-Ali M, Ben-Mustapha I. Lessons from Genetic Studies of Primary Immunodeficiencies in a Highly Consanguineous Population. Front Immunol 2017; 8:737. [PMID: 28702026 PMCID: PMC5485821 DOI: 10.3389/fimmu.2017.00737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 11/29/2022] Open
Abstract
During the last decades, the study of primary immunodeficiencies (PIDs) has contributed tremendously to unravel novel pathways involved in a variety of immune responses. Many of these PIDs have an autosomal recessive (AR) mode of inheritance. Thus, the investigation of the molecular basis of PIDs is particularly relevant in consanguineous populations from Middle East and North Africa (MENA). Although significant efforts have been made in recent years to develop genetic testing across the MENA region, few comprehensive studies reporting molecular basis of PIDs in these settings are available. Herein, we review genetic characteristics of PIDs identified in 168 patients from an inbred Tunisian population. A spectrum of 25 genes involved was analyzed. We show that AR forms compared to X-linked or autosomal dominant forms are clearly the most frequent. Furthermore, the study of informative consanguineous families did allow the identification of a novel hyper-IgE syndrome linked to phosphoglucomutase 3 mutations. We did also report a novel form of autoimmune lymphoproliferative syndrome caused by homozygous FAS mutations with normal or residual protein expression as well as a novel AR transcription factor 3 deficiency. Finally, we identified several founder effects for specific AR mutations. This did facilitate the implementation of preventive approaches through genetic counseling in affected consanguineous families. All together, these findings highlight the specific nature of highly consanguineous populations and confirm the importance of unraveling the molecular basis of genetic diseases in this context. Besides providing a better fundamental knowledge of novel pathways, their study is improving diagnosis strategies and appropriate care.
Collapse
Affiliation(s)
- Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
29
|
Mapping cell surface adhesion by rotation tracking and adhesion footprinting. Sci Rep 2017; 7:44502. [PMID: 28290531 PMCID: PMC5349612 DOI: 10.1038/srep44502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.
Collapse
|
30
|
Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol 2016; 23:36-43. [PMID: 26554893 DOI: 10.1097/moh.0000000000000198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Neutrophils have traditionally been viewed in the context of acute infection and inflammation forming the first line of defense against invading pathogens. Neutrophil trafficking to the site of inflammation requires adhesion and transmigration through blood vessels, which is orchestrated by adhesion molecules, such as β2 and β1-integrins, chemokines, and cytokines. The review focuses on recent advances in understanding the regulators of neutrophil recruitment during inflammation in both acute and chronic settings. RECENT FINDINGS Recent findings suggest that besides the established pathways of selectin or chemokine-mediated integrin activation, signaling by distinct Toll-like receptors (TLRs) (especially TLR2, TLR4, and TLR5) can activate integrin-dependent neutrophil adhesion. Moreover, the integrin α3β1 has been vitally implicated as a new player in neutrophil recruitment and TLR-mediated responses in septic inflammation. Furthermore, several endogenous inhibitory mechanisms of leukocyte recruitment have been identified, including the secreted molecules Del-1, PTX3, and GDF-15, which block distinct steps of the leukocyte adhesion cascade, as well as novel regulatory signaling pathways, involving the protein kinase AKT1 and IFN-λ2/IL-28A. SUMMARY The leukocyte adhesion cascade is a tightly regulated process, subjected to both positive and negative regulators. Dysregulation of this process and hence neutrophil recruitment can lead to the development of inflammatory and autoimmune diseases.
Collapse
|
31
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Nascimento DO, Siqueira AM, Campbell RA, Teixeira Ferreira TP, Gutierrez TM, Ribeiro GM, E Silva PMR, Carvalho AR, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 (CD11d/CD18) mediates experimental malaria-associated acute respiratory distress syndrome (MA-ARDS). Malar J 2016; 15:393. [PMID: 27473068 PMCID: PMC4967320 DOI: 10.1186/s12936-016-1447-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a potentially lethal complication of clinical malaria. Acute lung injury in MA-ARDS shares features with ARDS triggered by other causes, including alveolar inflammation and increased alveolar-capillary permeability, leading to leak of protein-rich pulmonary oedema fluid. Mechanisms and physiologic alterations in MA-ARDS can be examined in murine models of this syndrome. Integrin αDβ2 is a member of the leukocyte, or β2 (CD18), sub-family of integrins, and emerging observations indicate that it has important activities in leukocyte adhesion, accumulation and signalling. The goal was to perform analysis of the lungs of mice wild type C57Bl/6 (a D (+/+) ) and Knockout C57Bl/6 (a D (-/-) ) with malaria-associated acute lung injury to better determine the relevancy of the murine models and investigate the mechanism of disease. METHODS C57BL/6 wild type (a D (+/+) ) and deficient for CD11d sub-unit (a D (-/-) ) mice were monitored after infection with 10(5) Plasmodium berghei ANKA. CD11d subunit expression RNA was measured by real-time polymerase chain reaction, vascular barrier integrity by Evans blue dye (EBD) exclusion and cytokines by ELISA. Protein and leukocytes were measured in bronchoalveolar lavage fluid (BALF) samples. Tissue cellularity was measured by the point-counting technique, F4/80 and VCAM-1 expression by immunohistochemistry. Respiratory function was analysed by non-invasive BUXCO and mechanical ventilation. RESULTS Alveolar inflammation, vascular and interstitial accumulation of monocytes and macrophages, and disrupted alveolar-capillary barrier function with exudation of protein-rich pulmonary oedema fluid were present in P. berghei-infected wild type mice and were improved in αDβ2-deficient animals. Key pro-inflammatory cytokines were also decreased in lung tissue from α D (-/-) mice, providing a mechanistic explanation for reduced alveolar-capillary inflammation and leak. CONCLUSIONS The results indicate that αDβ2 is an important inflammatory effector molecule in P. berghei-induced MA-ARDS, and that leukocyte integrins regulate critical inflammatory and pathophysiologic events in this model of complicated malaria. Genetic deletion of integrin subunit αD in mice, leading to deficiency of integrin αDβ2, alters lung inflammation and acute lung injury in a mouse model of MA-ARDS caused by P. berghei.
Collapse
Affiliation(s)
- Isaclaudia G de Azevedo-Quintanilha
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil.
| | - Adriana Vieira-de-Abreu
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| | - André Costa Ferreira
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Daniele O Nascimento
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Alessandra M Siqueira
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Robert A Campbell
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tatiana P Teixeira Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Rio de Janeiro, Brazil
| | - Tatiana M Gutierrez
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Gabriel M Ribeiro
- Laboratório de Engenharia Pulmonar no Programa de Engenharia Biomédica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia-COPPE/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Rio de Janeiro, Brazil
| | - Alysson R Carvalho
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Guy A Zimmerman
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hugo C Castro-Faria-Neto
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil.,Programa de Produtividade Científica, Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Leon-Rico D, Aldea M, Sanchez-Baltasar R, Mesa-Nuñez C, Record J, Burns SO, Santilli G, Thrasher AJ, Bueren JA, Almarza E. Lentiviral Vector-Mediated Correction of a Mouse Model of Leukocyte Adhesion Deficiency Type I. Hum Gene Ther 2016; 27:668-78. [PMID: 27056660 PMCID: PMC5035374 DOI: 10.1089/hum.2016.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene and is characterized by recurrent and life-threatening bacterial infections. These mutations lead to defective or absent expression of β2 integrins on the leukocyte surface, compromising adhesion and extravasation at sites of infection. Three different lentiviral vectors (LVs) conferring ubiquitous or preferential expression of CD18 in myeloid cells were constructed and tested in human and mouse LAD-I cells. All three hCD18-LVs restored CD18 and CD11a membrane expression in LAD-I patient-derived lymphoblastoid cells. Corrected cells recovered the ability to aggregate and bind to sICAM-1 after stimulation. All vectors induced stable hCD18 expression in hematopoietic cells from mice with a hypomorphic Itgb2 mutation (CD18HYP), both in vitro and in vivo after transplantation of corrected cells into primary and secondary CD18HYP recipients. hCD18+ hematopoietic cells from transplanted CD18HYP mice also showed restoration of mCD11a surface co-expression. The analysis of in vivo neutrophil migration in CD18HYP mice subjected to two different inflammation models demonstrated that the LV-mediated gene therapy completely restored neutrophil extravasation in response to inflammatory stimuli. Finally, these vectors were able to correct the phenotype of human myeloid cells derived from CD34+ progenitors defective in ITGB2 expression. These results support for the first time the use of hCD18-LVs for the treatment of LAD-I patients in clinical trials.
Collapse
Affiliation(s)
- Diego Leon-Rico
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Montserrat Aldea
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Raquel Sanchez-Baltasar
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Cristina Mesa-Nuñez
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Julien Record
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom
| | - Siobhan O Burns
- 4 Department of Immunology, Royal Free London NHS Foundation Trust , London, United Kingdom .,5 University College London Institute of Immunity and Transplantation , London, United Kingdom
| | - Giorgia Santilli
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom
| | - Adrian J Thrasher
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom .,6 Great Ormond Street Hospital Foundation Trust NHS Trust , London, United Kingdom
| | - Juan A Bueren
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Elena Almarza
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| |
Collapse
|
33
|
Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol 2016; 28:146-58. [PMID: 26936034 DOI: 10.1016/j.smim.2016.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023]
Abstract
Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and - upon extravasation - with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology.
Collapse
|
34
|
Neutrophil Functions in Periodontal Homeostasis. J Immunol Res 2016; 2016:1396106. [PMID: 27019855 PMCID: PMC4785262 DOI: 10.1155/2016/1396106] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed.
Collapse
|
35
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
36
|
An Alternative Phosphorylation Switch in Integrin β2 (CD18) Tail for Dok1 Binding. Sci Rep 2015; 5:11630. [PMID: 26108885 PMCID: PMC4479986 DOI: 10.1038/srep11630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/01/2015] [Indexed: 11/23/2022] Open
Abstract
Integrins are involved in cell migration and adhesion. A large number of proteins interact with the cytoplasmic tails of integrins. Dok1 is a negative regulator of integrin activation and it binds to the phosphorylated membrane proximal NxxY motif in a number of integrin β tails. The β tail of the β2 integrins contains a non-phosphorylatable NxxF motif. Hence it is unclear how Dok1 associates with the β2 integrins. We showed in this study using NMR and cell based analyses that residues Ser745 and Ser756 in the integrin β2 tail, which are adjacent to the NxxF motif, are required for Dok1 interaction. NMR analyses detected significant chemical shift changes and higher affinity interactions between Dok1 phospho-tyrosine binding (PTB) domain and integrin β2 tail peptide containing pSer756 compared to pSer745. The phosphorylated β2 peptide occupies the canonical ligand binding pocket of Dok1 based on the docked structure of the β2 tail-Dok1 PTB complex. Taken together, our data suggest an alternate phosphorylation switch in β2 integrins that regulates Dok1 binding. This could be important for cells of the immune system and their functions.
Collapse
|
37
|
Abstract
Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.
Collapse
|
38
|
Miyazaki Y, Vieira-de-Abreu A, Harris ES, Shah AM, Weyrich AS, Castro-Faria-Neto HC, Zimmerman GA. Integrin αDβ2 (CD11d/CD18) is expressed by human circulating and tissue myeloid leukocytes and mediates inflammatory signaling. PLoS One 2014; 9:e112770. [PMID: 25415295 PMCID: PMC4240710 DOI: 10.1371/journal.pone.0112770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
Integrin α(D)β(2) is the most recently identified member of the leukocyte, or β(2), subfamily of integrin heterodimers. Its distribution and functions on human leukocytes have not been clearly defined and are controversial. We examined these issues and found that α(D)β(2) is prominently expressed by leukocytes in whole blood from healthy human subjects, including most polymorphonuclear leukocytes and monocytes. We also found that α(D)β(2) is displayed by leukocytes in the alveoli of uninjured and inflamed human lungs and by human monocyte-derived macrophages and dendritic cells, indicating broad myeloid expression. Using freshly-isolated human monocytes, we found that α(D)β(2) delivers outside-in signals to pathways that regulate cell spreading and gene expression. Screening expression analysis followed by validation of candidate transcripts demonstrated that engagement of α(D)β(2) induces mRNAs encoding inflammatory chemokines and cytokines and secretion of their protein products. Thus, α(D)β(2) is a major member of the integrin repertoire of both circulating and tissue myeloid leukocytes in humans. Its broad expression and capacity for outside-in signaling indicate that it is likely to have important functions in clinical syndromes of infection, inflammation, and tissue injury.
Collapse
Affiliation(s)
- Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Adriana Vieira-de-Abreu
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Estelle S. Harris
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
| | - Amrapali M. Shah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
| | - Andrew S. Weyrich
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States of America
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol 2014; 15:602-11. [PMID: 24940954 DOI: 10.1038/ni.2921] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from blood to tissues in models of blood-borne infections versus bacterial invasion through epithelial linings. We examine data on novel aspects of the activation of NADPH oxidase and the heterogeneity of phagosomes and, finally, consider the importance of two neutrophil-derived biological agents: neutrophil extracellular traps and ectosomes.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Xu Z, Chen X, Zhi H, Gao J, Bialkowska K, Byzova TV, Pluskota E, White GC, Liu J, Plow EF, Ma YQ. Direct interaction of kindlin-3 with integrin αIIbβ3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:1961-7. [PMID: 24969775 DOI: 10.1161/atvbaha.114.303851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3-mediated platelet functions. APPROACH AND RESULTS We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. CONCLUSIONS These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.
Collapse
Affiliation(s)
- Zhen Xu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Xue Chen
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Huiying Zhi
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Juan Gao
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Katarzyna Bialkowska
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Tatiana V Byzova
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Elzbieta Pluskota
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Gilbert C White
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Junling Liu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Edward F Plow
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Yan-Qing Ma
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.).
| |
Collapse
|
41
|
Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL, Puel A. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr 2013; 25:736-47. [PMID: 24240293 PMCID: PMC4098727 DOI: 10.1097/mop.0000000000000031] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW We review the primary immunodeficiencies (PIDs) underlying an increasing variety of superficial and invasive fungal infections. We also stress that the occurrence of such fungal infections should lead physicians to search for the corresponding single-gene inborn errors of immunity. Finally, we suggest that other fungal infections may also result from hitherto unknown inborn errors of immunity, at least in some patients with no known risk factors. RECENT FINDINGS An increasing number of PIDs are being shown to underlie fungal infectious diseases in children and young adults. Inborn errors of the phagocyte NADPH oxidase complex (chronic granulomatous disease), severe congenital neutropenia (SCN) and leukocyte adhesion deficiency type I confer a predisposition to invasive aspergillosis and candidiasis. More rarely, inborn errors of interferon-γ immunity underlie endemic mycoses. Inborn errors of interleukin-17 immunity have recently been shown to underlie chronic mucocutaneous candidiasis (CMC), while inborn errors of caspase recruitment domain-containing protein 9 (CARD9) immunity underlie deep dermatophytosis and invasive candidiasis. SUMMARY CMC, invasive candidiasis, invasive aspergillosis, deep dermatophytosis, pneumocystosis, and endemic mycoses can all be caused by PIDs. Each type of infection is highly suggestive of a specific type of PID. In the absence of overt risk factors, single-gene inborn errors of immunity should be sought in children and young adults with these and other fungal diseases.
Collapse
MESH Headings
- Adolescent
- Adult
- Aspergillosis/genetics
- Aspergillosis/immunology
- Autoantibodies
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Child, Preschool
- Disease Susceptibility
- Female
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Humans
- Immunity, Cellular/genetics
- Immunologic Deficiency Syndromes/complications
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infant
- Infant, Newborn
- Interleukin-17/immunology
- Male
- Mycoses/genetics
- Mycoses/immunology
- Pneumonia, Pneumocystis/genetics
- Pneumonia, Pneumocystis/immunology
- Risk Factors
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Fanny Lanternier
- aLaboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980 Necker Medical School, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité bInfectious Diseases and Tropical Medicine Unit, Necker-Enfants Malades Hospital, AP-HP and Paris Descartes University cPasteur Institute, National Reference Center of Invasive Mycoses and Antifungals, Paris, France dSt Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA eStudy Center for Immunodeficiency fPediatric Hematology-Immunology Unit, Necker Enfants-Malades Hospital, AP-HP, and Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:181-218. [PMID: 24050624 DOI: 10.1146/annurev-pathol-020712-164023] [Citation(s) in RCA: 913] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 20115;
| | | | | |
Collapse
|
43
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|
44
|
Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013; 112:1506-19. [PMID: 23704217 DOI: 10.1161/circresaha.113.300512] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key thromboinflammatory activities in a variety of vascular disorders and vasculopathies. Recently identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases.
Collapse
Affiliation(s)
- Matthew T Rondina
- Department of Medicine and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | |
Collapse
|