1
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Zhang Y, Bai Z, Song K, Liu Y, Zhang W. High-iron diet damages brown adipose tissue mitochondria and exacerbates metabolic hazards of a high-fat diet. Biochem Biophys Res Commun 2024; 739:151008. [PMID: 39556936 DOI: 10.1016/j.bbrc.2024.151008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Metabolic diseases may be prevented by reducing carbohydrate intake and replacing plant-based diets with animal-based ones low in carbohydrates but high in protein, fat, and iron. While the effects of sugars on metabolic diseases are well-known, the role of iron remains unclear. This study aimed to explore the effects of a high-fat high-iron animal diet on body metabolism in mice. Micro-PET imaging was used to assess 18-F-labelled glucose uptake in BAT, and the morphology, respiratory function, and oxidative stress of BAT mitochondria were examined. The underlying mechanisms were elucidated by analyzing the expression of UCP-1, PGC-1α and PPARα. The high-iron high-fat diet increased appetite, impaired glucose tolerance, and reduced insulin sensitivity. Additionally, the high-iron diet promoted gluconeogenesis only in the absence of high-fat levels. Both high-iron and high-fat diets suppressed BAT activity, increased mitochondrial oxidative stress, decreased mitochondrial respiratory function, and lowered thermogenic gene expression. Weight loss strategies focusing solely on reducing carbohydrates and increasing animal foods, like ketogenic diets, may have long-term detrimental effects on metabolic health. Prioritizing dietary diversity and monitoring overall caloric intake is advisable for optimal outcomes.
Collapse
Affiliation(s)
- Yifan Zhang
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China; Qinghai Provincial People's Hospital. Xining, Qinghai, 810007, China
| | - Zhenzhong Bai
- Qinghai University Medical College. Xining, Qinghai, 810007, China
| | - Kang Song
- Qinghai Provincial People's Hospital. Xining, Qinghai, 810007, China
| | - Ying Liu
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China
| | - Wenbin Zhang
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
3
|
Bacchetti T, Morresi C, Simonetti O, Ferretti G. Effect of Diet on HDL in Obesity. Molecules 2024; 29:5955. [PMID: 39770044 PMCID: PMC11677490 DOI: 10.3390/molecules29245955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function. In obese subjects, the changes in morphology and function of adipose tissue lead to impaired regulatory function and are associated with a state of low-grade chronic inflammation, with increased release of pro-inflammatory adipokines and cytokines. These alterations may affect HDL metabolism and functions; thus, adipose tissue is considered a potential target for the prevention and treatment of obesity. A cornerstone of obesity prevention and therapy is lifestyle modification through dietary changes, which is reflected in the modulation of plasma lipoprotein metabolism. Some dietary components and metabolites directly affect the composition and structure of HDL and modulate its anti-inflammatory and vasoprotective properties. The aims of the review are to summarize the crosstalk between adipocytes and HDL dysfunction in human obesity and to highlight recent discoveries on beneficial dietary patterns as well as nutritional components on inflammation and HDL function in human obesity.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy;
| |
Collapse
|
4
|
Li Q, Liu Y, Wang Y, Zhang Q, Zhang N, Song D, Wang F, Gao Q, Chen Y, Zhang G, Wen J, Zhao G, Chen L, Gao Y. Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice. PLoS Genet 2024; 20:e1011514. [PMID: 39680603 PMCID: PMC11684654 DOI: 10.1371/journal.pgen.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1. Loss of SPOP also led to defects in body weight gain. In addition, conditional knockout mice exhibited resistance to high-fat-diet-induced obesity. Proteomics analysis found that proteins upregulated in the knockout mice are primarily enriched for functions in glycolysis/gluconeogenesis, oxidative phosphorylation, and thermogenesis. Furthermore, Spop knockout mice were more resilient during cold tolerance assay compared with the wild-type controls. Finally, the knockout of SPOP efficiently impaired adipogenesis in primary preadipocytes and the expression of associated genes. Collectively, these findings demonstrate the critical roles of SPOP in regulating adipogenesis and thermogenic capacity in mice.
Collapse
Affiliation(s)
- Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuhong Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Na Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Danli Song
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuxin Chen
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Chen
- Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Yu Gao
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Amor M, Diaz M, Bianco V, Svecla M, Schwarz B, Rainer S, Pirchheim A, Schooltink L, Mukherjee S, Grabner GF, Beretta G, Lamina C, Norata GD, Hackl H, Kratky D. Identification of regulatory networks and crosstalk factors in brown adipose tissue and liver of a cold-exposed cardiometabolic mouse model. Cardiovasc Diabetol 2024; 23:298. [PMID: 39143620 PMCID: PMC11325583 DOI: 10.1186/s12933-024-02397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Malena Diaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Monika Svecla
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Laszlo Schooltink
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Suravi Mukherjee
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Gernot F Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
6
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
7
|
Liu Z, Zhu S, Zhao Z, Tang S, Tan J, Xue C, Tang Q, Liu F, Li X, Chen J, Lu H, Luo W. SCD1 sustains brown fat sympathetic innervation and thermogenesis during the long-term cold exposure. Biochem Biophys Res Commun 2024; 696:149493. [PMID: 38219486 DOI: 10.1016/j.bbrc.2024.149493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Brown fat adipose tissue (BAT) is a therapeutic potential target to improve obesity, diabetes and cold acclimation in mammals. During the long-term cold exposure, the hyperplastic sympathetic network is crucial for BAT the maintain the highly thermogenic status. It has been proved that the sympathetic nervous drives the thermogenic activity of BAT via the release of norepinephrine. However, it is still unclear that how the thermogenic BAT affects the remodeling of the hyperplastic sympathetic network, especially during the long-term cold exposure. Here, we showed that following long-term cold exposure, SCD1-mediated monounsaturated fatty acid biosynthesis pathway was enriched, and the ratios of monounsaturated/saturated fatty acids were significantly up-regulated in BAT. And SCD1-deficiency in BAT decreased the capacity of cold acclimation, and suppressed long-term cold mediated BAT thermogenic activation. Furthermore, by using thermoneutral exposure and sympathetic nerve excision models, we disclosed that SCD1-deficiency in BAT affected the thermogenic activity, depended on sympathetic nerve. In mechanism, SCD1-deficiency resulted in the unbalanced ratio of palmitic acid (PA)/palmitoleic acid (PO), with obviously higher level of PA and lower level of PO. And PO supplement efficiently reversed the inhibitory role of SCD1-deficiency on BAT thermogenesis and the hyperplastic sympathetic network. Thus, our data provided insight into the role of SCD1-mediated monounsaturated fatty acids metabolism to the interaction between thermogenic activity BAT and hyperplastic sympathetic networks, and illustrated the critical role of monounsaturated fatty acids biosynthetic pathway in cold acclimation during the long-term cold exposure.
Collapse
Affiliation(s)
- Zongcai Liu
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Sijin Zhu
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zhiwei Zhao
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shan Tang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jingyu Tan
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Chong Xue
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qijia Tang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fengshuo Liu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Jaeckstein MY, Schulze I, Zajac MW, Heine M, Mann O, Pfeifer A, Heeren J. CD73-dependent generation of extracellular adenosine by vascular endothelial cells modulates de novo lipogenesis in adipose tissue. Front Immunol 2024; 14:1308456. [PMID: 38264660 PMCID: PMC10803534 DOI: 10.3389/fimmu.2023.1308456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.
Collapse
Affiliation(s)
- Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Schulze
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wolfgang Zajac
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Kontush A, Martin M, Brites F. Sweet swell of burning fat: emerging role of high-density lipoprotein in energy homeostasis. Curr Opin Lipidol 2023; 34:235-242. [PMID: 37797204 DOI: 10.1097/mol.0000000000000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Metabolism of lipids and lipoproteins, including high-density lipoprotein (HDL), plays a central role in energy homeostasis. Mechanisms underlying the relationship between energy homeostasis and HDL however remain poorly studied. RECENT FINDINGS Available evidence reveals that HDL is implicated in energy homeostasis. Circulating high-density lipoprotein-cholesterol (HDL-C) levels are affected by energy production, raising with increasing resting metabolic rate. Lipolysis of triglycerides as a source of energy decreases plasma levels of remnant cholesterol, increases levels of HDL-C, and can be cardioprotective. Switch to preferential energy production from carbohydrates exerts opposite effects. SUMMARY Low HDL-C may represent a biomarker of inefficient energy production from fats. HDL-C-raising can be beneficial when it reflects enhanced energy production from burning fat.
Collapse
Affiliation(s)
- Anatol Kontush
- Sorbonne University, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S 1166, Paris, France
| | - Maximiliano Martin
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
11
|
Manaserh IH, Bledzka KM, Ampong I, Junker A, Grondolsky J, Schumacher SM. A cardiac amino-terminal GRK2 peptide inhibits insulin resistance yet enhances maladaptive cardiovascular and brown adipose tissue remodeling in females during diet-induced obesity. J Mol Cell Cardiol 2023; 183:81-97. [PMID: 37714510 PMCID: PMC10591815 DOI: 10.1016/j.yjmcc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/06/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Obesity and metabolic disorders are increasing in epidemic proportions, leading to poor outcomes including heart failure. With a growing recognition of the effect of adipose tissue dysfunction on heart disease, it is less well understood how the heart can influence systemic metabolic homeostasis. Even less well understood is sex differences in cardiometabolic responses. Previously, our lab investigated the role of the amino-terminus of GRK2 in cardiometabolic remodeling using transgenic mice with cardiac restricted expression of a short peptide, βARKnt. Male mice preserved insulin sensitivity, enhanced metabolic flexibility and adipose tissue health, elicited cardioprotection, and improved cardiac metabolic signaling. To examine the effect of cardiac βARKnt expression on cardiac and metabolic function in females in response to diet-induced obesity, we subjected female mice to high fat diet (HFD) to trigger cardiac and metabolic adaptive changes. Despite equivalent weight gain, βARKnt mice exhibited improved glucose tolerance and insulin sensitivity. However, βARKnt mice displayed a progressive reduction in energy expenditure during cold challenge after acute and chronic HFD stress. They also demonstrated reduced cardiac function and increased markers of maladaptive remodeling and tissue injury, and decreased or aberrant metabolic signaling. βARKnt mice exhibited reduced lipid deposition in the brown adipose tissue (BAT), but delayed or decreased markers of BAT activation and function suggested multiple mechanisms contributed to the decreased thermogenic capacity. These data suggest a non-canonical cardiac regulation of BAT lipolysis and function that highlights the need for studies elucidating the mechanisms of sex-specific responses to metabolic dysfunction.
Collapse
Affiliation(s)
- Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Isaac Ampong
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
Mota CMD, Madden CJ. High Fat Diet Suppresses Energy Expenditure Via Neurons in the Brainstem. Neuroscience 2023; 520:84-94. [PMID: 37054945 PMCID: PMC10200768 DOI: 10.1016/j.neuroscience.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Oxidation of fat by brown adipose tissue (BAT) contributes to energy balance and heat production. During cold exposure, BAT thermogenesis produces heat to warm the body. Obese subjects and rodents, however, show impaired BAT thermogenesis to the cold. Our previous studies suggest that vagal afferents synapsing in the nucleus tractus solitarius (NTS), tonically inhibit BAT thermogenesis to the cold in obese rats. NTS neurons send projections to the dorsal aspect of the lateral parabrachial nucleus (LPBd), which is a major integrative center that receives warm afferent inputs from the periphery and promotes inhibition of BAT thermogenesis. This study investigated the contribution of LPBd neurons in the impairment of BAT thermogenesis in rats fed a high-fat diet (HFD). By using a targeted dual viral vector approach, we found that chemogenetic activation of an NTS-LPB pathway inhibited BAT thermogenesis to the cold. We also found that the number of Fos-labelled neurons in the LPBd was higher in rats fed a HFD than in chow diet-fed rats after exposure to a cold ambient temperature. Nanoinjections of a GABAA receptor agonist into the LPBd area rescued BAT thermogenesis to the cold in HFD rats. These data reveal the LPBd as a critical brain area that tonically suppresses energy expenditure in obesity during skin cooling. These findings reveal novel effects of high-fat diets in the brain and in the control of metabolism and can contribute to the development of therapeutic approaches to regulate fat metabolism.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
13
|
Zhu T, Chen X, Jiang S. Progress and obstacles in transplantation of brown adipose tissue or engineered cells with thermogenic potential for metabolic benefits. Front Endocrinol (Lausanne) 2023; 14:1191278. [PMID: 37265692 PMCID: PMC10230949 DOI: 10.3389/fendo.2023.1191278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Transplantation of brown adipose tissue (BAT), engineered thermogenic progenitor cells, and adipocytes have received much attention for the improvement of obesity and metabolic disorders. However, even though the thermogenic and metabolic potential exists early after transplantation, the whitening of the brown fat graft occurs with metabolic function significantly impaired. In this review, specific experiment designs, graft outcomes, and metabolic benefits for the transplantation of BAT or engineered cells will be discussed. The current advancements will offer guidance to further investigation, and the obstacles appearing in previous studies will require innovation of BAT transplantation methods.
Collapse
|
14
|
Zhao L, Zhou J, Chen J, Zhang X, Zhang H, Guo L, Li D, Ning J, Wang X, Jin W, Mai K, Abraham E, Butcher R, Sun J. A chemical signal that promotes insect survival via thermogenesis. RESEARCH SQUARE 2023:rs.3.rs-2756320. [PMID: 37214941 PMCID: PMC10197781 DOI: 10.21203/rs.3.rs-2756320/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cold-activated thermogenesis of brown adipose tissues (BAT) is vital for the survival of animals under cold stress and also inhibits the development of tumours. The development of small-molecule tools that target thermogenesis pathways could lead to novel therapies against cold, obesity, and even cancer. Here, we identify a chemical signal that is produced in beetles in the winter to activate fat thermogenesis. This hormone elevates the basal body temperature by increasing cellular mitochondrial density and uncoupling in order to promote beetle survival. We demonstrate that this hormone activates UCP4- mediated uncoupled respiration through adipokinetic hormone receptor (AKHR). This signal serves as a novel fat-burning activator that utilizes a conserved mechanism to promote thermogenesis not only in beetles, nematode and flies, but also in mice, protecting the mice against cold and tumor growth. This hormone represents a new strategy to manipulate fat thermogenesis.
Collapse
Affiliation(s)
- Lilin Zhao
- Institute of Zoology, Chinese Academy of Sciences
| | - Jiao Zhou
- Institute of Zoology, Chinese Academy of Sciences
| | - Junxian Chen
- Institute of Zoology, Chinese Academy of Sciences
| | | | | | | | - Defeng Li
- Institute of Microbiology, Chinese Academy of Sciences
| | - Jing Ning
- Institute of Zoology, Chinese Academy of Sciences
| | - Xinchen Wang
- Institute of Zoology, Chinese Academy of Sciences
| | - Wanzhu Jin
- Institute of Zoology, Chinese Academy of Sciences
| | - Kevin Mai
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
15
|
Luo W, Xu Y, Gu X, Zhang J, Wang J, Geng F. Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes. Molecules 2023; 28:molecules28072991. [PMID: 37049754 PMCID: PMC10095695 DOI: 10.3390/molecules28072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.
Collapse
Affiliation(s)
- Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yisha Xu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| |
Collapse
|
16
|
Transcriptomics and metabolomics revealed the pulmonary protective mechanism of Xixin-Ganjiang Herb Pair for warming the lungs to dissolve phlegm in COPD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123665. [DOI: 10.1016/j.jchromb.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
|
17
|
Feng Y, Cui Z, Lu X, Gong H, Liu X, Wang H, Cheng H, Gao H, Shi X, Li Y, Ye H, Zhang Q, Kong X. Transcriptomics Dissection of Calorie Restriction and Exercise Training in Brown Adipose Tissue and Skeletal Muscle. Nutrients 2023; 15:nu15041047. [PMID: 36839405 PMCID: PMC9966723 DOI: 10.3390/nu15041047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Calorie restriction (CR) and exercise training (EX) are two critical lifestyle interventions for the prevention and treatment of metabolic diseases, such as obesity and diabetes. Brown adipose tissue (BAT) and skeletal muscle are two important organs for the generation of heat. Here, we undertook detailed transcriptional profiling of these two thermogenic tissues from mice treated subjected to CR and/or EX. We found transcriptional reprogramming of BAT and skeletal muscle as a result of CR but little from EX. Consistent with this, CR induced alterations in the expression of genes encoding adipokines and myokines in BAT and skeletal muscle, respectively. Deconvolution analysis showed differences in the subpopulations of myogenic cells, mesothelial cells and endogenic cells in BAT and in the subpopulations of satellite cells, immune cells and endothelial cells in skeletal muscle as a result of CR or EX. NicheNet analysis, exploring potential inter-organ communication, indicated that BAT and skeletal muscle could mutually regulate their fatty acid metabolism and thermogenesis through ligands and receptors. These data comprise an extensive resource for the study of thermogenic tissue molecular responses to CR and/or EX in a healthy state.
Collapse
Affiliation(s)
- Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Zhicheng Cui
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaodan Lu
- Precision Medicine Center, Jilin Province General Hospital, Changchun 130021, China
| | - Hongyu Gong
- School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Xiaoyu Liu
- School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Hui Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Haoyu Cheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (Q.Z.); (X.K.)
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
- Correspondence: (Q.Z.); (X.K.)
| |
Collapse
|
18
|
Role of bile acid receptor FXR in development and function of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159257. [PMID: 36402299 DOI: 10.1016/j.bbalip.2022.159257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Bile acids act as signalling molecules that contribute to maintenance of energy homeostasis in mice and humans. Activation of G-protein-coupled bile acid receptor TGR5 induces energy expenditure in brown adipose tissue (BAT). However, a role for the nuclear bile acid receptor Farnesoid X receptor (FXR) in BAT has remained ambiguous. We aimed to study the potential role of FXR in BAT development and functioning. Here we demonstrate low yet detectable expression of the α1/2 isoforms of FXR in murine BAT that markedly decreases upon cold exposure. Moderate adipose tissue-specific FXR overexpression in mice induces pronounced BAT whitening, presenting with large intracellular lipid droplets and extracellular collagen deposition. Expression of thermogenic marker genes including the target of Tgr5, Dio2, was significantly lower in BAT of chow-fed aP2-hFXR mice compared to wild-type controls. Transcriptomic analysis revealed marked up-regulation of extracellular matrix formation and down-regulation of mitochondrial functions in BAT from aP2-hFXR mice. In addition, markers of cell type lineages deriving from the dermomyotome, such as myocytes, as well as markers of cellular senescence were strongly induced. The response to cold and β3-adrenergic receptor agonism was blunted in these mice, yet resolved BAT whitening. Newborn cholestatic Cyp2c70-/- mice with a human-like bile acid profile also showed distinct BAT whitening and upregulation of myocyte-specific genes, while thermogenic markers were down-regulated. Ucp1 expression inversely correlated with plasma bile acid levels. Therefore, bile acid signalling via FXR has a role in BAT function already early in tissue development. Functionally, FXR activation appears to oppose TGR5-mediated thermogenesis.
Collapse
|
19
|
Luo Q, Das A, Oldoni F, Wu P, Wang J, Luo F, Fang Z. Role of ACSL5 in fatty acid metabolism. Heliyon 2023; 9:e13316. [PMID: 36816310 PMCID: PMC9932481 DOI: 10.1016/j.heliyon.2023.e13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Free fatty acids (FFAs) are essential energy sources for most body tissues. A fatty acid must be converted to fatty acyl-CoA to oxidize or be incorporated into new lipids. Acyl-CoA synthetase long-chain family member 5 (ACSL5) is localized in the endoplasmic reticulum and mitochondrial outer membrane, where it catalyzes the formation of fatty acyl-CoAs from long-chain fatty acids (C16-C20). Fatty acyl-CoAs are then used in lipid synthesis or β-oxidation mediated pathways. ACSL5 plays a pleiotropic role in lipid metabolism depending on substrate preferences, subcellular localization and tissue specificity. Here, we review the role of ACSL5 in fatty acid metabolism in multiple metabolic tissues, including the liver, small intestine, adipose tissue, and skeletal muscle. Given the increasing number of studies suggesting the role of ACSL5 in glucose and lipid metabolism, we also summarized the effects of ACSL5 on circulating lipids and insulin resistance.
Collapse
Affiliation(s)
- Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| |
Collapse
|
20
|
Lu D, Fujiwara H, Lodhi IJ, Hsu FF. Isolation and Mass Spectrometry-Based Profiling of Major Lipids in Brown Adipose Tissue. Methods Mol Biol 2023; 2662:219-239. [PMID: 37076685 DOI: 10.1007/978-1-0716-3167-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue (BAT) is an important regulator of metabolic homeostasis through its role in adaptive thermogenesis and control of whole-body glucose metabolism. Lipids play multiple roles in BAT functions, including serving as a fuel source for thermogenesis, mediating inter-organelle cross talk, and acting as BAT-derived signaling molecules that influence systemic energy metabolism. Profiling of various lipids in BAT under distinct metabolic states could provide new insights into their roles in the biology of the thermogenic fat. In this chapter, we describe a step-by-step workflow starting from sample preparations to mass spectrometry-based analysis of fatty acids and phospholipids in BAT.
Collapse
Affiliation(s)
- Dongliang Lu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hideji Fujiwara
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
21
|
Chen CH, Guo BC, Hu PA, Lee HT, Hu HY, Hsu MC, Chen WH, Lee TS. Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120080. [PMID: 36057326 DOI: 10.1016/j.envpol.2022.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe-/-) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe-/- mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-An Hu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Yun Hu
- International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Man-Chen Hsu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Chang W, Wang M, Zhang Y, Yu F, Hu B, Goljanek-Whysall K, Li P. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic 2022; 23:526-537. [PMID: 36109347 PMCID: PMC9828071 DOI: 10.1111/tra.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Bin Hu
- The Institute of Medical Sciences (IMS), School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Ireland
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Ding M, Ma YJ, Du RQ, Zhou WY, Dou X, Yang QQ, Tang Y, Qian SW, Liu Y, Pan DN, Tang QQ, Liu Y. CHCHD10 Modulates Thermogenesis of Adipocytes by Regulating Lipolysis. Diabetes 2022; 71:1862-1879. [PMID: 35709007 DOI: 10.2337/db21-0999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022]
Abstract
Brown and beige adipocytes dissipate energy in a nonshivering thermogenesis manner, exerting beneficial effects on metabolic homeostasis. CHCHD10 is a nuclear-encoded mitochondrial protein involved in cristae organization; however, its role in thermogenic adipocytes remains unknown. We identify CHCHD10 as a novel regulator for adipocyte thermogenesis. CHCHD10 is dramatically upregulated during thermogenic adipocyte activation by PPARγ-PGC1α and positively correlated with UCP1 expression in adipose tissues from humans and mice. We generated adipocyte-specific Chchd10 knockout mice (Chchd10-AKO) and found that depleting CHCHD10 leads to impaired UCP1-dependent thermogenesis and energy expenditure in the fasting state, with no effect in the fed state. Lipolysis in adipocytes is disrupted by CHCHD10 deficiency, while augmented lipolysis through ATGL overexpression recovers adipocyte thermogenesis in Chchd10-AKO mice. Consistently, overexpression of Chchd10 activates thermogenic adipocytes. Mechanistically, CHCHD10 deficiency results in the disorganization of mitochondrial cristae, leading to impairment of oxidative phosphorylation complex assembly in mitochondria, which in turn inhibits ATP generation. Decreased ATP results in downregulation of lipolysis by reducing nascent protein synthesis of ATGL, thereby suppressing adipocyte thermogenesis. As a result, Chchd10-AKO mice are prone to develop high-fat diet-induced metabolic disorders. Together, our findings reveal an essential role of CHCHD10 in regulating lipolysis and the thermogenic program in adipocytes.
Collapse
|
24
|
Hypermetabolism and Substrate Utilization Rates in Pheochromocytoma and Functional Paraganglioma. Biomedicines 2022; 10:biomedicines10081980. [PMID: 36009527 PMCID: PMC9406117 DOI: 10.3390/biomedicines10081980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The overproduction of catecholamines in pheochromocytoma/paraganglioma (PPGL) induces a hypermetabolic state. The aim of this study was to evaluate the incidence of a hypermetabolic state and differences in substrate metabolism in consecutive PPGL patients divided by catecholamine phenotype. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured in 108 consecutive PPGL patients and 70 controls by indirect calorimetry. Hypermetabolic state was defined according to the Mifflin St. Jeor Equation as a ratio above 110%. Hypermetabolic state was confirmed in 70% of PPGL patients, regardless of phenotype. Older age, prevalence of diabetes mellitus and arterial hypertension were correlated with hypermetabolic PPGL as compared to normometabolic form. Analysis according to overproduced catecholamine showed differences in VCO2 (p < 0.05) and RQ (p < 0.01) and thus different substate metabolism between phenotypes in hypermetabolic form of PPGL. Lipid utilization was higher in the adrenergic phenotype (p = 0.001) and positively associated with the percentage of REE ratio (R = 0.48, p < 0.001), whereas the noradrenergic phenotype preferentially oxidizes carbohydrates (P = 0.001) and is correlated with the percentage of REE ratio (R = 0.60, p < 0.001). Hypermetabolic state in PPGL is a common finding in both catecholamine phenotypes. Hypermetabolic PPGL patients are older and suffer more from diabetes mellitus and arterial hypertension. Under basal conditions, the noradrenergic type preferentially metabolizes carbohydrates, whereas the adrenergic phenotype preferentially metabolizes lipids.
Collapse
|
25
|
Xiong T, Rodriguez Paris V, Edwards MC, Hu Y, Cochran BJ, Rye KA, Ledger WL, Padmanabhan V, Handelsman DJ, Gilchrist RB, Walters KA. Androgen signaling in adipose tissue, but less likely skeletal muscle, mediates development of metabolic traits in a PCOS mouse model. Am J Physiol Endocrinol Metab 2022; 323:E145-E158. [PMID: 35658542 DOI: 10.1152/ajpendo.00418.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common, multifactorial disorder characterized by endocrine, reproductive, and metabolic dysfunction. As the etiology of PCOS is unknown, there is no cure and symptom-oriented treatments are suboptimal. Hyperandrogenism is a key diagnostic trait, and evidence suggests that androgen receptor (AR)-mediated actions are critical to PCOS pathogenesis. However, the key AR target sites involved remain to be fully defined. Adipocyte and muscle dysfunction are proposed as important sites involved in the manifestation of PCOS traits. We investigated the role of AR signaling in white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle in the development of PCOS in a hyperandrogenic PCOS mouse model. As expected, dihydrotestosterone (DHT) exposure induced key reproductive and metabolic PCOS traits in wild-type (WT) females. Transplantation of AR-insensitive (AR-/-) WAT or BAT from AR knockout females (ARKO) into DHT-treated WT mice ameliorated some metabolic PCOS features, including increased body weight, adiposity, and adipocyte hypertrophy, but not reproductive PCOS traits. In contrast, DHT-treated ARKO female mice transplanted with AR-responsive (AR+/+) WAT or BAT continued to resist developing PCOS traits. DHT-treated skeletal muscle-specific AR knockout females (SkMARKO) displayed a comparable phenotype with that of DHT-treated WT females, with full development of PCOS traits. Taken together, these findings infer that both WAT and BAT, but less likely skeletal muscle, are key sites of AR-mediated actions involved in the experimental pathogenesis of metabolic PCOS traits. These data further support targeting adipocyte AR-driven pathways in future research aimed at developing novel therapeutic interventions for PCOS.NEW & NOTEWORTHY Hyperandrogenism is a key feature in the pathogenesis of polycystic ovary syndrome (PCOS); however, the tissue sites of androgen receptor (AR) signaling are unclear. In this study, AR signaling in white and brown adipose tissue, but less likely in skeletal muscle, was found to be involved in the development of metabolic PCOS traits, highlighting the importance of androgen actions in adipose tissue and obesity in the manifestation of metabolic disturbances.
Collapse
Affiliation(s)
- Ting Xiong
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Valentina Rodriguez Paris
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa C Edwards
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Ying Hu
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kirsty A Walters
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Sexual Dimorphism in Brown Adipose Tissue Activation and White Adipose Tissue Browning. Int J Mol Sci 2022; 23:ijms23158250. [PMID: 35897816 PMCID: PMC9368277 DOI: 10.3390/ijms23158250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
The present narrative review gathers the studies reported so far, addressing sex differences in the effects of cold exposure, feeding pattern and age on brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. In rodents, when exposed to decreasing temperatures, females activate thermogenesis earlier. Results obtained in humans go in the same line, although they do not provide results as solid as those obtained in rodents. Regarding the effects of overfeeding, interesting sex differences on BAT thermogenic capacity have been reported, and the greater or lower sensitivity of each sex to this dietary situation seems to be dependent on the type of feeding. In the case of energy restriction, females are more sensitive than males. In addition, sex differences have also been observed in thermogenesis changes induced by phenolic compound administration. During sexual development, an increase in BAT mass and BAT activity takes place. This phenomenon is greater in boys than in girls, probably due to its relation to muscle-mass growth. The opposite situation takes place during ageing, a lifespan period where thermogenic capacity declines, this being more acute in men than in women. Finally, the vast majority of the studies have reported a higher susceptibility to developing WAT browning amongst females. The scarcity of results highlights the need for further studies devoted to analysing this issue, in order to provide valuable information for a more personalised approach.
Collapse
|
27
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Huo C, Song Z, Yin J, Zhu Y, Miao X, Qian H, Wang J, Ye L, Zhou L. Effect of Acute Cold Exposure on Energy Metabolism and Activity of Brown Adipose Tissue in Humans: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:917084. [PMID: 35837014 PMCID: PMC9273773 DOI: 10.3389/fphys.2022.917084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The benefit of cold exposure for humans against obesity has brought the energy metabolism and activity of brown adipose tissue (BAT) induced by cold into focus. But the results are inconsistent. This review is aimed to systematically explore the effect of cold exposure on the activity of BAT and energy metabolism in humans. Methods: We searched relevant papers that were published from 1990 to 2021 and were cited in PubMed Central, Web of science, Embase and Cochrane Library databases to conduct this systematic review and meta-analysis. Energy metabolism, BAT volume, BAT activity and non-esterified fatty acids (NEFA) data reported in eligible researches were extracted. Meta-analysis was applied to combine the mean difference or standard mean difference with their 95% confidence intervals (95%CI). RevMan 5.3 software was used for meta-analysis and evaluating the risk of bias. Stata 16.0 was used for evaluating the publication bias. Results: Ten randomized controlled trials were included in meta-analysis. Compared with human exposed in room temperature at 24°C, the energy expenditure (EE) was increased after acute cold exposure at 16∼19°C (Z = 7.58, p < 0.05, mean different = 188.43kal/d, 95% CI = 139.73–237.13); BAT volume (Z = 2.62, p < 0.05; standard mean different = 0.41, 95% CI = 0.10–0.73); BAT activity (Z = 2.05, p = 0.04, standard mean difference = 1.61, 95% CI = 0.07–3.14) and the intake of BAT NEFA (Z = 2.85, p < 0.05; standard mean different = 0.53, 95% CI = 0.17–0.90) also increased. Conclusion: Acute cold exposure could improve the energy expenditure and BAT activity in adults, which is beneficial for human against obesity.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zikai Song
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
29
|
Li T, Jin M, Fei X, Yuan Z, Wang Y, Quan K, Wang T, Yang J, He M, Wei C. Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds. Animals (Basel) 2022; 12:ani12131650. [PMID: 35804549 PMCID: PMC9265030 DOI: 10.3390/ani12131650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hu sheep and Tibetan sheep are two commonly raised local sheep breeds in China, and they have different morphological characteristics, such as tail type and adaptability to extreme environments. A fat tail in sheep is the main adipose depot in sheep, whereas the liver is an important organ for fat metabolism, with the uptake, esterification, oxidation, and secretion of fatty acids (FAs). Meanwhile, adaptations to high-altitude and arid environments also affect liver metabolism. Therefore, in this study, RNA-sequencing (RNA-seq) technology was used to characterize the difference in liver fat metabolism between Hu sheep and Tibetan sheep. We identified 1179 differentially expressed genes (DEGs) (Q-value < 0.05) between the two sheep breeds, including 25 fat-metabolism-related genes. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 16 pathways were significantly enriched (Q-value < 0.05), such as the proteasome, glutamatergic synapse, and oxidative phosphorylation pathways. In particular, one of these pathways was enriched to be associated with fat metabolism, namely the thermogenesis pathway, to which fat-metabolism-related genes such as ACSL1, ACSL4, ACSL5, CPT1A, CPT1C, SLC25A20, and FGF21 were enriched. Then, the expression levels of ACSL1, CPT1A, and FGF21 were verified in mRNA and protein levels via qRT-PCR and Western blot analysis between the two sheep breeds. The results showed that the mRNA and protein expression levels of these three genes were higher in the livers of Tibetan sheep than those of Hu sheep. The above genes are mainly related to FAs oxidation, involved in regulating the oxidation of liver FAs. So, this study suggested that Tibetan sheep liver has a greater FAs oxidation level than Hu sheep liver. In addition, the significant enrichment of fat-metabolism-related genes in the thermogenesis pathway appears to be related to plateau-adaptive thermogenesis in Tibetan sheep, which may indicate that liver- and fat-metabolism-related genes have an impact on adaptive thermogenesis.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China;
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
- Correspondence:
| |
Collapse
|
30
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
31
|
Wang J, Onogi Y, Krueger M, Oeckl J, Karlina R, Singh I, Hauck SM, Feederle R, Li Y, Ussar S. PAT2 regulates vATPase assembly and lysosomal acidification in brown adipocytes. Mol Metab 2022; 61:101508. [PMID: 35513259 PMCID: PMC9114668 DOI: 10.1016/j.molmet.2022.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Brown adipocytes play a key role in maintaining body temperature as well as glucose and lipid homeostasis. However, brown adipocytes need to adapt their thermogenic activity and substrate utilization to changes in nutrient availability. Amongst the multiple factors influencing brown adipocyte activity, autophagy is an important regulatory element of thermogenic capacity and activity. Nevertheless, a specific sensing mechanism of extracellular amino acid availability linking autophagy to nutrient availability in brown adipocytes is unknown. METHODS To characterize the role of the amino acid transporter PAT2/SLC36A2 in brown adipocytes, loss or gain of function of PAT2 were studied with respect to differentiation, subcellular localization, lysosomal activity and autophagy. Activity of vATPase was evaluated by quenching of EGFP fused to LC3 or FITC-dextran loaded lysosomes in brown adipocytes upon amino acid starvation, whereas the effect of PAT2 on assembly of the vATPase was investigated by Native-PAGE. RESULTS We show that PAT2 translocates from the plasma membrane to the lysosome in response to amino acid withdrawal. Loss or overexpression of PAT2 impair lysosomal acidification and starvation induced S6K re-phosphorylation, as PAT2 facilitates the assembly of the lysosomal vATPase, by recruitment of the cytoplasmic V1 subunit to the lysosome. CONCLUSION PAT2 is an important sensor of extracellular amino acids and regulator of lysosomal acidification in brown adipocytes.
Collapse
Affiliation(s)
- Jiefu Wang
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Josef Oeckl
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Ruth Karlina
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Inderjeet Singh
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Regina Feederle
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Monoclonal Antibody Core Facility, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
32
|
Erukainure OL, Matsabisa MG, Salau VF, Olofinsan KA, Oyedemi SO, Chukwuma CI, Nde AL, Islam MS. Cannabidiol improves glucose utilization and modulates glucose-induced dysmetabolic activities in isolated rats' peripheral adipose tissues. Biomed Pharmacother 2022; 149:112863. [PMID: 35358799 DOI: 10.1016/j.biopha.2022.112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Reduced glucose uptake and utilization, with concomitant lipolysis in adipose tissues has been linked to the pathogenesis of obesity and its complications. The present study investigated the effect of cannabinoid-stimulated glucose uptake on redox imbalance, glucose and lipid metabolisms, as well as cholinergic and purinergic dysfunctions in isolated rats' adipose tissues. Freshly Isolated rats' adipose tissues were incubated with glucose and different concentrations of cannabidiol for 2 h at 37 °C. The negative control consisted of incubation without cannabidiol, while normal control consisted of incubations without glucose and/or cannabidiol and Metformin served as the standard drug. Cannabidiol caused an increase in adipose-glucose uptake, with concomitant elevation of glutathione, triglyceride level, superoxide dismutase, catalase and 5'nucleoidase activities. It also caused suppression in malondialdehyde and cholesterol levels, acetylcholinesterase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase, glycogen phosphorylase, and lipase activities. In silico studies revealed a strong molecular interaction of cannabidiol with adipose triglyceride lipase, hormone-sensitive lipase, and monoglyceride lipase. These results indicate that cannabidiol-enhanced glucose uptake in adipose tissues is associated with enhanced antioxidative activities, concomitant modulation of cholinergic and purinergic dysfunctions, and improved glucose - lipid homeostasis.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Veronica F Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| | - Sunday O Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
33
|
de Souza DW, Ceglarek VM, Siqueira BS, Volinski CZ, Nenevê JZ, Arruda JPDA, Vettorazzi JF, Grassiolli S. Phenylhydrazine-induced anemia reduces subcutaneous white and brown adipose tissues in hypothalamic obese rats. Exp Physiol 2022; 107:575-588. [PMID: 35396880 DOI: 10.1113/ep089883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FUNDINGS What is the central question of this study? This study aims to assess whether an anemic state could modify adiposity and metabolic parameters in hypothalamic obese rats. What is the main finding and its importance? Our results indicate that hypothalamic obese rats do not display iron deficiency. However, the pharmacological induction of anemia in hypothalamic-obese rats resulted in reduced adiposity, characterized by a decrease in subcutaneous white and brown adipose tissue depots. These findings suggest that iron imbalance in obesity may elevate lipolysis. ABSTRACT Iron imbalance is frequent in obesity. Herein, we evaluated the impact of anemia induced by phenylhydrazine on adiposity and metabolic state of hypothalamic obese rats. Hypothalamic obesity was induced by high doses of glutamate monosodium (MSG; 4g/Kg) administered to neonatal male rats (n = 20). Controls (CTL; non-obese rats) received saline equimolar (n = 20). Rats were weaned at 21 days of life. At 70 days, half of the rats received three intraperitoneal doses of phenylhydrazine (PHZ; 40mg/Kg/dose) or saline solution. Body weight and food intake were accompanied for four weeks after PHZ administration. At 92 days, rats were euthanized, blood was collected for microcapillary hematocrit (Hct) analysis and plasma quantification of glucose, triglycerides, total cholesterol, and iron levels. The liver, the spleen, and the white (WAT) and brown (BAT) adipose tissues were excised, weighed, and used for histology. MSG-treated rats developed obesity, hypertriglyceridemia, and insulin resistance, compared to CTL rats, without changes in iron levels and Hct. PHZ administration reduced iron plasma levels and promoted similar tissue injuries in the spleen and liver from MSG and CTL rats. However, in MSG-treated rats, PHZ decreased fasting glucose levels and Hct, as well as diminished the subcutaneous WAT and BAT mass. Although MSG-obesity does not affect iron plasma levels and Hct by itself, PHZ-induced anemia associated with obesity induces a marked drop in subcutaneous WAT and BAT mass, suggesting that iron imbalance may lead to increased lipolytic responses in obese rats, compared to lean rats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Domwesley Wendreo de Souza
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Vanessa Marieli Ceglarek
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS, Brasil
| | - Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Caroline Zanella Volinski
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Juliane Zanon Nenevê
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - João Paulo de Amorin Arruda
- Programa de Pós-Graduação em Odontologia, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | | | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| |
Collapse
|
34
|
Wang Q, Liu Y, Xu Y, Jin Y, Wu J, Ren Z. Comparative transcriptome and Lipidome analyses suggest a lipid droplet-specific response to heat exposure of brown adipose tissue in normal and obese mice. Life Sci 2022; 299:120540. [PMID: 35398332 DOI: 10.1016/j.lfs.2022.120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
AIMS In mammals, heat stress (HS) from high-temperature environments has multiple adverse effects on the well-being of the organism. Brown adipose tissue (BAT) is a thermogenesis tissue that protects against obesity, and as an endocrine organ that regulates the systemic metabolism, but it is unclear how heat stress affects BAT in normal and obese subjects. Understanding the transcriptomic profiles and lipidomics of BAT upon heat exposure provides insights into the adaptive changes associated with this process. MATERIALS AND METHODS We constructed heat treatment (40 °C, 4 h) models for normal and obese mice, observed the effect of heat treatment on interscapular BAT (iBAT) and performed an assay for iBAT with RNA-seq and lipidomics to compare transcriptional programs and lipid dynamics. KEY FINDINGS In normal mice, heat treatment caused an iBAT damage by decreasing the expression of genes involved in thermogenesis, adipogenesis and lipid metabolism. Furthermore, HS disturbed the acyl-chain composition of triacylglycerols (TAGs) and glycerophospholipids (PEs, PCs and CLs), accelerated the production of cholesterol esters, and caused the formation of giant lipid droplets rich in cholesterol esters in iBAT. Unexpectedly, in obese mice, heat treatment had a smaller effect on iBAT by improving the composition of the saturated glycerolipids, PEs and PCs and increasing the proportion of oxidized lipid in lipid droplets. SIGNIFICANCE Our findings proved lipid droplets participated in the regulation of lipid components of iBAT in normal and obese mice after heat treatment, which provided a new view for the understanding of the adaptation of iBAT to high-temperature environments.
Collapse
Affiliation(s)
- Qiankun Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yue Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yue Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Hubei Province, PR China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Hubei Province, PR China.
| |
Collapse
|
35
|
EBI2 is a negative modulator of brown adipose tissue energy expenditure in mice and human brown adipocytes. Commun Biol 2022; 5:280. [PMID: 35351968 PMCID: PMC8964700 DOI: 10.1038/s42003-022-03201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacological activation of brown adipose tissue (BAT) is an attractive approach for increasing energy expenditure to counteract obesity. Given the side-effects of known activators of BAT, we studied inhibitors of BAT as a novel, alternative concept to regulate energy expenditure. We focused on G-protein-coupled receptors that are one of the major targets of clinically used drugs. Here, we identify GPR183, also known as EBI2, as the most highly expressed inhibitory G-protein-coupled receptor in BAT among the receptors examined. Activation of EBI2 using its endogenous ligand 7α,25-dihydroxycholesterol significantly decreases BAT-mediated energy expenditure in mice. In contrast, mice deficient for EBI2 show increased energy dissipation in response to cold. Interestingly, only thermogenic adipose tissue depots — BAT and subcutaneous white adipose tissue —respond to 7α,25-dihydroxycholesterol treatment/EBI2 activation but not gonadal white fat, which has the lowest thermogenic capacity. EBI2 activation in brown adipocytes significantly reduces norepinephrine-induced cAMP production, whereas pharmacological inhibition or genetic ablation of EBI2 results in an increased response. Importantly, EBI2 significantly inhibits norepinephrine-induced activation of human brown adipocytes. Our data identify the 7α,25-dihydroxycholesterol/EBI2 signaling pathway as a so far unknown BAT inhibitor. Understanding the inhibitory regulation of BAT might lead to novel pharmacological approaches to increase the activity of thermogenic adipose tissue and whole body energy expenditure in humans. Francesca Copperi et al. evaluate the role of the Gi-protein coupled receptor, EBI2, on regulation of thermogenic activity in murine and human adipocytes. They report that loss of Ebi2 in mice increases brown adipocyte energy expenditure in response to cold exposure, providing insight into ways to potentially modulate energy expenditure in humans.
Collapse
|
36
|
Klímová J, Mráz M, Kratochvílová H, Lacinová Z, Novák K, Michalský D, Kvasnička J, Holaj R, Haluzíková D, Doležalová RP, Zítek M, Krátká Z, Todorovová V, Widimský J, Haluzík M, Zelinka T, Petrák O. Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma. Biomedicines 2022; 10:biomedicines10030586. [PMID: 35327387 PMCID: PMC8945850 DOI: 10.3390/biomedicines10030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Brown adipose tissue (BAT) is a therapeutic target to combat obesity and related disorders. Pheochromocytoma and functional paraganglioma (PPGL) are associated with activated BAT due to catecholamine excess. Our aim was to evaluate BAT activity by gene profile and assess its relation to clinical characteristics and overproduced catecholamine. Methods: mRNA expression of 15 genes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) was measured via RT-PCR in 25 patients with PPGL and 14 controls undergoing cholecystectomy. Results: We found in VAT of PPGL higher expression of UCP1 (p < 0.001), CEBPB, PPARGC1A (both p < 0.001), PRDM16 (p = 0.069) and DIO2 (p = 0.005). UCP1 expression correlated only with norepinephrine levels and its metabolite. UCP1 expression, among others, correlated negatively with BMI, age and positively with HDLc levels. Dominance of BAT or BeAT markers was not assessed in PPGL. In SAT of PPGL, we found higher expression of ADRB3, CIDEA (both p < 0.05), and PPARGC1A (p = 0.001), but not UCP1. Conclusion: We demonstrate signs of UCP1-dependent norepinephrine-induced thermogenesis connected with higher expression of DIO2, PPARGC1A, CEBPB and PRDM16 in retroperitoneal VAT of PPGL and its relations to circulating HDLc and triglycerides levels. However, no direct relationship with increased basal energy metabolism measured by calorimetry was found.
Collapse
Affiliation(s)
- Judita Klímová
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Miloš Mráz
- Center for Experimental Medicine and Diabetes Center, Institute for Clinical and Experimental Medicine, 140 00 Prague, Czech Republic; (M.M.); (Z.L.); (M.H.)
| | - Helena Kratochvílová
- Institute for Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic;
| | - Zdeňka Lacinová
- Center for Experimental Medicine and Diabetes Center, Institute for Clinical and Experimental Medicine, 140 00 Prague, Czech Republic; (M.M.); (Z.L.); (M.H.)
| | - Květoslav Novák
- Department of Urology, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic;
| | - David Michalský
- First Department of Surgery, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic;
| | - Jan Kvasnička
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Robert Holaj
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Denisa Haluzíková
- Institute of Sport Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (D.H.); (R.P.D.)
| | - Radka Petráková Doležalová
- Institute of Sport Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (D.H.); (R.P.D.)
| | - Matěj Zítek
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Zuzana Krátká
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Veronika Todorovová
- Laboratory of Endocrinology and Metabolism, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic;
| | - Jiří Widimský
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Martin Haluzík
- Center for Experimental Medicine and Diabetes Center, Institute for Clinical and Experimental Medicine, 140 00 Prague, Czech Republic; (M.M.); (Z.L.); (M.H.)
| | - Tomáš Zelinka
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
| | - Ondřej Petrák
- Center of Hypertension, 3rd Department of Medicine, First Faculty of Medicine and General Faculty Hospital, Charles University, 128 00 Prague, Czech Republic; (J.K.); (J.K.); (R.H.); (M.Z.); (Z.K.); (J.W.J.); (T.Z.)
- Correspondence: ; Tel.: +420-224-963073
| |
Collapse
|
37
|
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front Physiol 2022; 13:826314. [PMID: 35283787 PMCID: PMC8907745 DOI: 10.3389/fphys.2022.826314] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adaptation to changes in energy availability is pivotal for the survival of animals. Adipose tissue, the body’s largest reservoir of energy and a major source of metabolic fuel, exerts a buffering function for fluctuations in nutrient availability. This functional plasticity ranges from energy storage in the form of triglycerides during periods of excess energy intake to energy mobilization via lipolysis in the form of free fatty acids for other organs during states of energy demands. The subtle balance between energy storage and mobilization is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance, type 2 diabetes and cancer cachexia. As a result, adipocyte lipolysis is tightly regulated by complex regulatory mechanisms involving lipases and hormonal and biochemical signals that have opposing effects. In thermogenic brown and brite adipocytes, lipolysis stimulation is the canonical way for the activation of non-shivering thermogenesis. Lipolysis proceeds in an orderly and delicately regulated manner, with stimulation through cell-surface receptors via neurotransmitters, hormones, and autocrine/paracrine factors that activate various intracellular signal transduction pathways and increase kinase activity. The subsequent phosphorylation of perilipins, lipases, and cofactors initiates the translocation of key lipases from the cytoplasm to lipid droplets and enables protein-protein interactions to assemble the lipolytic machinery on the scaffolding perilipins at the surface of lipid droplets. Although activation of lipolysis has been well studied, the feedback fine-tuning is less well appreciated. This review focuses on the molecular brakes of lipolysis and discusses some of the divergent fine-tuning strategies in the negative feedback regulation of lipolysis, including delicate negative feedback loops, intermediary lipid metabolites-mediated allosteric regulation and dynamic protein–protein interactions. As aberrant adipocyte lipolysis is involved in various metabolic diseases and releasing the brakes on lipolysis in thermogenic adipocytes may activate thermogenesis, targeting adipocyte lipolysis is thus of therapeutic interest.
Collapse
|
38
|
Huang G, Yang C, Guo S, Huang M, Deng L, Huang Y, Chen P, Chen F, Huang X. Adipocyte-specific deletion of PIP5K1c reduces diet-induced obesity and insulin resistance by increasing energy expenditure. Lipids Health Dis 2022; 21:6. [PMID: 34996482 PMCID: PMC8742433 DOI: 10.1186/s12944-021-01616-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Phosphatidylinositol 4-phosphate 5-kinase type I c (PIP5K1c) catalyses the synthesis of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphorylating phosphatidylinositol 4 phosphate, which plays multiple roles in regulating focal adhesion formation, invasion, and cell migration signal transduction cascades. Here, a new physiological mechanism of PIP5K1c in adipocytes and systemic metabolism is reported. Methods Adipose-specific conditional knockout mice were generated to delete the PIP5K1c gene in adipocytes. In addition, in vitro research investigated the effect of PIP5K1c deletion on adipogenesis. Results Deletion of PIP5K1c in adipocytes significantly alleviated high fat diet (HFD)-induced obesity, hyperlipidaemia, hepatic steatosis, and insulin resistance. PIP5K1c deficiency in adipocytes also decreased adipocyte volume in HFD-induced obese mice, whereas no significant differences were observed in body weight and adipose tissue weight under normal chow diet conditions. PIP5K1c knockout in adipocytes significantly enhanced energy expenditure, which protected mice from HFD-induced weight gain. In addition, adipogenesis was markedly impaired in mouse stromal vascular fraction (SVF) from PIP5K1c-deleted mice. Conclusion Under HFD conditions, PIP5K1c regulates adipogenesis and adipose tissue homeostasis. Together, these data indicate that PIP5K1c could be a novel potential target for regulating fat accumulation, which could provide novel insight into the treatment of obesity. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01616-4.
Collapse
Affiliation(s)
- Guan Huang
- Department of Pathology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Cuishan Yang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Sheng Guo
- Department of Medical Administration, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Miaoling Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Liping Deng
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Ying Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Puxin Chen
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Feng Chen
- Department of Plastic Surgy, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine; Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| | - Xiaohong Huang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
39
|
OUP accepted manuscript. Nutr Rev 2022; 80:2017-2028. [DOI: 10.1093/nutrit/nuac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Dutta RK, Lee JN, Maharjan Y, Park C, Choe SK, Ho YS, Park R. Catalase deficiency facilitates the shuttling of free fatty acid to brown adipose tissue through lipolysis mediated by ROS during sustained fasting. Cell Biosci 2021; 11:201. [PMID: 34876210 PMCID: PMC8650429 DOI: 10.1186/s13578-021-00710-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fatty acids (FA) derived from adipose tissue and liver serve as the main fuel in thermogenesis of brown adipose tissue (BAT). Catalase, a peroxisomal enzyme, plays an important role in maintaining intracellular redox homeostasis by decomposing hydrogen peroxide to either water or oxygen that oxidize and provide fuel for cellular metabolism. Although the antioxidant enzymatic activity of catalase is well known, its role in the metabolism and maintenance of energy homeostasis has not yet been revealed. The present study investigated the role of catalase in lipid metabolism and thermogenesis during nutrient deprivation in catalase-knockout (KO) mice. Results We found that hepatic triglyceride accumulation in KO mice decreased during sustained fasting due to lipolysis through reactive oxygen species (ROS) generation in adipocytes. Furthermore, the free FA released from lipolysis were shuttled to BAT through the activation of CD36 and catabolized by lipoprotein lipase in KO mice during sustained fasting. Although the exact mechanism for the activation of the FA receptor enzyme, CD36 in BAT is still unclear, we found that ROS generation in adipocytes mediated the shuttling of FA to BAT. Conclusions Taken together, our findings uncover the novel role of catalase in lipid metabolism and thermogenesis in BAT, which may be useful in understanding metabolic dysfunction. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00710-5.
Collapse
Affiliation(s)
- Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, GRI, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Joon No Lee
- Department of Biomedical Science & Engineering, GRI, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Yunash Maharjan
- Department of Biomedical Science & Engineering, GRI, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, GRI, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI, 48201, USA
| | - Raekil Park
- Department of Biomedical Science & Engineering, GRI, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Xu H, Thomas MJ, Kaul S, Kallinger R, Ouweneel AB, Maruko E, Oussaada SM, Jongejan A, Cense HA, Nieuwdorp M, Serlie MJ, Goldberg IJ, Civelek M, Parks BW, Lusis AJ, Knaack D, Schill RL, May SC, Reho JJ, Grobe JL, Gantner B, Sahoo D, Sorci-Thomas MG. Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-BI-Mediated High-Density Lipoprotein Uptake. Arterioscler Thromb Vasc Biol 2021; 41:2708-2725. [PMID: 34551590 PMCID: PMC8551036 DOI: 10.1161/atvbaha.121.316615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Objective To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.
Collapse
Affiliation(s)
- Hao Xu
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Michael J. Thomas
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sushma Kaul
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | | | - Amber B. Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Elisa Maruko
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Sabrina M. Oussaada
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Huib A. Cense
- Department of Surgery, Rode Kruis Ziekenhuis, Beverwijk, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone School of Medicine, New York, NY
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Aldons J. Lusis
- Department of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, California
| | - Darcy Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca L. Schill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah C. May
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
| | - Justin L. Grobe
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
- Department of Biomedical Engineering
| | - Benjamin Gantner
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Daisy Sahoo
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary G. Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Zuccaro A, Zapatería B, Sánchez-Alonso MG, Haro M, Limones M, Terrados G, Izquierdo A, Corrales P, Medina-Gómez G, Herradón G, Sevillano J, Ramos-Álvarez MDP. Pleiotrophin Deficiency Induces Browning of Periovarian Adipose Tissue and Protects against High-Fat Diet-Induced Hepatic Steatosis. Int J Mol Sci 2021; 22:9261. [PMID: 34502170 PMCID: PMC8431550 DOI: 10.3390/ijms22179261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn-/- mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn-/- mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn-/- mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.
Collapse
Affiliation(s)
- Agata Zuccaro
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - Begoña Zapatería
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - María Gracia Sánchez-Alonso
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - María Haro
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - María Limones
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - Gloria Terrados
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - Adriana Izquierdo
- Department of Basic Sciences of Health, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (A.I.); (P.C.); (G.M.-G.)
| | - Patricia Corrales
- Department of Basic Sciences of Health, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (A.I.); (P.C.); (G.M.-G.)
| | - Gema Medina-Gómez
- Department of Basic Sciences of Health, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (A.I.); (P.C.); (G.M.-G.)
| | - Gonzalo Herradón
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain;
| | - Julio Sevillano
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| | - María del Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925 Alcorcón, Spain; (A.Z.); (B.Z.); (M.G.S.-A.); (M.H.); (M.L.); (G.T.); (M.d.P.R.-Á.)
| |
Collapse
|
43
|
Abstract
Bile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome. Interfering with microbiome composition may be beneficial for cholestatic and metabolic liver diseases by modulating formation of secondary bile acids, as different bile acid species have different signaling functions. Bile acid receptors such as FXR, VDR, and TGR5 are expressed in a variety of cells involved in innate as well as adaptive immunity, and specific microbial bile acid metabolites positively modulate immune responses of the host. Identification of Cyp2c70 as the enzyme responsible for the generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. These novel mouse models will aid to accelerate translational research on the (patho)physiological roles of bile acids in human liver diseases .
Collapse
|
44
|
Ghosh S, Park CH, Lee J, Lee N, Zhang R, Huesing C, Reijnders D, Sones J, Münzberg H, Redman L, Chang JS. Maternal cold exposure induces distinct transcriptome changes in the placenta and fetal brown adipose tissue in mice. BMC Genomics 2021; 22:500. [PMID: 34217204 PMCID: PMC8254942 DOI: 10.1186/s12864-021-07825-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Background Brown adipose tissue (BAT) is specialized to dissipate energy in the form of heat. BAT-mediated heat production in rodents and humans is critical for effective temperature adaptation of newborns to the extrauterine environment immediately after birth. However, very little is known about whether and how fetal BAT development is modulated in-utero in response to changes in maternal thermal environment during pregnancy. Using BL6 mice, we evaluated the impact of different maternal environmental temperatures (28 °C and 18 °C) on the transcriptome of the placenta and fetal BAT to test if maternal cold exposure influences fetal BAT development via placental remodeling. Results Maternal weight gain during pregnancy, the average number of fetuses per pregnancy, and placental weight did not differ between the groups at 28 °C and 18 °C. However, the average fetal weight at E18.5 was 6% lower in the 18 °C-group compared to the 28 °C-group. In fetal BATs, cold exposure during pregnancy induced increased expression of genes involved in de novo lipogenesis and lipid metabolism while decreasing the expression of genes associated with muscle cell differentiation, thus suggesting that maternal cold exposure may promote fetal brown adipogenesis by suppressing the myogenic lineage in bidirectional progenitors. In placental tissues, maternal cold exposure was associated with upregulation of genes involved in complement activation and downregulation of genes related to muscle contraction and actin-myosin filament sliding. These changes may coordinate placental adaptation to maternal cold exposure, potentially by protecting against cold stress-induced inflammatory damage and modulating the vascular and extravascular contractile system in the placenta. Conclusions These findings provide evidence that environmental cold temperature sensed by the mother can modulate the transcriptome of placental and fetal BAT tissues. The ramifications of the observed gene expression changes warrant future investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07825-6.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Genomics and Bioinformatics Core, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, USA.,Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chul-Hong Park
- Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana, 70808, USA
| | - Jisu Lee
- Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana, 70808, USA
| | - Nathan Lee
- Leptin Signaling in The Brain, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Rui Zhang
- Leptin Signaling in The Brain, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Clara Huesing
- Leptin Signaling in The Brain, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Dorien Reijnders
- Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Jennifer Sones
- Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Heike Münzberg
- Leptin Signaling in The Brain, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Leanne Redman
- Reproductive Endocrinology and Women's Health, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ji Suk Chang
- Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
45
|
Zekri Y, Flamant F, Gauthier K. Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells 2021; 10:1327. [PMID: 34071979 PMCID: PMC8229489 DOI: 10.3390/cells10061327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.
Collapse
Affiliation(s)
- Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, 69007 Lyon, France; (F.F.); (K.G.)
| | | | | |
Collapse
|
46
|
Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models. Redox Biol 2021; 44:102015. [PMID: 34058615 PMCID: PMC8170497 DOI: 10.1016/j.redox.2021.102015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
47
|
Sass F, Schlein C, Jaeckstein MY, Pertzborn P, Schweizer M, Schinke T, Ballabio A, Scheja L, Heeren J, Fischer AW. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab 2021; 47:101173. [PMID: 33516944 PMCID: PMC7903014 DOI: 10.1016/j.molmet.2021.101173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) thermogenesis offers the potential to improve metabolic health in mice and humans. However, humans predominantly live under thermoneutral conditions, leading to BAT whitening, a reduction in BAT mitochondrial content and metabolic activity. Recent studies have established mitophagy as a major driver of mitochondrial degradation in the whitening of thermogenic brite/beige adipocytes, yet the pathways mediating mitochondrial breakdown in whitening of classical BAT remain largely elusive. The transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy belonging to the MiT family of transcription factors, is the only member of this family that is upregulated during whitening, pointing toward a role of TFEB in whitening-associated mitochondrial breakdown. METHODS We generated brown adipocyte-specific TFEB knockout mice, and induced BAT whitening by thermoneutral housing. We characterized gene and protein expression patterns, BAT metabolic activity, systemic metabolism, and mitochondrial localization using in vivo and in vitro approaches. RESULTS Under low thermogenic activation conditions, deletion of TFEB preserves mitochondrial mass independently of mitochondriogenesis in BAT and primary brown adipocytes. However, this does not translate into elevated thermogenic capacity or protection from diet-induced obesity. Autophagosomal/lysosomal marker levels are altered in TFEB-deficient BAT and primary adipocytes, and lysosomal markers co-localize and co-purify with mitochondria in TFEB-deficient BAT, indicating trapping of mitochondria in late stages of mitophagy. CONCLUSION We identify TFEB as a driver of BAT whitening, mediating mitochondrial degradation via the autophagosomal and lysosomal machinery. This study provides proof of concept that interfering with the mitochondrial degradation machinery can increase mitochondrial mass in classical BAT under human-relevant conditions. However, it must be considered that interfering with autophagy may result in accumulation of non-functional mitochondria. Future studies targeting earlier steps of mitophagy or target recognition are therefore warranted.
Collapse
Affiliation(s)
- Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy; Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Liu Y, Fu X, Chen Z, Luo T, Zhu C, Ji Y, Bian Z. The Protective Effects of Sulforaphane on High-Fat Diet-Induced Obesity in Mice Through Browning of White Fat. Front Pharmacol 2021; 12:665894. [PMID: 33995092 PMCID: PMC8116735 DOI: 10.3389/fphar.2021.665894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Sulforaphane (SFN), an isothiocyanate naturally occurring in cruciferous vegetables, is a potent indirect antioxidant and a promising agent for the control of metabolic disorder disease. The glucose intolerance and adipogenesis induced by diet in rats was inhibited by SFN. Strategies aimed at induction of brown adipose tissue (BAT) could be a potentially useful way to against obesity. However, in vivo protective effect of SFN against obesity by browning white adipocyte has not been reported. Our present study is aimed at evaluation the efficacy of the SFN against the high-fat induced-obesity mice and investigating the potential mechanism. Methods: High-Fat Diet-induced obese female C57BL/6 mice were intraperitoneally injected with SFN (10 mg/kg) daily. Body weight was recorded every 3 days. 30 days later, glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed. At the end of experiment, fat mass were measured and the adipogenesis as well as browning associated genes expression in white adipose tissue (WAT) were determined by RT-qPCR and western blot. Histological examination of the adipose tissue samples were carried out with hematoxylin–eosin (HE) staining and immunofluorescence staining method. In vitro, pre-adipocytes C3H10T1/2 were treated with SFN to investigate the direct effects on adipogenesis. Results: SFN suppressed HFD-induced body weight gain and reduced the size of fat cells in mice. SFN suppressed the expression of key genes in adipogenesis, inhibited lipid accumulation in C3H10T1/2 cells, increased the expression of brown adipocyte-specific markers and mitochondrial biogenesis in vivo and in vitro, and decreased cellular and mitochondrial oxidative stress. These results suggested that SFN, as a nutritional factor, has great potential role in the battle against obesity by inducing the browning of white fat. Conclusion: SFN could significantly decrease the fat mass, and improve glucose metabolism and increase insulin sensitivity of HFD-induced obese mice by promoting the browning of white fat and enhancing the mitochondrial biogenesis in WAT. Our study proves that SFN could serve as a potential medicine in anti-obesity and related diseases.
Collapse
Affiliation(s)
- Yaoli Liu
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiazhou Fu
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhiyong Chen
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tingting Luo
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yaoting Ji
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuan Bian
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Malinská H, Hüttl M, Miklánková D, Trnovská J, Zapletalová I, Poruba M, Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int J Mol Sci 2021; 22:ijms22094527. [PMID: 33926097 PMCID: PMC8123580 DOI: 10.3390/ijms22094527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period.
Collapse
Affiliation(s)
- Hana Malinská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Jaroslava Trnovská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| |
Collapse
|
50
|
Guo A, Li K, Tian HC, Fan Z, Chen QN, Yang YF, Yu J, Wu YX, Xiao Q. FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT-1/PGC-α pathway. J Cell Mol Med 2021; 25:3585-3600. [PMID: 33751819 PMCID: PMC8034456 DOI: 10.1111/jcmm.16448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with biological dysfunction in skeletal muscle. As a condition of obesity accompanied by muscle mass loss and physical dysfunction, sarcopenic obesity (SO) has become a novel public health problem. Human fibroblast growth factor 19 (FGF19) plays a therapeutic role in metabolic diseases. However, the protective effects of FGF19 on skeletal muscle in obesity and SO are still not completely understood. Our results showed that FGF19 administration improved muscle loss and grip strength in young and aged mice fed a high‐fat diet (HFD). Increases in muscle atrophy markers (FOXO‐3, Atrogin‐1, MuRF‐1) were abrogated by FGF19 in palmitic acid (PA)‐treated C2C12 myotubes and in the skeletal muscle of HFD‐fed mice. FGF19 not only reduced HFD‐induced body weight gain, excessive lipid accumulation and hyperlipidaemia but also promoted energy expenditure (PGC‐1α, UCP‐1, PPAR‐γ) in brown adipose tissue (BAT). FGF19 treatment restored PA‐ and HFD‐induced hyperglycaemia, impaired glucose tolerance and insulin resistance (IRS‐1, GLUT‐4) and mitigated the PA‐ and HFD‐induced decrease in FNDC‐5/irisin expression. However, these beneficial effects of FGF19 on skeletal muscle were abolished by inhibiting AMPK, SIRT‐1 and PGC‐1α expression. Taken together, this study suggests that FGF19 protects skeletal muscle against obesity‐induced muscle atrophy, metabolic derangement and abnormal irisin secretion partially through the AMPK/SIRT‐1/PGC‐α signalling pathway, which might be a potential therapeutic target for obesity and SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Chuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen Fan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiu-Nan Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Fei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Xin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|