1
|
Tian Q, Jiang H, Luan Y, Sun J, Sui Y, Chen L, Wang Y, Tan N. Vicenin-2 in Suhuang antitussive capsule attenuates mitophagy-dependent ferroptosis via LRP1 for treating post-infectious cough. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119880. [PMID: 40288661 DOI: 10.1016/j.jep.2025.119880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suhuang antitussive capsule (SH) is the only clinically approved traditional Chinese patent medicine for the treatment of post-infectious cough (PIC). During the past decade, our lab has conducted intensive researches on SH, including its efficacy and mechanism on PIC, and determined that SH has favorable anti-inflammatory, antitussive, expectorant, and anti-asthmatic pharmacological effects. Recently, we found that vicenin-2 (VIC-2) could be detected in SH and showed activity in vitro primary screening on PIC. AIM OF THE STUDY To investigate the therapeutic effects of VIC-2 on PIC and its potential mechanisms, and want to elucidate VIC-2 as one of the efficacious components of SH. MATERIALS AND METHODS The PIC mouse model was established with lipopolysaccharide (LPS)-induced combined cigarette smoke (CS)-exposed ICR mice, while the in vitro assay was constructed to induce BEAS-2B cells with cigarette smoke extract (CSE). The therapeutic effects of VIC-2 on PIC in vitro and in vivo were assessed by pathological sections, cough assay, immune cell counting, and quantitative-polymerase chain reaction (Q-PCR). The mechanisms of VIC-2 on ferroptosis and mitophagy in PIC were further explored by cell viability assay, Prussian blue staining, lipid peroxidation assessment, confocal laser scanning microscopy, and western blotting. Subsequently, virtual docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) verified the target relationship between VIC-2 and LDL receptor-related protein 1 (LRP1). In addition, the link between LRP1 and mitophagy-dependent ferroptosis was explored by knocking down LRP1. RESULTS VIC-2 significantly improved lung inflammation, oxidative stress, and airway remodeling in PIC and inhibited mitophagy-dependent ferroptosis, confirming that it is one of the antitussive components of SH for the treatment of PIC. LRP1 is one of the pharmacological targets of VIC-2, in which VIC-2 exerted the above effects through up-regulating LRP1 by influencing the LRP1-Parkin interaction. The blockade of LRP1 reversed the both in vitro and in vivo pharmacological activities of VIC-2. Furthermore, our results showed for the first time that defects in LRP1 lead to ferroptosis. CONCLUSION This study demonstrates that VIC-2 inhibits mitophagy-dependent ferroptosis via LRP1 for the treatment of PIC, constituting one of the antitussive components of SH.
Collapse
Affiliation(s)
- Qimeng Tian
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Hong Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yajun Luan
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangzijiang Pharmaceutical Group, Beijing, 102206, PR China
| | - Jingge Sun
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yihang Sui
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ling Chen
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yongxiang Wang
- Key Laboratory for Quality Control of Traditional Chinese Medicine of National Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Jiangsu Longfengtang Chinese Medicine Co., Ltd., Yangzijiang Pharmaceutical Group, Taizhou, 225321, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Anfray A, Schaeffer S, Hattori Y, Santisteban MM, Casey N, Wang G, Strickland M, Zhou P, Holtzman DM, Anrather J, Park L, Iadecola C. A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat Neurosci 2024; 27:2138-2151. [PMID: 39294490 PMCID: PMC11758676 DOI: 10.1038/s41593-024-01757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer's disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.
Collapse
Affiliation(s)
- Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michael Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
4
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Müller P, Dietrich D, Schoch S, Pitsch J, Becker AJ, Cases-Cunillera S. Ganglioglioma cells potentiate neuronal network synchronicity and elicit burst discharges via released factors. Neurobiol Dis 2024; 190:106364. [PMID: 38008342 DOI: 10.1016/j.nbd.2023.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAFV600E, mTOR activation and Trp53KO) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro. We generated conditioned medium (CM) from primary GG cell cultures to developing primary cortical neurons cultured on multielectrode-arrays and assessed their electrical activity in comparison to neurons incubated with naïve and neuronal CMs. Our results showed that the GG CM, while not affecting the mean firing rates of networks, strongly accelerated the formation of functional networks as indicated increased synchrony of firing and burst activity. Washing out the GG CM did not reverse these effects indicating an irreversible effect on the neuronal network. Mass spectrometry analysis of GG CM detected several enriched proteins associated with neurogenesis as well as gliogenesis, including Gap43, App, Apoe, S100a8, Tnc and Sod1. Concomitantly, immunocytochemical analysis of the neuronal cultures exposed to GG CM revealed abundant astrocytes suggesting that the GG-secreted factors induce astroglial proliferation. Pharmacological inhibition of astrocyte proliferation only partially reversed the accelerated network maturation in neuronal cultures exposed to GG CM indicating that the GG CM exerts a direct effect on the neuronal component. Taken together, we demonstrate that GG-derived paracrine signaling alone is sufficient to induce accelerated neuronal network development accompanied by astrocytic proliferation. Perspectively, a deeper understanding of factors involved may serve as the basis for future therapeutic approaches.
Collapse
Affiliation(s)
- Philipp Müller
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany; Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, 75014 Paris, France.
| |
Collapse
|
6
|
Cao THM, Le APH, Tran TT, Huynh VK, Pham BH, Le TM, Nguyen QL, Tran TC, Tong TM, Than THN, Nguyen TTT, Ha HTT. Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study. Front Mol Neurosci 2023; 16:1308610. [PMID: 38178908 PMCID: PMC10764507 DOI: 10.3389/fnmol.2023.1308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Circulating cell-free RNA (cfRNA) is a potential hallmark for early diagnosis of Alzheimer's Disease (AD) as it construes the genetic expression level, giving insights into the pathological progress from the outset. Profiles of cfRNA in Caucasian AD patients have been investigated thoroughly, yet there was no report exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to support the development of point-of-care AD diagnosis. Methods cfRNA profiles were characterized from 20 Vietnamese plasma samples (10 probable AD and 10 age-matched controls). RNA reads were subjected to differential expression (DE) analysis. Weighted gene correlation network analysis (WGCNA) was performed to identify gene modules that were significantly co-expressed. These modules' expression profiles were then correlated with AD status to identify relevant modules. Genes with the highest intramodular connectivity (module membership) were selected as hub genes. Transcript counts of differentially expressed genes were correlated with key AD measures-MMSE and MTA scores-to identify potential biomarkers. Results 136 genes were identified as significant AD hallmarks (p < 0.05), with 52 downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably, all markers related to chronic inflammation were upregulated, and there was a significant shift in all apoptotic markers. Three co-expressed modules were found to be significantly correlated with Alzheimer's status (p < 0.05; R2> 0.5). Functional enrichment analysis on these modules reveals an association with focal adhesion, nucleocytoplasmic transport, and metal ion response leading to apoptosis, suggesting the potential participation of these pathways in AD pathology. 47 significant hub genes were found to be differentially expressed genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1, THBS1, S100A9) were found to be involved in inflammation and neuronal death. Overall, we have identified candidate transcripts in plasma cf-RNA that are differentially expressed and are implicated in inflammation and apoptosis, which can jumpstart further investigations into applying cf-RNA as an AD biomarker in Vietnam and ASEAN countries.
Collapse
Affiliation(s)
- Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tai Tien Tran
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vy Kim Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Mai Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | - The Ha Ngoc Than
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Geriatrics and Palliative Care, University Medical Center, Ho Chi Minh City, Vietnam
| | - Tran Tran To Nguyen
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Picciolini S, Rodà F, Gualerzi A, Mangolini V, Forleo L, Mangolini A, Sesana S, Antoniou A, Re F, Seneci P, Bedoni M. SPRi analysis of molecular interactions of mApoE-functionalized liposomes as drug delivery systems for brain diseases. Analyst 2023; 148:6070-6077. [PMID: 37904570 DOI: 10.1039/d3an01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The application of liposomes (LPs) to central nervous system disorders could represents a turning point in the therapy and quality of life of patients. Indeed, LPs have demonstrated their ability to cross the blood-brain barrier (BBB) and, as a consequence, to enhance the therapeutics delivery into the brain. Some approaches for BBB crossing involve the modification of LP surfaces with biologically active ligands. Among them, the Apolipoprotein E-modified peptide (mApoE) has been used for several LP-based nanovectors under investigation. In this study, we propose Surface Plasmon Resonance imaging (SPRi) for the characterization of multifunctionalized LPs for Glioblastoma treatment. LPs were functionalized with mApoE and with a metallo-protease sensitive lipopeptide to deliver and guarantee the localized release of an encapsulated drug in diseased areas. The SPRi analysis was optimized in order to evaluate the binding affinity between LPs and mApoE receptors, finding that mApoE-LPs generated SPRi signals referred to interactions between mApoE and receptors mainly present in the brain. Moreover, a significant binding between LPs and VCAM-1 (endothelial receptor) was observed, whereas LPs did not interact significantly with peripheral receptors expressed on monocytes and lymphocytes. SPRi results confirmed not only the presence of mApoE on LP surfaces, but also its binding affinity, thanks to the specific interaction with selected receptors. In conclusion, the high sensitivity and the multiplexing capability associated with the low volumes of sample required and the minimal sample preparation, make SPRi an excellent technique for the characterization of multifunctionalized nanoparticles-based formulations.
Collapse
Affiliation(s)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Brescia, Italy
| | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Antonia Antoniou
- Chemistry Department, Università Statale di, Milano, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| |
Collapse
|
8
|
Piccarducci R, Giacomelli C, Bertilacchi MS, Benito-Martinez A, Di Giorgi N, Daniele S, Signore G, Rocchiccioli S, Vilar M, Marchetti L, Martini C. Apolipoprotein E ε4 triggers neurotoxicity via cholesterol accumulation, acetylcholine dyshomeostasis, and PKCε mislocalization in cholinergic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2023:166793. [PMID: 37336366 DOI: 10.1016/j.bbadis.2023.166793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The Apolipoprotein E (ApoE) has been known to regulate cholesterol and β-amyloid (Aβ) production, redistribution, and elimination, in the central nervous system (CNS). The ApoE ε4 polymorphic variant leads to impaired brain cholesterol homeostasis and amyloidogenic pathway, thus representing the major risk factor for Alzheimer's Disease (AD). Currently, less is known about the molecular mechanisms connecting ApoE ε4-related cholesterol metabolism and cholinergic system degeneration, one of the main AD pathological features. Herein, in vitro cholinergic neuron models were developed in order to study ApoE neuronal expression and investigate the possible interplay between cholesterol metabolism and cholinergic pathway impairment prompted by ε4 isoform. Particularly, alterations specifically occurring in ApoE ε4-carrying neurons (i.e. increased intracellular ApoE, amyloid precursor protein (APP), and Aβ levels, elevated apoptosis, and reduced cell survival) were recapitulated. ApoE ε4 expression was found to increase intracellular cholesterol accumulation, by regulating the related gene expression, while reducing cholesterol precursor acetyl-CoA, which in turn fuels the acetylcholine (ACh) synthesis route. In parallel, although the ACh intracellular signalling was activated, as demonstrated by the boosted extracellular ACh as well as increased IP3 and Ca2+, the PKCε activation via membrane translocation was surprisingly suppressed, probably explained by the cholesterol overload in ApoE ε4 neuron-like cells. Consequently, the PKC-dependent anti-apoptotic and neuroprotective roles results impaired, reliably adding to other causes of cell death prompted by ApoE ε4. Overall, the obtained data open the way to further critical considerations of ApoE ε4-dependent cholesterol metabolism dysregulation in the alteration of cholinergic pathway, neurotoxicity, and neuronal death.
Collapse
Affiliation(s)
| | | | | | - Andrea Benito-Martinez
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
9
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Wu X, Srinivasan P, Basu M, Zhang P, Saruwatari M, Thommandru B, Jacobi A, Behlke M, Sandler A. Tumor Apolipoprotein E is a key checkpoint blocking anti-tumor immunity in mouse melanoma. Front Immunol 2022; 13:991790. [PMID: 36341364 PMCID: PMC9626815 DOI: 10.3389/fimmu.2022.991790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is a key modality in the treatment of cancer, but many tumors remain immune resistant. The classic mouse model of B16-F10 melanoma is immune resistant even in the face of checkpoint inhibition. Apolipoprotein E (apoE), a known immune suppressant is strikingly elevated in many human tumors, but its role in cancer immunology is not defined. We investigated the role of apoE in the immune micro-environment using a mouse melanoma model. We demonstrate that ApoE is -highly expressed in wild-type B16-F10 melanoma and serum levels progressively increase as tumors grow. The conditioned media from wild type ApoE secreting melanoma cells suppress T-cell activation in vitro while this suppressive effect is absent in conditioned media from ApoE knock out tumor cells. Mechanistically, apoE induces IL-10 secreting dendritic cells and stimulates T-cell apoptosis and arrest partially via the lrp8 receptor. Ablating ApoE in mice inoculated with tumor cells enabled tumor cell rejection and was associated with induction of immune pathway activation and immune cell infiltration. Tumor secreted apoE appears to be a potent immune cell checkpoint and targeting apoE is associated with enhanced tumor immunity in the mouse melanoma model.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Priya Srinivasan
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Mousumi Basu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Michele Saruwatari
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | | | - Ashley Jacobi
- Integrated DNA Technologies, Inc., Coralville, IA, United States
| | - Mark Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, United States
| | - Anthony Sandler
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
- *Correspondence: Anthony Sandler,
| |
Collapse
|
11
|
Borràs C, Mercer A, Sirisi S, Alcolea D, Escolà-Gil JC, Blanco-Vaca F, Tondo M. HDL-like-Mediated Cell Cholesterol Trafficking in the Central Nervous System and Alzheimer's Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23169356. [PMID: 36012637 PMCID: PMC9409363 DOI: 10.3390/ijms23169356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
The main aim of this work is to review the mechanisms via which high-density lipoprotein (HDL)-mediated cholesterol trafficking through the central nervous system (CNS) occurs in the context of Alzheimer’s disease (AD). Alzheimer’s disease is characterized by the accumulation of extracellular amyloid beta (Aβ) and abnormally hyperphosphorylated intracellular tau filaments in neurons. Cholesterol metabolism has been extensively implicated in the pathogenesis of AD through biological, epidemiological, and genetic studies, with the APOE gene being the most reproducible genetic risk factor for the development of AD. This manuscript explores how HDL-mediated cholesterol is transported in the CNS, with a special emphasis on its relationship to Aβ peptide accumulation and apolipoprotein E (ApoE)-mediated cholesterol transport. Indeed, we reviewed all existing works exploring HDL-like-mediated cholesterol efflux and cholesterol uptake in the context of AD pathogenesis. Existing data seem to point in the direction of decreased cholesterol efflux and the impaired entry of cholesterol into neurons among patients with AD, which could be related to impaired Aβ clearance and tau protein accumulation. However, most of the reviewed studies have been performed in cells that are not physiologically relevant for CNS pathology, representing a major flaw in this field. The ApoE4 genotype seems to be a disruptive element in HDL-like-mediated cholesterol transport through the brain. Overall, further investigations are needed to clarify the role of cholesterol trafficking in AD pathogenesis.
Collapse
Affiliation(s)
- Carla Borràs
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aina Mercer
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Sònia Sirisi
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Daniel Alcolea
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- CIBERNED, ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Correspondence: (J.C.E.-G.); (M.T.); Tel.: +34-93-553-7358 (J.C.E.-G. & M.T.)
| | - Francisco Blanco-Vaca
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Mireia Tondo
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.C.E.-G.); (M.T.); Tel.: +34-93-553-7358 (J.C.E.-G. & M.T.)
| |
Collapse
|
12
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
13
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Hyperlipidaemia is associated with the development of neuropathy. Indeed, a mechanistic link between altered lipid metabolism and peripheral nerve dysfunction has been demonstrated in a number of experimental and clinical studies. Furthermore, post hoc analyses of clinical trials of cholesterol and triglyceride-lowering pharmacotherapy have shown reduced rates of progression of diabetic neuropathy. Given, there are currently no FDA approved disease-modifying therapies for diabetic neuropathy, modulation of lipids may represent a key therapeutic target for the treatment of diabetic nerve damage. This review summarizes the current evidence base on the role of hyperlipidaemia and lipid lowering therapy on the development and progression of peripheral neuropathy. RECENT FINDINGS A body of literature supports a detrimental effect of dyslipidaemia on nerve fibres resulting in somatic and autonomic neuropathy. The case for an important modulating role of hypertriglyceridemia is stronger than for low-density lipoprotein cholesterol (LDL-C) in relation to peripheral neuropathy. This is reflected in the outcomes of clinical trials with the different therapeutic agents targeting hyperlipidaemia reporting beneficial or neutral effects with statins and fibrates. The potential concern with the association between proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor therapy and cognitive decline raised the possibility that extreme LDL-C lowering may result in neurodegeneration. However, studies in murine models and data from small observational studies indicate an association between increased circulating PCSK9 levels and small nerve fibre damage with a protective effect of PCSK9i therapy against small fibre neuropathy. Additionally, weight loss with bariatric surgery leads to an improvement in peripheral neuropathy and regeneration of small nerve fibres measured with corneal confocal microscopy in people with obesity with or without type 2 diabetes. These improvements correlate inversely with changes in triglyceride levels. SUMMARY Hyperlipidaemia, particularly hypertriglyceridemia, is associated with the development and progression of neuropathy. Lipid modifying agents may represent a potential therapeutic option for peripheral neuropathy. Post hoc analyses indicate that lipid-lowering therapies may halt the progression of neuropathy or even lead to regeneration of nerve fibres. Well designed randomized controlled trials are needed to establish if intensive targeted lipid lowering therapy as a part of holistic metabolic control leads to nerve fibre regeneration and improvement in neuropathy symptoms.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bilal Bashir
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
16
|
He H, Lu H, Liu S, Cai J, Tang X, Mo C, Xu X, Chen Q, Xu M, Nong C, Liu Q, Zhang J, Qin J, Zhang Z. Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China. J Orthop Surg Res 2021; 16:372. [PMID: 34116692 PMCID: PMC8194121 DOI: 10.1186/s13018-021-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 08/30/2023] Open
Abstract
Background Hand grip strength is a complex phenotype. The current study aimed to identify the effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in Gongcheng, southern China. Methods APOE rs405509 polymorphisms in 1724 participants (695 men and 1029 women, aged 45–97 years old) were genotyped using the Sequenom MassARRAY platform. Statistical analysis was conducted using SPSS 21.0 and Plink 1.90. Results The APOE rs405509 G allele was associated with lower hand grip strength in all participants (β = −1.04, P value <0.001), and the correlation seemed to be even stronger among women. A significant gene-environment interaction was observed between APOE rs405509 and smoking, especially in men. The hand grip strength of male smokers carrying the GG genotype was significantly higher than that of nonsmokers (P value = 0.004). Conclusions APOE rs405509 polymorphisms might be genetic factors that affect hand grip strength in a rural population in Gongcheng, southern China. The APOE rs405509-smoking interaction has an impact on hand grip strength.
Collapse
Affiliation(s)
- Haoyu He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Quality Management, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huaxiang Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Guangxi Science and Technology Major Project, Guangxi Zhuang Autonomous Region Center for Diseases Control and Prevention, 18 Jinzhou Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shuzhen Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chunbao Mo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiumei Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Junling Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China. .,School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
17
|
Duong MT, Nasrallah IM, Wolk DA, Chang CCY, Chang TY. Cholesterol, Atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential Mechanisms and Therapy. Front Aging Neurosci 2021; 13:647990. [PMID: 33841127 PMCID: PMC8026881 DOI: 10.3389/fnagi.2021.647990] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are a common cause of cognitive decline, yet limited therapies exist. This cerebrovascular disease results in neurodegeneration via acute, chronic, local, and systemic mechanisms. The etiology of VCID is complex, with a significant impact from atherosclerosis. Risk factors including hypercholesterolemia and hypertension promote intracranial atherosclerotic disease and carotid artery stenosis (CAS), which disrupt cerebral blood flow and trigger ischemic strokes and VCID. Apolipoprotein E (APOE) is a cholesterol and phospholipid carrier present in plasma and various tissues. APOE is implicated in dyslipidemia and Alzheimer disease (AD); however, its connection with VCID is less understood. Few experimental models for VCID exist, so much of the present information has been drawn from clinical studies. Here, we review the literature with a focus on the clinical aspects of atherosclerotic cerebrovascular disease and build a working model for the pathogenesis of VCID. We describe potential intermediate steps in this model, linking cholesterol, atherosclerosis, and APOE with VCID. APOE4 is a minor isoform of APOE that promotes lipid dyshomeostasis in astrocytes and microglia, leading to chronic neuroinflammation. APOE4 disturbs lipid homeostasis in macrophages and smooth muscle cells, thus exacerbating systemic inflammation and promoting atherosclerotic plaque formation. Additionally, APOE4 may contribute to stromal activation of endothelial cells and pericytes that disturb the blood-brain barrier (BBB). These and other risk factors together lead to chronic inflammation, atherosclerosis, VCID, and neurodegeneration. Finally, we discuss potential cholesterol metabolism based approaches for future VCID treatment.
Collapse
Affiliation(s)
- Michael Tran Duong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ilya M Nasrallah
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ta-Yuan Chang
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
18
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
19
|
Biological processes and key druggable targets involved in age-associated memory loss: A systematic review. Life Sci 2021; 270:119079. [PMID: 33460668 DOI: 10.1016/j.lfs.2021.119079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Age-associated memory loss is highly prevalent in the elder population. The inception of neurodegenerative diseases acts as a causative factor for the onset of memory loss in aged individuals. The pathophysiological mechanisms of memory loss associated with the onset of neurodegenerative diseases and normal aging processes share certain similarities as well as differences. The normal age-associated memory loss is attributed to the impairment of calcium metabolism, dysregulated cholesterol metabolism, the prevalence of oxidative stress, inappropriate functioning of hormones as well as genetic factors. Vital information regarding the key biological processes and the druggable targets involved in the onset of memory loss in the elder population has been provided in this article. The genomic and proteomic profiles of key druggable targets retrieved from the experimental evidence, co-expression studies and databases are also presented in this article. The genomic and proteomic information of druggable targets will aid in the identification of therapeutic agents which could effectively regulate the key biological processes involved in the age-associated memory loss.
Collapse
|
20
|
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2021; 58:2183-2201. [PMID: 33411241 DOI: 10.1007/s12035-020-02232-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol is an indispensable component of the cell membrane and plays vital roles in critical physiological processes. Brain cholesterol accounts for a large portion of total cholesterol in the human body, and its content must be tightly regulated to ensure normal brain function. Disorders of cholesterol metabolism in the brain are linked to neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and other atypical cognitive deficits that arise at old age. However, the specific role of cholesterol metabolism disorder in the pathogenesis of neurodegenerative diseases has not been fully elucidated. Statins that are a class of lipid-lowering drugs have been reported to have a positive effect on neurodegenerative diseases. Herein, we reviewed the physiological and pathological conditions of cholesterol metabolism and discussed the possible mechanisms of cholesterol metabolism and statin therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
21
|
Borisova AB, Lisitsyna TA, Veltishchev DY, Reshetnyak TM, Seravina OF, Kovalevskaya OB, Krasnov VN, Nasonov EL. [Mental disorders and cognitive impairment in patients with antiphospholipid syndrome]. TERAPEVT ARKH 2020; 92:92-103. [PMID: 32598781 DOI: 10.26442/00403660.2020.05.000625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 11/22/2022]
Abstract
Mental disorders (mainly anxiety and depressive disorders) and cognitive impairment are often found in patients with antiphospholipid syndrome (APS), but their prevalence, structure, and mechanisms of occurrence are not well researched. The review provides literature data on the frequency, spectrum and possible causes of mental disorders and cognitive impairment in patients with APS, the pathogenetic mechanisms of these disorders (in particular, the important role of antiphospholipid antibodies, stress factors, chronic inflammation), the relationship between APS, mental disorders and as well as cognitive impairment is examined. Special attention is paid to the influence of mental disorders and cognitive impairment on patients adherence to treatment, their quality of life, as well as the particularities of psychopharmacotherapy of mental disorders in patients with APS. The aim of the review is to actualize the interdisciplinary problem of mental disorders and cognitive impairment in patients with APS and the need to introduce a partnership model of care.
Collapse
Affiliation(s)
- A B Borisova
- Moscow Research Institute of Psychiatry - branch of Serbskiy National Medical Research Center for Psychiatry and Addiction
| | | | - D Y Veltishchev
- Moscow Research Institute of Psychiatry - branch of Serbskiy National Medical Research Center for Psychiatry and Addiction.,Pirogov Russian National Research Medical University
| | - T M Reshetnyak
- Nasonova Research Institute of Rheumatology.,Russian Medical Academy of Continuous Professional Education
| | - O F Seravina
- Moscow Research Institute of Psychiatry - branch of Serbskiy National Medical Research Center for Psychiatry and Addiction
| | - O B Kovalevskaya
- Moscow Research Institute of Psychiatry - branch of Serbskiy National Medical Research Center for Psychiatry and Addiction
| | - V N Krasnov
- Moscow Research Institute of Psychiatry - branch of Serbskiy National Medical Research Center for Psychiatry and Addiction.,Pirogov Russian National Research Medical University
| | | |
Collapse
|
22
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
23
|
Ahn KC, Learman CR, Baker GB, Weaver CL, Chung PS, Kim HG, Song MS. Regulation of Diabetes: a Therapeutic Strategy for Alzheimer's Disease? J Korean Med Sci 2019; 34:e297. [PMID: 31779058 PMCID: PMC6882941 DOI: 10.3346/jkms.2019.34.e297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulated evidence suggests that sporadic cases of Alzheimer's disease (AD) make up more than 95% of total AD patients, and diabetes has been implicated as a strong risk factor for the development of AD. Diabetes shares pathological features of AD, such as impaired insulin signaling, increased oxidative stress, increased amyloid-beta (Aβ) production, tauopathy and cerebrovascular complication. Due to shared pathologies between the two diseases, anti-diabetic drugs may be a suitable therapeutic option for AD treatment. In this article, we will discuss the well-known pathologies of AD, including Aβ plaques and tau tangles, as well as other mechanisms shared in AD and diabetes including reactive glia and the breakdown of blood brain barrier in order to evaluate the presence of any potential, indirect or direct links of pre-diabetic conditions to AD pathology. In addition, clinical evidence of high incidence of diabetic patients to the development of AD are described together with application of anti-diabetic medications to AD patients.
Collapse
Affiliation(s)
- Kee Chan Ahn
- NeuroVIS, Cheonan, Korea
- EnviroBrain, Edmonton, AB, Canada
| | - Cameron R Learman
- Chapman University Physician Assistant Studies Program, Orange, CA, USA
| | - Glen B Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Charles L Weaver
- Department of Health Sciences, Saginaw Valley State University, Saginaw, MI, USA
| | - Phil Sang Chung
- Beckman Laser Institute Korea, Faculty of Medical School, Dankook University, Cheonan, Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan, Korea
| | - Hyung Gun Kim
- NeuroVIS, Cheonan, Korea
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Korea
| | - Mee Sook Song
- Beckman Laser Institute Korea, Faculty of Medical School, Dankook University, Cheonan, Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan, Korea.
| |
Collapse
|
24
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
25
|
Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, Cui W, Sun X, Zhao K, Wang H, Ho HYH, Xiong WC, Mei L. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. eLife 2019; 8:e45303. [PMID: 31268420 PMCID: PMC6650252 DOI: 10.7554/elife.45303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampus may represent a form of plasticity in brain functions including mood, learning and memory. However, mechanisms underlying neural stem/progenitor cells (NSPCs) proliferation are not well understood. We found that Agrin, a factor critical for neuromuscular junction formation, is elevated in the hippocampus of mice that are stimulated by enriched environment (EE). Genetic deletion of the Agrn gene in excitatory neurons decreases NSPCs proliferation and increases depressive-like behavior. Low-density lipoprotein receptor-related protein 4 (Lrp4), a receptor for Agrin, is expressed in hippocampal NSPCs and its mutation blocked basal as well as EE-induced NSPCs proliferation and maturation of newborn neurons. Finally, we show that Lrp4 interacts with and activates receptor tyrosine kinase-like orphan receptor 2 (Ror2); and Ror2 mutation impairs NSPCs proliferation. Together, these observations identify a role of Agrin-Lrp4-Ror2 signaling for adult neurogenesis, uncovering previously unexpected functions of Agrin and Lrp4 in the brain.
Collapse
Affiliation(s)
- Hongsheng Zhang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Anupama Sathyamurthy
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Lei Li
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Lei Zhang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Zhaoqi Dong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Wanpeng Cui
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Xiangdong Sun
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Kai Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Hongsheng Wang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Hsin-Yi Henry Ho
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| | - Lin Mei
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| |
Collapse
|
26
|
El Hajj A, Yen FT, Oster T, Malaplate C, Pauron L, Corbier C, Lanhers MC, Claudepierre T. Age-related changes in regiospecific expression of Lipolysis Stimulated Receptor (LSR) in mice brain. PLoS One 2019; 14:e0218812. [PMID: 31233547 PMCID: PMC6590887 DOI: 10.1371/journal.pone.0218812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
The regulation of cholesterol, an essential brain lipid, ensures proper neuronal development and function, as demonstrated by links between perturbations of cholesterol metabolism and neurodegenerative diseases, including Alzheimer’s disease. The central nervous system (CNS) acquires cholesterol via de novo synthesis, where glial cells provide cholesterol to neurons. Both lipoproteins and lipoprotein receptors are key elements in this intercellular transport, where the latter recognize, bind and endocytose cholesterol containing glia-produced lipoproteins. CNS lipoprotein receptors are like those in the periphery, among which include the ApoB, E binding lipolysis stimulated lipoprotein receptor (LSR). LSR is a multimeric protein complex that has multiple isoforms including α and α’, which are seen as a doublet at 68 kDa, and β at 56 kDa. While complete inactivation of murine lsr gene is embryonic lethal, studies on lsr +/- mice revealed altered brain cholesterol distribution and cognitive functions. In the present study, LSR profiling in different CNS regions revealed regiospecific expression of LSR at both RNA and protein levels. At the RNA level, the hippocampus, hypothalamus, cerebellum, and olfactory bulb, all showed high levels of total lsr compared to whole brain tissues, whereas at the protein level, only the hypothalamus, olfactory bulb, and retina showed the highest levels of total LSR. Interestingly, major regional changes in LSR expression were observed in aged mice which suggests changes in cholesterol homeostasis in specific structures in the aging brain. Immunocytostaining of primary cultures of mature murine neurons and glial cells isolated from different CNS regions showed that LSR is expressed in both neurons and glial cells. However, lsr RNA expression in the cerebellum was predominantly higher in glial cells, which was confirmed by the immunocytostaining profile of cerebellar neurons and glia. Based on this observation, we would propose that LSR in glial cells may play a key role in glia-neuron cross talk, particularly in the feedback control of cholesterol synthesis to avoid cholesterol overload in neurons and to maintain proper functioning of the brain throughout life.
Collapse
Affiliation(s)
- Aseel El Hajj
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Frances T. Yen
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
- * E-mail: (TC); (FTY)
| | - Thierry Oster
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Catherine Malaplate
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Lynn Pauron
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Catherine Corbier
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Marie-Claire Lanhers
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Thomas Claudepierre
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
- * E-mail: (TC); (FTY)
| |
Collapse
|
27
|
Ralston NV. Effects of soft electrophiles on selenium physiology. Free Radic Biol Med 2018; 127:134-144. [PMID: 30053507 DOI: 10.1016/j.freeradbiomed.2018.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
This review examines the effects of neurotoxic electrophiles on selenium (Se) metabolism. Selenium-dependent enzymes depend on the unique and elite functions of selenocysteine (Sec), the 21st proteinogenic amino acid, to perform their biochemical roles. Humans possess 25 selenoprotein genes, ~ half of which are enzymes (selenoenzymes) required for preventing, controlling, or reversing oxidative damage, while others participate in regulating calcium metabolism, thyroid hormone status, protein folding, cytoskeletal structure, Sec synthesis and Se transport. While selenoproteins are expressed in tissue dependent distributions and levels in all cells of all vertebrates, they are particularly important in brain development, health, and functions. As the most potent intracellular nucleophile, Sec is subject to binding by mercury (Hg) and other electron poor soft neurotoxic electrophiles. Epidemiological and environmental studies of the effects of exposures to methyl-Hg (CH3Hg+), elemental Hg (Hg°), and/or other metallic/organic neurotoxic soft electrophiles need to consider the concomitant effects of all members of this class of toxicants in relation to the Se status of their study populations. The contributions of individual electrophiles' discrete and cooperative rates of Se sequestration need to be evaluated in relation to tissue Se reserves of the exposed populations to identify sensitive subgroups which may be at accentuated risk due to poor Se status. Additional study is required to examine possibilities of inherited, acquired, or degenerative neurological disorders of Se homeostasis that may influence vulnerability to soft electrophile exposures. Investigations of soft electrophile toxicity will be enhanced by considering the concomitant effects of combined exposures on tissue Se-availability in relation to pathological consequences during fetal development or in relation to etiologies of neurological disorders and neurodegenerative diseases. Since selenoenzymes are molecular "targets" of soft electrophiles, concomitant evaluation of aggregate exposures to these toxicants in relation to dietary Se intakes will assist regulatory agencies in their goals of improving and protecting public health.
Collapse
Affiliation(s)
- Nicholas Vc Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
28
|
Stepanov VA, Bocharova AV, Vagaitseva KV, Marusin AV, Markova VV, Minaicheva LI, Zhukova IA, Zhukova NG, Alifirova VM, Makeeva OA. [A rare variant in the sortilin-related receptor 1 gene is associated with declined cognitive functions in the elderly]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:92-95. [PMID: 29927411 DOI: 10.17116/jnevro20181185192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To estimate the association of rs11218343 in the sortilin-related receptor 1 (SORL1) gene with cognitive performance in the elderly and with Alzheimer's disease (AD) in the Russian population. MATERIAL AND METHODS A sample included 586 elderly people (mean age 70.9±5.7 years) without AD diagnosis and 100 patients with late-onset AD (mean age 72.1±7.8 years) from the Tomsk population. SORL1 rs11218343 was genotyped using PCR and MALDI-TOF mass spectrometry. Cognitive performance in the sample of elderly without AD was assessed by Montreal Cognitive Assessment (MoCA) test. RESULTS Allele frequencies of the SORL1 polymorphism were not significantly different between the elderly without AD and AD patients. However mean MoCA score in the carriers of the rare allele (19.00±6.61) was significantly lower than in homozygotes for the common variant (22.25±3.89) (F=4.97; p=0.026). CONCLUSION The rare variant in SORL1 gene previously associated with AD in genome-wide association studies and meta-analyses was associated with lower total МоСА scores in the random sample of elderly people that suggests declined cognitive functions in the carriers of this variant in elderly.
Collapse
Affiliation(s)
- V A Stepanov
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | - A V Bocharova
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia
| | - K V Vagaitseva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | - A V Marusin
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia
| | - V V Markova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| | - L I Minaicheva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| | - I A Zhukova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia; Siberian Medical University, Tomsk, Russia
| | - N G Zhukova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia; Siberian Medical University, Tomsk, Russia
| | | | - O A Makeeva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| |
Collapse
|
29
|
Ahn KC, Learman CR, Dunbar GL, Maiti P, Jang WC, Cha HC, Song MS. Characterization of Impaired Cerebrovascular Structure in APP/PS1 Mouse Brains. Neuroscience 2018; 385:246-254. [PMID: 29777753 DOI: 10.1016/j.neuroscience.2018.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is defined by senile plaques, tauopathy and neuronal cell death in specific area of the brain. Recent studies suggest that neurovascular dysfunction may be an integral part of AD pathogenesis, contributing to the onset and development of AD pathologies such as neuronal death, inflammatory response, and breakdown of blood-brain barrier (BBB). In addition, vascular complications caused by age-related metabolic diseases such as diabetes and high blood pressure have high incidence in development of dementia and AD. We previously reported that astrocytes, essential components of BBB, were chronically activated and some deteriorated in the brain of 5xFAD, an amyloid precursor protein/presenilin1 (APP/PS1) transgenic mouse model. Thus, it is rational to investigate if any vascular dysfunction is associated with considerable activation of astrocytes in APP/PS1 mouse model. In this study, we observed that cerebrovascular pathology was associated with large scale of reactive astrocytes and neurodegeneration in an Aβ plague-generating mouse model. Using 5xFAD mouse brains, we demonstrate damaged brain vessels and reduced expression of glucose transporter 1 (GLUT1), the main glucose transporter, and a tight junction protein zonula occludens-1 (ZO-1) of cerebrovascular endothelial cells. This vascular pathology was closely associated with astrocytic deterioration and neuronal loss due to buildup of Aβ plaques in 5xFAD mouse brains.
Collapse
Affiliation(s)
- Kee-Chan Ahn
- University of British Columbia, Vancouver, BC, Canada; EnviroBrain, Edmonton, AB, Canada
| | - Cameron R Learman
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | - Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | | | - Hyeon-Cheol Cha
- Department of Biological Sciences, Dankook University, Cheonan, Chungnam, South Korea
| | - Mee-Sook Song
- Department of Biological Sciences, Dankook University, Cheonan, Chungnam, South Korea.
| |
Collapse
|
30
|
Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, Bruni AC, Cigliano L. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. J Cell Physiol 2018; 233:6925-6943. [PMID: 29323721 DOI: 10.1002/jcp.26480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
In the central nervous system, cholesterol is critical to maintain membrane plasticity, cellular function, and synaptic integrity. In recent years, much attention was focused on the role of cholesterol in brain since a breakdown of cholesterol metabolism has been associated with different diseases. Brain-derived neurotrophic factor (BDNF) was previously reported to elicit cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-rich lipid rafts, but no data are available on its ability to modulate physiological mechanisms involved in cholesterol homeostasis. Major aim of this research was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. Our results show that BDNF significantly stimulates cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and ApoE expression. Conversely, cholesterol uptake in neurons was downregulated by BDNF. This effect was associated with the increase of Liver X Receptor (LXR)-beta expression in neuron exposed to BDNF. The level of apoptosis markers, that is, cleaved caspase 3 and poly ADP ribose polymerase (PARP), was found increased in neurons treated with high cholesterol, but significantly lower when the cells were exposed to cholesterol in the presence of BDNF, thus suggesting a neuroprotective role of the neurotrophin, likely through its reducing effect of neuronal cholesterol uptake. Interestingly, cholesterol stimulates BDNF production by neurons. Overall, our findings evidenced a novel role of BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells.
Collapse
Affiliation(s)
- Maria S Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Cupidi
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Amalia C Bruni
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Affiliation(s)
- Lei Li
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Czuba E, Steliga A, Lietzau G, Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab Brain Dis 2017; 32:935-948. [PMID: 28432486 PMCID: PMC5504126 DOI: 10.1007/s11011-017-0015-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland.
| | - Aleksandra Steliga
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| |
Collapse
|
33
|
Sacharidou A, Shaul PW, Mineo C. New Insights in the Pathophysiology of Antiphospholipid Syndrome. Semin Thromb Hemost 2017; 44:475-482. [PMID: 28129662 DOI: 10.1055/s-0036-1597286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disorder characterized by an elevated risk for arterial and venous thrombosis and pregnancy-related morbidity. Since the discovery of the disease in 1980s, numerous studies in cell culture systems, in animal models, and in patient populations have been reported, leading to a deeper understanding of the pathogenesis of APS. These studies have determined that circulating autoantibodies, collectively called antiphospholipid antibodies (aPL), the majority of which recognize cell surface proteins attached to the plasma membrane phospholipids, play a causal role in the development of the disease. The binding of aPL to the cell surface antigens triggers interaction of the complex with transmembrane receptors to initiate intracellular signaling in critical cell types, including platelets, monocytes, endothelial cells, and trophoblasts. Subsequent alteration of various cell functions results in inflammation, thrombus formation, and pregnancy complications. Apolipoprotein E receptor 2 (apoER2), a lipoprotein receptor family member, has been implicated as a mediator for aPL actions in platelets and endothelial cells. Nitric oxide (NO) is a signaling molecule known to exert potent antithrombotic, anti-inflammatory, and anti-atherogenic effects. NO insufficiency and oxidative stress have been linked to APS pathogenesis. This review will focus on the recent findings on how apoER2 and dysregulation of NO production contribute to aPL-mediated pathologies in APS.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chieko Mineo
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 2016; 11:74. [PMID: 27931262 PMCID: PMC5146863 DOI: 10.1186/s13024-016-0138-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. Methods We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test. Results We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Conclusions Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiyagaragan M Achariyar
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Baoman Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Weiguo Peng
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Philip B Verghese
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Evan McConnell
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, Division of Cell and Gene Therapy, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Tristan Kasper
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Wei Song
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Takahiro Takano
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Rashid Deane
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
35
|
Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H, Nedergaard M, Deane R. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis 2016; 93:215-25. [PMID: 27234656 DOI: 10.1016/j.nbd.2016.05.015] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023] Open
Abstract
Glymphatic transport, defined as cerebrospinal fluid (CSF) peri-arterial inflow into brain, and interstitial fluid (ISF) clearance, is reduced in the aging brain. However, it is unclear whether glymphatic transport affects the distribution of soluble Aβ in Alzheimer's disease (AD). In wild type mice, we show that Aβ40 (fluorescently labeled Aβ40 or unlabeled Aβ40), was distributed from CSF to brain, via the peri-arterial space, and associated with neurons. In contrast, Aβ42 was mostly restricted to the peri-arterial space due mainly to its greater propensity to oligomerize when compared to Aβ40. Interestingly, pretreatment with Aβ40 in the CSF, but not Aβ42, reduced CSF transport into brain. In APP/PS1 mice, a model of AD, with and without extensive amyloid-β deposits, glymphatic transport was reduced, due to the accumulation of toxic Aβ species, such as soluble oligomers. CSF-derived Aβ40 co-localizes with existing endogenous vascular and parenchymal amyloid-β plaques, and thus, may contribute to the progression of both cerebral amyloid angiopathy and parenchymal Aβ accumulation. Importantly, glymphatic failure preceded significant amyloid-β deposits, and thus, may be an early biomarker of AD. By extension, restoring glymphatic inflow and ISF clearance are potential therapeutic targets to slow the onset and progression of AD.
Collapse
Affiliation(s)
- Weiguo Peng
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Thiyagarajan M Achariyar
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Baoman Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yonghong Liao
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Emi Hitomi
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sean Regan
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tristan Kasper
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sisi Peng
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fengfei Ding
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Helene Benveniste
- Department of Anesthesia, Stony Brook University, Stony Brook, NY, USA; Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rashid Deane
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
36
|
Yu CE, Foraker J. Epigenetic considerations of the APOE gene. [corrected]. Biomol Concepts 2016; 6:77-84. [PMID: 25741792 DOI: 10.1515/bmc-2014-0039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/03/2015] [Indexed: 11/15/2022] Open
Abstract
The apolipoprotein E (APOE) gene is robustly linked with numerous physiological conditions, including healthy aging, altered cardiovascular fitness, and cognitive function. These connections have been established primarily by phenotype-genotype association studies using APOE's three common genetic variants (ε2, ε3, and ε4). These variants encode for the three apoE protein isoforms (E2, E3, and E4), which have slightly different structures and, consequently, distinct functions in lipid metabolism. However, the differential lipid binding and transferring properties of these isoforms cannot fully explain the association of APOE with such a wide range of physiological phenotypes. One potential explanation for APOE's pleiotropic roles may lie in its unique epigenetic properties. In this article, we present a brief review of the APOE gene and protein, its disease associations, and epigenetic components, with a focus on DNA methylation. We close with a discussion of the prospective epigenetic implications of APOE in disease.
Collapse
|
37
|
Abstract
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
Collapse
Affiliation(s)
- Juan Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
38
|
Rege S, Mackworth-Young C. Antiphospholipid antibodies as biomarkers in psychiatry: review of psychiatric manifestations in antiphospholipid syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.3402/tdp.v3.25452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
APOE ε4: the most prevalent yet understudied risk factor for Alzheimer's disease. Alzheimers Dement 2014; 10:861-8. [PMID: 25217293 DOI: 10.1016/j.jalz.2014.06.015] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/15/2014] [Accepted: 06/23/2014] [Indexed: 11/20/2022]
Abstract
Brain pathology of Alzheimer's diseases (AD) and the genetics of autosomal dominant familial AD have been the "lamp posts" under which the AD field has been looking for therapeutic targets. Although this approach still remains valid, none of the compounds tested to date have produced clinically meaningful results. This calls for developing complementary therapeutic approaches and AD targets. The allele ε4 of apolipoprotein E4 (APOE ε4), is the most prevalent genetic risk factor for sporadic AD, and is expressed in more than half of the AD patients. However, in spite of its genetic prominence, the allele APOE ε4 and its corresponding protein product apoE4 have been understudied. We presently briefly discuss the reasons underlying this situation and review newly developed AD therapeutic approaches that target apoE4 and which pave the way for future studies.
Collapse
|
40
|
Spagnuolo MS, Maresca B, Mollica MP, Cavaliere G, Cefaliello C, Trinchese G, Esposito MG, Scudiero R, Crispino M, Abrescia P, Cigliano L. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines. Front Cell Neurosci 2014; 8:212. [PMID: 25140128 PMCID: PMC4122225 DOI: 10.3389/fncel.2014.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain pathophysiology.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute of Animal Production Systems in Mediterranean Environments, National Research Council Naples, Italy
| | | | | | - Gina Cavaliere
- Department of Biology, University of Naples Federico II Naples, Italy
| | | | | | | | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Paolo Abrescia
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II Naples, Italy
| |
Collapse
|
41
|
Yu CE, Cudaback E, Foraker J, Thomson Z, Leong L, Lutz F, Gill JA, Saxton A, Kraemer B, Navas P, Keene CD, Montine T, Bekris LM. Epigenetic signature and enhancer activity of the human APOE gene. Hum Mol Genet 2013; 22:5036-47. [PMID: 23892237 PMCID: PMC3836480 DOI: 10.1093/hmg/ddt354] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
The human apolipoprotein E (APOE) gene plays an important role in lipid metabolism. It has three common genetic variants, alleles ε2/ε3/ε4, which translate into three protein isoforms of apoE2, E3 and E4. These isoforms can differentially influence total serum cholesterol levels; therefore, APOE has been linked with cardiovascular disease. Additionally, its ε4 allele is strongly associated with the risk of Alzheimer's disease (AD), whereas the ε2 allele appears to have a modest protective effect for AD. Despite decades of research having illuminated multiple functional differences among the three apoE isoforms, the precise mechanisms through which different APOE alleles modify diseases risk remain incompletely understood. In this study, we examined the genomic structure of APOE in search for properties that may contribute novel biological consequences to the risk of disease. We identify one such element in the ε2/ε3/ε4 allele-carrying 3'-exon of APOE. We show that this exon is imbedded in a well-defined CpG island (CGI) that is highly methylated in the human postmortem brain. We demonstrate that this APOE CGI exhibits transcriptional enhancer/silencer activity. We provide evidence that this APOE CGI differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ε2/ε3/ε4 allele-specific manner. These findings implicate a novel functional role for a 3'-exon CGI and support a modified mechanism of action for APOE in disease risk, involving not only the protein isoforms but also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI.
Collapse
Affiliation(s)
- Chang-En Yu
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine
| | - Eiron Cudaback
- Neuropathology Division, Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jessica Foraker
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine
| | - Zachary Thomson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Lesley Leong
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Franziska Lutz
- Division of Gerontology and Geriatric Medicine, Department of Medicine
| | - James Anthony Gill
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian Kraemer
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine
| | | | - C. Dirk Keene
- Neuropathology Division, Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Thomas Montine
- Neuropathology Division, Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lynn M. Bekris
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine
| |
Collapse
|
42
|
Abstract
In the brain, apolipoprotein E (APOE) delivers cholesterol-rich lipoproteins to neurons to support synaptogenesis and maintenance of synaptic connections. Three APOE alleles exist in the human population with ε4 being an Alzheimer disease (AD) risk gene and ε2 being protective relative to the common ε3 variant. Many hypotheses have been advanced concerning allele-specific effects of APOE on neurodegeneration including effects on Aβ clearance, synaptic transmission, or neurotoxicity. Central to most proposed APOE functions is its interaction with receptors that mediate cellular uptake of this ligand. Several members of the LDL receptor gene family have been implicated as APOE receptors in the (patho)physiology of APOE in the brain, yet their specific modes of action in AD remain controversial. Recently, the pro-neurotrophin receptor sortilin has been identified as a novel APOE receptor in neurons. Ablation of sortilin expression in mice results in accumulation of APOE and Aβ in the brain. Moreover, primary neurons lacking sortilin exhibit significantly impaired uptake of APOE/Aβ complexes. Despite increased brain APOE levels, sortilin-deficient animals recapitulate anomalies in brain lipid homeostasis seen in APOE null mice, indicating functional deficiency in APOE uptake pathways. Taken together, these findings suggest a link between Aβ catabolism and pro-neurotrophin signaling converging on this receptor pathway.
Collapse
|
43
|
Fan J, Shimizu Y, Chan J, Wilkinson A, Ito A, Tontonoz P, Dullaghan E, Galea LAM, Pfeifer T, Wellington CL. Hormonal modulators of glial ABCA1 and apoE levels. J Lipid Res 2013; 54:3139-50. [PMID: 23999864 DOI: 10.1194/jlr.m042473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) is the major lipid carrier in the central nervous system. As apoE plays a major role in the pathogenesis of Alzheimer disease (AD) and also mediates repair pathways after several forms of acute brain injury, modulating the expression, secretion, or function of apoE may provide potential therapeutic approaches for several neurological disorders. Here we show that progesterone and a synthetic progestin, lynestrenol, significantly induce apoE secretion from human CCF-STTG1 astrocytoma cells, whereas estrogens and the progesterone metabolite allopregnanolone have negligible effects. Intriguingly, lynestrenol also increases expression of the cholesterol transporter ABCA1 in CCF-STTG1 astrocytoma cells, primary murine glia, and immortalized murine astrocytes that express human apoE3. The progesterone receptor inhibitor RU486 attenuates the effect of progestins on apoE expression in CCF-STTG1 astrocytoma cells but has no effect on ABCA1 expression in all glial cell models tested, suggesting that the progesterone receptor (PR) may participate in apoE but does not affect ABCA1 regulation. These results suggest that selective reproductive steroid hormones have the potential to influence glial lipid homeostasis through liver X receptor-dependent and progesterone receptor-dependent pathways.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 599] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
45
|
Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A. Retracted: Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 2013; 88:825-43. [DOI: 10.1111/brv.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Victor A. Cortes
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Dolores Busso
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Pablo Mardones
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Alberto Maiz
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Antonio Arteaga
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Flavio Nervi
- Department of Gastroenterology; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - Attilio Rigotti
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| |
Collapse
|
46
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
47
|
Cholesterol: its regulation and role in central nervous system disorders. CHOLESTEROL 2012; 2012:292598. [PMID: 23119149 PMCID: PMC3483652 DOI: 10.1155/2012/292598] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 02/08/2023]
Abstract
Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.
Collapse
|
48
|
Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 2012; 47:37-63. [PMID: 22983915 DOI: 10.1007/s12035-012-8337-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder believed to be initiated by accumulation of amyloid β (Aβ)-related peptides derived from proteolytic processing of amyloid precursor protein (APP). Research over the past two decades provided a mechanistic link between cholesterol and AD pathogenesis. Genetic polymorphisms in genes regulating the pivotal points in cholesterol metabolism have been suggested to enhance the risk of developing AD. Altered neuronal membrane cholesterol level and/or subcellular distribution have been implicated in aberrant formation, aggregation, toxicity, and degradation of Aβ-related peptides. However, the results are somewhat contradictory and we still do not have a complete understanding on how cholesterol can influence AD pathogenesis. In this review, we summarize our current understanding on the role of cholesterol in regulating the production/function of Aβ-related peptides and also examine the therapeutic potential of regulating cholesterol homeostasis in the treatment of AD pathology.
Collapse
Affiliation(s)
- M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | | | | | | |
Collapse
|
49
|
Koffie RM, Hashimoto T, Tai HC, Kay KR, Serrano-Pozo A, Joyner D, Hou S, Kopeikina KJ, Frosch MP, Lee VM, Holtzman DM, Hyman BT, Spires-Jones TL. Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. ACTA ACUST UNITED AC 2012; 135:2155-68. [PMID: 22637583 DOI: 10.1093/brain/aws127] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The apolipoprotein E ε4 gene is the most important genetic risk factor for sporadic Alzheimer's disease, but the link between this gene and neurodegeneration remains unclear. Using array tomography, we analysed >50000 synapses in brains of 11 patients with Alzheimer's disease and five non-demented control subjects and found that synapse loss around senile plaques in Alzheimer's disease correlates with the burden of oligomeric amyloid-β in the neuropil and that this synaptotoxic oligomerized peptide is present at a subset of synapses. Further analysis reveals apolipoprotein E ε4 patients with Alzheimer's disease have significantly higher oligomeric amyloid-β burden and exacerbated synapse loss around plaques compared with apolipoprotein E ε3 patients. Apolipoprotein E4 protein colocalizes with oligomeric amyloid-β and enhances synaptic localization of oligomeric amyloid-β by >5-fold. Biochemical characterization shows that the amyloid-β enriched at synapses by apolipoprotein E4 includes sodium dodecyl sulphate-stable dimers and trimers. In mouse primary neuronal culture, lipidated apolipoprotein E4 enhances oligomeric amyloid-β association with synapses via a mechanism involving apolipoprotein E receptors. Together, these data suggest that apolipoprotein E4 is a co-factor that enhances the toxicity of oligomeric amyloid-β both by increasing its levels and directing it to synapses, providing a link between apolipoprotein E ε4 genotype and synapse loss, a major correlate of cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Robert M Koffie
- Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy. Neurobiol Dis 2012; 47:1-12. [PMID: 22426397 DOI: 10.1016/j.nbd.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease.
Collapse
|