1
|
Ji H, Chen S, Hu Q, He Y, Zhou L, Xie J, Pan H, Tong X, Wu C. Investigating the Correlation between Serum Amyloid A and Infarct-Related Artery Patency Prior to Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction Patients. Angiology 2024; 75:585-594. [PMID: 37402552 DOI: 10.1177/00033197231183031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Serum amyloid A (SAA) is a cardiovascular risk factor and may serve as a predictor of infarct-related artery (IRA) patency in patients with ST-segment elevation myocardial infarction (STEMI). We measured SAA levels in STEMI patients who underwent percutaneous coronary intervention (PCI) and investigated their association with IRA patency. According to the Thrombolysis in Myocardial Infarction (TIMI) flow grade, 363 STEMI patients undergoing PCI in our hospital were divided into an occlusion group (TIMI 0-2) and a patency group (TIMI 3). The SAA level before PCI was significantly higher in STEMI patients with IRA occluded than in those with patent ones. At a cutoff value of 36.9 mg/L, SAA had a sensitivity of 63.0% and a specificity of 90.6% (area under the ROC curve [AUC] = .833, 95% CI: .793-.873, P < .001). Multivariate logistic regression analysis showed that SAA was an independent predictor of IRA patency in STEMI patients before PCI (odds ratio [OR] = 1.041, 95% CI: 1.020-1.062, P < .001). SAA can be used as a potential predictor of IRA patency in STEMI patients before PCI.
Collapse
Affiliation(s)
- Hao Ji
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senjiang Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingqing Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianchang Xie
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Hao Pan
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoshan Tong
- Catheter Room, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Critical Care Medicine, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Danielsen PH, Poulsen SS, Knudsen KB, Clausen PA, Jensen KA, Wallin H, Vogel U. Physicochemical properties of 26 carbon nanotubes as predictors for pulmonary inflammation and acute phase response in mice following intratracheal lung exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104413. [PMID: 38485102 DOI: 10.1016/j.etap.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Institute of Occupational Health, Pb 5330 Majorstuen, Oslo 0304, Norway; Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark (DTU), Anker Engelunds Vej 1, Lyngby DK-2800 Kgs, Denmark.
| |
Collapse
|
3
|
Yang G, Li J, Zhang S, Ouyang H, Jiang C, Pan H. A flexible gradient lateral flow immunochromatographic assay for qualitative, semi-quantitative, and quantitative determination of serum amyloid A. J Immunol Methods 2023; 523:113574. [PMID: 37884205 DOI: 10.1016/j.jim.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase protein produced in response to inflammatory proteins during infections, inflammation, trauma, surgery, cancer, and other conditions. Early and accurate detection of SAA is necessary for diagnosis and monitoring of disease progression. To meet this need, we developed a gradient lateral flow immunoassay test strip using Au nanoparticles as signal reporters. The test strip has three test (T1, T2, and T3) lines with progressively decreasing concentrations of SAA antibody, enabling the determination of high, medium, and low concentrations of SAA in serum. The test strip results were analyzed using three distinct readout methods, each with different sensitivity, accuracy, and precision for SAA concentration measurements. Qualitative judgment is based on the color of the T1 line. Semi-quantitative assessment of SAA concentration is determined by the number of colored T-lines. Specifically, color development in T1 line alone indicates a concentration range of 10-50 μg/mL, while T1 and T2 lines together indicate a range of 50-100 μg/mL, and development in all three lines (T1, T2, and T3) indicates a concentration of >100 μg/mL. Quantitative analysis was performed using either smartphone imaging or image scanning with ImageJ software. By using a five-parameter logistic function, we found a strong correlation (R2 = 0.998) between the ratio of signal intensities of (T1 + T2 + T3) to the control (C) line and SAA concentrations ranging from 5 to 1000 μg/mL. At lower concentrations (0-100 μg/mL), we observed a proportional relationship between the value of (T1 + T2 + T3)/C and SAA concentration. The limit of detection for SAA was 9.33 ng/mL (or 6.53 μg/mL of SAA in undiluted serum samples) for the smartphone method and 3.06 ng/mL (or 2.14 μg/mL of SAA in undiluted serum samples) for the scanner method. The gradient test strip was highly consistent with a commercially available SAA immunochromatographic test strip when tested with real human serum samples. Passing-Bablok regression indicated that results obtained using the smartphone app and scanner methods of the gradient test strip were comparable to those obtained using the commercial test strip. The gradient test strip is flexible and adaptable, providing solutions for qualitative, semi-quantitative, and quantitative SAA measurements.
Collapse
Affiliation(s)
- Guangtian Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jishun Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shenglan Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Huixiang Ouyang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chunhai Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
4
|
Barbosa MVM, Faria JCP, Coelho SR, Fonseca FLA, Haddad APK, Souza FISD, Sarni ROS. Serum amyloid A in children and adolescents: association with overweight and carotid intima-media thickness. EINSTEIN-SAO PAULO 2023; 21:eAO0251. [PMID: 37341220 DOI: 10.31744/einstein_journal/2023ao0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE To compare serum amyloid A concentrations between overweight and eutrophic children and adolescents and to relate it to lipid profiles, glucose tolerance, and carotid intima-media thickness. METHODS One hundred children and adolescents (mean age: 10.8±3.16 years) were included and divided into two groups: overweight and non-overweight. The following were evaluated: Z-score body mass index, carotid intima-media thickness, lipid metabolism biomarkers (lipid profile and apolipoproteins A1 and B), inflammatory biomarkers (ultra-sensitive C-reactive protein and serum amyloid A), and glucose homeostasis model assessment of insulin resistance. RESULTS The groups were homogeneous in age, sex, and pubertal stage. Higher levels of triglycerides, apolipoprotein B, homeostasis model assessment of insulin resistance, ultrasensitive C-reactive protein, serum amyloid A, and carotid intima-media thickness were observed in the overweight group. In the multivariate analysis, age (OR=1.73; 95%CI: 1.16-2.60, p=0.007), Z-score body mass index (OR=3.76; 95%CI: 1.64-8.59, p=0.002), apolipoprotein-B (OR=1.1; 95%CI: 1.01-1.2, p=0.030), and carotid intima-media thickness (OR=5.00; 95%CI: 1.38-18.04, p=0.014) were independently associated with serum amyloid A levels above the fourth quartile of the studied sample (>9.4mg/dL). CONCLUSION Overweight children and adolescents had higher serum amyloid A concentrations than eutrophic children. There was an independent association between higher concentrations of serum amyloid A and Z-score, body mass index, apolipoprotein B, and carotid intima-media thickness, indicating the importance of this inflammatory biomarker in identifying the early risk of atherosclerosis.
Collapse
|
5
|
Vreeken D, Seidel F, de La Roij G, Vening W, den Hengst WA, Verschuren L, Özsezen S, Kessels RPC, Duering M, Mutsaerts HJMM, Kleemann R, Wiesmann M, Hazebroek EJ, Kiliaan AJ. Impact of White Adipose Tissue on Brain Structure, Perfusion, and Cognitive Function in Patients With Severe Obesity: The BARICO Study. Neurology 2023; 100:e703-e718. [PMID: 36332987 PMCID: PMC9969926 DOI: 10.1212/wnl.0000000000201538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND OBJECTIVE While underlying pathophysiology linking obesity to brain health is not completely understood, white adipose tissue (WAT) is considered a key player. In obesity, WAT becomes dysregulated, showing hyperplasia, hypertrophy, and eventually inflammation. This disbalance leads to dysregulated secretion of adipokines influencing both (cardio)vascular and brain health. Within this study, we investigated the association between omental WAT (oWAT) and subcutaneous WAT (scWAT) with brain structure and perfusion and cognition in adults with severe obesity. METHODS Within the cross-sectional BARICO study, brain structure and perfusion and cognitive function were measured before bariatric surgery (BS) using MRI and cognitive assessments. During BS, oWAT and scWAT depots were collected and analyzed by histopathology. The number and diameter of adipocytes were quantified together with the amount of crown-like structures (CLS) as an indication of inflammation. Blood samples were collected to analyze adipokines and inflammatory markers. Neuroimaging outcomes included brain volumes, cortical thickness, white matter (WM) integrity, WM hyperintensities, cerebral blood flow using arterial spin labeling (ASL), and the ASL spatial coefficient of variation (sCoV), reflecting cerebrovascular health. RESULTS Seventy-one patients were included (mean age 45.1 ± 5.8 years; 83.1% women; mean body mass index 40.8 ± 3.8 kg/m2). scWAT showed more CLS (z = -2.72, p < 0.01, r = -0.24) and hypertrophy compared with oWAT (F(1,64) = 3.99, p < 0.05, η2 = 0.06). Adiponectin levels were inversely associated with the average diameter of scWAT (β = -0.31, 95% CI -0.54 to -0.08) and oWAT (β = -0.33, 95% CI -0.55 to -0.09). Furthermore, the adipocyte diameter in oWAT was positively associated with the sCoV in the parietal cortex (β = 0.33, 95% CI 0.10-0.60), and the number of adipocytes (per mm2) was positively associated with sCoV in the nucleus accumbens (NAcc) (β = 0.34, 95% CI 0.09-0.61). Cognitive function did not correlate with any WAT parameter or plasma marker. These associations were highly influenced by age and sex. sCoV in the NAcc was positively associated with fasting plasma glucose (β = 0.35, 95% CI 0.10-0.56). DISCUSSION scWAT and oWAT are different in morphology and in their relationship with plasma markers and cerebrovascular health. Although scWAT showed more CLS and hypertrophy, scWAT was not associated with brain readouts. This study showed, however, important relationships between oWAT morphology and cerebrovascular health in obesity. TRIAL REGISTRATION INFORMATION Trial Registration Number NTR7288 (trialregister.nl/trial/7090).
Collapse
Affiliation(s)
- Debby Vreeken
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Florine Seidel
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Guido de La Roij
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Wouter Vening
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Willem A den Hengst
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Lars Verschuren
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Serdar Özsezen
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Roy P C Kessels
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Marco Duering
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Henk J M M Mutsaerts
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Robert Kleemann
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Maximilian Wiesmann
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Eric J Hazebroek
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Amanda J Kiliaan
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands.
| |
Collapse
|
6
|
Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed. Part I: Serum proteomes. J Proteomics 2023; 270:104740. [PMID: 36191802 DOI: 10.1016/j.jprot.2022.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
This study examines whether maternal low ω6:ω3 ratio diet and offspring SW supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analysed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays. The differentially abundant proteins (n = 122) displayed positive effects of maternal LR diet on anti-inflammatory properties and innate immune stimulation. Progeny SW diet activated the innate immunity and enhance the host defence during inflammation. These data demonstrate the value of decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet to boost their immunity and anti-inflammation properties. SIGNIFICANCE: This novel proteomic study in post-weaned piglets addresses the interplay between maternal and offspring nutritional interventions in a context of rapid and dynamic alterations in piglet metabolic status around weaning. Decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet can boost their immunity and anti-inflammation properties. This study also provides new insights into piglet serum proteome regulation during post-weaning, a critical development period in swine.
Collapse
|
7
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
8
|
Yeh KH, Hsu LA, Juang JMJ, Chiang FT, Teng MS, Tzeng IS, Wu S, Lin JF, Ko YL. Circulating serum amyloid A levels but not SAA1 variants predict long-term outcomes of angiographically confirmed coronary artery disease. Tzu Chi Med J 2022; 34:423-433. [PMID: 36578646 PMCID: PMC9791857 DOI: 10.4103/tcmj.tcmj_219_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Circulating serum amyloid A (SAA) levels are strongly associated with atherosclerotic cardiovascular disease risk and severity. The association between SAA1 genetic variants, SAA levels, inflammatory marker levels, and coronary artery disease (CAD) prognosis has not been fully understood. MATERIALS AND METHODS In total, 2199 Taiwan Biobank (TWB) participants were enrolled for a genome-wide association study (GWAS), and the long-term outcomes in 481 patients with CAD were analyzed. The primary endpoint was all-cause mortality, and the secondary endpoint was the combination of all-cause death, myocardial infarction, stroke, and hospitalization for heart failure. RESULTS Through GWAS, SAA1 rs11024600 and rs7112278 were independently associated with SAA levels (P = 3.84 × 10-145 and P = 1.05 × 10-29, respectively). SAA levels were positively associated with leukocyte counts and multiple inflammatory marker levels in CAD patients and with body mass index, hemoglobin, high-density lipoprotein cholesterol, and alanine aminotransferase levels in TWB participants. By stepwise linear regression analysis, SAA1 gene variants contributed to 27.53% and 8.07% of the variation of the SAA levels in TWB and CAD populations, respectively, revealing a stronger influence of these two variants in TWB participants compared to CAD patients. Kaplan-Meier survival analysis revealed that SAA levels, but not SAA1 gene variants, were associated with long-term outcomes in patients with CAD. Cox regression analysis also indicated that high circulating SAA levels were an independent predictor of both the primary and secondary endpoints. CONCLUSION SAA1 genotypes contributed significantly to SAA levels in the general population and in patients with CAD. Circulating SAA levels but not SAA1 genetic variants could predict long-term outcomes in patients with angiographically confirmed CAD.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Jeng-Feng Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
9
|
Pencheva M, Koeva I, Dimitrov I, Daskalova E. High lipid diet and the expression of proinflammatory markers in testis. Folia Med (Plovdiv) 2022; 64:288-295. [DOI: 10.3897/folmed.64.e65467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Introduction: Obesity is defined as chronic low-grade inflammation which is manifestation of the cellular response to a variety of stressful situations leading to organ and tissue damage. А high lipid diet could be assumed to be the trigger mechanism for the development of inflammatory processes leading to a disorder in the immune tolerance in the testis.
Aim: The present study aimed at demonstrating the expression of inflammatory markers in the testis by a model of a high lipid diet and the possible effect on spermatogenesis.
Materials and methods: Male Wistar rats were used in the study divided into two groups: a control group fed standard rodent food and an experimental group receiving high lipid food for 14 weeks. Routine histological techniques, immunohistochemical reactions for proinflammatory markers and morphometric analysis were performed to examine the testis preparations.
Results: The high lipid diet caused a low-grade inflammation in the testis in the experimental group, which was confirmed by the increase of proinflammatory markers: the C-reactive protein, serum amyloid A, and interleukin-4, and by the elevated levels of angiotensin-converting enzyme in the experimental versus control groups in a rat experimental model.
Conclusions: Our results suggest that a high lipid diet might be a possible cause for the idiopathic infertility in men.
Collapse
|
10
|
Metwalli O, Hashem E, Ajabnoor MA, Alama N, Banjar ZM. Study of Some Inflammatory Mediators in the Serum of Patients With Atherosclerosis and Acute Myocardial Infarction. Cureus 2021; 13:e18450. [PMID: 34745775 PMCID: PMC8561326 DOI: 10.7759/cureus.18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background and aim of the study The aim of this study is to evaluate the changes in the inflammatory mediator's serum amyloid A (SAA), adiponectin, and resistin in the serum of patients with stable angina and acute myocardial infarction. Subjects and methods The study was done on 60 subjects divided into three groups: 20 healthy normal individuals as a control group, 20 patients with stable angina (atherosclerotic plaque), and 20 patients with myocardial infarction. Fasting blood samples were withdrawn from all subjects and serum was prepared. SAA, resistin, and adiponectin levels were quantitatively measured by enzyme-linked immunosorbent assay (ELISA). Results The SAA level was significantly higher in both stable angina and the acute myocardial infarction group than the control group (2.7179 ± 0.44501 mg/L) and the serum resistin level was significantly higher (p-value = 0.0) in the stable angina (8.368 ± 1.633 ng/ml) and the acute myocardial infarction (13.606 ± 2.067 ng/ml) groups (p-value= 0.0) than the control group. (2.4272±1.25210 ng/ml). Moreover, resistin levels in stable angina when compared to the AMI showed a significant difference between them (p-value = 0.0) while adiponectin was significantly lower in the acute myocardial infarction group. (6.641±2.6011 µg/mL, p-value = 0.019) than its level in the control group (11.873±1.798 µg/mL). While the adiponectin level showed no significant differences between stable angina in comparison to the AMI. Conclusion SAA can be used as a confirmatory marker for stable angina and a diagnostic tool for AMI patients. Both SAA and resistin may participate in the atherosclerosis process as an effectors molecule of inflammatory reactions. For adiponectin, we concluded that it has the antiatherogenic property and its levels were lower in both the stable angina and acute myocardial infarction groups.
Collapse
Affiliation(s)
- Ohoud Metwalli
- Pathology, Department of Laboratory, King Abdulaziz University Hospital, Jeddah, SAU
| | - Enayat Hashem
- Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | | | - Nabil Alama
- Cardiology, Department of Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Zainy M Banjar
- Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| |
Collapse
|
11
|
Azmi S, Ferdousi M, Liu Y, Adam S, Siahmansur T, Ponirakis G, Marshall A, Petropoulos IN, Ho JH, Syed AA, Gibson JM, Ammori BJ, Durrington PN, Malik RA, Soran H. The role of abnormalities of lipoproteins and HDL functionality in small fibre dysfunction in people with severe obesity. Sci Rep 2021; 11:12573. [PMID: 34131170 PMCID: PMC8206256 DOI: 10.1038/s41598-021-90346-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and associated dyslipidemia may contribute to increased cardiovascular disease. Obesity has also been associated with neuropathy. We have investigated presence of peripheral nerve damage in patients with severe obesity without type 2 diabetes and the status of metabolic syndrome and lipoprotein abnormalities. 47participants with severe obesity and 30 age-matched healthy controls underwent detailed phenotyping of neuropathy and an assessment of lipoproteins and HDL-functionality. Participants with severe obesity had a higher neuropathy symptom profile, lower sural and peroneal nerve amplitudes, abnormal thermal thresholds, heart rate variability with deep breathing and corneal nerve parameters compared to healthy controls. Circulating apolipoprotein A1 (P = 0.009), HDL cholesterol (HDL-C) (P < 0.0001), cholesterol efflux (P = 0.002) and paroxonase-1 (PON-1) activity (P < 0.0001) were lower, and serum amyloid A (SAA) (P < 0.0001) was higher in participants with obesity compared to controls. Obese participants with small nerve fibre damage had higher serum triglycerides (P = 0.02), lower PON-1 activity (P = 0.002) and higher prevalence of metabolic syndrome (58% vs. 23%, P = 0.02) compared to those without. However, HDL-C (P = 0.8), cholesterol efflux (P = 0.08), apoA1 (P = 0.8) and SAA (P = 0.8) did not differ significantly between obese participants with and without small nerve fibre damage. Small nerve fibre damage occurs in people with severe obesity. Patients with obesity have deranged lipoproteins and compromised HDL functionality compared to controls. Obese patients with evidence of small nerve fibre damage, compared to those without, had significantly higher serum triglycerides, lower PON-1 activity and a higher prevalence of metabolic syndrome.
Collapse
Affiliation(s)
- Shazli Azmi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Diabetes, Endocrine and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Yifen Liu
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Safwaan Adam
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Tarza Siahmansur
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Jan Hoong Ho
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Akheel A Syed
- Department of Diabetes and Endocrinology, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - John M Gibson
- Department of Diabetes and Endocrinology, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - Basil J Ammori
- Department Surgery, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - Paul N Durrington
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.
| |
Collapse
|
12
|
Zhang J, Shi C, Zhang L, Zhang Y, Lu Q, Wang R. Fluorescent quenching probes based SAA 1 genotyping with a fully automated system. Heliyon 2021; 7:e06858. [PMID: 33997392 PMCID: PMC8100075 DOI: 10.1016/j.heliyon.2021.e06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 10/25/2022] Open
Abstract
Objective The aim of the present study is to develop and validate a reliable and simple application for genotyping serum amyloid A1 (SAA1). Methods The specific nested PCR was performed to amplify a product of SAA1 gene. Two quenching probes (QPs) were designed for detecting two single nucleotide polymorphism (SNP) sites, rs1136743(C/T) and rs1136747(C/T) respectively for SAA1 genotypes. The specific nested PCR and QPs of SAA1 genotying was introduced into a fully automated genotyping system (I-densy, ARKRAY, Inc.), which enables the genotyping of SAA1 from whole blood. Results Six genotypes of SAA1 (α+/+, β+/+, γ+/+, αβ, αγ and βγ) could be determined by monitoring the fluorescence intensity of two QPs with melting temperature (TM) analysis. Total 121 clinical samples were SAA1 genotyped in the fluorescent quenching probes based method with a fully automated I-densy system and were further sequence confirmed with a PCR direct sequencing approach. Conclusion This fully automated system is a rapid and reliable strategy for the SAA1 genotyping and for its future clinical application.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, 201318, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, 201318, China
| | - Qing Lu
- Shanghai Testing & Inspection Institute for Medical Devices (CMTC), Shanghai, 201318, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, 201318, China
| |
Collapse
|
13
|
Martin NJ, Chami B, Vallejo A, Mojadadi AA, Witting PK, Ahmad G. Efficacy of the Piperidine Nitroxide 4-MethoxyTEMPO in Ameliorating Serum Amyloid A-Mediated Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22094549. [PMID: 33925294 PMCID: PMC8123591 DOI: 10.3390/ijms22094549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular redox imbalance in endothelial cells (EC) can lead to endothelial dysfunction, which underpins cardiovascular diseases (CVD). The acute phase serum amyloid A (SAA) elicits inflammation through stimulating production of reactive oxygen species (ROS). The cyclic nitroxide 4-MethoxyTEMPO (4-MetT) is a superoxide dismutase mimetic that suppresses oxidant formation and inflammation. The aim of this study was to investigate whether 4-MetT inhibits SAA-mediated activation of cultured primary human aortic EC (HAEC). Co-incubating cells with 4-MetT inhibited SAA-mediated increases in adhesion molecules (VCAM-1, ICAM-1, E-selectin, and JAM-C). Pre-treatment of cells with 4-MetT mitigated SAA-mediated increases in transcriptionally activated NF-κB-p65 and P120 Catenin (a stabilizer of Cadherin expression). Mitochondrial respiration and ROS generation (mtROS) were adversely affected by SAA with decreased respiratory reserve capacity, elevated maximal respiration and proton leakage all characteristic of SAA-treated HAEC. This altered respiration manifested as a loss of mitochondrial membrane potential (confirmed by a decrease in TMRM fluorescence), and increased mtROS production as assessed with MitoSox Red. These SAA-linked impacts on mitochondria were mitigated by 4-MetT resulting in restoration of HAEC nitric oxide bioavailability as confirmed by assessing cyclic guanosine monophosphate (cGMP) levels. Thus, 4-MetT ameliorates SAA-mediated endothelial dysfunction through normalising EC redox homeostasis. Subject to further validation in in vivo settings; these outcomes suggest its potential as a therapeutic in the setting of cardiovascular pathologies where elevated SAA and endothelial dysfunction is linked to enhanced CVD.
Collapse
|
14
|
Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis 2021; 105:668-674. [PMID: 33737133 PMCID: PMC7959678 DOI: 10.1016/j.ijid.2021.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES An excessive inflammatory response in patients with coronavirus disease 2019 (COVID-19) is associated with high disease severity and mortality. Specific acute phase reactants might be useful for risk stratification. A systematic review and meta-analysis was conducted of studies on serum amyloid A (SAA) in patients with COVID-19. METHODS The PubMed, Web of Science, and Scopus databases were searched, covering the period January 2020 to December 2020, for studies reporting SAA concentrations, COVID-19 severity, and survival status. RESULTS Nineteen studies involving 5617 COVID-19 patients were included in the meta-analysis. Pooled results showed that SAA concentrations were significantly higher in patients with severe disease and non-survivors (standard mean difference (SMD) 1.20, 95% confidence interval 0.91-1.49, P < 0.001). Extreme between-study heterogeneity was observed (I2 = 92.4%, P < 0.001). In the sensitivity analysis, the effect size was not significantly affected when each study was removed in turn (range 1.10-1.29). The Begg test (P = 0.030), but not the Egger test (P = 0.385), revealed the presence of publication bias. Pooled SMD values were significantly and positively associated with sex (t = 2.20, P = 0.047) and aspartate aminotransferase (t = 3.44, P = 0.014). CONCLUSIONS SAA concentrations were significantly and positively associated with higher COVID-19 severity and mortality. This acute phase reactant might assist with risk stratification and monitoring in this group.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
15
|
Chandrasekhar G, Rajasekaran R. Investigating the pernicious effects of heparan sulfate in serum amyloid A1 protein aggregation: a structural bioinformatics approach. J Biomol Struct Dyn 2020; 40:1776-1790. [PMID: 33050843 DOI: 10.1080/07391102.2020.1833756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid-A mediated (AA) amyloidosis is the pathogenic byproduct of body's prolonged exposure to inflammatory conditions. It is described by the aggregation of mutated/misfolded serum amyloid A1 (SAA1) protein in various tissues and organs. Genetic polymorphism G90D is suspected to cause AA amyloidosis, although the causal mechanism remains cryptic. Recent experimental findings insinuate that heparan sulphate (HS), a glycosaminoglycans, exhibits binding with SAA1 to promote its aggregation. To foster the enhanced binding of HS, we computationally determined the pernicious modifications in G90D mutant SAA1 protein. Also, we examined the influence of HS on the dynamic conformation of mutant SAA1 that could potentially succor amyloidosis. Accordingly, the protein-ligand binding studies indicate that upon SNP G90D, SAA1 protein exhibited an augmented association with HS. Further, the simulation of HS bound mutant SAA1 complex delineates an increase in RMSD, Rg, and RMSF. Also, both RMSD and Rg evinced a fluctuating trajectory. Further, the complex showed increase of beta turn in its secondary structural composition. Additionally, the free energy landscape of mutant SAA1-HS complex posits the occurrence of multiple global minima conformers as opposed to the presence of a single global energy minima conformation in native SAA1 protein. In conclusion, the aforementioned conformational ramifications induced by HS on SAA1 could potentially be the proteopathic incendiary behind AA amyloidosis; this incendiary will need to be considered in future studies for developing effective therapeutics against AA amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
16
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
17
|
Kononoff A, Elfving P, Pussinen P, Hörkkö S, Kautiainen H, Arstila L, Laasonen L, Savolainen E, Niinisalo H, Rutanen J, Marjoniemi O, Hämäläinen M, Vuolteenaho K, Moilanen E, Kaipiainen-Seppänen O. Association of rheumatoid arthritis disease activity and antibodies to periodontal bacteria with serum lipoprotein profile in drug naive patients. Ann Med 2020; 52:32-42. [PMID: 32011179 PMCID: PMC7877970 DOI: 10.1080/07853890.2020.1724321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: We investigated lipid concentrations, particle sizes and antibodies binding to periodontal bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis and to malondialdehyde-acetaldehyde (MAA) modified low-density lipoprotein in immunoglobulin (Ig) class A, G and M among patients with newly diagnosed rheumatoid arthritis (RA) in a population-based cohort.Methods: Concentrations and sizes of lipoprotein particles analysed by proton nuclear magnetic resonance spectroscopy and antibody levels to MAA modified low-density lipoprotein were studied at baseline and after one-year of follow-up. Serum Ig A and G class antibodies to periodontal bacteria were determined at baseline.Results: Sixty-three patients were divided into tertiles according to disease activity by disease activity score with 28 joint count and erythrocyte sedimentation rate (ESR) (<3.9, 3.9-4.7, >4.7). Small low-density lipoprotein concentration was lowest in the tertile with the highest disease activity. In high-density lipoprotein, the concentrations of total, medium and small particles decreased with disease activity. The particle size in low-density lipoprotein associated with disease activity and the presence of antibodies to P. gingivalis. Ig G and M antibodies to MAA modified low-density lipoprotein correlated with disease activity. Inflammation associated changes faded by one year.Conclusions: Drug naive RA patients had proatherogenic changes in lipid profiles, but they were reversible, when inflammation diminished.Key messagesPatients with drug naive rheumatoid arthritis showed proatherogenic lipid profiles.Reversible changes in lipid profiles can be achieved as response to inflammation suppression.Active therapy aimed at remission is essential in all patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Aulikki Kononoff
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pia Elfving
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Sohvi Hörkkö
- Institute of Diagnostics, Medical Microbiology and Immunology, Research Unit of Biomedicine, Oulu University Hospital, University of Oulu and Medical Research Center and Nordlab Oulu, Oulu, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland.,Unit of Family Practice, Central Finland Central Hospital, Jyväskylä, Finland
| | - Leena Arstila
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland.,Department of Medicine, Iisalmi Hospital
| | - Leena Laasonen
- Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Elina Savolainen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Helena Niinisalo
- Department of Medicine, Varkaus Hospital.,Outpatient Clinic, Suonenjoki Health Center
| | - Jarno Rutanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Olga Marjoniemi
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Mari Hämäläinen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Katriina Vuolteenaho
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | | |
Collapse
|
18
|
Abstract
As normal constituents of blood serum, the Serum Amyloid A (SAA) proteins are small (104 amino acids in humans) and remarkably well-conserved in mammalian evolution. They are synthesized prominently, but not exclusively, in the liver. Fragments of SAA can associate into insoluble fibrils (called "amyloid") characteristic of "secondary" amyloid disease in which they can interrupt normal physiology and lead to organ failure. SAA proteins comprise a family of molecules, two members of which (SAA1 and SAA2) are (along with C-reactive protein, CRP) the most prominent members of the acute phase response (APR) during which their serum levels rise dramatically after trauma, infection and other stimuli. Biologic function (s) of SAA are unresolved but features are consistent with a prominent role in primordial host defense (including the APR ). SAA proteins are lipophilic and contribute to high density lipoproteins (HDL) and cholesterol transport. SAA proteins interact with specific receptors and have been implicated in tissue remodeling through metalloproteinases, local tissue changes in atherosclerosis, cancer metastasis, lung inflammation, maternal-fetal health and intestinal physiology. Molecular details of some of these are emerging.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Kälsch AI, Scharnagl H, Kleber ME, Windpassinger C, Sattler W, Leipe J, Krämer BK, März W, Malle E. Long- and short-term association of low-grade systemic inflammation with cardiovascular mortality in the LURIC study. Clin Res Cardiol 2019; 109:358-373. [PMID: 31263995 DOI: 10.1007/s00392-019-01516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The present study aimed to evaluate biomarkers representing low-grade systemic inflammation and their association with cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. METHODS The included 3134 consecutive patients underwent coronary angiography between June 1997 and May 2001 with a median follow-up of 9.9 years. Plasma levels of IL-6, and acute-phase reactants serum amyloid A (SAA) and C-reactive protein (CRP) were measured. SAA and IL-6 polymorphisms were genotyped. RESULTS During a median observation time of 9.9 years, 949 deaths (30.3%) occurred, of these 597 (19.2%) died from cardiovascular causes. High plasma levels of IL-6, CRP and SAA were associated with unstable CAD, as well as established risk factors including type 2 diabetes mellitus, smoking, low glomerular filtration rate, low TGs and low HDL-C. After adjusting for established cardiovascular risk markers and the other two inflammatory markers, SAA was found to be an independent risk factor for cardiovascular mortality after a short-term follow-up (6 months-1 year) with a HR per SD of 1.41. IL-6 was identified as an independent risk factor for long-term follow-up (3, 5, and 9.9 years) with HRs per SD of 1.21, 1.22 and 1.18. CRP lost significance after adjustment. Although 6 out of 27 SAA SNPs were significantly associated with SAA plasma concentrations, the genetic risk score was not associated with cardiovascular mortality. CONCLUSIONS The present findings from the large, prospective LURIC cohort underline the importance of inflammation in CAD and the prognostic relevance of inflammatory biomarkers that independently predict cardiovascular mortality.
Collapse
Affiliation(s)
- Anna-Isabelle Kälsch
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/VI 21, 8010, Graz, Austria
| | - Jan Leipe
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Mannheim, Germany
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/VI 21, 8010, Graz, Austria.
| |
Collapse
|
20
|
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem 2019; 90:25-80. [PMID: 31122611 DOI: 10.1016/bs.acc.2019.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute-phase reactant serum amyloid A (A-SAA) plays an important role in acute and chronic inflammation and is used in clinical laboratories as an indicator of inflammation. Although both A-SAA and C-reactive protein (CRP) are acute-phase proteins, the detection of A-SAA is more conclusive than the detection of CRP in patients with viral infections, severe acute pancreatitis, and rejection reactions to kidney transplants. A-SAA has greater clinical diagnostic value in patients who are immunosuppressed, patients with cystic fibrosis who are treated with corticoids, and preterm infants with late-onset sepsis. Nevertheless, for the assessment of the inflammation status and identification of viral infection in other pathologies, such as bacterial infections, the combinatorial use of A-SAA and other acute-phase proteins (APPs), such as CRP and procalcitonin (PCT), can provide more information and sensitivity than the use of any of these proteins alone, and the information generated is important in guiding antibiotic therapy. In addition, A-SAA-associated diseases and the diagnostic value of A-SAA are discussed. However, the relationship between different A-SAA isotypes and their human diseases are mostly derived from research laboratories with limited clinical samples. Thus, further clinical evaluations are necessary to confirm the clinical significance of each A-SAA isotype. Furthermore, the currently available A-SAA assays are based on polyclonal antibodies, which lack isotype specificity and are associated with many inflammatory diseases. Therefore, these assays are usually used in combination with other biomarkers in the clinic.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- C.N. Maternity & Infant Health Hospital, Shanghai, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
21
|
Schuchardt M, Prüfer N, Tu Y, Herrmann J, Hu XP, Chebli S, Dahlke K, Zidek W, van der Giet M, Tölle M. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci Rep 2019; 9:3421. [PMID: 30833653 PMCID: PMC6399289 DOI: 10.1038/s41598-019-39846-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/01/2019] [Indexed: 01/12/2023] Open
Abstract
Serum amyloid A (SAA) is an uremic toxin and acute phase protein. It accumulates under inflammatory conditions associated with high cardiovascular morbidity and mortality in patients with sepsis or end-stage renal disease (ESRD). SAA is an apolipoprotein of the high-density lipoprotein (HDL). SAA accumulation turns HDL from an anti-inflammatory to a pro-inflammatory particle. SAA activates monocyte chemoattractant protein-1 (MCP-1) in vascular smooth muscle cells. However, the SAA receptor-mediated signaling pathway in vascular cells is poorly understood. Therefore, the SAA-mediated signaling pathway for MCP-1 production was investigated in this study. The SAA-induced MCP-1 production is dependent on the activation of TLR2 and TLR4 as determined by studies with specific receptor antagonists and agonists or siRNA approach. Experiments were confirmed in tissues from TLR2 knockout, TLR4 deficient and TLR2 knock-out/TLR4 deficient mice. The intracellular signaling pathway is IκBα and subsequently NFκB dependent. The MCP-1 production induced by SAA-enriched HDL and HDL isolated from septic patients with high SAA content is also TLR2 and TLR4 dependent. Taken together, the TLR2 and TLR4 receptors are functional SAA receptors mediating MCP-1 release. Furthermore, the TLR2 and TLR4 are receptors for dysfunctional HDL. These results give a further inside in SAA as uremic toxin involved in uremia-related pro-inflammatory response in the vascular wall.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Nicole Prüfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Yuexing Tu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany.,Zhejiang Provincial People´s Hospital, Intensive Care Unit, Hangzhou, China
| | - Jaqueline Herrmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Xiu-Ping Hu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sarah Chebli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Katja Dahlke
- Deutsches Institut für Ernaehrungsforschung, Department of Gastrointestinal Microbiology, Arthur-Scheunert-Allee 114-116, 14558, Nuthethal, Germany
| | - Walter Zidek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Markus van der Giet
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Markus Tölle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
22
|
Hirai K, Furusho H, Kawashima N, Xu S, de Beer M, Battaglino R, Van Dyke T, Stashenko P, Sasaki H. Serum Amyloid A Contributes to Chronic Apical Periodontitis via TLR2 and TLR4. J Dent Res 2019; 98:117-125. [PMID: 30189157 PMCID: PMC6304714 DOI: 10.1177/0022034518796456] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the current concept of bacterial infections, pathogen-associated molecular patterns (PAMPs) derived from pathogens and damage-associated molecular patterns (DAMPs) released from damaged/necrotic host cells are crucial factors in induction of innate immune responses. However, the implication of DAMPs in apical and marginal periodontitis is unknown. Serum amyloid A (SAA) is a DAMP that is involved in the development of various chronic inflammatory diseases, such as rheumatoid arthritis. In the present study, we tested whether SAA is involved in the pathogenesis of periapical lesions, using human periapical surgical specimens and mice deficient in SAA and Toll-like receptors (TLR). SAA1/2 was locally expressed in human periapical lesions at the mRNA and protein levels. The level of SAA protein appeared to be positively associated with the inflammatory status of the lesions. In the development of mouse periapical inflammation, SAA1.1/2.1 was elevated locally and systemically in wild-type (WT) mice. Although SAA1.1/2.1 double-knockout and SAA3 knockout mice had redundant attenuation of the extent of periapical lesions, these animals showed strikingly improved inflammatory cell infiltration versus WT. Recombinant human SAA1 (rhSAA1) directly induced chemotaxis of WT neutrophils in a dose-dependent manner in vitro. In addition, rhSAA1 stimulation significantly prolonged the survival of WT neutrophils as compared with nonstimulated neutrophils. Furthermore, rhSAA1 activated the NF-κB pathway and subsequent IL-1α production in macrophages in a dose-dependent manner. However, TLR2/TLR4 double deficiency substantially diminished these SAA-mediated proinflammatory responses. Taken together, the SAA-TLR axis plays an important role in the chronicity of periapical inflammation via induction of inflammatory cell infiltration and prolonged cell survival. The interactions of PAMPs and DAMPs require further investigation in dental/oral inflammation.
Collapse
Affiliation(s)
- K. Hirai
- Department of Cariology, Restorative Sciences
and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Immunology and Infectious
Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - H. Furusho
- Department of Oral and Maxillofacial
Pathobiology, Hiroshima University, Hiroshima, Japan
| | - N. Kawashima
- Department of Pulp Biology and Endodontics,
Tokyo Medical and Dental University, Tokyo, Japan
| | - S. Xu
- Department of Immunology and Infectious
Diseases, The Forsyth Institute, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital and Harvard Medical School, Boston, MA, USA
| | - M.C. de Beer
- Department of Physiology, University of
Kentucky, Lexington, KY, USA
| | - R. Battaglino
- Department of Physical Medicine and
Rehabilitation, School of Medicine, University of Colorado, Aurora, CO, USA
| | - T. Van Dyke
- The Forsyth Institute, Cambridge, MA,
USA
- Department of Oral Medicine, Infection, and
Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - P. Stashenko
- Department of Immunology and Infectious
Diseases, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and
Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Endodontics, Goldman School of
Dental Medicine, Boston University, Boston, MA, USA
| | - H. Sasaki
- Department of Cariology, Restorative Sciences
and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Immunology and Infectious
Diseases, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and
Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Suzuki H, Sugaya M, Nakajima R, Oka T, Takahashi N, Nakao M, Miyagaki T, Asano Y, Sato S. Serum amyloid A levels in the blood of patients with atopic dermatitis and cutaneous T-cell lymphoma. J Dermatol 2018; 45:1440-1443. [PMID: 30289574 DOI: 10.1111/1346-8138.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/27/2018] [Indexed: 01/04/2023]
Abstract
Serum amyloid A (SAA) is an acute phase protein, which activates immune cells and induces cytokines and chemokine. SAA levels in blood have been reported to be elevated in case of inflammation, infections, neoplasia and tissue injury. In this study, we examined SAA levels in the blood of patients with atopic dermatitis (AD) and cutaneous T-cell lymphoma (CTCL). SAA levels in sera of AD patients, those of CTCL patients and those of healthy controls were not significantly different. When AD or CTCL patients were classified by disease severity, there was still no difference in SAA levels. In AD patients, however, SAA levels positively correlated with the number of eosinophils in peripheral blood and serum soluble interleukin-2 receptor (sIL-2R) levels. There were significant correlations between SAA levels in blood and the number of white blood cells in peripheral blood and serum sIL-2R levels in CTCL patients. AD patients without topical steroid treatment and CTCL patients without narrowband ultraviolet B therapy showed increased levels of SAA, which suggested that SAA levels may easily fluctuate with treatment. These results imply a possible contribution of SAA in development of AD and CTCL.
Collapse
Affiliation(s)
- Hideko Suzuki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Rina Nakajima
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naomi Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Momoko Nakao
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
LPS-Induced Systemic Inflammation Does Not Alter Atherosclerotic Plaque Area or Inflammation in APOE3∗LEIDEN Mice in the Early Phase Up to 15 Days. Shock 2018; 50:360-365. [DOI: 10.1097/shk.0000000000001026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
27
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
28
|
Analysis of Drug Effects on Primary Human Coronary Artery Endothelial Cells Activated by Serum Amyloid A. Mediators Inflamm 2018; 2018:8237209. [PMID: 29670468 PMCID: PMC5833471 DOI: 10.1155/2018/8237209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
Background RA patients have a higher incidence of cardiovascular diseases compared to the general population. Serum amyloid A (SAA) is an acute-phase protein, upregulated in sera of RA patients. Aim To determine the effects of medications on SAA-stimulated human coronary artery endothelial cells (HCAEC). Methods HCAEC were preincubated for 2 h with medications from sterile ampules (dexamethasone, methotrexate, certolizumab pegol, and etanercept), dissolved in medium (captopril) or DMSO (etoricoxib, rosiglitazone, meloxicam, fluvastatin, and diclofenac). Human recombinant apo-SAA was used to stimulate HCAEC at a final 1000 nM concentration for 24 hours. IL-6, IL-8, sVCAM-1, and PAI-1 were measured by ELISA. The number of viable cells was determined colorimetrically. Results SAA-stimulated levels of released IL-6, IL-8, and sVCAM-1 from HCAEC were significantly attenuated by methotrexate, fluvastatin, and etoricoxib. Both certolizumab pegol and etanercept significantly decreased PAI-1 by an average of 43%. Rosiglitazone significantly inhibited sVCAM-1 by 58%. Conclusion We observed marked influence of fluvastatin on lowering cytokine production in SAA-activated HCAEC. Methotrexate showed strong beneficial effects for lowering released Il-6, IL-8, and sVCAM-1. Interesting duality was observed for NSAIDs, with meloxicam exhibiting opposite-trend effects from diclofenac and etoricoxib. This represents unique insight into specific responsiveness of inflammatory-driven HCAEC relevant to atherosclerosis.
Collapse
|
29
|
Gao J, Meyer K, Borucki K, Ueland PM. Multiplex Immuno-MALDI-TOF MS for Targeted Quantification of Protein Biomarkers and Their Proteoforms Related to Inflammation and Renal Dysfunction. Anal Chem 2018; 90:3366-3373. [DOI: 10.1021/acs.analchem.7b04975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Gao
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Klaus Meyer
- Bevital AS, Jonas Lies veg 87, Laboratory Building, Ninth Floor, 5021 Bergen, Norway
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44 , 39120 Magdeburg, Germany
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
30
|
Jialal I, Devaraj S. Subcutaneous adipose tissue biology in metabolic syndrome. Horm Mol Biol Clin Investig 2018; 33:hmbci-2017-0074. [PMID: 29353263 DOI: 10.1515/hmbci-2017-0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MetS) is a common global problem that comprises the cardio-metabolic cluster and predisposes to both diabetes and cardiovascular diseases. Although the pathogenic mechanisms have not been elucidated, both increased inflammation and insulin resistance play a pivotal role. It appears that both monocyte/macrophages and adipose tissue (AT) conspire to accentuate both the pro-inflammatory state and increased insulin resistance. Whilst there are scant data on visceral adipose tissue (VAT) and epicardial adipose tissue (EAT) biology, there are data on subcutaneous adipose tissue (SAT) dysregulation. There is a significant increase in macrophages and crown-like structures in the SAT of patients with MetS. With respect to adipokines, there is an increase in plasma leptin, plasminogen activator inhibitor-1, retinol-binding protein-4 (RBP-4), chemerin, serum amyloid-A, C-reactive protein (CRP), interleukin-1, -6, -8, lipopolysaccharide, fetuin A (FetA) and a decrease in adiponectin and omentin-1. All of the abnormalities in plasma were also confirmed for SAT-secreted adipokines except for adiponectin and RBP-4 which derive largely from VAT. As many of these biomediators correlate with both insulin resistance and increased inflammation, we can posit that dysregulation of SAT is detrimental and contributes to both the pathogenesis of MetS and its sequalae. Furthermore, as future directions, much work is needed with respect to VAT/EAT biology, autophagy, sirtuins, the gut microbiome, browning of AT, to further elucidate this common syndrome and identify potential therapeutic targets to forestall its serious complications.
Collapse
Affiliation(s)
- Ishwarlal Jialal
- Section of Endocrinology, VA Medical Center, Mather and California North-State University College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, USA, Fax: +916-686-7310
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
31
|
Witkowski A, Chan GKL, Boatz JC, Li NJ, Inoue AP, Wong JC, van der Wel PCA, Cavigiolio G. Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation. FASEB J 2018; 32:3149-3165. [PMID: 29401604 DOI: 10.1096/fj.201701127r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Apolipoprotein A-I (apoA-I) shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and intermolecularly, providing structural stabilization by self-association. We have reported that lipid-free apoA-I becomes amyloidogenic upon physiologically relevant (myeloperoxidase-mediated) Met oxidation. In this study, we established that Met oxidation promotes amyloidogenesis by reducing the stability of apoA-I monomers and irreversibly disrupting self-association. The oxidized apoA-I monomers also exhibited increased cellular cholesterol release capacity and stronger association with macrophages, compared to nonoxidized apoA-I. Of physiologic relevance, preformed oxidized apoA-I amyloid fibrils induced amyloid formation in nonoxidized apoA-I. This process was enhanced when self-association of nonoxidized apoA-I was disrupted by thermal treatment. Solid state NMR analysis revealed that aggregates formed by seeded nonoxidized apoA-I were structurally similar to those formed by the oxidized protein, featuring a β-structure-rich amyloid fold alongside α-helices retained from the native state. In atherosclerotic lesions, the conditions that promote apoA-I amyloid formation are readily available: myeloperoxidase, active oxygen species, low pH, and high concentration of lipid-free apoA-I. Our results suggest that even partial Met oxidation of apoA-I can nucleate amyloidogenesis, thus sequestering and inactivating otherwise antiatherogenic and HDL-forming apoA-I.-Witkowski, A., Chan, G. K. L., Boatz, J. C., Li, N. J., Inoue, A. P., Wong, J. C., van der Wel, P. C. A., Cavigiolio, G. Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Andrzej Witkowski
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Gary K L Chan
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy J Li
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Ayuka P Inoue
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Jaclyn C Wong
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | | | - Giorgio Cavigiolio
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| |
Collapse
|
32
|
Wang Y, Huang H, Sun R, Chen B, Han F, Li Q, Ni Y, Li X, Liu J, Mou X, Tu Y. Serum amyloid a induces M2b-like macrophage polarization during liver inflammation. Oncotarget 2017; 8:109238-109246. [PMID: 29312604 PMCID: PMC5752517 DOI: 10.18632/oncotarget.22652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022] Open
Abstract
Hepatitis causes hepatic cell injury, regeneration and different levels of fibrogenesis, and severe liver fibrogenesis progresses into cirrhosis with liver dysfunction. Serum amyloid A (SAA) is an acute phase protein that is predominantly secreted by hepatocytes during early injury or infection. Nevertheless, the relationship of SAA and development of cirrhosis as well as the underlying molecular mechanisms is largely unknown. Here, we found that macrophages are the major SAA-binding cells in the injured liver. in vitro, macrophages treated with SAA exhibited high production of IL-10 but low production of IL-12, as features for M2 macrophages. Moreover, these polarized M2 macrophages by SAA also produced IL-1, IL-6 and TNFa, characteristics for an M2b subtype, rather than an alternative M2a or fibrogenic M2c subtype. In a mouse model of carbon tetrachloride (CCl4)-induced hepatic fibrogenesis/cirrhosis, anti-SAA sera were used to block the effects of SAA, resulting in increases in the severity of hepatic fibrosis, suggesting an overall anti-fibrogenic effect of SAA. Isolated macrophages from mouse liver showed that anti-SAA appeared to alter the polarization of macrophages from M2b to M2c, suggesting that SAA may induce M2b-like macrophage polarization during liver inflammation, which prevents the liver from fibrogenesis.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Cardiology, Chunan First People’s Hospital, Hangzhou 311700, China
| | - Haijun Huang
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Renhua Sun
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Bingyu Chen
- Centre of Laboratory Medicine, Chunan First People’s Hospital, Hangzhou 311700, China
- Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Fang Han
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Qian Li
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yin Ni
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jingquan Liu
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medicine College, Hangzhou 310014, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, China
| | - Yuexing Tu
- ICU Department, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
33
|
Seidl SE, Pessolano LG, Bishop CA, Best M, Rich CB, Stone PJ, Schreiber BM. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix. PLoS One 2017; 12:e0171711. [PMID: 28257481 PMCID: PMC5336220 DOI: 10.1371/journal.pone.0171711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis.
Collapse
Affiliation(s)
- Stephanie E. Seidl
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lawrence G. Pessolano
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christopher A. Bishop
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael Best
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillip J. Stone
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara M. Schreiber
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
35
|
Griffiths K, Pazderska A, Ahmed M, McGowan A, Maxwell AP, McEneny J, Gibney J, McKay GJ. Type 2 Diabetes in Young Females Results in Increased Serum Amyloid A and Changes to Features of High Density Lipoproteins in Both HDL 2 and HDL 3. J Diabetes Res 2017; 2017:1314864. [PMID: 28596970 PMCID: PMC5450179 DOI: 10.1155/2017/1314864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/20/2023] Open
Abstract
Persons with type 2 diabetes mellitus (T2DM) have an elevated risk of atherosclerosis. High-density lipoproteins (HDL) normally protect against cardiovascular disease (CVD), but this may be attenuated by serum amyloid A (SAA). In a case-control study of young females, blood samples were compared between subjects with T2DM (n = 42) and individuals without T2DM (n = 42). SAA and apolipoprotein AI (apoAI) concentrations, paraoxonase-1 (PON-1), cholesteryl ester transfer protein (CETP), and lecithin-cholesterol acyltransferase (LCAT) activities were measured in the serum and/or HDL2 and HDL3 subfractions. SAA concentrations were higher in T2DM compared to controls: serum (30 mg/L (17, 68) versus 15 mg/L (7, 36); p = 0.002), HDL2 (1.0 mg/L (0.6, 2.2) versus 0.4 mg/L (0.2, 0.7); p < 0.001), and HDL3, (13 mg/L (8, 29) versus 6 mg/L (3, 13); p < 0.001). Serum-PON-1 activity was lower in T2DM compared to that in controls (38,245 U/L (7025) versus 41,109 U/L (5690); p = 0.043). CETP activity was higher in T2DM versus controls in HDL2 (232.6 μmol/L (14.1) versus 217.1 μmol/L (25.1); p = 0.001) and HDL3 (279.5 μmol/L (17.7) versus 245.2 μmol/L (41.2); p < 0.001). These results suggest that individuals with T2DM have increased SAA-related inflammation and dysfunctional HDL features. SAA may prove to be a useful biomarker in T2DM given its association with elevated CVD risk.
Collapse
Affiliation(s)
| | | | - Mohammed Ahmed
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Anne McGowan
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | | | - Jane McEneny
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - James Gibney
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Gareth J. McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- *Gareth J. McKay:
| |
Collapse
|
36
|
Yu N, Zhang S, Lu J, Li Y, Yi X, Tang L, Su L, Ding Y. Serum amyloid A, an acute phase protein, stimulates proliferative and proinflammatory responses of keratinocytes. Cell Prolif 2016; 50. [PMID: 27910163 DOI: 10.1111/cpr.12320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Serum amyloid A (SAA), an acute phase protein, is highly expressed in psoriatic lesions but its function is not fully understood. The aim of this study was to explore its role in activation of keratinocytes. MATERIALS AND METHODS Real-time PCR and immunofluorescence were performed to examine SAA expression in imiquimod (IMQ)-induced psoriasis-like mice. In vivo function of SAA was examined by treating psoriasis-like mice with SAA neutralising antibody. Cell viability was monitored using the CCK-8 assay. Real-time PCR was performed to determine expression of genes associated with differentiation and inflammation. Ki67+ percentage and immunological markers were analysed by flow cytometry. Involvement of formyl peptide receptor-like 1 (FPRL1) in SAA signal transduction was determined by RNA interference. Binding of SAA and FPRL1 was examined by co-immunoprecipitaion. Western blotting was conducted to assess phosphorylation of downstream signalling molecules. RESULTS SAA was highly expressed in skin lesions of IMQ-treated psoriasis-like mice and neutralising SAA attenuated epidermal hyperplasia and inflammation. SAA in vitro promoted keratinocyte proliferation and expression of immunological mediators, while inhibiting differentiation. Effects of SAA on keratinocyte proliferation and inflammation were mediated by FPRL1, as well as activation of the PI3K/Akt pathway. CONCLUSIONS These observations indicate that SAA/FPRL1 contributed to pathogenesis of psoriasis by promoting keratinocyte proliferation and inflammation, thus providing a potential therapeutic target for disease therapy.
Collapse
Affiliation(s)
- Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Shujie Zhang
- Experimental Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Ying Li
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Xuemei Yi
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Li Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Lina Su
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
37
|
Fuijkschot WW, Morrison MC, van der Linden R, Krijnen PAJ, Zethof IPA, Theyse LFH, Kleemann R, Niessen HWM, Smulders YM. Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice. Atherosclerosis 2016; 255:164-170. [PMID: 27825629 DOI: 10.1016/j.atherosclerosis.2016.07.909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. METHODS ApoE-/- mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. RESULTS Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. CONCLUSIONS Major orthopedic surgery in ApoE-/- mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated.
Collapse
Affiliation(s)
- Wessel W Fuijkschot
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | | | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Ilse P A Zethof
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lars F H Theyse
- Department Clinical Sciences and Services, Royal Veterinary College London, University of London, United Kingdom
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands; Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Hafida S, Mirshahi T, Nikolajczyk BS. The impact of bariatric surgery on inflammation: quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes 2016; 23:373-8. [PMID: 27455515 PMCID: PMC5067163 DOI: 10.1097/med.0000000000000277] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Numerous lines of evidence support the likelihood that inflammation drives the transition from obese/metabolically healthy to obese/type 2 diabetes (T2D). Given the temporal flexibility of inflammation in obesity-associated T2D, investigators have hypothesized that a precipitous drop in diabetogenic cytokines is critical for rapid 'T2D remission' following surgery but prior to significant weight loss. We review the evidence that changes in diabetogenic cytokines play a role in outcomes of bariatric surgery, including improved glycemic control. RECENT FINDINGS A 2016 indication for bariatric surgery to treat T2D integrates the large body of data showing rapid metabolic improvement. Parameters that account for improved glycemic control prior to significant weight loss, T2D recidivism over the long term, or failure of surgery to remit T2D in some patients are incompletely understood. SUMMARY We review the evidence that changes in diabetogenic cytokines play a role in outcomes of bariatric surgery, including improved glycemic control. We brainstorm future research directions that may improve surgical results.
Collapse
Affiliation(s)
- Samar Hafida
- aSection of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts bWeis Center for Research; Geisinger Obesity Institute, Geisinger Clinic, Danville, Pennsylvania cDepartment of Microbiology; Department of Pathology; Department of Medicine; Department of Molecular and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Comparing fluorescence-based cell-free assays for the assessment of antioxidative capacity of high-density lipoproteins. Lipids Health Dis 2016; 15:163. [PMID: 27658709 PMCID: PMC5034534 DOI: 10.1186/s12944-016-0336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Background Population studies have shown an inverse association between high-density lipoprotein (HDL) cholesterol levels and risk of coronary heart disease (CHD). HDL has different functions, including the ability to protect biological molecules from oxidation. Our aim was to evaluate the performance of two fluorescence-based assays in assessing the antioxidative capacity of HDL. Methods We compared the antioxidative capacity of HDL with the phospholipid 2’,7’-dichlorodihydrofluorescein (DCF) assay and the dihydrorhodamine 123 (DHR) assay in controls and in subjects at increased risk of CHD, including subjects with established CHD, and subjects with elevated plasma triglycerides (TG), serum amyloid A (SAA), or myeloperoxidase (MPO) levels. Results The antioxidative capacity of HDL, as measured by the DCF assay, was significantly lower in both CHD and high-TG patients than in controls (p < 0.001 and p = 0.004, respectively). Interestingly, the mean antioxidative capacity of HDL in high-SAA subjects was significantly higher (p < 0.03), while in high-MPO subjects was similar to controls. When the DHR assay was used we did not find differences in HDL’s antioxidative capacity between CHD patients and controls but we found higher antioxidative capacity in high-SAA subjects compared to controls. Conclusions Only the DCF assay could detect significant differences in the antioxidative capacity of HDL between controls and CHD subjects. Practical use of both assays for the assessment of antioxidative capacity of HDL is limited by the large overlap in values among groups. The antioxidative activity of HDL in patients who have elevated SAA levels needs to be reassessed.
Collapse
|
40
|
CRP and SAA1 Haplotypes Are Associated with Both C-Reactive Protein and Serum Amyloid A Levels: Role of Suppression Effects. Mediators Inflamm 2016; 2016:5830361. [PMID: 27313400 PMCID: PMC4897670 DOI: 10.1155/2016/5830361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/24/2016] [Indexed: 11/17/2022] Open
Abstract
To test the statistical association of the CRP and SAA1 locus variants with their corresponding circulating levels and metabolic and inflammatory biomarker levels by using mediation analysis, a sample population of 599 Taiwanese subjects was enrolled and five CRP and four SAA1 variants were genotyped. Correlation analysis revealed that C-reactive protein (CRP) and serum amyloid A (SAA) levels were significantly associated with multiple metabolic phenotypes and inflammatory marker levels. Our data further revealed a significant association of CRP and SAA1 variants with both CRP and SAA levels. Mediation analysis revealed that SAA levels suppressed the association between SAA1 genotypes/haplotypes and CRP levels and that CRP levels suppressed the association between CRP haplotypes and SAA levels. In conclusion, genetic variants at the CRP and SAA1 loci independently affect both CRP and SAA levels, and their respective circulating levels act as suppressors. These results provided further evidence of the role of the suppression effect in biological science and may partially explain the missing heritability in genetic association studies.
Collapse
|
41
|
Salic K, Morrison MC, Verschuren L, Wielinga PY, Wu L, Kleemann R, Gjorstrup P, Kooistra T. Resolvin E1 attenuates atherosclerosis in absence of cholesterol-lowering effects and on top of atorvastatin. Atherosclerosis 2016; 250:158-65. [PMID: 27236706 DOI: 10.1016/j.atherosclerosis.2016.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Besides LDL-cholesterol, local vascular inflammation plays a key role in atherogenesis. Efficient therapies to treat the inflammatory component of the disease have not been established. The discovery of specialized inflammation-resolving mediators, such as resolvins may provide new opportunities for treatment. This study examines whether the ω-3 fatty acid eicosapentaenoic acid-derived resolvin E1 (RvE1), can reduce atherosclerosis, when administered alone or in combination with a cholesterol-lowering statin. METHODS ApoE*3Leiden mice were fed a hypercholesterolemic diet for 9 weeks and subsequently treated with RvE1-low (1 mg/kg/day), RvE1-high (5 mg/kg/day), atorvastatin (1.5 mg/kg/day) or the combination of atorvastatin and RvE1-low for the following 16 weeks. RESULTS RvE1-low and RvE1-high reduced atherosclerotic lesion size to the same extent (-35%; p < 0.05), attenuated the formation of severe lesions, also seen as a proportional increase in the presence of mild lesions, but did not alter plasma cholesterol levels. Cholesterol-lowering atorvastatin reduced atherosclerosis (-27%, p < 0.05), and the combination of RvE1 and atorvastatin further attenuated lesion size (-51%, p < 0.01) and increased the content of mild lesions. RvE1 did not affect plasma SAA, E-selectin, VCAM-1 or MCP-1 but did reduce plasma EPHX4 and down-regulated the local expression of pro-atherogenic genes in the aortae, (e.g. Cd74, Cd44, Ccl2, Ccr5 and Adam17) and significantly inactivated IFN-γ (p < 0.001) and TNF-α (p < 0.001) signalling pathways. CONCLUSIONS RvE1 attenuates atherogenesis both alone and on top of a statin. The local effects of RvE1 are demonstrated by the modulated aortic expression of genes involved in inflammatory and immune responses, without altering plasma cholesterol or circulating SAA.
Collapse
Affiliation(s)
- Kanita Salic
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands.
| | - Martine C Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Peter Y Wielinga
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Lijun Wu
- Resolvyx Pharmaceuticals, Inc., 222 Third Street, Cambridge, MA, 02142, United States
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Per Gjorstrup
- Resolvyx Pharmaceuticals, Inc., 222 Third Street, Cambridge, MA, 02142, United States.
| | - Teake Kooistra
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| |
Collapse
|
42
|
Belmokhtar K, Robert T, Ortillon J, Braconnier A, Vuiblet V, Boulagnon-Rombi C, Diebold MD, Pietrement C, Schmidt AM, Rieu P, Touré F. Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:800-9. [PMID: 26988587 DOI: 10.1161/atvbaha.115.306349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cardiovascular disease is the leading cause of death in patients with end-stage renal disease. Serum amyloid A (SAA) is an acute phase protein and a binding partner for the multiligand receptor for advanced glycation end products (RAGE). We investigated the role of the interaction between SAA and RAGE in uremia-related atherogenesis. APPROACH AND RESULTS We used a mouse model of uremic vasculopathy, induced by 5 of 6 nephrectomy in the Apoe(-/-) background. Sham-operated mice were used as controls. Primary cultures of Ager(+/+) and Ager(-/-) vascular smooth muscle cells (VSMCs) were stimulated with recombinant SAA, S100B, or vehicle alone. Relevance to human disease was assessed with human VSMCs. The surface area of atherosclerotic lesions at the aortic roots was larger in uremic Apoe(-/-) than in sham-operated Apoe(-/-) mice (P<0.001). Furthermore, atherosclerotic lesions displayed intense immunostaining for RAGE and SAA, with a pattern similar to that of α-SMA. Ager transcript levels in the aorta were 6× higher in uremic animals than in controls (P<0.0001). Serum SAA concentrations were higher in uremic mice, not only after 4 weeks of uremia but also at 8 and 12 weeks of uremia, than in sham-operated animals. We investigated the functional role of RAGE in uremia-induced atherosclerosis further, in animals lacking RAGE. We found that the induction of uremia in Apoe(-/-) Ager(-/-) mice did not accelerate atherosclerosis. In vitro, the stimulation of Ager(+/+) but not of Ager(-/-) VSMCs with SAA or S100B significantly induced the production of reactive oxygen species, the phosphorylation of AKT and mitogen-activated protein kinase-extracellular signal-regulated kinases and cell migration. Reactive oxygen species inhibition with N-acetyl cysteine significantly inhibited both the phosphorylation of AKT and the migration of VSMCs. Similar results were obtained for human VSMCs, except that the phosphorylation of mitogen-activated protein kinase-extracellular signal-regulated kinases, rather than of AKT, was subject to specific redox-regulation by SAA and S100B. Furthermore, human aortic atherosclerotic sections were positively stained for RAGE and SAA. CONCLUSIONS Uremia upregulates SAA and RAGE expression in the aortic wall and in atherosclerotic lesions in mice. Ager(-/-) animals are protected against the uremia-induced acceleration of atherosclerosis. SAA modulates the functions of murine and human VSMCs in vitro in a RAGE-dependent manner. This study, therefore, identifies SAA as a potential new uremic toxin involved in uremia-related atherosclerosis through interaction with RAGE.
Collapse
Affiliation(s)
- Karim Belmokhtar
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Thomas Robert
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Jeremy Ortillon
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Antoine Braconnier
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Vincent Vuiblet
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Camille Boulagnon-Rombi
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Marie Danièle Diebold
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Christine Pietrement
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Ann Marie Schmidt
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Philippe Rieu
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Fatouma Touré
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.).
| |
Collapse
|
43
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
44
|
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene 2016; 583:48-57. [PMID: 26945629 DOI: 10.1016/j.gene.2016.02.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Inducible expression of serum amyloid A (SAA) is a hallmark of the acute-phase response, which is a conserved reaction of vertebrates to environmental challenges such as tissue injury, infection and surgery. Human SAA1 is encoded by one of the four SAA genes and is the best-characterized SAA protein. Initially known as a major precursor of amyloid A (AA), SAA1 has been found to play an important role in lipid metabolism and contributes to bacterial clearance, the regulation of inflammation and tumor pathogenesis. SAA1 has five polymorphic coding alleles (SAA1.1-SAA1.5) that encode distinct proteins with minor amino acid substitutions. Single nucleotide polymorphism (SNP) has been identified in both the coding and non-coding regions of human SAA1. Despite high levels of sequence homology among these variants, SAA1 polymorphisms have been reported as risk factors of cardiovascular diseases and several types of cancer. A recently solved crystal structure of SAA1.1 reveals a hexameric bundle with each of the SAA1 subunits assuming a 4-helix structure stabilized by the C-terminal tail. Analysis of the native SAA1.1 structure has led to the identification of a competing site for high-density lipoprotein (HDL) and heparin, thus providing the structural basis for a role of heparin and heparan sulfate in the conversion of SAA1 to AA. In this brief review, we compares human SAA1 with other forms of human and mouse SAAs, and discuss how structural and genetic studies of SAA1 have advanced our understanding of the physiological functions of the SAA proteins.
Collapse
Affiliation(s)
- Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China.
| |
Collapse
|
45
|
Prüfer N, Kleuser B, van der Giet M. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. Biol Chem 2016; 396:573-83. [PMID: 25252751 DOI: 10.1515/hsz-2014-0192] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/23/2014] [Indexed: 11/15/2022]
Abstract
The high-density lipoprotein (HDL) is one of the most important endogenous cardiovascular protective markers. HDL is an attractive target in the search for new pharmaceutical therapies and in the prevention of cardiovascular events. Some of HDL's anti-atherogenic properties are related to the signaling molecule sphingosine-1-phosphate (S1P), which plays an important role in vascular homeostasis. However, for different patient populations it seems more complicated. Significant changes in HDL's protective potency are reduced under pathologic conditions and HDL might even serve as a proatherogenic particle. Under uremic conditions especially there is a change in the compounds associated with HDL. S1P is reduced and acute phase proteins such as serum amyloid A (SAA) are found to be elevated in HDL. The conversion of HDL in inflammation changes the functional properties of HDL. High amounts of SAA are associated with the occurrence of cardiovascular diseases such as atherosclerosis. SAA has potent pro-atherogenic properties, which may have impact on HDL's biological functions, including cholesterol efflux capacity, antioxidative and anti-inflammatory activities. This review focuses on two molecules that affect the functionality of HDL. The balance between functional and dysfunctional HDL is disturbed after the loss of the protective sphingolipid molecule S1P and the accumulation of the acute-phase protein SAA. This review also summarizes the biological activities of lipid-free and lipid-bound SAA and its impact on HDL function.
Collapse
|
46
|
Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest 2015; 126:266-81. [PMID: 26642365 DOI: 10.1172/jci83475] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Collapse
|
47
|
Krishnan S, Huang J, Lee H, Guerrero A, Berglund L, Anuurad E, Lebrilla CB, Zivkovic AM. Combined High-Density Lipoprotein Proteomic and Glycomic Profiles in Patients at Risk for Coronary Artery Disease. J Proteome Res 2015; 14:5109-18. [DOI: 10.1021/acs.jproteome.5b00730] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Lars Berglund
- Department
of Veterans Affairs, Northern California Health Care System, Sacramento, California 95655, United States
| | | | | | | |
Collapse
|
48
|
Timur H, Kokanali MK, Inal HA, Tuzluoglu D, Yilmaz N. A study on the association between serum amyloid A and sperm concentration. Andrologia 2015; 48:626-30. [PMID: 26437740 DOI: 10.1111/and.12491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 01/29/2023] Open
Abstract
Our aim was to compare peripheral blood and seminal fluid serum amyloid A (SAA) protein levels in men classified on the basis of sperm concentration and investigate whether SAA protein is an important marker of male infertility. A total of 74 first-attempt IVF male partners of infertile couples classified as azoospermic (n = 25), oligozoospermic (n = 25) and normozoospermic group (n = 24) were recruited for this cross-sectional study. There was no difference with respect to age, BMI, infertility period and smoking ratio. No difference in haematologic parameters including white blood cell count, neutrophil ratio, lymphocyte ratio, neutrophil-to-lymphocyte ratio and blood SAA level was found between the groups. Seminal fluid SAA level was 17.85 ± 2.21 ng ml(-1) in azoospermics, 16.13 ± 3.58 ng ml(-1) in oligozoospermics and 15.67 ± 4.77 ng ml(-1) in normozoospermics, showing no significant difference. Seminal SAA level was found to be not correlated with blood SAA levels. Therefore, we could not find any associations between these parameters at all. However, further studies with more participants are needed to address the exact action of SAA on spermatogenesis.
Collapse
Affiliation(s)
- H Timur
- Department of Reproductive Endocrinology, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - M K Kokanali
- Department of Reproductive Endocrinology, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - H A Inal
- Department of Gynecology and Obstetrics, Konya Education and Research Hospital, Konya, Turkey
| | - D Tuzluoglu
- Department of Urology, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - N Yilmaz
- Department of Reproductive Endocrinology, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
49
|
Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 2015; 7:791-811. [PMID: 25832587 DOI: 10.2217/epi.15.24] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca L Hancock
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Dunne
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Louise J Walport
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
50
|
Cao P, Pan H, Xiao T, Zhou T, Guo J, Su Z. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL. Int J Mol Sci 2015. [PMID: 26225968 PMCID: PMC4581191 DOI: 10.3390/ijms160817245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hypothesis that raising high-density lipoprotein cholesterol (HDL-C) levels could improve the risk for cardiovascular disease (CVD) is facing challenges. There is multitudinous clear clinical evidence that the latest failures of HDL-C-raising drugs show no clear association with risks for CVD. At the genetic level, recent research indicates that steady-state HDL-C concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. It is evident that the newer strategies may replace therapeutic approaches to simply raise plasma HDL-C levels. There is an urgent need to identify an efficient biomarker that accurately predicts the increased risk of atherosclerosis (AS) in patients and that may be used for exploring newer therapeutic targets. Studies from recent decades show that the composition, structure and function of circulating HDL are closely associated with high cardiovascular risk. A vast amount of data demonstrates that the most important mechanism through which HDL antagonizes AS involves the reverse cholesterol transport (RCT) process. Clinical trials of drugs that specifically target HDL have so far proven disappointing, so it is necessary to carry out review on the HDL therapeutics.
Collapse
Affiliation(s)
- Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Ting Zhou
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|