1
|
Bu X, Yu X, Zeng L, Zeng G, Tan R, Peng C, Zhou S, Linpeng S, Liu J. A retrospective single center analysis of fetuses with region of homozygosity detected by single nucleotide polymorphism array. Sci Rep 2025; 15:13623. [PMID: 40253570 PMCID: PMC12009308 DOI: 10.1038/s41598-025-98497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
We assessed the incidence and clinical significance of the fetal region of homozygosity (ROH) detected using single nucleotide polymorphism (SNP) array by analyzing clinical information and pregnancy outcomes. We collected data on 6176 mid- and late pregnancies. All fetuses were subjected to SNP array analysis. Fetuses with ROH were analyzed by karyotyping, parental SNP array verification, whole-exome sequencing, and/or placental studies. Eighty-seven ROHs met our reporting thresholds. Thirty-four fetuses were detected from noninvasive prenatal testing-positive results, with the most common detection rate (2.03%). Twenty-four cases were diagnosed using ultrasound abnormalities; fetal growth restriction was the indication with the highest diagnostic rate. Fifteen cases of uniparental disomy in mid- and late pregnancy were identified (0.24%). Nine cases were of ROH accompanied by aneuploidy or pathogenic/likely pathogenic copy number variants with an adverse pregnancy outcome rate of 88.9%. Of the remaining 78 cases, 14 carriers had adverse outcomes (including two cases of imprinting syndrome), 63 had normal development after birth, and one was lost to follow-up. ROH is relatively common in mid- and late-term pregnancies; its incidence is higher than that reported previously. SNP array is effective in assessing ROH and should be combined with multiple techniques to evaluate ROH's clinical relevance.
Collapse
Affiliation(s)
- Xiufen Bu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiuyun Yu
- Department of Obstetrics, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Li Zeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Guo Zeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Rong Tan
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Can Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Shihao Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Siyuan Linpeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Jing Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Peng H, Wang D, Guo F, Hou Y, Hu T, Du Q, Yang J. Prenatal diagnosis of imprinted associated chromosome abnormalities identified by noninvasive prenatal testing (NIPT). Sci Rep 2025; 15:12830. [PMID: 40229547 PMCID: PMC11997046 DOI: 10.1038/s41598-025-97973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
To explore the clinical value of noninvasive prenatal testing (NIPT) combined with chromosomal microarray analysis (CMA)/copy number variation sequencing (CNV-seq), methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), and fluorescence in situ hybridization (FISH) in the early screening of imprinted chromosome abnormalities. We retrospectively studied the prenatal diagnosis and pregnancy outcomes of 9 pregnant women with imprinted associated chromosome abnormalities via NIPT. All pregnant women received detailed genetic counselling and prenatal diagnosis. Karyotyping analysis, CNV-seq, CMA, FISH or MS-MLPA were performed on the amniotic fluid samples. We collected the intrauterine phenotypes via ultrasound and followed them up until the induction of labor or one year after birth. Six fetuses (6 out of 9) were diagnosed with regional abnormalities of Imprinting Disease. The most commonly diagnosed syndrome was 15q11-q13 duplication syndrome ( 3 out of 6), followed by mosaic trisomy 7 (2 out of 6) and Temple syndrome (1 out of 6). The other three fetuses (3 out of 9) were diagnosed with absence of heterozygosity (AOH). After genetic counselling, 4 pregnant women (4 out of 9) chose induced labor, 3 pregnant women (3 out of 9) chose spontaneous labor, and 2 pregnant women (2 out of 9) chose cesarean section. The widespread use of NIPT in prenatal screening provides more opportunities to detect rare chromosome aneuploidies (RCAs) and microdeletion/microduplication syndromes (MMSs) in mid-pregnancy. The combination of NIPT and other prenatal diagnostic technologies can help increase the possibility of detecting imprinting-related diseases with no phenotype or a late phenotype in utero.
Collapse
Affiliation(s)
- Haishan Peng
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Dongmei Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Fangfang Guo
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Yaping Hou
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Tingting Hu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Qianyi Du
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China
| | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, 521 Xingnan St, Guangzhou, 511442, Guangdong, China.
- Guangzhou Key Laboratory of Prenatal Screening and Diagnosis, Guangdong Women and Children Hospital, Guangzhou, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Sun H, Zhang G, Li N, Bu X. Molecular diagnosis of patients with syndromic short stature identified by trio whole-exome sequencing. Front Genet 2024; 15:1399186. [PMID: 39415983 PMCID: PMC11479978 DOI: 10.3389/fgene.2024.1399186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Short stature is a complex disorder with phenotypic and genetic heterogeneity. This study aimed to investigate clinical phenotypes and molecular basis of a cohort of patients with short stature. Methods Trio whole-exome sequencing (Trio-WES) was performed to explore the genetic aetiology and obtain a molecular diagnosis in twenty Chinese probands with syndromic and isolated short stature. Results Of the twenty probands, six (6/20, 30%) patients with syndromic short stature obtained a molecular diagnosis. One novel COMP pathogenic variant c.1359delC, p.N453fs*62 and one LZTR1 likely pathogenic variant c.509G>A, p.R170Q were identified in a patient with short stature and skeletal dysplasia. One novel de novo NAA15 pathogenic variant c.63T>G, p.Y21X and one novel de novo KMT2A pathogenic variant c.3516T>A, p.N1172K was identified in two probands with short stature, intellectual disability and abnormal behaviours, respectively. One patient with short stature, cataract, and muscle weakness had a de novo POLG pathogenic variant c.2863 T>C, p.Y955H. One PHEX pathogenic variant c.1104G>A, p.W368X was identified in a patient with short stature and rickets. Maternal uniparental disomy 7 (mUPD7) was pathogenic in a patient with pre and postnatal growth retardation, wide forehead, triangular face, micrognathia and clinodactyly. Thirteen patients with isolated short stature had negative results. Conclusion Trio-WES is an important strategy for identifying genetic variants and UPD in patients with syndromic short stature, in which dual genetic variants are existent in some individuals. It is important to differentiate between syndromic and isolated short stature. Genetic testing has a high yield for syndromic patients but low for isolated patients.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Paediatrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Geng Zhang
- Beijing Chigene Translational Medical Research Center Company, Beijing, China
| | - Na Li
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiangfang Bu
- Department of Paediatrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wang X, Liu Y, Wu Y, Lin C, Yang S, Yang Y, Chen D, Yu B. Methylation alterations of imprinted genes in different placental diseases. Clin Epigenetics 2024; 16:132. [PMID: 39294759 PMCID: PMC11409545 DOI: 10.1186/s13148-024-01738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Imprinted genes play important functions in placentation and pregnancy; however, research on their roles in different placental diseases is limited. It is believed that epigenetic alterations, such as DNA methylation, of placental imprinting genes may contribute to the different pathological features of severe placental diseases, such as pre-eclampsia (PE) and placenta accreta spectrum disorders (PAS). RESULTS In this study, we conducted a comparative analysis of the methylation and expression of placental imprinted genes between PE and PAS using bisulfite sequencing polymerase chain reaction (PCR) and quantitative PCR, respectively. Additionally, we assessed oxidative damage of placental DNA by determining 8-hydroxy-2'-deoxyguanosine levels and fetal growth by determining insulin-like growth factor 2 (IGF2) and cortisol levels in the umbilical cord blood using enzyme-linked immunosorbent assay. Our results indicated that methylation and expression of potassium voltage-gated channel subfamily Q member 1, GNAS complex locus, mesoderm specific transcript, and IGF2 were significantly altered in both PE and PAS placentas. Additionally, our results revealed that the maternal imprinted genes were significantly over-expressed in PE and significantly under-expressed in PAS compared with a normal pregnancy. Moreover, DNA oxidative damage was elevated and positively correlated with IGF2 DNA methylation in both PE and PAS placentas, and cortisol and IGF2 levels were significantly decreased in PE and PAS. CONCLUSIONS This study suggested that DNA methylation and expression of imprinted genes are aberrant in both PE and PAS placentas and that PE and PAS have different methylation profiles, which may be linked to their unique pathogenesis.
Collapse
Affiliation(s)
- Xuwei Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyun Liu
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuying Wu
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Chunxi Lin
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Si Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- BioResource Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- BioResource Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Capalbo A, Cimadomo D, Coticchio G, Ottolini CS. An expert opinion on rescuing atypically pronucleated human zygotes by molecular genetic fertilization checks in IVF. Hum Reprod 2024; 39:1869-1878. [PMID: 39043217 DOI: 10.1093/humrep/deae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
IVF laboratories routinely adopt morphological pronuclear assessment at the zygote stage to identify abnormally fertilized embryos deemed unsuitable for clinical use. In essence, this is a pseudo-genetic test for ploidy motivated by the notion that biparental diploidy is required for normal human life and abnormal ploidy will lead to either failed implantation, miscarriage, or significant pregnancy complications, including molar pregnancy and chorionic carcinoma. Here, we review the literature associated with ploidy assessment of human embryos derived from zygotes displaying a pronuclear configuration other than the canonical two, and the related pregnancy outcome following transfer. We highlight that pronuclear assessment, although associated with aberrant ploidy outcomes, has a low specificity in the prediction of abnormal ploidy status in the developing embryo, while embryos deemed abnormally fertilized can yield healthy pregnancies. Therefore, this universal strategy of pronuclear assessment invariably leads to incorrect classification of over 50% of blastocysts derived from atypically pronucleated zygotes, and the systematic disposal of potentially viable embryos in IVF. To overcome this limitation of current practice, we discuss the new preimplantation genetic testing technologies that enable accurate identification of the ploidy status of preimplantation embryos and suggest a progress from morphology-based checks to molecular fertilization check as the new gold standard. This alternative molecular fertilization checking represents a possible non-incremental and controversy-free improvement to live birth rates in IVF as it adds to the pool of viable embryos available for transfer. This is especially important for the purposes of 'family building' or for poor-prognosis IVF patients where embryo numbers are often limited.
Collapse
Affiliation(s)
- Antonio Capalbo
- Reproductive Genetics, Juno Genetics-Italy, Rome, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Christian Simon Ottolini
- Reproductive Genetics, Juno Genetics-Italy, Rome, Italy
- Department of Maternal and Fetal Medicine, UCL Institute for Women's Health, University College London, London, UK
| |
Collapse
|
7
|
Li JW, Qian YJ, Mao SJ, Chao YQ, Qin YF, Hu CX, Li ZL, Zou CC. Clinical features associated with maternal uniparental disomy for chromosome 6. Mol Cytogenet 2024; 17:18. [PMID: 39075593 PMCID: PMC11287833 DOI: 10.1186/s13039-024-00688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Maternal uniparental disomy for chromosome 6 (upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat) has been previously reported to cause intrauterine growth restriction (IUGR), but the specific clinical phenotype has not been defined. Based on clinical data from two new cases and patients from the literature, specific phenotypes and mechanisms will be discussed further. CASE PRESENTATION In case 1, a maternal isodisomy mixed with a heterodisomy was found on chromosome 6, including a regional absence of heterozygosity between 6q23.3 and 6q27. In case 2, a homozygous SCUBE3 mutation and upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat, involving the 6p21.1-25.1 region were found. Clinical data related to upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat were also reviewed. Of all the 21 reported cases with upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat (including our 2 cases), 18 (85.7%) presented IUGR. CONCLUSIONS The phenotypes of the two newly identified patients with upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat further suggest that IUGR is associated with upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat and case 2 is the first reported upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat patient with a homozygous SCUBE3 gene mutation. However, the specific phenotypes involved in upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat and the related mechanisms need to be further studied.
Collapse
Affiliation(s)
- Jing-Wen Li
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Yan-Jie Qian
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Shao-Jia Mao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Yun-Qi Chao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Yi-Fang Qin
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Chen-Xi Hu
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
| | - Zheng-Lan Li
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China
- Department of Pediatrics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Chao-Chun Zou
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, No 3333 Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
8
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Albrecht C, Rajaram N, Broche J, Bashtrykov P, Jeltsch A. Locus-Specific and Stable DNA Demethylation at the H19/ IGF2 ICR1 by Epigenome Editing Using a dCas9-SunTag System and the Catalytic Domain of TET1. Genes (Basel) 2024; 15:80. [PMID: 38254969 PMCID: PMC10815749 DOI: 10.3390/genes15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA methylation is critically involved in the regulation of chromatin states and cell-type-specific gene expression. The exclusive expression of imprinted genes from either the maternal or the paternal allele is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). Aberrant DNA hyper- or hypomethylation at the ICR1 of the H19/IGF2 imprinting locus is characteristic for the imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), respectively. In this paper, we performed epigenome editing to induce targeted DNA demethylation at ICR1 in HEK293 cells using dCas9-SunTag and the catalytic domain of TET1. 5-methylcytosine (5mC) levels at the target locus were reduced up to 90% and, 27 days after transient transfection, >60% demethylation was still observed. Consistent with the stable demethylation of CTCF-binding sites within the ICR1, the occupancy of the DNA methylation-sensitive insulator CTCF protein increased by >2-fold throughout the 27 days. Additionally, the H19 expression was increased by 2-fold stably, while IGF2 was repressed though only transiently. Our data illustrate the ability of epigenome editing to implement long-term changes in DNA methylation at imprinting control regions after a single transient treatment, potentially paving the way for therapeutic epigenome editing approaches in the treatment of imprinting disorders.
Collapse
Affiliation(s)
| | | | | | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (C.A.)
| |
Collapse
|
11
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. Sci Rep 2024; 14:343. [PMID: 38172157 PMCID: PMC10764864 DOI: 10.1038/s41598-023-50360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Eugenia M Yazlovitskaya
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey S Rose
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John M Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA.
| |
Collapse
|
12
|
Parijs I, Brison N, Vancoillie L, Baetens M, Blaumeiser B, Boulanger S, Désir J, Dimitrov B, Fieremans N, Janssens K, Janssens S, Marichal A, Menten B, Meunier C, Van Berkel K, Van Den Bogaert A, Devriendt K, Van Den Bogaert K, Vermeesch JR. Population screening for 15q11-q13 duplications: corroboration of the difference in impact between maternally and paternally inherited alleles. Eur J Hum Genet 2024; 32:31-36. [PMID: 37029316 PMCID: PMC10772068 DOI: 10.1038/s41431-023-01336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Maternally inherited 15q11-q13 duplications are generally found to cause more severe neurodevelopmental anomalies compared to paternally inherited duplications. However, this assessment is mainly inferred from the study of patient populations, causing an ascertainment bias towards patients at the more severe end of the phenotypic spectrum. Here, we analyze the low coverage genome-wide cell-free DNA sequencing data obtained from pregnant women during non-invasive prenatal screening (NIPS). We detect 23 15q11-q13 duplications in 333,187 pregnant women (0.0069%), with an approximately equal distribution between maternal and paternal duplications. Maternally inherited duplications are always associated with a clinical phenotype (ranging from learning difficulties to intellectual impairment, epilepsy and psychiatric disorders), while paternal duplications are normal or associated with milder phenotypes (mild learning difficulties and dyslexia). This data corroborates the difference in impact between paternally and maternally inherited 15q11-q13 duplications, contributing to the improvement of genetic counselling. We recommend reporting 15q11-q13 duplications identified during genome-wide NIPS with appropriate genetic counselling for these pregnant women in the interest of both mothers and future children.
Collapse
Affiliation(s)
- Ilse Parijs
- Center for Human Genetics, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Nathalie Brison
- Center for Human Genetics, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Leen Vancoillie
- Center for Human Genetics, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Machteld Baetens
- Center of Medical Genetics, University Hospital Ghent, Ghent, Belgium
| | - Bettina Blaumeiser
- Center of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Sébastien Boulanger
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Julie Désir
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Boyan Dimitrov
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, research group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Nathalie Fieremans
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, research group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Katrien Janssens
- Center of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Sandra Janssens
- Center of Medical Genetics, University Hospital Ghent, Ghent, Belgium
| | - Axel Marichal
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Björn Menten
- Center of Medical Genetics, University Hospital Ghent, Ghent, Belgium
| | - Colombine Meunier
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Kim Van Berkel
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, research group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Ann Van Den Bogaert
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, research group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | | |
Collapse
|
13
|
Taslim NA, Farradisya S, Gunawan WB, Alfatihah A, Barus RIB, Ratri LK, Arnamalia A, Barazani H, Samtiya M, Mayulu N, Kim B, Hardinsyah H, Surya E, Nurkolis F. The interlink between chrono-nutrition and stunting: current insights and future perspectives. Front Nutr 2023; 10:1303969. [PMID: 38192646 PMCID: PMC10773880 DOI: 10.3389/fnut.2023.1303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Stunting is the one factor that is responsible for the irretrievable damage to children's mental and physical health. Stunting imitates chronic undernutrition throughout the most extreme critical stages of growth and development of a child in their early life, and due to that stunted child does not completely develop and are too short for their age. Stunting is mainly linked with brain underdevelopment, along with lifelong damaging consequences, comprising weakened mental and learning capacity, deprived performance in school during childhood, and enhanced risks of nutrition linked to chronic long-lasting ailments, such as diabetes, hypertension, diabesity, and obesity in the future. In this review, the authors mainly summarize the latest studies related to chronic nutrition and how it is related to stunting. Optimal nutrition, particularly during pregnancy and the first 24 months of a child's life, is crucial in preventing stunting. Circadian rhythms play a significant role in maternal and fetal health, affecting outcomes such as premature birth and stunting. Maintaining a balanced diet, avoiding late-night carbohydrate-heavy meals during pregnancy, and promoting breastfeeding align with the body's biological clock, which can benefit newborns in various ways. Providing dedicated spaces for breastfeeding in public places is important to support infant health.
Collapse
Affiliation(s)
- Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Faculty of Medicine, Department of Nutrition, Hasanuddin University, Makassar, Indonesia
| | | | - William Ben Gunawan
- Faculty of Medicine, Alumnus of Department of Nutrition Science, Diponegoro University, Semarang, Indonesia
| | - Aulia Alfatihah
- Faculty of Health Science, Department of Nutrition Science, Muhammadiyah University of Surakarta, Surakarta, Indonesia
| | - Ria Irmelin Br Barus
- Faculty of Medicine, Department of Nutrition Science, Diponegoro University, Semarang, Indonesia
| | - Liesty Kurnia Ratri
- Faculty of Medicine, Alumnus of Department of Nutrition Science, Diponegoro University, Semarang, Indonesia
| | - Astri Arnamalia
- Department of Chemistry, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Hero Barazani
- Medical Programme, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Haryana, India
| | - Nelly Mayulu
- Faculty of Medicine, Department of Nutrition, Universitas Muhammadiyah Manado, Manado, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hardinsyah Hardinsyah
- Senior Professor of Applied Nutrition Division, Faculty of Human Ecology, Department of Community Nutrition, IPB University, Bogor, Indonesia
| | - Ervan Surya
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Fahrul Nurkolis
- Faculty of Sciences and Technology, Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
14
|
Qin S, Wang X, Wang J, Xi N, Yan M, He Y, Ye M, Zhang Z, Yin Y. Prenatal diagnosis of mosaic chromosomal aneuploidy and uniparental disomy and clinical outcomes evaluation of four fetuses. Mol Cytogenet 2023; 16:35. [PMID: 38057902 DOI: 10.1186/s13039-023-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Few co-occurrence cases of mosaic aneuploidy and uniparental disomy (UPD) chromosomes have been reported in prenatal periods. It is a big challenge for us to predict fetal clinical outcomes with these chromosome abnormalities because of their highly heterogeneous clinical manifestations and limited phenotype attainable by ultrasound. METHODS Amniotic fluid samples were collected from four cases. Karyotype, chromosome microarray analysis, short tandem repeats, and whole exome sequencing were adopted to analyze fetal chromosomal aneuploidy, UPD, and gene variation. Meanwhile, CNVseq analysis proceeded for cultured and uncultured amniocytes in case 2 and case 4 and MS-MLPA for chr11 and chr15 in case 3. RESULTS All four fetuses showed mosaic chromosomal aneuploidy and UPD simultaneously. The results were: Case 1: T2(7%) and UPD(2)mat(12%). Case 2: T15(60%) and UPD(15)mat(40%). Case 3: 45,X(13%) and genome-wide paternal UPD(20%). Case 4: <10% of T20 and > 90% UPD(20)mat in uncultured amniocyte. By analyzing their formation mechanism of mosaic chromosomal aneuploidy and UPD, at least two adverse genetic events happened during their meiosis and mitosis. The fetus of case 1 presented a benign with a normal intrauterine phenotype, consistent with a low proportion of trisomy cells. However, the other three fetuses had adverse pregnancy outcomes, resulting from the UPD chromosomes with imprinted regions involved or a higher level of mosaic aneuploidy. CONCLUSION UPD is often present with mosaic aneuploidy. It is necessary to analyze them simultaneously using a whole battery of analyses for these cases when their chromosomes with imprinted regions are involved or known carriers of a recessive allele. Fetal clinical outcomes were related to the affected chromosomes aneuploidy and UPD, mosaic levels and tissues, methylation status, and homozygous variation of recessive genes on the UPD chromosome. Genetic counseling for pregnant women with such fetuses is crucial to make informed choices.
Collapse
Affiliation(s)
- Shengfang Qin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Na Xi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengjia Yan
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yuxia He
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengling Ye
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Zhuo Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yan Yin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| |
Collapse
|
15
|
Schlaich E, Hubens WHG, Eggermann T. First-time application of droplet digital PCR for methylation testing of the 11p15.5 imprinting regions. Mol Genet Genomic Med 2023; 11:e2264. [PMID: 37519217 PMCID: PMC10724498 DOI: 10.1002/mgg3.2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome and Silver-Russel syndrome are two imprinting disorders caused by opposite molecular alterations in 11p15.5. With the current diagnostic tests, their molecular diagnosis is challenging due to molecular heterogeneity and mosaic occurrence of the most frequent alterations. As the determination of precise (epi)genotype of patients is relevant as the basis for a personalized treatment, different approaches are needed to increase the sensitivity of diagnostic testing of imprinting disorders. METHODS We established methylation-specific droplet digital PCR approaches (MS-ddPCR) for the two imprinting centers in 11p15.5, and analyzed patients with paternal uniparental disomy of chromosome 11p15.5 (upd(11)pat) and other imprinting defects in the region. The results were compared to those from MS-MLPA (multiplex ligation-dependent probe amplification) and MS-pyrosequencing. RESULTS MS-ddPCR confirmed the molecular alterations in all patients and the results matched well with MS-MLPA. The results of MS-pyrosequencing varied between different runs, whereas MS-ddPCR results were reproducible. CONCLUSION We show for the first time that MS-ddPCR is a reliable and easy applicable method for determination of MS-associated changes in imprinting disorders. It is therefore an additional tool for multimethod diagnostics of imprinting disorders suitable to improve the diagnostic yield.
Collapse
Affiliation(s)
- Elia Schlaich
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen UniversityAachenGermany
| | - Wouter H. G. Hubens
- Institute for Stem Cell Biology, Medical Faculty, RWTH Aachen UniversityAachenGermany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen UniversityAachenGermany
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
16
|
Guo Z, Liu Y, Zhan S, Cao J, Wang L, Guo J, Li L, Zhang H, Zhong T. Expression patterns and DNA methylation profile of GTL2 gene in goats. Anim Biotechnol 2023; 34:3617-3625. [PMID: 36911908 DOI: 10.1080/10495398.2023.2184698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Gene trap locus 2 (GTL2), a long non-coding paternal imprinting gene, participates in various biological processes, including cell proliferation, differentiation, and apoptosis, by regulating the transcription of target mRNA, which is tightly related to the growth of the organic and maintenance of function. In this study, DNA methylation patterns of CpG islands (CGI) of GTL2 were explored, and its expression level was quantified in six tissues, rumen epithelium cells, and skeletal muscle cells in goats. GTL2 expression levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and the methylation model was confirmed by bisulfite-sequencing PCR (BSP). CGI methylation of GTL2 indicated a moderate methylation (ranging from 81.42 to 86.83%) in the brain, heart, liver, kidney, lung, and longissimus dorsi. GTL2 is most highly expressed in brain tissues, but there is no significant difference in the other five tissues. In addition, in the rumen epithelium cell proliferation, GTL2 expression was highest at 60 h, followed by 72 h, and almost unchanged at 12-48 h. In the skeletal muscle cell differentiation, GTL2 expression was highest at 0 and 24 h, significantly decreasing at 72 and 128 h. Pearson correlation analysis did not indicate a clear relationship between methylation and GTL2 expression levels, suggesting that other regulatory factors may modulate GTL2 expression. This study will provide a better understanding of the expression regulation mechanism of genes in the delta-like homolog 1 gene (DLK1)-GTL2 domain.
Collapse
Affiliation(s)
- Ziwei Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yue Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Bu X, Li X, Peng C, Li H, Zhou S, Zhu Z, He J, Linpeng S. Case report: Paternal uniparental disomy on chromosome 7 and homozygous SUGCT mutation in a fetus with overweight after birth. Front Genet 2023; 14:1272028. [PMID: 37920852 PMCID: PMC10619901 DOI: 10.3389/fgene.2023.1272028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Paternal uniparental disomy (UPD) of chromosome 7 is extremely rare, and only a few postnatal cases have been reported. The effects on growth were discordant in these cases, and the relevance of paternal UPD(7) to growth caused by imprinting remains questionable. Case presentation: Here, we report a prenatal case that underwent invasive prenatal diagnosis due to the high risk of Down's syndrome and failed noninvasive prenatal screening. The fetus had a normal karyotype and no apparent copy number variation. Homozygous copy-neutral regions on chromosome 7 were identified using a single nucleotide polymorphism (SNP) array; the data for the parent-child trios showed that the fetus carried the whole paternal isodisomy of chromosome 7. Whole exome and Sanger sequencing revealed a homozygous frameshift mutation in SUGCT at 7p14.1, from the heterozygous carrier father, with no contribution from the mother. The parents decided to continue with the pregnancy after genetic counseling, and the neonate had normal physical findings at birth and showed overweight after birth during a long-term intensive follow-up. Conclusion: We report the first prenatal case who carried paternal UPD(7) and homozygous SUGCT mutation with an overweight phenotype after birth. The overweight may be caused by paternal UPD(7) or homozygous frameshift mutation of SUGCT, or both of them, but it is unclear which contributes more.
Collapse
Affiliation(s)
- Xiufen Bu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xu Li
- Department of Physiology, Changsha Health Vocational College, Changsha, China
| | - Can Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Hongyu Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Shihao Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Zesen Zhu
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Siyuan Linpeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| |
Collapse
|
18
|
Griazeva ED, Fedoseeva DM, Radion EI, Ershov PV, Meshkov IO, Semyanihina AV, Makarova AS, Makarov VV, Yudin VS, Keskinov AA, Kraevoy SA. Current Approaches to Epigenetic Therapy. EPIGENOMES 2023; 7:23. [PMID: 37873808 PMCID: PMC10594535 DOI: 10.3390/epigenomes7040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
Epigenetic therapy is a promising tool for the treatment of a wide range of diseases. Several fundamental epigenetic approaches have been proposed. Firstly, the use of small molecules as epigenetic effectors, as the most developed pharmacological method, has contributed to the introduction of a number of drugs into clinical practice. Secondly, various innovative epigenetic approaches based on dCas9 and the use of small non-coding RNAs as therapeutic agents are also under extensive research. In this review, we present the current state of research in the field of epigenetic therapy, considering the prospects for its application and possible limitations.
Collapse
Affiliation(s)
- Ekaterina D. Griazeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Daria M. Fedoseeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Elizaveta I. Radion
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Pavel V. Ershov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Ivan O. Meshkov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Alexandra V. Semyanihina
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 24, Moscow 115478, Russia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moskvorechye, 1, Moscow 115522, Russia
| | - Anna S. Makarova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Valentin V. Makarov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| |
Collapse
|
19
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545392. [PMID: 37398141 PMCID: PMC10312798 DOI: 10.1101/2023.06.16.545392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C. Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
| | - Bailey S. Rose
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - John M. Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Tennessee, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Stabile M, Rispoli AF, Capuozzo M, Ferbo U, Stabile G. Bifid cardiac apex and spongiform cardiomyopathy in fetus with small microdeletion 16p12.2 of paternal origin. Critical points in family communication on 16p12.2 microdeletion. Clin Case Rep 2023; 11:e7602. [PMID: 37405046 PMCID: PMC10315447 DOI: 10.1002/ccr3.7602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Key Clinical Message From a literature review, this is the first case of fetal 16p12.2 microdeletion syndrome inherited from a normal father with autopsy description and evidence of spongious cardiomyopathy. First trimester intake of doxycycline could be a cofactor. Abstract Prenatal diagnosis of a 16p12.2 microdeletion, inherited from normal father, is reported in a dysmorphic 20 weeks fetus. Histopathological examination of the myocardium (not present in the 65 cases in literature) showed bifid apex of the heart and spongiotic structure. Correlation between the deleted genes and cardiomyopathy is discussed.
Collapse
Affiliation(s)
- Mariano Stabile
- Zygote Center: Center for Genetics—Prenatal Diagnosis—FertilitySalernoItaly
| | - Anna F. Rispoli
- Zygote Center: Center for Genetics—Prenatal Diagnosis—FertilitySalernoItaly
| | | | | | - Guglielmo Stabile
- Departments of Obstetrics and GynecologyIRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
21
|
Cheung WA, Johnson AF, Rowell WJ, Farrow E, Hall R, Cohen ASA, Means JC, Zion TN, Portik DM, Saunders CT, Koseva B, Bi C, Truong TK, Schwendinger-Schreck C, Yoo B, Johnston JJ, Gibson M, Evrony G, Rizzo WB, Thiffault I, Younger ST, Curran T, Wenger AM, Grundberg E, Pastinen T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun 2023; 14:3090. [PMID: 37248219 DOI: 10.1038/s41467-023-38782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Adam F Johnson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Emily Farrow
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Ana S A Cohen
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John C Means
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tricia N Zion
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | | | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Schwendinger-Schreck
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Byunggil Yoo
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Margaret Gibson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Thiffault
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Scott T Younger
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | | | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| |
Collapse
|
22
|
Richer LP, Tan Q, Butler MG, Avedzi HM, DeLorey DS, Peng Y, Tun HM, Sharma AM, Ainsley S, Orsso CE, Triador L, Freemark M, Haqq AM. Evaluation of Autonomic Nervous System Dysfunction in Childhood Obesity and Prader-Willi Syndrome. Int J Mol Sci 2023; 24:ijms24098013. [PMID: 37175718 PMCID: PMC10179129 DOI: 10.3390/ijms24098013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The autonomic nervous system (ANS) may play a role in the distribution of body fat and the development of obesity and its complications. Features of individuals with Prader-Willi syndrome (PWS) impacted by PWS molecular genetic classes suggest alterations in ANS function; however, these have been rarely studied and presented with conflicting results. The aim of this study was to investigate if the ANS function is altered in PWS. In this case-control study, we assessed ANS function in 20 subjects with PWS (6 males/14 females; median age 10.5 years) and 27 body mass index (BMI) z-score-matched controls (19 males/8 females; median age 12.8 years). Standardized non-invasive measures of cardiac baroreflex function, heart rate, blood pressure, heart rate variability, quantitative sudomotor axon reflex tests, and a symptom questionnaire were completed. The increase in heart rate in response to head-up tilt testing was blunted (p < 0.01) in PWS compared to controls. Besides a lower heart rate ratio with Valsalva in PWS (p < 0.01), no significant differences were observed in other measures of cardiac function or sweat production. Findings suggest possible altered sympathetic function in PWS.
Collapse
Affiliation(s)
- Lawrence P Richer
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Hayford M Avedzi
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ye Peng
- JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hein M Tun
- JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Arya M Sharma
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Steven Ainsley
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Camila E Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lucila Triador
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27705, USA
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
23
|
Mastromoro G, Guadagnolo D, Marchionni E, Torres B, Goldoni M, Onori A, Bernardini L, De Luca A, Torrente I, Pizzuti A. Mosaic genome-wide paternal uniparental disomy after discordant results from primary fetal samples and cultured cells. Am J Med Genet A 2023; 191:1101-1106. [PMID: 36598152 DOI: 10.1002/ajmg.a.63112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Mosaic genome-wide paternal uniparental disomy (GWpUPD) is a rare condition in which two euploid cell lines coexist in the same individual, one with biparental content and one with genome-wide paternal isodisomy. We report a complex prenatal diagnosis with discordant results from cultured and uncultured samples. A pregnant woman was referred for placental mesenchymal dysplasia and fetal omphalocele. Karyotype, array-CGH and Beckwith-Wiedemann Syndrome (BWS) testing (methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) of 11p15) performed on amniocytes were negative. After intrauterine fetal demise, the clinical suspicion persisted and BWS MS-MLPA was repeated on cultured cells from umbilical cord and amniotic fluid, revealing a mosaicism for KvH19 hypermethylation/KCNQ1OT1:TSS:DMR hypomethylation. These results, along with microsatellite analysis of the BWS region, were consistent with mosaic paternal 11p15 isodisomy. A concurrent maternal contamination exclusion test, analyzing polymorphic microsatellite markers on multiple chromosomes, showed an imbalance in favor of paternal alleles at all examined loci on cultured amniocytes and umbilical cord samples. This led to suspicion of mosaic GWpUPD, later confirmed by SNP-array, identifying a mosaic genome-wide paternal isodisomy affecting 60% of fetal cells. The assessment of mosaic GWpUPD requires multiple approaches beyond the current established diagnostic processes, also entertaining possible low-rate mosaicism. Clinical acumen and an integrated testing approach are the key to a successful diagnosis.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Barbara Torres
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Marina Goldoni
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Annamaria Onori
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Laura Bernardini
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Isabella Torrente
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
24
|
Prader-Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review. Int J Mol Sci 2023; 24:ijms24054271. [PMID: 36901699 PMCID: PMC10002205 DOI: 10.3390/ijms24054271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a complex genetic disorder with three PWS molecular genetic classes and presents as severe hypotonia, failure to thrive, hypogonadism/hypogenitalism and developmental delay during infancy. Hyperphagia, obesity, learning and behavioral problems, short stature with growth and other hormone deficiencies are identified during childhood. Those with the larger 15q11-q13 Type I deletion with the absence of four non-imprinted genes (NIPA1, NIPA2, CYFIP1, TUBGCP5) from the 15q11.2 BP1-BP2 region are more severely affected compared with those with PWS having a smaller Type II deletion. NIPA1 and NIPA2 genes encode magnesium and cation transporters, supporting brain and muscle development and function, glucose and insulin metabolism and neurobehavioral outcomes. Lower magnesium levels are reported in those with Type I deletions. The CYFIP1 gene encodes a protein associated with fragile X syndrome. The TUBGCP5 gene is associated with attention-deficit hyperactivity disorder (ADHD) and compulsions, more commonly seen in PWS with the Type I deletion. When the 15q11.2 BP1-BP2 region alone is deleted, neurodevelopment, motor, learning and behavioral problems including seizures, ADHD, obsessive-compulsive disorder (OCD) and autism may occur with other clinical findings recognized as Burnside-Butler syndrome. The genes in the 15q11.2 BP1-BP2 region may contribute to more clinical involvement and comorbidities in those with PWS and Type I deletions.
Collapse
|
25
|
Švorcová J. Transgenerational Epigenetic Inheritance of Traumatic Experience in Mammals. Genes (Basel) 2023; 14:120. [PMID: 36672861 PMCID: PMC9859285 DOI: 10.3390/genes14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, we have seen an increasing amount of evidence pointing to the existence of a non-genetic heredity of the effects of events such as separation from parents, threat to life, or other traumatising experiences such as famine. This heredity is often mediated by epigenetic regulations of gene expression and may be transferred even across several generations. In this review, we focus on studies which involve transgenerational epigenetic inheritance (TEI), with a short detour to intergenerational studies focused on the inheritance of trauma or stressful experiences. The reviewed studies show a plethora of universal changes which stress exposure initiates on multiple levels of organisation ranging from hormonal production and the hypothalamic-pituitary-adrenal (HPA) axis modulation all the way to cognition, behaviour, or propensity to certain psychiatric or metabolic disorders. This review will also provide an overview of relevant methodology and difficulties linked to implementation of epigenetic studies. A better understanding of these processes may help us elucidate the evolutionary pathways which are at work in the course of emergence of the diseases and disorders associated with exposure to trauma, either direct or in a previous generation.
Collapse
Affiliation(s)
- Jana Švorcová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
26
|
Saini A, Varshney A, Saini A, Mani I. Insight into epigenetics and human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:1-21. [PMID: 37019588 DOI: 10.1016/bs.pmbts.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The most eminent research of the 21st century whirls around the epigenetic and the variability of DNA sequences in humans. The reciprocity between the epigenetic changes and the exogenous factors drives an influence on the inheritance biology and gene expression both inter-generationally and trans-generationally. Chromatin level modifications like DNA methylation, histone modifications or changes in transcripts functions either at transcription level or translational level pave the way for certain diseases or cancer in humans. The ability of epigenetics to explain the processes of various diseases has been demonstrated by recent epigenetic studies. Multidisciplinary therapeutic strategies were developed in order to analyse how epigenetic elements interact with different disease pathways. In this chapter we summarize how an organism may be predisposed to certain diseases by exposure to environmental variables such as chemicals, medications, stress, or infections during particular, vulnerable phases of life, and the epigenetic component may influence some of the diseases in humans.
Collapse
|
27
|
Duis J, Butler MG. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv Biol (Weinh) 2022; 6:e2101154. [PMID: 35680611 DOI: 10.1002/adbi.202101154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/13/2022] [Indexed: 01/28/2023]
Abstract
Growing evidence supports syndromic and nonsyndromic causes of obesity, including genome-wide association studies, candidate gene analysis, advanced genetic technology using next-generation sequencing (NGS), and identification of copy number variants. Identification of susceptibility genes impacts mechanistic understanding and informs precision medicine. The cause of obesity is heterogeneous with complex biological processes playing a role by controlling peptides involved in regulating appetite and food intake, cellular energy, and metabolism. Evidence for heritability shows genetic components contributing to 40%-70% of obesity. Monogenic causes and obesity-related syndromes are discussed and illustrated as well as biological pathways, gene interactions, and factors contributing to the obesity phenotype. Over 550 obesity-related single genes have been identified and summarized in tabular form with approximately 20% of these genes have been added to obesity gene panels for testing by commercially available laboratories. Early studies show that about 10% of patients with severe obesity using NGS testing have a pathogenic gene variant. Discussion to help characterize gene-gene interactions and disease mechanisms for early diagnosis, treatment, and risk factors contributing to disease is incorporated in this review.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics and Inherited Metabolic Disorders, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO, 80045, USA
| | - Merlin G Butler
- Division of Research and Genetics, Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 4015, Kansas City, KS, 66160, USA
| |
Collapse
|
28
|
Mahmoud R, Kimonis V, Butler MG. Genetics of Obesity in Humans: A Clinical Review. Int J Mol Sci 2022; 23:11005. [PMID: 36232301 PMCID: PMC9569701 DOI: 10.3390/ijms231911005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a complex multifactorial disorder with genetic and environmental factors. There is an increase in the worldwide prevalence of obesity in both developed and developing countries. The development of genome-wide association studies (GWAS) and next-generation sequencing (NGS) has increased the discovery of genetic associations and awareness of monogenic and polygenic causes of obesity. The genetics of obesity could be classified into syndromic and non-syndromic obesity. Prader-Willi, fragile X, Bardet-Biedl, Cohen, and Albright Hereditary Osteodystrophy (AHO) syndromes are examples of syndromic obesity, which are associated with developmental delay and early onset obesity. Non-syndromic obesity could be monogenic, polygenic, or chromosomal in origin. Monogenic obesity is caused by variants of single genes while polygenic obesity includes several genes with the involvement of members of gene families. New advances in genetic testing have led to the identification of obesity-related genes. Leptin (LEP), the leptin receptor (LEPR), proopiomelanocortin (POMC), prohormone convertase 1 (PCSK1), the melanocortin 4 receptor (MC4R), single-minded homolog 1 (SIM1), brain-derived neurotrophic factor (BDNF), and the neurotrophic tyrosine kinase receptor type 2 gene (NTRK2) have been reported as causative genes for obesity. NGS is now in use and emerging as a useful tool to search for candidate genes for obesity in clinical settings.
Collapse
Affiliation(s)
- Ranim Mahmoud
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Virginia Kimonis
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Departments of Neurology and Pathology, University of California, Irvine, CA 92697, USA
- Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Liu Q, Wei R, Lu J, Ding H, Yi H, Guo L, Wu J. A Retrospective Cohort Analysis of the Genetic Assay Results of Foetuses with Isolated and Nonisolated Umbilical Cord Cyst. Int J Gen Med 2022; 15:5775-5784. [PMID: 35770052 PMCID: PMC9236164 DOI: 10.2147/ijgm.s358864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To analyse the risk of clinical chromosomal abnormalities in foetuses with umbilical cord cysts. Methods Data from all genetic assays that were performed as part of invasive prenatal diagnoses of umbilical cord cysts between October 2014 and June 2021 were retrospectively collected from Guangdong Women and Children Hospital. We compared the differences in genetic assay findings in isolated and nonisolated umbilical cord cyst cohorts. Results A total of 49 singleton pregnancies and 2 foetuses that were one of the cotwins in monochorionic twin pregnancies were enrolled in the cohort; 20 isolated and 31 nonisolated umbilical cord cysts were identified in the cohort. One foetus (5%, 1/20) in the isolated umbilical cord cyst group showed chromosomal abnormalities and 17p12 microduplication. Twelve cases (38.7%, 12/31) of chromosomal abnormalities, including seven cases of trisomy 18, two cases of trisomy 13 and three cases of microdeletion, were identified in the nonisolated umbilical cord cyst group. The incidences of chromosomal abnormalities between the two groups were significantly different (1/20, 5% vs 13/31, 38.7%, p=0.003). There was no relative pathological medical exome sequencing finding in the three foetuses suffering from nonisolated umbilical cord cysts whose parents chose to undergo chromosomal microarray analysis (CMA) and medical exome sequencing. Conclusion This retrospective cohort study evaluated the value of CMA in foetuses with umbilical cord cysts and suggested that copy number variants (CNVs) may be the basic genetic aetiological factors that should be considered for diagnostic evaluation. We recommended CMA as a basic genetic evaluation in cases of umbilical cord cysts, especially in nonisolated cases.
Collapse
Affiliation(s)
- Qian Liu
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Ran Wei
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jian Lu
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Hongke Ding
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Hui Yi
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Li Guo
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jing Wu
- Department of Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, People’s Republic of China
- Correspondence: Jing Wu, Department of Medical Genetics Center, Guangdong Women and Children Hospital, NO. 521 Xingnan Road, Panyu District, Guangzhou city, Guangdong Province, People’s Republic of China, Tel +86 20-39151548, Email
| |
Collapse
|
30
|
Aberrant Notch Signaling Pathway as a Potential Mechanism of Central Precocious Puberty. Int J Mol Sci 2022; 23:ijms23063332. [PMID: 35328752 PMCID: PMC8950842 DOI: 10.3390/ijms23063332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway is highly conserved during evolution. It has been well documented that Notch signaling regulates cell proliferation, migration, and death in the nervous, cardiac, and endocrine systems. The Notch pathway is relatively simple, but its activity is regulated by numerous complex mechanisms. Ligands bind to Notch receptors, inducing their activation and cleavage. Various post-translational processes regulate Notch signaling by affecting the synthesis, secretion, activation, and degradation of Notch pathway-related proteins. Through such post-translational regulatory processes, Notch signaling has versatile effects in many tissues, including the hypothalamus. Recently, several studies have reported that mutations in genes related to the Notch signaling pathway were found in patients with central precocious puberty (CPP). CPP is characterized by the early activation of the hypothalamus–pituitary–gonadal (HPG) axis. Although genetic factors play an important role in CPP development, few associated genetic variants have been identified. Aberrant Notch signaling may be associated with abnormal pubertal development. In this review, we discuss the current knowledge about the role of the Notch signaling pathway in puberty and consider the potential mechanisms underlying CPP.
Collapse
|
31
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
de Paula BMF, de Souza Pinhel MA, Nicoletti CF, Nonino CB, Siqueira F, Vannucchi H. FOLIC ACID SUPPLEMENTATION MODULATES OFFSPRING GENES INVOLVED IN ENERGY METABOLISM: IN VIVO STUDY. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Kehinde TA, Bhatia A, Olarewaju B, Shoaib MZ, Mousa J, Osundiji MA. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet 2022; 65:104443. [DOI: 10.1016/j.ejmg.2022.104443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
35
|
Danzig J, Li D, Jan de Beur S, Levine MA. High-throughput Molecular Analysis of Pseudohypoparathyroidism 1b Patients Reveals Novel Genetic and Epigenetic Defects. J Clin Endocrinol Metab 2021; 106:e4603-e4620. [PMID: 34157100 PMCID: PMC8677598 DOI: 10.1210/clinem/dgab460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1b (PHP1b) show disordered imprinting of the maternal GNAS allele or paternal uniparental disomy (UPD). Genetic deletions in STX16 or in upstream exons of GNAS are present in many familial but not sporadic cases. OBJECTIVE Characterization of epigenetic and genetic defects in patients with PHP1b. DESIGN AND PATIENTS DNA from 84 subjects, including 26 subjects with sporadic PHP1b, 27 affected subjects and 17 unaffected and/or obligate gene carriers from 12 PHP1b families, 11 healthy individuals, and 3 subjects with PHP1a was subjected to quantitative pyrosequencing of GNAS differentially methylated regions (DMRs), microarray analysis, and microsatellite haplotype analysis. SETTING Academic medical center. MAIN OUTCOME MEASUREMENTS Molecular pathology of PHP1b. RESULTS Healthy subjects, unaffected family members and obligate carriers of paternal PHP1b alleles, and subjects with PHP1a showed normal methylation of all DMRs. All PHP1b subjects showed loss of methylation (LOM) at the exon A/B DMR. Affected members of 9 PHP1b kindreds showed LOM only at the exon A/B DMR, which was associated with a 3-kb deletion of STX16 exons 4 through 6 in 7 families and a novel deletion of STX16 and adjacent NEPEPL1 in 1 family. A novel NESP deletion was found in 1 of 2 other families with more extensive methylation defects. One sporadic PHP1b had UPD of 20q, 2 had 3-kb STX16 deletions, and 5 had apparent epigenetic mosaicism. CONCLUSIONS We found diverse patterns of defective methylation and identified novel or previously known mutations in 9 of 12 PHP1b families.
Collapse
Affiliation(s)
- Jennifer Danzig
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Abstract
Pubertal onset is a complex process, which is influenced by genetic and environmental factors, such as obesity and endocrine-disrupting chemicals. In addition, the timing of normal puberty varies between individuals and is a highly polygenic trait with both rare and common variants. Central precocious puberty (CPP) is defined as the early activation of the hypothalamic-pituitary-gonadal axis. Genetic factors are suggested to account for 50% to 80% of the variation in puberty initiation, as indicated by the greater concordance of pubertal timing observed in monozygotic twins than in dizygotic twins. Although genetic factors play a crucial role in CPP development, only few associated genes have been identified. To date, four monogenic genes have been identified: KISS1, KISS1R, MKRN3, and DLK1. Moreover, mutation prevalence in these genes varies considerably depending on the ethnicity of patients with CPP. This article reviews the current knowledge on the normal pubertal timing and physiology and discusses the CPP-causing genes.
Collapse
|
37
|
Strom SP, Hossain WA, Grigorian M, Li M, Fierro J, Scaringe W, Yen HY, Teguh M, Liu J, Gao H, Butler MG. A Streamlined Approach to Prader-Willi and Angelman Syndrome Molecular Diagnostics. Front Genet 2021; 12:608889. [PMID: 34046054 PMCID: PMC8148043 DOI: 10.3389/fgene.2021.608889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Establishing or ruling out a molecular diagnosis of Prader–Willi or Angelman syndrome (PWS/AS) presents unique challenges due to the variety of different genetic alterations that can lead to these conditions. Point mutations, copy number changes, uniparental isodisomy (i-UPD) 15 of two subclasses (segmental or total isodisomy), uniparental heterodisomy (h-UPD), and defects in the chromosome 15 imprinting center can all cause PWS/AS. Here, we outline a combined approach using whole-exome sequencing (WES) and DNA methylation data with methylation-sensitive multiplex ligation-dependent probe amplification (MLPA) to establish both the disease diagnosis and the mechanism of disease with high sensitivity using current standard of care technology and improved efficiency compared to serial methods. The authors encourage the use of this approach in the clinical setting to confirm and establish the diagnosis and genetic defect which may account for the secondary genetic conditions that may be seen in those with isodisomy 15, impacting surveillance and counseling with more accurate recurrence risks. Other similarly affected individuals due to other gene disorders or cytogenetic anomalies such as Rett syndrome or microdeletions would also be identified with this streamlined approach.
Collapse
Affiliation(s)
| | - Waheeda A Hossain
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Mickey Li
- Fulgent Genetics, Temple City, CA, United States
| | | | | | - Hai-Yun Yen
- Fulgent Genetics, Temple City, CA, United States
| | | | - Joanna Liu
- Fulgent Genetics, Temple City, CA, United States
| | - Harry Gao
- Fulgent Genetics, Temple City, CA, United States
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
38
|
Affiliation(s)
- Elias M Dahdouh
- CHU Sainte-Justine, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada.
| | | |
Collapse
|
39
|
Mendiola AJP, LaSalle JM. Epigenetics in Prader-Willi Syndrome. Front Genet 2021; 12:624581. [PMID: 33659026 PMCID: PMC7917289 DOI: 10.3389/fgene.2021.624581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder that affects approximately 1 in 20,000 individuals worldwide. Symptom progression in PWS is classically characterized by two nutritional stages. Stage 1 is hypotonia characterized by poor muscle tone that leads to poor feeding behavior causing failure to thrive in early neonatal life. Stage 2 is followed by the development of extreme hyperphagia, also known as insatiable eating and fixation on food that often leads to obesity in early childhood. Other major features of PWS include obsessive-compulsive and hoarding behaviors, intellectual disability, and sleep abnormalities. PWS is genetic disorder mapping to imprinted 15q11.2-q13.3 locus, specifically at the paternally expressed SNORD116 locus of small nucleolar RNAs and noncoding host gene transcripts. SNORD116 is processed into several noncoding components and is hypothesized to orchestrate diurnal changes in metabolism through epigenetics, according to functional studies. Here, we review the current status of epigenetic mechanisms in PWS, with an emphasis on an emerging role for SNORD116 in circadian and sleep phenotypes. We also summarize current ongoing therapeutic strategies, as well as potential implications for more common human metabolic and psychiatric disorders.
Collapse
Affiliation(s)
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|