1
|
Ramalho A, Vale A, Carvalho F, Fernandes E, Freitas M. Parabens exposure and its impact on diabesity: A review. Toxicology 2025; 515:154125. [PMID: 40132785 DOI: 10.1016/j.tox.2025.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Parabens are a family of alkyl esters of 4-hydroxybenzoic acid. The most commonly used include methylparaben, ethylparaben, propylparaben, and butylparaben. These compounds have been reported to disrupt the endocrine system and are believed to affect the central nervous, immune, and reproductive systems, as well as lipid homeostasis, glucose levels, and thyroid function. Given these effects, parabens pose potential health risks, including their possible link to conditions like diabesity - a term describing the dual condition of type 2 diabetes mellitus and obesity. This review explores current literature on how parabens may influence key mechanisms in diabesity, such as gluconeogenesis, glycogenolysis, adipogenesis, insulin resistance, and inflammation. Understanding their role in these metabolic pathways is critical for assessing their contribution to the diabesity epidemic and guiding future research for minimizing their harmful health impacts.
Collapse
Affiliation(s)
- Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Abel Vale
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050‑313, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
2
|
Seewooruttun C, Bouguila B, Corona A, Delanaud S, Bodin R, Bach V, Desailloud R, Pelletier A. 5G Radiofrequency Exposure Reduces PRDM16 and C/EBP β mRNA Expression, Two Key Biomarkers for Brown Adipogenesis. Int J Mol Sci 2025; 26:2792. [PMID: 40141434 PMCID: PMC11942954 DOI: 10.3390/ijms26062792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants and tends to decrease with age. Previous animal studies demonstrated a cold sensation in rats exposed to 900 MHz (second generation, 2G). UCP1-dependent thermogenesis and BAT hyperplasia are two fundamental adaptive mechanisms initiated in response to cold. This study investigated the impact of short-term exposure to 2G and fifth generation (5G) on key thermogenic and adipogenic markers related to these mechanisms while considering age and exposure duration. Juvenile and young adult Wistar rats were randomized into three subgroups: a 5G group (3.5 GHz), 2G group (900 MHz), and a control group (SHAM). They were exposed to their respective continuous-wave RF signals for 1 or 2 weeks at an intensity of 1.5 V/m, with two exposure sessions of 1 h per day. After the exposure period, a RT-qPCR was carried out to evaluate the genetic markers involved in BAT thermogenesis and adipogenesis. Two adipogenic biomarkers were affected; a fold change reduction of 49% and 32% was detected for PRDM16 (p = 0.016) and C/EBP β (p = 0.0002), respectively, after 5G exposure, regardless of age and exposure duration. No significant RF effect was found on UCP1-dependent thermogenesis at a transcriptional level. These findings suggest that exposure to a 5G radiofrequency may partially disrupt brown adipocyte differentiation and thermogenic function by downregulating PRDM16 and C/EBP β, possibly leading to higher cold sensitivity.
Collapse
Affiliation(s)
- Chandreshwar Seewooruttun
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Bélir Bouguila
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Aurélie Corona
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Stéphane Delanaud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Raphaël Bodin
- PériTox (UMR I_01), INERIS/UPJV, INERIS, MIV/TEAM, 60550 Verneuil-en-Halatte, France
| | - Véronique Bach
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Rachel Desailloud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 Rond Point du Pr Christian Cabrol, 80054 Amiens, France
| | - Amandine Pelletier
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| |
Collapse
|
3
|
de Oliveira Silva T, Lunardon G, Lino CA, de Almeida Silva A, Zhang S, Irigoyen MCC, Lu YW, Mably JD, Barreto-Chaves MLM, Wang DZ, Diniz GP. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91:102065. [PMID: 39557194 PMCID: PMC11636344 DOI: 10.1016/j.molmet.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined. OBJECTIVE We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters. METHODS AND RESULTS We found that the increase in body weight and adiposity, glucose intolerance, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic disorders which were induced by an obesogenic diet were alleviated by senolytic cocktail treatment in mice. Treatment with senolytic compounds eliminated senescent cells, counteracting the activation of the senescence program and DNA damage in white adipose tissue (WAT) observed with an obesogenic diet. Moreover, the senolytic cocktail prevented the brown adipose tissue (BAT) whitening and increased the expression of the thermogenic gene profile in BAT and pWAT. In the hearts of obese mice, senolytic combination abolished myocardial maladaptation, reducing the senescence-associated secretory phenotype (SASP) and DNA damage, repressing cardiac hypertrophy, and improving diastolic dysfunction. Additionally, we showed that treatment with the senolytic cocktail corrected gene expression programs associated with fatty acid metabolism, oxidative phosphorylation, the P53 pathway, and DNA repair, which were all downregulated in obese mice. CONCLUSIONS Collectively, these data suggest that a senolytic cocktail can prevent the activation of the senescence program in the heart and WAT and activate the thermogenic program in BAT. Our results suggest that targeting senescent cells may be a novel therapeutic strategy for alleviating obesity-related metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tábatha de Oliveira Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amanda de Almeida Silva
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shiju Zhang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Yao Wei Lu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Mably
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Da-Zhi Wang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Nayak A, Panda SS, Dwivedi I, Meena S, Aich P. Role of gut microbial-derived metabolites and other select agents on adipocyte browning. Biochem Biophys Res Commun 2024; 737:150518. [PMID: 39142136 DOI: 10.1016/j.bbrc.2024.150518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
AIMS Metabolic disease is a multifaceted condition characterized by the disruption of numerous metabolic parameters within the host. Its prevalence has surged significantly in recent years and it has become a prominent non-communicable disease worldwide. The effect of gut microbiota on various beige fat induction is well studied, while the mechanisms behind the link remain unclear. Given that gut microbiota-derived metabolites (meta-metabolites) secreted in the gut serve as a key mode of communication with their host through direct circulation or indirect host physiology modification, understanding the effect of meta-metabolites on adipose tissue is essential. METHODOLOGY In our previous in-vivo studies, we observed a correlation between gut microbiota and the formation of beige fat. In this study, we further aimed to validate this correlation by treating the adipocyte cell line (3T3-L1) with meta-metabolites collected from the cecum of mice exhibiting beige adipose tissue formation. Additionally, we treated the adipocyte cell line with known beige fat inducers (L-Rhamnose and Ginsenoside) to assess meta-metabolites' efficacy on beige fat formation. KEY FINDINGS Upon treatment with the meta-metabolites from the antibiotic-treated mice, we observed a significant increase in lipid metabolism and beige-specific gene expression. Analyzing the metabolites in these cells revealed that a set of metabolites potentially govern adipocytes, contributing to a metabolically active state. These effects were at par or even better than those of cells treated with L-Rhamnose or Ginsenoside. SIGNIFICANCE This research sheds light on the intricate interplay between microbial metabolites and adipose tissue, offering valuable clues for understanding and potentially manipulating these processes for therapeutic purposes.
Collapse
Affiliation(s)
- Akankshya Nayak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Swati Sagarika Panda
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Isha Dwivedi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Shivani Meena
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India.
| |
Collapse
|
5
|
Kim YJ, Lee SG, Jang SI, Kim WK, Oh KJ, Bae KH, Kim HJ, Seong JK. Lactate utilization in Lace1 knockout mice promotes browning of inguinal white adipose tissue. Exp Mol Med 2024; 56:2491-2502. [PMID: 39511428 PMCID: PMC11612233 DOI: 10.1038/s12276-024-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 11/15/2024] Open
Abstract
Recent studies have focused on identifying novel genes involved in the browning process of inguinal white adipose tissue (iWAT). In this context, we propose that the mitochondrial ATPase gene lactation elevated 1 (Lace1) utilizes lactate to regulate the browning capacity of iWAT, specifically in response to challenge with CL-316,243 (CL), a beta3-adrenergic receptor (β3-AR) agonist. The mice were injected with CL over a span of 3 days and exposed to cold temperatures (4-6 °C) for 1 week. The results revealed a significant increase in Lace1 expression levels during beige adipogenesis. Additionally, a strong positive correlation was observed between Lace1 and Ucp1 mRNA expression in iWAT under browning stimulation. To further explore this phenomenon, we subjected engineered Lace1 KO mice to CL and cold challenges to validate their browning potential. Surprisingly, Lace1 KO mice presented increased oxygen consumption and heat generation upon CL challenge and cold exposure, along with increased expression of genes related to brown adipogenesis. Notably, deletion of Lace1 led to increased lactate uptake and browning in iWAT under CL challenge compared with those of the controls. These unique phenomena stem from increased lactate release due to the inactivation of pyruvate dehydrogenase (PDH) in the hearts of Lace1 KO mice.
Collapse
Affiliation(s)
- Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang Gyu Lee
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Su In Jang
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Velez‐delValle C, Hernandez‐Mosqueira CP, Castro‐Rodriguez LI, Vazquez‐Sandoval A, Marsch‐Moreno M, Kuri‐Harcuch W. Gene expression and characterization of clonally derived murine embryonic brown and brite adipocytes. FEBS Open Bio 2024; 14:1503-1525. [PMID: 38972757 PMCID: PMC11492321 DOI: 10.1002/2211-5463.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
White adipocytes store energy, while brown and brite adipocytes release heat via nonshivering thermogenesis. In this study, we characterized two murine embryonic clonal preadipocyte lines, EB5 and EB7, each displaying unique gene marker expression profiles. EB5 cells differentiate into brown adipocytes, whereas EB7 cells into brite (also known as beige) adipocytes. To draw a comprehensive comparison, we contrasted the gene expression patterns, adipogenic capacity, as well as carbohydrate and lipid metabolism of these cells to that of F442A, a well-known white preadipocyte and adipocyte model. We found that commitment to differentiation in both EB5 and EB7 cells can be induced by 3-Isobutyl-1-methylxanthine/dexamethasone (Mix/Dex) and staurosporine/dexamethasone (St/Dex) treatments. Additionally, the administration of rosiglitazone significantly enhances the brown and brite adipocyte phenotypes. Our data also reveal the involvement of a series of genes in the transcriptional cascade guiding adipogenesis, pinpointing GSK3β as a critical regulator for both EB5 and EB7 adipogenesis. In a developmental context, we observe that, akin to brown fat progenitors, brite fat progenitors make their appearance in murine development by 11-12 days of gestation or potentially earlier. This result contributes to our understanding of adipocyte lineage specification during embryonic development. In conclusion, EB5 and EB7 cell lines are valuable for research into adipocyte biology, providing insights into the differentiation and development of brown and beige adipocytes. Furthermore, they could be useful for the characterization of drugs targeting energy balance for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Cristina Velez‐delValle
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| | | | | | | | - Meytha Marsch‐Moreno
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| | - Walid Kuri‐Harcuch
- Department of Cell BiologyCenter for Research and Advanced Studies (Cinvestav)Mexico CityMexico
| |
Collapse
|
7
|
Das S, Mukhuty A, Mullen GP, Rudolph MC. Adipocyte Mitochondria: Deciphering Energetic Functions across Fat Depots in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:6681. [PMID: 38928386 PMCID: PMC11203708 DOI: 10.3390/ijms25126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
Collapse
Affiliation(s)
- Snehasis Das
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alpana Mukhuty
- Department of Zoology, Rampurhat College, Rampurhat 731224, India
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
9
|
Sakaguchi M. Adipose Tissue Plasticity and Insulin Signaling in the Pathogenesis of Type 2 Diabetes. Diabetol Int 2024; 15:28-33. [PMID: 38264220 PMCID: PMC10800324 DOI: 10.1007/s13340-023-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 01/25/2024]
Abstract
Obesity is a major cause of various metabolic disorders, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases, in modern times. Fat tissue originally evolved as an organ to prepare for food shortages. However, when individuals consume excessive calories and engage in insufficient physical activity, it can lead to the excessive accumulation of lipids in white adipose tissue, potentially causing problems. In response to this excessive lipid accumulation extending to other tissues, insulin resistance is triggered in the body as a physiological response to prevent harmful effects. Additionally, in mammals, brown adipose tissue has evolved to generate energy and maintain body temperature. These inconspicuous defense mechanisms function coordinately to protect against systemic metabolic abnormalities affecting multiple organs. Understanding the dynamic nature of adipose tissues is now crucial for elucidating the details of the molecular abnormalities in obesity-associated metabolic diseases. This review outlines adipocyte plasticity and function with a focus on the physiological relevance and new pathways of insulin signaling.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto 860-8556 Japan
| |
Collapse
|
10
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Marzan AL, Chitti SV. Unravelling the Role of Cancer Cell-Derived Extracellular Vesicles in Muscle Atrophy, Lipolysis, and Cancer-Associated Cachexia. Cells 2023; 12:2598. [PMID: 37998333 PMCID: PMC10670053 DOI: 10.3390/cells12222598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer-associated cachexia is a metabolic syndrome that causes significant reduction in whole-body weight due to excessive loss of muscle mass accompanied by loss of fat mass. Reduced food intake and several metabolic abnormalities, such as increased energy expenditure, excessive catabolism, and inflammation, are known to drive cachexia. It is well documented that cancer cells secrete EVs in abundance which can be easily taken up by the recipient cell. The cargo biomolecules carried by the EVs have the potential to alter the signalling pathways and function of the recipient cells. EV cargo includes proteins, nucleic acids, lipids, and metabolites. Tumour-secreted EVs have been found to alter the metabolic and biological functions of adipose and muscle tissue, which aids in the development of the cachexia phenotype. To date, no medical intervention or FDA-approved drug exists that can completely reverse cachexia. Therefore, understanding how cancer-derived EVs contribute to the onset and progression of cancer-associated cachexia may help with the identification of new biomarkers as well as provide access to novel treatment alternatives. The goal of this review article is to discuss the most recent research on cancer-derived EVs and their function in cellular crosstalk that promotes catabolism in muscle and adipose tissue during cancer-induced cachexia.
Collapse
Affiliation(s)
| | - Sai V. Chitti
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
12
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
13
|
Li Z, Zhou E, Liu C, Wicks H, Yildiz S, Razack F, Ying Z, Kooijman S, Koonen DPY, Heijink M, Kostidis S, Giera M, Sanders IMJG, Kuijper EJ, Smits WK, van Dijk KW, Rensen PCN, Wang Y. Dietary butyrate ameliorates metabolic health associated with selective proliferation of gut Lachnospiraceae bacterium 28-4. JCI Insight 2023; 8:166655. [PMID: 36810253 PMCID: PMC9977501 DOI: 10.1172/jci.insight.166655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet-induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota-depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Enchen Zhou
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cong Liu
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hope Wicks
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sena Yildiz
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Farhana Razack
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Zhixiong Ying
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Debby PY Koonen
- Department of Pediatrics, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | | - Ed J Kuijper
- Department of Medical Microbiology.,Center for Microbiome Analyses and Therapeutics, and
| | - Wiep Klaas Smits
- Department of Medical Microbiology.,Center for Microbiome Analyses and Therapeutics, and
| | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Netherlands
| | - Patrick CN Rensen
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Med-X Institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Med-X Institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Luo S, Zhang H, Jiang X, Xia Y, Tang S, Duan X, Sun W, Gao M, Chen C, Zou Z, Zhou L, Qiu J. Antibiotics administration alleviates the high fat diet-induced obesity through altering the lipid metabolism in young mice. Lipids 2023; 58:19-32. [PMID: 36253942 DOI: 10.1002/lipd.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Currently, there is a global trend of rapid increase in obesity, especially among adolescents. The antibiotics cocktails (ABX) therapy is commonly used as an adjunctive treatment for gut microbiota related diseases, including obesity. However, the effects of broad-spectrum antibiotics alone on young obese hosts have rarely been reported. In the present study, the 3-week-old C57BL/6J male mice fed a high-fat diet (HFD) were intragastric administration with ampicillin, vancomycin, metronidazole or neomycin for 30 days. The lipid metabolites in plasma were assessed by biochemical assay kits, and genes related to lipid metabolite in the white adipose were assessed by qPCR. To further analyze the underlying mechanisms, the expression of genes related to lipid metabolism, inflammatory reactions and oxidative stress in the liver were determined by qPCR assay. In addition, the expression of oxidative damage-associated proteins in the liver were detected by western blot. The results showed that oral antibiotics exposure could reduce body weight and fat index in HFD-fed mice, concurrent with the increase of white adipose lipolysis genes and the decrease of hepatic lipogenic genes. Furthermore, antibiotics treatment could clearly reverse the HFD-induced elevation of oxidative damage-related proteins in the liver. Together, these findings will provide valuable clues into the effects of antibiotics on obesity.
Collapse
Affiliation(s)
- Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Scamfer SR, Lee MD, Hilgendorf KI. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front Cell Dev Biol 2022; 10:1083372. [PMID: 36561368 PMCID: PMC9763467 DOI: 10.3389/fcell.2022.1083372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.
Collapse
Affiliation(s)
| | | | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
17
|
Luo W, Kim Y, Jensen ME, Herlea-Pana O, Wang W, Rudolph MC, Friedman JE, Chernausek SD, Jiang S. miR-130b/301b Is a Negative Regulator of Beige Adipogenesis and Energy Metabolism In Vitro and In Vivo. Diabetes 2022; 71:2360-2371. [PMID: 36001751 PMCID: PMC9630090 DOI: 10.2337/db22-0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
Thermogenic brown or beige adipocytes dissipate energy in the form of heat and thereby counteract obesity and related metabolic complications. The miRNA cluster miR-130b/301b is highly expressed in adipose tissues and has been implicated in metabolic diseases as a posttranscriptional regulator of mitochondrial biogenesis and lipid metabolism. We investigated the roles of miR-130b/301b in regulating beige adipogenesis in vivo and in vitro. miR-130b/301b declined in adipose progenitor cells during beige adipogenesis, while forced overexpression of miR-130b-3p or miR-301b-3p suppressed uncoupling protein 1 (UCP1) and mitochondrial respiration, suggesting that a decline in miR-130b-3p or miR-301b-3p is required for adipocyte precursors to develop the beige phenotype. Mechanistically, miR-130b/301b directly targeted AMP-activated protein kinase (AMPKα1) and suppressed peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α), key regulators of brown adipogenesis and mitochondrial biogenesis. Mice lacking the miR-130b/301b miRNA cluster showed reduced visceral adiposity and less weight gain. miR-130b/301b null mice exhibited improved glucose tolerance, increased UCP1 and AMPK activation in subcutaneous fat (inguinal white adipose tissue [iWAT]), and increased response to cold-induced energy expenditure. Together, these data identify the miR-130b/301b cluster as a new regulator that suppresses beige adipogenesis involving PGC-1α and AMPK signaling in iWAT and is therefore a potential therapeutic target against obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Luo
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Youngsil Kim
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Mary Ellen Jensen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Oana Herlea-Pana
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Weidong Wang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Steven D. Chernausek
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Shaoning Jiang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
18
|
Kılıçaslan NA, Börekçi Ş, Özdemir GN, Sayitoğlu M, Eşkazan AE. Dasatinib-related pleural effusion and lymphocytosis rates are different between adult and pediatric patients with Philadelphia chromosome-positive leukemias: Are age and comorbidities only to blame? Expert Rev Respir Med 2022; 16:849-852. [PMID: 36069271 DOI: 10.1080/17476348.2022.2122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Şermin Börekçi
- Department of Pulmonary Diseases, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Gül Nihal Özdemir
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Istinye University, Istanbul, Turkey
| | - Müge Sayitoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
19
|
Cinti F, Cinti S. The Endocrine Adipose Organ: A System Playing a Central Role in COVID-19. Cells 2022; 11:2109. [PMID: 35805193 PMCID: PMC9265618 DOI: 10.3390/cells11132109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
In the last 30 years the adipose cell has been object of several studies, turning its reputation from an inert cell into the main character involved in the pathophysiology of multiple diseases, including the ongoing COVID-19 pandemic, which has changed the clinical scenario of the last two years. Composed by two types of tissue (white and brown), with opposite roles, the adipose organ is now classified as a real endocrine organ whose dysfunction is involved in different diseases, mainly obesity and type 2 diabetes. In this mini-review we aim to retrace the adipose organ history from physiology to physiopathology, to provide therapeutic perspectives for the prevention and treatment of its two main related diseases (obesity and type 2 diabetes) and to summarize the most recent discoveries linking adipose tissue to COVID-19.
Collapse
Affiliation(s)
- Francesca Cinti
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Saverio Cinti
- Center of Obesity, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| |
Collapse
|
20
|
Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, Berry DC, Soloway PD. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol 2022; 5:584. [PMID: 35701601 PMCID: PMC9197980 DOI: 10.1038/s42003-022-03531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Beige adipocytes are induced by cold temperatures or β3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.
Collapse
Affiliation(s)
- Seoyeon Lee
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY, USA.
| |
Collapse
|
21
|
miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells. Sci Rep 2022; 12:9557. [PMID: 35688898 PMCID: PMC9187663 DOI: 10.1038/s41598-022-13610-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Activation of brown adipose tissue may increase energy expenditure by non-shivering thermogenesis. Cold exposure is one of the options to activate brown adipocytes. To link changes in energy metabolism with microRNA expression (miRNAs), we analyzed 158 miRNAs in serum of 169 healthy individuals before and after cold exposure. Validating the results of a miRNA array, a significant down-regulation of miR-375 after cold exposure (P < 0.0001) was detected. These changes went along with a significant negative correlation between miR-375 and visceral adipose tissue (VAT) mass (P < 0.0001), implicating a specific function of miR-375 in this depot. Significantly higher expression levels of miR-375 were found in VAT in comparison to subcutaneous fat (SAT). Using in silico prediction, we identified putative miR-375 target genes involved in the thermogenesis pathway. Cold-stimulation of subcutaneous and visceral pre-adipocytes (PACs) led to significantly higher expression levels of FABP4, FGF21, PPARGC1A and PRDM16 in VC-PACs. Analyzing miR-375 knock down and cold stimulated VC-PACs revealed a significant up-regulation of thermogenesis associated genes PPARGC1A, ELOVL3 and PRDM16. In summary, our findings identified miR-375 as a potential adipogenic and thermogenesis-associated miRNA exclusively acting in visceral adipose tissue.
Collapse
|
22
|
Kang MC, Lee HG, Lee SH, Song KM, Kim HS, Kim S, Choi YS, Jeon YJ. Sargassum horneri inhibits fat accumulation via up-regulation of thermogenesis in obese mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Kirschner KM, Foryst-Ludwig A, Gohlke S, Li C, Flores RE, Kintscher U, Schupp M, Schulz TJ, Scholz H. Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet. Diabetologia 2022; 65:528-540. [PMID: 34846543 PMCID: PMC8803700 DOI: 10.1007/s00125-021-05621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.
Collapse
Affiliation(s)
- Karin M Kirschner
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Foryst-Ludwig
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Chen Li
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roberto E Flores
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kintscher
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Michael Schupp
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
24
|
Perez LC, Perez LT, Nene Y, Umpierrez GE, Davis GM, Pasquel FJ. Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1037458. [PMID: 36568070 PMCID: PMC9780295 DOI: 10.3389/fendo.2022.1037458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) plays a role in modulating energy expenditure. People with obesity have been shown to have reduced activation of BAT. Agents such as β-agonists, capsinoids, thyroid hormone, sildenafil, caffeine, or cold exposure may lead to activation of BAT in humans, potentially modulating metabolism to promote weight loss. METHODS We systematically searched electronic databases for clinical trials testing the effect of these agents and cold exposure on energy expenditure/thermogenesis and the extent to which they may impact weight loss in adults. RESULTS A total of 695 studies from PubMed, Web of Science, and Medline electronic databases were identified. After the removal of duplicates and further evaluation, 47 clinical trials were analyzed. We observed significant heterogeneity in the duration of interventions and the metrics utilized to estimate thermogenesis/energy expenditure. Changes observed in energy expenditure do not correlate with major weight changes with different interventions commonly known to stimulate thermogenesis. Even though cold exposure appears to consistently activate BAT and induce thermogenesis, studies are small, and it appears to be an unlikely sustainable therapy to combat obesity. Most studies were small and potential risks associated with known side effects of some agents such as β-agonists (tachycardia), sibutramine (hypertension, tachycardia), thyroid hormone (arrhythmias) cannot be fully evaluated from these small trials. CONCLUSION Though the impact of BAT activation and associated increases in energy expenditure on clinically meaningful weight loss is a topic of great interest, further data is needed to determine long-term feasibility and efficacy.
Collapse
Affiliation(s)
- Luis C. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Laura T. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Yash Nene
- Neurology Residency Program, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Guillermo E. Umpierrez
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Georgia M. Davis
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Francisco J. Pasquel
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Francisco J. Pasquel,
| |
Collapse
|
25
|
Drabsch T, Junker D, Bayer S, Wu M, Held C, Karampinos DC, Hauner H, Holzapfel C. Association Between Adipose Tissue Proton Density Fat Fraction, Resting Metabolic Rate and FTO Genotype in Humans. Front Endocrinol (Lausanne) 2022; 13:804874. [PMID: 35295982 PMCID: PMC8919670 DOI: 10.3389/fendo.2022.804874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The difference of proton density fat fraction (PDFF) between supraclavicular and gluteal adipose tissue might indicate the presence of brown adipose tissue (BAT). Aim of this cross-sectional study was to investigate the association between PDFF over the supraclavicular fat region as a proxy of BAT proportion and resting metabolic rate (RMR). In addition, the association between the single nucleotide polymorphism (SNP) rs1421085 at the fat mass and obesity associated (FTO) gene locus and both PDFF and RMR was investigated. METHODS Anthropometric, clinical, and lifestyle data from 92 healthy adults (66.3% females, mean age: 36.2 ± 13.0 years, mean body mass index: 24.9 ± 5.4 kg/m2) were included in the analysis. The RMR was measured by indirect calorimetry. The magnetic resonance imaging (MRI) was used for the measurement of visceral and subcutaneous adipose tissue (VAT, SAT) volumes and for the measurement of adipose tissue PDFF. RESULTS Mean RMR of the whole group was 1 474.8 ± 242.2 kcal. Genotype data was available for 90 participants. After adjustment for age, sex, weight change and fat-free mass (FFM), no association was found between supraclavicular PDFF (p = 0.346) and gluteal PDFF (p = 0.252), respectively, and RMR, whereas statistically significant evidence for a negative association between delta PDFF (difference between gluteal PDFF and supraclavicular PDFF) and RMR (p = 0.027) was obtained. No statistically significant evidence was observed for per FTO risk allele change in RMR, gluteal and supraclavicular PDFF maps or volumes of VAT and SAT. CONCLUSIONS Supraclavicular PDFF as a surrogate marker of BAT presence is not a determinant of RMR under basal conditions. In the present study, the FTO rs1421085 variant is not associated with either RMR or PDFF. Further studies are needed to elucidate the effect of BAT on RMR.
Collapse
Affiliation(s)
- Theresa Drabsch
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Cora Held
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Else-Kroener-Fresenius Centre of Nutritional Medicine, Chair of Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Christina Holzapfel,
| |
Collapse
|
26
|
Kuefner MS, Stephenson E, Savikj M, Smallwood HS, Dong Q, Payré C, Lambeau G, Park EA. Group IIA secreted phospholipase A2 (PLA2G2A) augments adipose tissue thermogenesis. FASEB J 2021; 35:e21881. [PMID: 34478587 DOI: 10.1096/fj.202002481rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
Group IIA secreted phospholipase A2 (PLA2G2A) hydrolyzes glycerophospholipids at the sn-2 position resulting in the release of fatty acids and lysophospholipids. C57BL/6 mice do not express Pla2g2a due to a frameshift mutation (wild-type [WT] mice). We previously reported that transgenic expression of human PLA2G2A in C57BL/6 mice (IIA+ mice) protects against weight gain and insulin resistance, in part by increasing total energy expenditure. Additionally, we found that brown and white adipocytes from IIA+ mice have increased expression of mitochondrial uncoupling markers, such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator, and PR domain containing 16, suggesting that the energy expenditure phenotype might be due to an increased thermogenic capacity in adipose tissue. Here, we further characterize the impact of PLA2G2A on thermogenic mechanisms in adipose tissue. Metabolic analysis of WT and IIA+ mice revealed that even when housed within their thermoneutral zone, IIA+ mice have elevated energy expenditure compared to WT littermates. Increased energy expenditure in IIA+ mice is associated with increased citrate synthase activity in brown adipose tissue (BAT) and increased mitochondrial respiration in both brown and white adipocytes. We also observed that direct addition of recombinant PLA2G2A enzyme to in vitro cultured adipocytes results in the marked induction of UCP1 protein expression. Finally, we report that PLA2G2A induces the expression of numerous transcripts related to energy substrate transport and metabolism in BAT, suggestive of an increase in substrate flux to fuel BAT activity. These data demonstrate that PLA2G2A enhances adipose tissue thermogenesis, in part, through elevated substrate delivery and increased mitochondrial content in BAT.
Collapse
Affiliation(s)
- Michael S Kuefner
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erin Stephenson
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Heather S Smallwood
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qingming Dong
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Christine Payré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Edwards A Park
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
28
|
Liu Y, Wang C, Wei M, Yang G, Yuan L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front Physiol 2021; 12:669429. [PMID: 33959041 PMCID: PMC8093393 DOI: 10.3389/fphys.2021.669429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue functions importantly in the bodily homeostasis and systemic metabolism, while obesity links to multiple disorders. Beyond the canonical hormones, growth factors and cytokines, exosomes have been identified to play important roles in transmission of information from adipose tissue to other organs. Exosomes are nanoscale membrane vesicles secreted by donor cells, and transfer the genetic information to the recipient cells where the encapsulated nucleic acids and proteins are released. In this review, we elaborate the recent advances in the biogenesis and profiling of adipose tissue derived exosomes, and their physiological and pathological effects on different organs. Moreover, the potential significance of the exosomes as therapeutic vehicles or drugs is also discussed.
Collapse
Affiliation(s)
- Yunnan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengying Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Barker PB. Imaging Brown Adipose Tissue Using Magnetic Resonance: A Promising Future? Radiology 2021; 299:407-408. [PMID: 33729011 DOI: 10.1148/radiol.2021210185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter B Barker
- From the Russell H Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 367B, Baltimore, MD 21287
| |
Collapse
|
30
|
Mendes C, Gomes G, Belpiede LT, do Carmo Buonfiglio D, Motta-Teixeira LC, Amaral FG, Cipolla-Neto J. The effects of melatonin daily supplementation to aged rats on the ability to withstand cold, thermoregulation and body weight. Life Sci 2020; 265:118769. [PMID: 33309717 DOI: 10.1016/j.lfs.2020.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
AIMS Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.
Collapse
Affiliation(s)
- Caroline Mendes
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Gomes
- Department of Physics and Interdisciplinary Science (FCI), São Carlos Institute of Physics (IFSC), University of São Paulo, São Paulo, Brazil
| | - Luciana Tocci Belpiede
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Rocha AL, de Lima TI, de Souza GP, Corrêa RO, Ferrucci DL, Rodrigues B, Lopes-Ramos C, Nilsson D, Knittel TL, Castro PR, Fernandes MF, Dos Santos Martins F, Parmigiani RB, Silveira LR, Carvalho HF, Auwerx J, Vinolo MAR, Boucher J, Mori MA. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. SCIENCE ADVANCES 2020; 6:eabc6250. [PMID: 33268375 PMCID: PMC7710362 DOI: 10.1126/sciadv.abc6250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been implicated in oxidative metabolism and brown/beige adipocyte identity. Here, we tested whether widespread changes in miRNA expression promoted by treatment with the small-molecule enoxacin cause browning and prevent obesity. Enoxacin mitigated diet-induced obesity in mice, and this was associated with increased energy expenditure. Consistently, subcutaneous white and brown adipose tissues and skeletal muscle of enoxacin-treated mice had higher levels of markers associated with thermogenesis and oxidative metabolism. These effects were cell autonomous since they were recapitulated in vitro in murine and human cell models. In preadipocytes, enoxacin led to a reduction of miR-34a-5p expression and up-regulation of its target genes (e.g., Fgfr1, Klb, and Sirt1), thus increasing FGF21 signaling and promoting beige adipogenesis. Our data demonstrate that enoxacin counteracts obesity by promoting thermogenic signaling and inducing oxidative metabolism in adipose tissue and skeletal muscle in a mechanism that involves, at least in part, miRNA-mediated regulation.
Collapse
Affiliation(s)
- Andréa Livia Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Program in Biotechnology, Federal University of São Paulo, São Paulo, Brazil
| | - Tanes Imamura de Lima
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerson Profeta de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Renan Oliveira Corrêa
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Danilo Lopes Ferrucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology in Photonics Applied to Cell Biology (INFABiC), University of Campinas, Campinas, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, School of Physical Education, University of Campinas, Campinas, Brazil
| | - Camila Lopes-Ramos
- Center of Molecular Oncology, Sírio-Libanês Hospital, São Paulo, Brazil
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Daniel Nilsson
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden
| | - Thiago Leite Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Pollyana Ribeiro Castro
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariane Font Fernandes
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Leonardo Reis Silveira
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology in Photonics Applied to Cell Biology (INFABiC), University of Campinas, Campinas, Brazil
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Aurélio R Vinolo
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| | - Jeremie Boucher
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Program in Biotechnology, Federal University of São Paulo, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| |
Collapse
|
32
|
Jasaszwili M, Wojciechowicz T, Strowski MZ, Nowak KW, Skrzypski M. Adropin stimulates proliferation but suppresses differentiation in rat primary brown preadipocytes. Arch Biochem Biophys 2020; 692:108536. [PMID: 32798458 DOI: 10.1016/j.abb.2020.108536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 01/14/2023]
Abstract
Adropin is a peptide hormone encoded by Energy Homeostasis Associated (Enho) gene. Adropin modulates glucose and lipid metabolism, and adiposity. Recently, we found that adropin suppresses differentiation of rodent white preadipocytes into mature fat cells. By contrast, the role of adropin in controlling brown adipogenesis is largely unknown. Therefore, in the present study we evaluated the effects of adropin on proliferation and differentiation of adipocyte precursor cells in rats. Brown adipocyte precursor cells were isolated from male Wistar rats. Cell replication was measured by BrdU incorporation. Gene expression was studied using real time PCR. Protein phosphorylation and production was assessed by Western blot. Lipid accumulation was evaluated by Oil Red O staining. Colorimetric kits were used to evaluate glycerol and free fatty acids release. We report here that adropin stimulates proliferation of brown preadipocytes. Moreover, in brown preadipocytes, adropin suppresses mRNA expression of adipogenic genes (C/ebpα, C/ebpβ, Pgc1α, Pparγ and Prdm16) during differentiation process. In addition, adropin suppresses UCP1 protein production in brown adipocytes. Finally, adropin reduces intracellular lipid content in brown adipocytes. These results indicate that adropin stimulates proliferation of brown preadipocytes and suppresses their differentiation into mature adipocytes.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353, Berlin, Germany; Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, 13086, Berlin, Germany.
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
33
|
Fischer AW, Behrens J, Sass F, Schlein C, Heine M, Pertzborn P, Scheja L, Heeren J. Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice. J Lipid Res 2020; 61:1377-1389. [PMID: 32769145 DOI: 10.1194/jlr.ra119000455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adaptive thermogenesis is highly dependent on uncoupling protein 1 (UCP1), a protein expressed by thermogenic adipocytes present in brown adipose tissue (BAT) and white adipose tissue (WAT). Thermogenic capacity of human and mouse BAT can be measured by positron emission tomography-computed tomography quantifying the uptake of 18F-fluodeoxyglucose or lipid tracers. BAT activation is typically studied in response to cold exposure or treatment with β-3-adrenergic receptor agonists such as CL316,243 (CL). Currently, it is unknown whether cold-stimulated uptake of glucose or lipid tracers is a good surrogate marker of UCP1-mediated thermogenesis. In metabolic studies using radiolabeled tracers, we found that glucose uptake is increased in mildly cold-activated BAT of Ucp1 -/- versus WT mice kept at subthermoneutral temperature. Conversely, lower glucose disposal was detected after full thermogenic activation achieved by sustained cold exposure or CL treatment. In contrast, uptake of lipoprotein-derived fatty acids into chronically activated thermogenic adipose tissues was substantially increased in UCP1-deficient mice. This effect is linked to higher sympathetic tone in adipose tissues of Ucp1 -/- mice, as indicated by elevated levels of thermogenic genes in BAT and WAT. Thus, glucose and lipoprotein handling does not necessarily reflect UCP1-dependent thermogenic activity, but especially lipid uptake rather mirrors sympathetic activation of adipose tissues.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Hai W, Wu X, Shi S, Yang Y, Yang Z, Li B, Xu Y, Peng J. The effects of season change and fasting on Brown adipose tissue FDG-PET in mice. Biochem Biophys Res Commun 2020; 529:398-403. [DOI: 10.1016/j.bbrc.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
|
35
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
36
|
Than WH, Chan GCK, Ng JKC, Szeto CC. The role of obesity on chronic kidney disease development, progression, and cardiovascular complications. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
di Somma M, Vliora M, Grillo E, Castro B, Dakou E, Schaafsma W, Vanparijs J, Corsini M, Ravelli C, Sakellariou E, Mitola S. Role of VEGFs in metabolic disorders. Angiogenesis 2019; 23:119-130. [PMID: 31853841 DOI: 10.1007/s10456-019-09700-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Obesity and metabolic disorders are important public health problems. In this review, the role of vasculature network and VEGF in the adipose tissue maintenance and supplementation is discussed. Angiogenesis is a key process implicated in regulation of tissues homeostasis. Dysregulation of new blood vessels formation may be crucial and contribute to the onset of several pathological conditions, including metabolic syndrome-associated disorders. Adipose tissue homeostasis is fine regulated by vascular network. Vessels support adipose structure. Vasculature modulates the balance between positive and negative regulator factors. In white adipose tissue, vascular endothelial growth factor (VEGF) controls the metabolic activities of adipocytes promoting the trans-differentiation from white to beige phenotype. Trans-differentiation results in an increase of energy consumption. VEGF exerts an opposite effect on brown adipose tissue, where VEGF increases oxygen supply and improves energy expenditure inducing the whitening of adipocytes.
Collapse
Affiliation(s)
- M di Somma
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M Vliora
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - E Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - B Castro
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - E Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - J Vanparijs
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - C Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - S Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Brown Adipocyte and Splenocyte Co-Culture Maintains Regulatory T Cell Subset in Intermittent Hypobaric Conditions. Tissue Eng Regen Med 2019; 16:539-548. [PMID: 31624708 PMCID: PMC6778593 DOI: 10.1007/s13770-019-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 11/02/2022] Open
Abstract
Background Brown adipocytes have thermogenic characteristics in neonates and elicit anti-inflammatory responses. We postulated that thermogenic brown adipocytes produce distinctive intercellular effects in a hypobaric state. The purpose of this study is to analyze the correlation between brown adipocyte and regulatory T cell (Treg) expression under intermittent hypobaric conditions. Methods Brown and white adipocytes were harvested from the interscapular and flank areas of C57BL6 mice, respectively. Adipocytes were cultured with syngeneic splenocytes after isolation and differentiation. Intermittent hypobaric conditions were generated using cyclic negative pressure application for 48 h in both groups of adipocytes. Expression levels of Tregs (CD4 + CD25 + Foxp3 + T cells), cytokines [tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and the programmed death-ligand 1 (PD-L1)] co-inhibitory ligand were examined. Results Splenocytes, cultured with brown and white adipocytes, exhibited comparable Treg expression in a normobaric state. Under hypobaric conditions, brown adipocytes maintained a subset of Tregs. However, a decrease in Tregs was found in the white adipocyte group. TNF-α levels increased in both groups under hypobaric conditions. In the brown adipocyte group, anti-inflammatory IL-10 expression increased significantly; meanwhile, IL-10 expression decreased in the white adipocyte group. PD-L1 levels increased more significantly in brown adipocytes than in white adipocytes under hypobaric conditions. Conclusion Both brown and white adipocytes support Treg expression when they are cultured with splenocytes. Of note, brown adipocytes maintained Treg expression in intermittent hypobaric conditions. Anti-inflammatory cytokines and co-inhibitory ligands mediate the immunomodulatory effects of brown adipocytes under altered atmospheric conditions. Brown adipocytes showed the feasibility as a source of adjustment in physical stresses.
Collapse
|
39
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
40
|
Ding YS, Malik N, Mendoza S, Tuchman D, Del Pozo CH, Diez RL, Schmidt AM. PET imaging study of brown adipose tissue (BAT) activity in mice devoid of receptor for advanced glycation end products (RAGE). J Biosci 2019; 44:93. [PMID: 31502571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissue (BAT) is responsible for adaptive thermogenesis. We previously showed that genetic deficiency of receptor for advanced glycation end products (RAGE) prevented the effects of high-fat diet (HFD). This study was to compare BAT activity in RAGE knock out (Ager-/-, RKO) and wild-type (WT) mice after treated with HFD or LFD. [18F]FDG PET-CT imaging under identical cold-stimulated conditions and mean standard uptake values (SUVmean), ratio of SUViBAT/SUVmuscle (SUVR, muscle as the reference region) and percentage ID/g were used for BAT quantification. The results showed that [18F]FDG uptake (e.g., SUVR) in WT-HFD mice was significantly reduced (three-fold) as compared to that in WT-LFD (1.40 +/- 0.07 and 4.03 +/- 0.38; P = 0.004). In contrast, BAT activity in RKO mice was not significantly affected by HFD, with SUVRRKO-LFD: 2.14 +/- 0.10 and SUVRRKO-LFD: 1.52 +/- 0.13 (P = 0.3). The uptake in WT-LFD was almost double of that in RKO-LFD (P = 0.004); however, there was no significant difference between RKO-HFD and WT-HFD mice (P = 0.3). These results, corroborating our previous findings on the measurement of mRNA transcripts for UCP1 in the BAT, suggest that RAGE may contribute to altered energy expenditure and provide a protective effect against HFD by Ager deletion (Ager -/-).
Collapse
Affiliation(s)
- Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
PET imaging study of brown adipose tissue (BAT) activity in mice devoid of receptor for advanced glycation end products (RAGE). J Biosci 2019. [DOI: 10.1007/s12038-019-9900-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Paulus A, van Ewijk PA, Nascimento EBM, De Saint-Hubert M, Hendrikx G, Vogg A, Pooters I, Schnijderberg M, Vanderlocht J, Bos G, Brans B, Schrauwen-Hinderling VB, Mottaghy FM, Bauwens M. Characterization of BAT activity in rats using invasive and non-invasive techniques. PLoS One 2019; 14:e0215852. [PMID: 31091250 PMCID: PMC6519816 DOI: 10.1371/journal.pone.0215852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
Introduction Brown adipose tissue (BAT) is considered as a potential target for combating obesity in humans where active BAT metabolizes glucose and fatty acids as fuel resulting in heat production. Prospective studies in humans have been set up to further study the presence and metabolic activity of BAT mostly using Positron Emission Tomography (PET) imaging in cold-stimulated conditions with the radiolabeled glucose derivative [18F]FDG. However, radiotracers beyond [18F]FDG have been proposed to investigate BAT activity, targeting various aspects of BAT metabolism. It remains questionable which tracer is best suited to detect metabolic BAT activity and to what extent those results correlate with ex vivo metabolic BAT activity. Methods PET and Single Photon Emission Computed Tomography (SPECT) imaging, targeting different aspects of BAT activation such as glucose metabolism, fatty acid metabolism, noradrenergic stimulation, blood perfusion and amino acid transport system, was performed immediately after injection of the tracer in rats under different temperatures: room temperature, acute cold (4 ⁰C for 4 h) or acclimated to cold (4 ⁰C for 6 h per day during 28 days). Furthermore, Magnetic Resonance Spectroscopy (MRS)-derived BAT temperature was measured in control and cold-acclimated rats. Results At room temperature, only [18F]FDG visualized BAT. Glucose metabolism, fatty acid metabolism, noradrenergic stimulation and blood perfusion showed a clear tracer-dependent twofold increase in BAT uptake upon cold exposure. Only the tracer for the amino acid transport system did not show BAT specific uptake under any of the experimental conditions. MRS demonstrated that cold-acclimated animals had BAT with a stronger heat-production compared to control animals. Conclusion BAT activity following cold exposure in rats was visualized by several tracers, while only [18F]FDG was also able to show BAT activity under non-stimulated conditions (room temperature). The variances in uptake of the different tracers should be taken into account when developing future clinical applications in humans.
Collapse
Affiliation(s)
- Andreas Paulus
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Petronella A. van Ewijk
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Emmani B. M. Nascimento
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marijke De Saint-Hubert
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- CARIM, Maastricht University, Maastricht, Netherlands
| | - Geert Hendrikx
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- CARIM, Maastricht University, Maastricht, Netherlands
| | - Andrea Vogg
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Ivo Pooters
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Melanie Schnijderberg
- Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joris Vanderlocht
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gerard Bos
- Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Boudewijn Brans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Vera B. Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Matthias Bauwens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
43
|
Zhou J, Poudel A, Chandramani-Shivalingappa P, Xu B, Welchko R, Li L. Liraglutide induces beige fat development and promotes mitochondrial function in diet induced obesity mice partially through AMPK-SIRT-1-PGC1-α cell signaling pathway. Endocrine 2019; 64:271-283. [PMID: 30535743 DOI: 10.1007/s12020-018-1826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Glucagon like peptide-1 (GLP-1) is produced to induce postprandial insulin secretion. Liraglutide, a full agonist of the GLP-1 receptor, has a protective effect on weight gain in obese subjects. Brown adipose tissue plays a major role in the control of energy balance and is known to be involved in the weight loss regulated by liraglutide. The putative anti-obesity properties of liraglutide and the cell signaling pathways involved were examined. METHODS Four groups of C57/BL6 mice fed with chow or HFHS diet were injected with either liraglutide or vehicle for four weeks. Western blotting was used to analyze protein expression. RESULTS Liraglutide significantly attenuated the weight gain in mice fed with HFHS diet and was associated with significant reductions of epididymal fat and inguinal fat mass. Furthermore, liraglutide significantly upregulated the expression of brown adipose-specific markers in perigonadal fat in association with upregulation of AMPK-SIRT-1-PGC1-α cell signaling. However, elevation of brown fat markers in skeletal muscle was only observed in HFHS diet fed mice after liraglutide treatment, and AMPK-SIRT-1 cell signaling is not involved in this process. CONCLUSIONS the anti-obesity effect of liraglutide occurs through adaptive thermogenesis and may act through different cell signaling pathways in fat and skeletal muscle tissue. Liraglutide induces beige fat development partially through the AMPK-SIRT-1-PGC1-α cell signaling pathway. Therefore, liraglutide is a potential medication for obesity prevention and in targeting pre-diabetics.
Collapse
Affiliation(s)
- Joseph Zhou
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Anil Poudel
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, Mount Pleasant, MI, 48859, USA
| | | | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ryan Welchko
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, Mount Pleasant, MI, 48859, USA
| | - Lixin Li
- Department of Physician Assistant, College of Health Professions, Central Michigan University MI, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
44
|
Pattnaik P, Levin T, Gagne S, Angert R. Case 2: Rapidly Growing Neck Mass in an Extremely Preterm Infant with Pulmonary Hypertension. Neoreviews 2019; 20:e226-e228. [PMID: 31261064 DOI: 10.1542/neo.20-4-e226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | - Terry Levin
- Department of Radiology, The Children's Hospital at Montefiore, Bronx, NY
| | - Samuel Gagne
- Division of Neonatology, Department of Pediatrics, and
| | - Robert Angert
- Division of Neonatology, Department of Pediatrics, New York University Langone Medical Center, New York, NY
| |
Collapse
|
45
|
Abstract
PURPOSE Brown adipose tissue (BAT) in adult humans has been recently rediscovered and intensively investigated as a new potential therapeutic target for obesity and type 2 diabetes (T2D). However, reliable assessment of BAT mass in vivo represents a considerable challenge. The purpose of this investigation is to demonstrate for the first time that human BAT depots can be imaged with a translocator protein (TSPO)-specific positron emission tomography (PET) tracer [11C]PBR28 under thermoneutral conditions. PROCEDURES In this retrospective analysis, we analyzed the images of three healthy volunteers who underwent PET/magnetic resonance (MR) imaging after injection of 14 m Ci of [11C]PBR28 at room temperature. Thirty-minute static PET images were reconstructed from the data obtained 60-90 min after the injection of the tracer. RESULTS [11C]PBR28 uptake in the neck/supraclavicular regions was identified, which was parallel to the known distribution pattern of human BAT depots. These areas co-localized with the areas of hyperintensity and corresponded to fat on T1-weighted MR images. Standardized uptake value (SUV) was used to quantify [11C]PBR28 signal in BAT depots. The average (± SD) SUV(mean) and SUVmax for BAT depots was 2.13 (± 0.33) and 3.19 (± 0.34), respectively, while the average SUV(mean) for muscle and subcutaneous adipose tissue was 0.79 (± 0.1) and 0.18 (± 0.04), respectively. CONCLUSIONS In this brief article, we provide the first evidence suggesting that [11C]PBR28, a widely available TSPO-specific PET tracer, can be used for imaging human BAT mass under thermoneutral conditions.
Collapse
|
46
|
Sellayah D. The Impact of Early Human Migration on Brown Adipose Tissue Evolution and Its Relevance to the Modern Obesity Pandemic. J Endocr Soc 2018; 3:372-386. [PMID: 30723844 PMCID: PMC6354082 DOI: 10.1210/js.2018-00363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023] Open
Abstract
Genetic factors are believed to be primarily responsible for obesity; however, an understanding of how genes for obesity have become so prevalent in modern society has proved elusive. Several theories have attempted to explain the genetic basis for obesity, but none of these appear to factor in the interethnic variation in obesity. Emerging evidence is increasingly pointing to a link between reduced basal metabolism and ineffective brown adipose tissue (BAT) thermogenesis. In fact, BAT presence and function are strongly correlated with metabolic rates and directly influence obesity susceptibility. My colleagues and I recently theorized that ancestral exposure to cold necessitated the evolution of enhanced BAT thermogenesis, which, with today’s hypercaloric and sedentary lifestyle, becomes advantageous, because thermogenesis is energetically wasteful, raising basal metabolism and burning excess calories. The opposite may be true for the descendants of heat-adapted populations. This review further reconciles global evolutionary climatic exposures with obesity demographics to understand the genetic basis for the obesity pandemic, and new insights from the most recent studies are provided, including those assessing archaic human admixture. Key genetic variants influencing BAT thermogenesis are outlined that have also been linked with climatic exposure to cold and appear to support the theory that evolutionary factors relevant to climate may have shaped the modern obesity pandemic.
Collapse
Affiliation(s)
- Dyan Sellayah
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
47
|
Lee KY, Luong Q, Sharma R, Dreyfuss JM, Ussar S, Kahn CR. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J 2018; 38:embj.201899291. [PMID: 30530479 DOI: 10.15252/embj.201899291] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest that, even within a single adipose depot, there may be distinct subpopulations of adipocytes. To investigate this cellular heterogeneity, we have developed multiple conditionally immortalized clonal preadipocyte lines from white adipose tissue of mice. Analysis of these clones reveals at least three white adipocyte subpopulations. These subpopulations have differences in metabolism and differentially respond to inflammatory cytokines, insulin, and growth hormones. These also have distinct gene expression profiles and can be tracked by differential expression of three marker genes: Wilms' tumor 1, transgelin, and myxovirus 1. Lineage tracing analysis with dual-fluorescent reporter mice indicates that these adipocyte subpopulations have differences in gene expression and metabolism that mirror those observed in the clonal cell lines. Furthermore, preadipocytes and adipocytes from these subpopulations differ in their abundance in different fat depots. Thus, white adipose tissue, even in a single depot, is comprised of distinct subpopulations of white adipocytes with different physiological phenotypes. These differences in adipocyte composition may contribute to the differences in metabolic behavior and physiology of different fat depots.
Collapse
Affiliation(s)
- Kevin Y Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jonathan M Dreyfuss
- Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,RG Adipocytes & Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Jiang J, Li P, Ling H, Xu Z, Yi B, Zhu S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum Cell 2018; 31:282-291. [PMID: 30097922 DOI: 10.1007/s13577-018-0210-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
Abstract
Obesity is associated with increased risks of diverse diseases; brown adipose tissue (BAT) can increase energy expenditure and protect against obesity by increasing the decomposition of white adipose tissue (WAT) to enhance the non-coupled oxidative phosphorylation of fatty acid in adipocytes and contributes to weight loss. However, BAT is abundant in only small rodents and newborn humans, but not in adults. PRDM16 is a key factor that induces the differentiation of skeletal muscle precursors to brown adipocytes and simultaneously inhibits myogenic differentiation. In the present study, we set insulin-induced skeletal muscle satellite cells (SMSCs) adipogenic differentiation model, as confirmed by the contents of adipogenic markers PRDM16, UCP1 and PGC1α and myogenic markers MyoD1 and MyoG. We selected miR-499 as candidate miRNA, which might regulate PRDM16 to affect SMSCs adipogenic differentiation. Possibly through directly binding to PRDM16 3'-UTR, miR-499 negatively regulated PRDM16 expression and hindered SMSCs adipogenic differentiation by reducing adipogenic markers PRDM16, UCP1 and PGC1α and increasing myogenic markers MyoD1 and MyoG. PRDM16 overexpression could partially reverse the effect of miR-499 on the above markers and SMSCs adipogenic differentiation. Taken together, miR-499/PRDM16 axis can affect the balance between SMSC myogenic and adipogenic differentiation, targeting miR-499 to rescue PRDM16 expression, thus promoting SMSCs adipogenic differentiation may be a promising strategy for obesity treatment.
Collapse
Affiliation(s)
- Juan Jiang
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - PengZhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - Hao Ling
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - ZhouZhou Xu
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - Bo Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China.
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
49
|
Maternal n-3 PUFA supplementation promotes fetal brown adipose tissue development through epigenetic modifications in C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1488-1497. [PMID: 30266429 DOI: 10.1016/j.bbalip.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) is a crucial regulator of energy expenditure. Emerging evidence suggests that n-3 PUFA potentiate brown adipogenesis in vitro. Since the pregnancy and lactation is a critical time for brown fat formation, we hypothesized that maternal supplementation of n-3 PUFA promotes BAT development in offspring. Female C57BL/6 mice were fed a diet containing n-3 PUFA (3%) derived from fish oil (FO), or an isocaloric diet devoid of n-3 PUFA (Cont) during pregnancy and lactation. Maternal n-3 PUFA intake was delivered to the BAT of neonates significantly reducing the n-6/n-3 ratio. The maternal n-3 PUFA exposure was linked with upregulated brown-specific gene and protein profiles and the functional cluster of brown-specific miRNAs. In addition, maternal n-3 PUFA induced histone modifications in the BAT evidenced by 1) increased epigenetic signature of brown adipogenesis, i.e., H3K27Ac and H3K9me2, 2) modified chromatin-remodeling enzymes, and 3) enriched the H3K27Ac in the promoter region of Ucp1. The offspring received maternal n-3 PUFA nutrition exhibited a significant increase in whole-body energy expenditure and better maintenance of core body temperature against acute cold treatment. Collectively, our results suggest that maternal n-3 PUFA supplementation potentiates fetal BAT development via the synergistic action of miRNA production and histone modifications, which may confer long-lasting metabolic benefits to offspring.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.
Collapse
Affiliation(s)
- Eashita Das
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Microbiology, Siliguri College, North Bengal University, Siliguri, West Bengal, 734001, India
| | - Joon Ho Moon
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Zdenka Pausova
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|