1
|
Plaisance EP, Bergeron JM, Bolyard ML, Hathorne HY, Graziano CM, Hartzes A, Genschmer KR, Alvarez JA, Goss AM, Gaggar A, Fontaine KR. Low-Dose Ketone Monoester Administration in Adults with Cystic Fibrosis: A Pilot and Feasibility Study. Nutrients 2024; 16:3957. [PMID: 39599743 PMCID: PMC11597165 DOI: 10.3390/nu16223957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have greatly improved outcomes in persons with CF (pwCF); however, there is still significant heterogeneity in clinical responses, particularly with regard to respiratory infection and inflammation. Exogenous administration of ketones has profound systemic anti-inflammatory effects and produces several nutrient-signaling and metabolic effects that may benefit multiple organ systems affected in pwCF. This pilot study was designed to determine the feasibility of administration of a ketone monoester (KME) to increase circulating D-beta hydroxybutyrate concentrations (D-βHB) and to improve subjective measures of CF-specific quality of life and markers of inflammation in serum and sputum in adults with CF. METHODS Fourteen participants receiving modulator therapy were randomized to receive either KME (n = 9) or placebo control (PC, n = 5) for 5-7 days during hospitalization for treatment of acute pulmonary exacerbation or as outpatients under standard care. RESULTS The KME was well tolerated, with only mild reports of gastrointestinal distress. D-βHB concentrations increased from 0.2 ± 0.1 mM to 1.6 ± 0.6 mM in the KME group compared to 0.2 ± 0.0 to 0.3 ± 0.1 in the PC group (p = 0.011) within 15 min following consumption and remained elevated, relative to baseline, for over 2 h. Pulmonary function was not altered after single- or short-term KME administration, but participants in the KME group self-reported higher subjective respiratory scores compared to PC in both cases (p = 0.031). Plasma inflammatory markers were not statistically different between groups following the short-term (5-7 d) intervention (p > 0.05). However, an exploratory analysis of plasma pre- and post-IL-6 concentrations was significant (p = 0.028) in the KME group but not PC. Sputum IFNγ (p = 0.057), IL-12p70 (p = 0.057), IL-1β (p = 0.100), IL-15 (p = 0.057), IL-1α (p = 0.114), and MPO (p = 0.133) were lower in the KME group compared to PC but did not achieve statistical significance. CONCLUSIONS With the emerging role of exogenous ketones as nutrient signaling molecules and mediators of metabolism, we showed that KME is well tolerated, increases circulating D-βHB concentrations, and produces outcomes that justify the need for large-scale clinical trials to investigate the role of KME on whole-body and tissue lipid accumulation and inflammation in pwCF.
Collapse
Affiliation(s)
- Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan M. Bergeron
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Mickey L. Bolyard
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Heather Y. Hathorne
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Christina M. Graziano
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Anastasia Hartzes
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristopher R. Genschmer
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Amy M. Goss
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Kevin R. Fontaine
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Fletcher JR, Hansen LA, Martinez R, Freeman CD, Thorns N, Villareal AR, Penningroth MR, Vogt GA, Tyler M, Hines KM, Hunter RC. Commensal-derived short-chain fatty acids disrupt lipid membrane homeostasis in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607382. [PMID: 39185181 PMCID: PMC11343118 DOI: 10.1101/2024.08.12.607382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The role of commensal anaerobic bacteria in chronic respiratory infections is unclear, yet they can exist in abundances comparable to canonical pathogens in vivo. Their contributions to the metabolic landscape of the host environment may influence pathogen behavior by competing for nutrients and creating inhospitable conditions via toxic metabolites. Here, we reveal a mechanism by which the anaerobe-derived short chain fatty acids (SCFAs) propionate and butyrate negatively affect Staphylococcus aureus physiology by disrupting branched chain fatty acid (BCFA) metabolism. In turn, BCFA impairment results in impaired growth, diminished expression of the agr quorum sensing system, as well as increased sensitivity to membrane-targeting antimicrobials. Altered BCFA metabolism also reduces S. aureus fitness in competition with Pseudomonas aeruginosa, suggesting that airway microbiome composition and the metabolites they produce and exchange directly impact pathogen succession over time. The pleiotropic effects of these SCFAs on S. aureus fitness and their ubiquity as metabolites in animals also suggests that they may be effective as sensitizers to traditional antimicrobial agents when used in combination.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27695
| | - Lisa A. Hansen
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Richard Martinez
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Niall Thorns
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Alex R. Villareal
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Tyler
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, 30602
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| |
Collapse
|
3
|
Siegel NA, Jimenez MT, Rocha CS, Rolston M, Dandekar S, Solnick JV, Miller LA. Helicobacter pylori infection in infant rhesus macaque monkeys is associated with an altered lung and oral microbiome. Sci Rep 2024; 14:9998. [PMID: 38693196 PMCID: PMC11063185 DOI: 10.1038/s41598-024-59514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. From a cohort of 4-7 month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In order of relative abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. In comparison to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.
Collapse
Affiliation(s)
- Noah A Siegel
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Monica T Jimenez
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Satya Dandekar
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Jay V Solnick
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Siegel NA, Jimenez MT, Rocha CS, Rolston M, Dandekar S, Solnick JV, Miller LA. Helicobacter pylori Infection in Infant Rhesus Macaque Monkeys is Associated with an Altered Lung and Oral Microbiome. RESEARCH SQUARE 2023:rs.3.rs-3225953. [PMID: 37609264 PMCID: PMC10441512 DOI: 10.21203/rs.3.rs-3225953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. Results From a cohort of 4-7-month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In relative order of abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. Relative to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. Conclusions We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.
Collapse
|
5
|
Abstract
Features of the airway microbiome in persons with cystic fibrosis (pwCF) are correlated with disease progression. Microbes have traditionally been classified for their ability to tolerate oxygen. It is unknown whether supplemental oxygen, a common medical intervention, affects the airway microbiome of pwCF. We hypothesized that hyperoxia significantly impacts the pulmonary microbiome in cystic fibrosis. In this study, we cultured spontaneously expectorated sputum from pwCF in artificial sputum medium under 21%, 50%, and 100% oxygen conditions using a previously validated model system that recapitulates microbial community composition in uncultured sputum. Culture aliquots taken at 24, 48, and 72 h, along with uncultured sputum, underwent shotgun metagenomic sequencing with absolute abundance values obtained with the use of spike-in bacteria. Raw sequencing files were processed using the bioBakery pipeline to determine changes in taxonomy, predicted function, antimicrobial resistance genes, and mobile genetic elements. Hyperoxia reduced absolute microbial load, species richness, and diversity. Hyperoxia reduced absolute abundance of specific microbes, including facultative anaerobes such as Rothia and some Streptococcus species, with minimal impact on canonical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The effect size of hyperoxia on predicted functional pathways was stronger than that on taxonomy. Large changes in microbial cooccurrence networks were noted. Hyperoxia exposure perturbs airway microbial communities in a manner well tolerated by key pathogens. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting. IMPORTANCE The airway microbiome in persons with cystic fibrosis (pwCF) is correlated with lung function and disease severity. Supplemental oxygen use is common in more advanced CF, yet its role in perturbing airway microbial communities is unknown. By culturing sputum samples from pwCF under normal and elevated oxygen conditions, we found that increased oxygen led to reduced total numbers and diversity of microbes, with relative sparing of common CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting.
Collapse
|
6
|
Strain-specific interspecies interactions between co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization. Sci Rep 2022; 12:3374. [PMID: 35233050 PMCID: PMC8888623 DOI: 10.1038/s41598-022-07018-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.
Collapse
|
7
|
Webb K, Zain NMM, Stewart I, Fogarty A, Nash EF, Whitehouse JL, Smyth AR, Lilley AK, Knox A, Williams P, Cámara M, Bruce K, Barr HL. Porphyromonas pasteri and Prevotella nanceiensis in the sputum microbiota are associated with increased decline in lung function in individuals with cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 35113780 PMCID: PMC8941952 DOI: 10.1099/jmm.0.001481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although anaerobic bacteria exist in abundance in cystic fibrosis (CF) airways, their role in disease progression is poorly understood. We hypothesized that the presence and relative abundance of the most prevalent, live, anaerobic bacteria in sputum of adults with CF were associated with adverse clinical outcomes. This is the first study to prospectively investigate viable anaerobic bacteria present in the sputum microbiota and their relationship with long-term outcomes in adults with CF. We performed 16S rRNA analysis using a viability quantitative PCR technique on sputum samples obtained from a prospective cohort of 70 adults with CF and collected clinical data over an 8 year follow-up period. We examined the associations of the ten most abundant obligate anaerobic bacteria present in the sputum with annual rate of FEV1 change. The presence of Porphyromonas pasteri and Prevotella nanceiensis were associated with a greater annual rate of FEV1 change; −52.3 ml yr−1 (95 % CI-87.7;−16.9), –67.9 ml yr−1 (95 % CI-115.6;−20.1), respectively. Similarly, the relative abundance of these live organisms were associated with a greater annual rate of FEV1 decline of −3.7 ml yr−1 (95 % CI: −6.1 to −1.3, P=0.003) and −5.3 ml yr−1 (95 % CI: −8.7 to −1.9, P=0.002) for each log2 increment of abundance, respectively. The presence and relative abundance of certain anaerobes in the sputum of adults with CF are associated with a greater rate of long-term lung function decline. The pathogenicity of anaerobic bacteria in the CF airways should be confirmed with further longitudinal prospective studies with a larger cohort of participants.
Collapse
Affiliation(s)
- Karmel Webb
- Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK
| | - Nur Masirah M Zain
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,Institute of Pharmaceutical Science, King's College London, UK
| | - Iain Stewart
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK
| | - Edward F Nash
- West Midlands Adult CF Centre, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Joanna L Whitehouse
- West Midlands Adult CF Centre, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Alan R Smyth
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew K Lilley
- Institute of Pharmaceutical Science, King's College London, UK
| | - Alan Knox
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kenneth Bruce
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,Institute of Pharmaceutical Science, King's College London, UK
| | - Helen L Barr
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, UK.,Wolfson Cystic Fibrosis Centre, Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
8
|
Nontypeable Haemophilus influenzae infection impedes Pseudomonas aeruginosa colonization and persistence in mouse respiratory tract. Infect Immun 2021; 90:e0056821. [PMID: 34780275 DOI: 10.1128/iai.00568-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa (Pa). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.
Collapse
|
9
|
Bozzella MJ, Chaney H, Sami I, Koumbourlis A, Bost JE, Zemanick ET, Freishtat RJ, Crandall KA, Hahn A. Impact of Anaerobic Antibacterial Spectrum on Cystic Fibrosis Airway Microbiome Diversity and Pulmonary Function. Pediatr Infect Dis J 2021; 40:962-968. [PMID: 34269323 PMCID: PMC8511214 DOI: 10.1097/inf.0000000000003211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The role of anaerobic organisms in the cystic fibrosis (CF) lung microbiome is unclear. Our objectives were to investigate the effect of broad (BS) versus narrow (NS) spectrum antianaerobic antibiotic activity on lung microbiome diversity and pulmonary function, hypothesizing that BS antibiotics would cause greater change in microbiome diversity without a significant improvement in lung function. METHODS Pulmonary function tests and respiratory samples were collected prospectively in persons with CF before and after treatment for pulmonary exacerbations. Treatment antibiotics were classified as BS or NS. Gene sequencing data from 16S rRNA were used for diversity analysis and bacterial genera classification. We compared the effects of BS versus NS on diversity indices, lung function and anaerobic/aerobic ratios. Statistical significance was determined by multilevel mixed-effects generalized linear models and mixed-effects regression models. RESULTS Twenty patients, 6-20 years of age, experienced 30 exacerbations. BS therapy had a greater effect on beta diversity than NS therapy when comparing time points before antibiotics to after and at recovery. After antibiotics, the NS therapy group had a greater return toward baseline forced expiratory volume at 1 second and forced expiratory flow 25%-75% values than the BS group. The ratio of anaerobic/aerobic organisms showed a predominance of anaerobes in the NS group with aerobes dominating in the BS group. CONCLUSIONS BS antianaerobic therapy had a greater and possibly longer lasting effect on the lung microbiome of persons with CF, without achieving the recovery of pulmonary function seen with the NS therapy. Specific antibiotic therapies may affect disease progression by changing the airway microbiome.
Collapse
Affiliation(s)
| | - Hollis Chaney
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Iman Sami
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Anastassios Koumbourlis
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - James E. Bost
- The George Washington University School of Medicine and Health Sciences
- Division of Biostatistics and Study Methodology, Children’s National Hospital
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Robert J. Freishtat
- The George Washington University School of Medicine and Health Sciences
- Division of Emergency Medicine, Children’s National Hospital
| | - Keith. A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University
| | - Andrea Hahn
- Division of Infectious Diseases, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| |
Collapse
|
10
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Abstract
Bronchiectasis is a complex, heterogeneous disorder defined by both a radiological abnormality of permanent bronchial dilatation and a clinical syndrome. There are multiple underlying causes including severe infections, mycobacterial disease, autoimmune conditions, hypersensitivity disorders, and genetic conditions. The pathophysiology of disease is understood in terms of interdependent concepts of chronic infection, inflammation, impaired mucociliary clearance, and structural lung damage. Neutrophilic inflammation is characteristic of the disease, with elevated levels of harmful proteases such as neutrophil elastase associated with worse outcomes. Recent data show that neutrophil extracellular trap formation may be the key mechanism leading to protease release and severe bronchiectasis. Despite the dominant of neutrophilic disease, eosinophilic subtypes are recognized and may require specific treatments. Neutrophilic inflammation is associated with elevated bacterial loads and chronic infection with organisms such as Pseudomonas aeruginosa. Loss of diversity of the normal lung microbiota and dominance of proteobacteria such as Pseudomonas and Haemophilus are features of severe bronchiectasis and link to poor outcomes. Ciliary dysfunction is also a key feature, exemplified by the rare genetic syndrome of primary ciliary dyskinesia. Mucus symptoms arise through goblet cell hyperplasia and metaplasia and reduced ciliary function through dyskinesia and loss of ciliated cells. The contribution of chronic inflammation, infection, and mucus obstruction leads to progressive structural lung damage. The heterogeneity of the disease is the most challenging aspect of management. An understanding of the pathophysiology of disease and their biomarkers can help to guide personalized medicine approaches utilizing the concept of "treatable traits."
Collapse
Affiliation(s)
- Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Schneeberger PHH, Prescod J, Levy L, Hwang D, Martinu T, Coburn B. Microbiota analysis optimization for human bronchoalveolar lavage fluid. MICROBIOME 2019; 7:141. [PMID: 31665066 PMCID: PMC6821041 DOI: 10.1186/s40168-019-0755-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND It is now possible to comprehensively characterize the microbiota of the lungs using culture-independent, sequencing-based assays. Several sample types have been used to investigate the lung microbiota, each presenting specific challenges for preparation and analysis of microbial communities. Bronchoalveolar lavage fluid (BALF) enables the identification of microbiota specific to the lower lung but commonly has low bacterial density, increasing the risk of false-positive signal from contaminating DNA. The objectives of this study were to investigate the extent of contamination across a range of sample densities representative of BALF and identify features of contaminants that facilitate their removal from sequence data and aid in the interpretation of BALF sample 16S sequencing data. RESULTS Using three mock communities across a range of densities ranging from 8E+ 02 to 8E+ 09 16S copies/ml, we assessed taxonomic accuracy and precision by 16S rRNA gene sequencing and the proportion of reads arising from contaminants. Sequencing accuracy, precision, and the relative abundance of mock community members decreased with sample input density, with a significant drop-off below 8E+ 05 16S copies/ml. Contaminant OTUs were commonly inversely correlated with sample input density or not reproduced between technical replicates. Removal of taxa with these features or physical concentration of samples prior to sequencing improved both sequencing accuracy and precision for samples between 8E+ 04 and 8E+ 06 16S copies/ml. For the lowest densities, below 8E+ 03 16S copies/ml BALF, accuracy and precision could not be significantly improved using these approaches. Using clinical BALF samples across a large density range, we observed that OTUs with features of contaminants identified in mock communities were also evident in low-density BALF samples. CONCLUSION Relative abundance data and community composition generated by 16S sequencing of BALF samples across the range of density commonly observed in this sample type should be interpreted in the context of input sample density and may be improved by simple pre- and post-sequencing steps for densities above 8E+ 04 16S copies/ml.
Collapse
Affiliation(s)
- Pierre H. H. Schneeberger
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Janice Prescod
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Liran Levy
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - David Hwang
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Bryan Coburn
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| |
Collapse
|
13
|
Richardson H, Dicker AJ, Barclay H, Chalmers JD. The microbiome in bronchiectasis. Eur Respir Rev 2019; 28:28/153/190048. [DOI: 10.1183/16000617.0048-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Bronchiectasis is increasing in prevalence worldwide, yet current treatments available are limited to those alleviating symptoms and reducing exacerbations. The pathogenesis of the disease and the inflammatory, infective and molecular drivers of disease progression are not fully understood, making the development of novel treatments challenging. Understanding the role bacteria play in disease progression has been enhanced by the use of next-generation sequencing techniques such as 16S rRNA sequencing. The microbiome has not been extensively studied in bronchiectasis, but existing data show lung bacterial communities dominated by Pseudomonas, Haemophilus and Streptococcus, while exhibiting intraindividual stability and large interindividual variability. Pseudomonas- and Haemophilus-dominated microbiomes have been shown to be linked to severe disease and frequent exacerbations. Studies completed to date are limited in size and do not fully represent all clinically observed disease subtypes. Further research is required to understand the microbiomes role in bronchiectasis disease progression. This review discusses recent developments and future perspectives on the lung microbiome in bronchiectasis.
Collapse
|
14
|
Ahmed MI, Kulkarni H, Shajpal S, Patel D, Patel P, Claydon A, Modha DE, Gaillard EA. Early detection of non-tuberculous mycobacteria in children with cystic fibrosis using induced sputum at annual review. Pediatr Pulmonol 2019; 54:257-263. [PMID: 30561865 DOI: 10.1002/ppul.24220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022]
Abstract
AIM Non-tuberculous mycobacteria (NTM) have emerged as an important pathogen in cystic fibrosis (CF). Early detection and treatment of NTM can preserve lung function and maintain good lung health. Many children with CF are not regular sputum producers and cough swabs cannot routinely be used to diagnose NTM. We aimed to test the hypothesis that performing sputum induction at routine annual review results in earlier identification of NTM in non-sputum producing children with CF. METHOD We conducted a 5-year prospective observational cohort study involving children with CF aged 5-17 years who had sputum induction with hypertonic saline for microbiological surveillance including NTM at their annual review. RESULTS Forty-two children (19 males, mean age 11.4 years ± 3.6, mean FEV1 % predicted 94.7 ± 20.6) participated in the study. Forty-one induced sputum samples from 29 children yielded bacterial pathogens. Six samples from six children (14% of the cohort) yielded NTM never previously isolated from the patient. We also detected three isolates of Pseudomonas aeruginosa and one isolate each of Burkholderia cepacia complex and Meticillin resistant Staphylococcus aureus (MRSA), all of which were first time isolates. CONCLUSION We conclude that annual induced sputum for microbiological surveillance is useful for early detection of NTM and other important respiratory pathogens, particularly in non-expectorating children. This may lead to earlier identification and help inform initiation of eradication treatment in children with NTM. Children can also be cohorted earlier, before they potentially infect other children in the clinic.
Collapse
Affiliation(s)
- Molla I Ahmed
- Paediatric Clinical Investigation Centre, Leicester NIHR Biomedical Research Centre (Respiratory theme), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom.,Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Hemant Kulkarni
- Department of Paediatric Respiratory Medicine, Sheffield Children's NHS Foundation Trust, Sheffied, United Kingdom
| | - Sarita Shajpal
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Deepa Patel
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Prakash Patel
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Alison Claydon
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Deborah E Modha
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Erol A Gaillard
- Paediatric Clinical Investigation Centre, Leicester NIHR Biomedical Research Centre (Respiratory theme), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom.,Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
15
|
Quinn RA, Adem S, Mills RH, Comstock W, DeRight Goldasich L, Humphrey G, Aksenov AA, Melnik AV, da Silva R, Ackermann G, Bandeira N, Gonzalez DJ, Conrad D, O’Donoghue AJ, Knight R, Dorrestein PC. Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome. MICROBIOME 2019; 7:23. [PMID: 30760325 PMCID: PMC6375204 DOI: 10.1186/s40168-019-0636-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/29/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens. However, how this phenomenon is reflected in the metabolites and chemical environment of lung secretions remains poorly understood. METHODS Here we investigated the microbial and molecular composition of CF sputum samples using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry to determine their interrelationships and associations with clinical measures of disease severity. RESULTS The CF metabolome was found to exist in two states: one from patients with more severe disease that had higher molecular diversity and more Pseudomonas aeruginosa and the other from patients with better lung function having lower metabolite diversity and fewer pathogenic bacteria. The two molecular states were differentiated by the abundance and diversity of peptides and amino acids. Patients with severe disease and more pathogenic bacteria had higher levels of peptides. Analysis of the carboxyl terminal residues of these peptides indicated that neutrophil elastase and cathepsin G were responsible for their generation, and accordingly, these patients had higher levels of proteolytic activity from these enzymes in their sputum. The CF pathogen Pseudomonas aeruginosa was correlated with the abundance of amino acids and is known to primarily feed on them in the lung. CONCLUSIONS In cases of severe CF lung disease, proteolysis by host enzymes creates an amino acid-rich environment that P. aeruginosa comes to dominate, which may contribute to the pathogen's persistence by providing its preferred carbon source.
Collapse
Affiliation(s)
- Robert A. Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48823 MI USA
| | - Sandeep Adem
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Robert H. Mills
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - William Comstock
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | | | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Alexander A. Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Alexei V. Melnik
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Ricardo da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA USA
| | - Doug Conrad
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA USA
- Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
16
|
Optimization of In Vitro Mycobacterium avium and Mycobacterium intracellulare Growth Assays for Therapeutic Development. Microorganisms 2019; 7:microorganisms7020042. [PMID: 30717247 PMCID: PMC6406338 DOI: 10.3390/microorganisms7020042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 11/25/2022] Open
Abstract
Infection with nontuberculous mycobacteria (NTM) is a complication of lung disease in immunocompromised patients, including those with human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS), chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). The most widespread, disease-causing NTM is Mycobacterium avium complex (MAC), which colonizes the lungs as a combination of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacterial species. While combination drug therapy exists for MAC colonization, there is no cure. Therapeutic development to treat MAC has been difficult because of the slow-growing nature of the bacterial complex, limiting the ability to characterize the bacteria’s growth in response to new therapeutics. The development of a technology that allows observation of both the MAC predominant strains and MAC could provide a means to develop new therapeutics to treat NTM. We have developed a new methodology in which M. avium and M. intracellulare can be optimally grown in short term culture to study each strain independently and in combination, as a monitor of growth kinetics and efficient therapeutic testing protocols.
Collapse
|
17
|
Zhai J, Knox K, Twigg HL, Zhou H, Zhou JJ. Exact variance component tests for longitudinal microbiome studies. Genet Epidemiol 2019; 43:250-262. [PMID: 30623484 DOI: 10.1002/gepi.22185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/28/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
In metagenomic studies, testing the association between microbiome composition and clinical outcomes translates to testing the nullity of variance components. Motivated by a lung human immunodeficiency virus (HIV) microbiome project, we study longitudinal microbiome data by using variance component models with more than two variance components. Current testing strategies only apply to models with exactly two variance components and when sample sizes are large. Therefore, they are not applicable to longitudinal microbiome studies. In this paper, we propose exact tests (score test, likelihood ratio test, and restricted likelihood ratio test) to (a) test the association of the overall microbiome composition in a longitudinal design and (b) detect the association of one specific microbiome cluster while adjusting for the effects from related clusters. Our approach combines the exact tests for null hypothesis with a single variance component with a strategy of reducing multiple variance components to a single one. Simulation studies demonstrate that our method has a correct type I error rate and superior power compared to existing methods at small sample sizes and weak signals. Finally, we apply our method to a longitudinal pulmonary microbiome study of HIV-infected patients and reveal two interesting genera Prevotella and Veillonella associated with forced vital capacity. Our findings shed light on the impact of the lung microbiome on HIV complexities. The method is implemented in the open-source, high-performance computing language Julia and is freely available at https://github.com/JingZhai63/VCmicrobiome.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Kenneth Knox
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, Indiana
| | - Hua Zhou
- Department of Biostatistics, University of California, Los Angeles, California
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Kiedrowski MR, Bomberger JM. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front Immunol 2018; 9:3067. [PMID: 30619379 PMCID: PMC6306490 DOI: 10.3389/fimmu.2018.03067] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
A majority of the morbidity and mortality associated with the genetic disease Cystic Fibrosis (CF) is due to lung disease resulting from chronic respiratory infections. The CF airways become chronically colonized with bacteria in childhood, and over time commensal lung microbes are displaced by bacterial pathogens, leading to a decrease in microbial diversity that correlates with declining patient health. Infection with the pathogen Pseudomonas aeruginosa is a major predictor of morbidity and mortality in CF, with CF individuals often becoming chronically colonized with P. aeruginosa in early adulthood and thereafter having an increased risk of hospitalization. Progression of CF respiratory disease is also influenced by infection with respiratory viruses. Children and adults with CF experience frequent respiratory viral infections with respiratory syncytial virus (RSV), rhinovirus, influenza, parainfluenza, and adenovirus, with RSV and influenza infection linked to the greatest decreases in lung function. Along with directly causing severe respiratory symptoms in CF populations, the impact of respiratory virus infections may be more far-reaching, indirectly promoting bacterial persistence and pathogenesis in the CF respiratory tract. Acquisition of P. aeruginosa in CF patients correlates with seasonal respiratory virus infections, and CF patients colonized with P. aeruginosa experience increased severe exacerbations and declines in lung function during respiratory viral co-infection. In light of such observations, efforts to better understand the impact of viral-bacterial co-infections in the CF airways have been a focus of clinical and basic research in recent years. This review summarizes what has been learned about the interactions between viruses and bacteria in the CF upper and lower respiratory tract and how co-infections impact the health of individuals with CF.
Collapse
Affiliation(s)
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Wu Y, Klapper I, Stewart PS. Hypoxia arising from concerted oxygen consumption by neutrophils and microorganisms in biofilms. Pathog Dis 2018; 76:4982780. [PMID: 29688319 DOI: 10.1093/femspd/fty043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/20/2018] [Indexed: 11/14/2022] Open
Abstract
Infections associated with microbial biofilms are often found to involve hypoxic or anoxic conditions within the biofilm or its vicinity. To shed light on the phenomenon of local oxygen depletion, mathematical reaction-diffusion models were derived that integrated the two principal oxygen sinks, microbial respiration and neutrophil consumption. Three simple one-dimensional problems were analyzed approximating biofilm near an air interface as in a dermal wound or mucus layer, biofilm on an implanted medical device, or biofilm aggregates dispersed in mucus or tissue. In all three geometries considered, hypoxia at the biofilm-neutrophil interface or within the biofilm was predicted for a subset of plausible parameter values. The finding that oxygen concentration at the biofilm-neutrophil juncture can be diminished to hypoxic levels is biologically relevant because oxygen depletion will reduce neutrophil killing ability. The finding that hypoxia can readily establish in the interior of the biofilm is biologically relevant because this change will alter microbial metabolism and persistence.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
| | - Isaac Klapper
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
| | - Philip S Stewart
- Center for Biofilm Engineering and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3980, USA
| |
Collapse
|
20
|
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future.
Collapse
Affiliation(s)
- Arlene M.A. Glasgow
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Chiara De Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
21
|
Daly SM, Sturge CR, Marshall-Batty KR, Felder-Scott CF, Jain R, Geller BL, Greenberg DE. Antisense Inhibitors Retain Activity in Pulmonary Models of Burkholderia Infection. ACS Infect Dis 2018; 4:806-814. [PMID: 29461800 DOI: 10.1021/acsinfecdis.7b00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Burkholderia cepacia complex is a group of Gram-negative bacteria that are opportunistic pathogens in immunocompromised individuals, such as those with cystic fibrosis (CF) or chronic granulomatous disease (CGD). Burkholderia are intrinsically resistant to many antibiotics and the lack of antibiotic development necessitates novel therapeutics. Peptide-conjugated phosphorodiamidate morpholino oligomers are antisense molecules that inhibit bacterial mRNA translation. Targeting of PPMOs to the gene acpP, which is essential for membrane synthesis, lead to defects in the membrane and ultimately bactericidal activity. Exploration of additional PPMO sequences identified the ATG and Shine-Dalgarno sites as the most efficacious for targeting acpP. The CF lung is a complex microenvironment, but PPMO inhibition was still efficacious in an artificial model of CF sputum. PPMOs had low toxicity in human CF cells at doses that were antibacterial. PPMOs also reduced the bacterial burden in the lungs of immunocompromised CyBB mice, a model of CGD. Finally, the use of multiple PPMOs was efficacious in inhibiting the growth of both Burkholderia and Pseudomonas in an in vitro model of coinfection. Due to the intrinsic resistance of Burkholderia to traditional antibiotics, PPMOs represent a novel and viable approach to the treatment of Burkholderia infections.
Collapse
Affiliation(s)
- Seth M. Daly
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Carolyn R. Sturge
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Kimberly R. Marshall-Batty
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Christina F. Felder-Scott
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Raksha Jain
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Microbiology, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, Oregon 97331, United States
| | - David E. Greenberg
- Department of Internal Medicine, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
- Department of Microbiology, UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
22
|
Zhai J, Kim J, Knox KS, Twigg HL, Zhou H, Zhou JJ. Variance Component Selection With Applications to Microbiome Taxonomic Data. Front Microbiol 2018; 9:509. [PMID: 29643839 PMCID: PMC5883493 DOI: 10.3389/fmicb.2018.00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Juhyun Kim
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN, United States
| | - Hua Zhou
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, Hao L, Hanfelt J, Gewirtz AT, Tangpricha V. Bolus Weekly Vitamin D3 Supplementation Impacts Gut and Airway Microbiota in Adults With Cystic Fibrosis: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J Clin Endocrinol Metab 2018; 103:564-574. [PMID: 29161417 PMCID: PMC5800825 DOI: 10.1210/jc.2017-01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Disruption of gut microbiota may exacerbate severity of cystic fibrosis (CF). Vitamin D deficiency is a common comorbidity in patients with CF that may influence composition of the gut microbiota. OBJECTIVES Compare microbiota of vitamin D-sufficient and -insufficient CF patients and assess impact of a weekly high-dose vitamin D3 bolus regimen on gut and airway microbiome in adults with CF and vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/mL). DESIGN Forty-one subjects with CF were classified into two groups: vitamin D insufficient (n = 23) and vitamin D sufficient (n = 18). Subjects with vitamin D insufficiency were randomized to receive 50,000 IU of oral vitamin D3 or placebo weekly for 12 weeks. Sputum and stool samples were obtained pre- and postintervention and 16S ribosomal RNA genes sequenced using Illumina MiSeq technology. RESULTS Gut microbiota differed significantly based on vitamin D status with Gammaproteobacteria, which contain numerous, potentially pathogenic species enriched in the vitamin D-insufficient group. Principal coordinates analysis showed differential gut microbiota composition within the vitamin D-insufficient patients following 12 weeks treatment with placebo or vitamin D3 (permutation multivariate analysis of variance = 0.024), with Lactococcus significantly enriched in subjects treated with vitamin D3, whereas Veillonella and Erysipelotrichaceae were significantly enriched in patients treated with placebo. CONCLUSION This exploratory study suggests that vitamin D insufficiency is associated with alterations in microbiota composition that may promote inflammation and that supplementation with vitamin D has the potential to impact microbiota composition. Additional studies to determine the impact of vitamin D on microbiota benefit clinical outcomes in CF are warranted.
Collapse
Affiliation(s)
- Mansi Kanhere
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jiabei He
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - Benoit Chassaing
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30303
| | - Thomas R. Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- Atlanta VA Medical Center, Decatur, Georgia 30300
| | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Elizabeth A. Ivie
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li Hao
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John Hanfelt
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- Atlanta VA Medical Center, Decatur, Georgia 30300
| |
Collapse
|
24
|
Muhlebach MS, Zorn BT, Esther CR, Hatch JE, Murray CP, Turkovic L, Ranganathan SC, Boucher RC, Stick SM, Wolfgang MC. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog 2018; 14:e1006798. [PMID: 29346420 PMCID: PMC5773228 DOI: 10.1371/journal.ppat.1006798] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The cystic fibrosis (CF) lung microbiome has been studied in children and adults; however, little is known about its relationship to early disease progression. To better understand the relationship between the lung microbiome and early respiratory disease, we characterized the lower airways microbiome using bronchoalveolar lavage (BAL) samples obtained from clinically stable CF infants and preschoolers who underwent bronchoscopy and chest computed tomography (CT). Cross-sectional samples suggested a progression of the lower airways microbiome with age, beginning with relatively sterile airways in infancy. By age two, bacterial sequences typically associated with the oral cavity dominated lower airways samples in many CF subjects. The presence of an oral-like lower airways microbiome correlated with a significant increase in bacterial density and inflammation. These early changes occurred in many patients, despite the use of antibiotic prophylaxis in our cohort during the first two years of life. The majority of CF subjects older than four harbored a pathogen dominated airway microbiome, which was associated with a further increase in inflammation and the onset of structural lung disease, despite a negligible increase in bacterial density compared to younger patients with an oral-like airway microbiome. Our findings suggest that changes within the CF lower airways microbiome occur during the first years of life and that distinct microbial signatures are associated with the progression of early CF lung disease.
Collapse
Affiliation(s)
- Marianne S. Muhlebach
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles R. Esther
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph E. Hatch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Conor P. Murray
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen M. Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
25
|
Kramná L, Dřevínek P, Lin J, Kulich M, Cinek O. Changes in the lung bacteriome in relation to antipseudomonal therapy in children with cystic fibrosis. Folia Microbiol (Praha) 2017; 63:237-248. [PMID: 29127619 DOI: 10.1007/s12223-017-0562-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
The lung in cystic fibrosis (CF) is home to numerous pathogens that shorten the lives of patients. The aim of the present study was to assess changes in the lung bacteriome following antibiotic therapy targeting Pseudomonas aeruginosa in children with CF. The study included nine children (9-18 years) with CF who were treated for their chronic or intermittent positivity for Pseudomonas aeruginosa. The bacteriomes were determined in 16 pairs of sputa collected at the beginning and at the end of a course of intravenous antibiotic therapy via deep sequencing of the variable region 4 of the 16S rRNA gene, and the total bacterial load and selected specific pathogens were assessed using quantitative real-time PCR. The effect of antipseudomonal antibiotics was observable as a profound decrease in the total 16S rDNA load (p = 0.001) as well as in a broad range of individual taxa including Staphylococcus aureus (p = 0.03) and several members of the Streptococcus mitis group (S. oralis, S. mitis, and S. infantis) (p = 0.003). Improvements in forced expiratory volume (FEV1) were associated with an increase in Granulicatella sp. (p = 0.004), whereas a negative association was noted between the total bacterial load and white blood cell count (p = 0.007). In conclusion, the data show how microbial communities differ in reaction to antipseudomonal treatment, suggesting that certain rare species may be associated with clinical parameters. Our work also demonstrates the utility of absolute quantification of bacterial load in addition to the 16S rDNA profiling.
Collapse
Affiliation(s)
- Lenka Kramná
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Úvalu 84, 15006, Prague 5, Czech Republic
| | - Pavel Dřevínek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jake Lin
- BioMediTech, Computational Biology, University of Tampere, Tampere, Finland
| | - Michal Kulich
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Ondrej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Úvalu 84, 15006, Prague 5, Czech Republic.
| |
Collapse
|
26
|
Twigg HL, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q, Mi D, Katz BP, Sodergren E, Weinstock GM. Effect of Advanced HIV Infection on the Respiratory Microbiome. Am J Respir Crit Care Med 2017; 194:226-35. [PMID: 26835554 DOI: 10.1164/rccm.201509-1875oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RATIONALE Previous work found the lung microbiome in healthy subjects infected with HIV was similar to that in uninfected subjects. We hypothesized the lung microbiome from subjects infected with HIV with more advanced disease would differ from that of an uninfected control population. OBJECTIVES To measure the lung microbiome in an HIV-infected population with advanced disease. METHODS 16s RNA gene sequencing was performed on acellular bronchoalveolar lavage (BAL) fluid from 30 subjects infected with HIV with advanced disease (baseline mean CD4 count, 262 cells/mm(3)) before and up to 3 years after starting highly active antiretroviral therapy (HAART) and compared with 22 uninfected control subjects. MEASUREMENTS AND MAIN RESULTS The lung microbiome in subjects infected with HIV with advanced disease demonstrated decreased alpha diversity (richness and diversity) and greater beta diversity compared with uninfected BAL. Differences improved with HAART, but still persisted up to 3 years after starting therapy. Population dispersion in the group infected with HIV was significantly greater than in the uninfected cohort and declined after treatment. There were differences in the relative abundance of some bacteria between the two groups at baseline and after 1 year of therapy. After 1 year on HAART, HIV BAL contained an increased abundance of Prevotella and Veillonella, bacteria previously associated with lung inflammation. CONCLUSIONS The lung microbiome in subjects infected with HIV with advanced disease is altered compared with an uninfected population both in diversity and bacterial composition. Differences remain up to 3 years after starting HAART. We speculate an altered lung microbiome in HIV infection may contribute to chronic inflammation and lung complications seen in the HAART era.
Collapse
Affiliation(s)
| | - Kenneth S Knox
- 2 Department of Medicine, University of Arizona, Tucson, Arizona
| | - Jin Zhou
- 2 Department of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Evelyn Toh
- 4 Department of Microbiology and Immunology, and
| | | | - Huaiying Lin
- 5 Center for Biomedical Informatics, Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois; and
| | - Xiang Gao
- 5 Center for Biomedical Informatics, Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois; and
| | - Qunfeng Dong
- 5 Center for Biomedical Informatics, Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois; and
| | - Deming Mi
- 6 Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | - Barry P Katz
- 6 Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | - Erica Sodergren
- 7 Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | |
Collapse
|
27
|
Martínez-Alemán SR, Campos-García L, Palma-Nicolas JP, Hernández-Bello R, González GM, Sánchez-González A. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:104. [PMID: 28428948 PMCID: PMC5382324 DOI: 10.3389/fcimb.2017.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that codes for the CF trans-membrane conductance regulator. These mutations result in abnormal secretions viscous airways of the lungs, favoring pulmonary infection and inflammation in the middle of neutrophil recruitment. Recently it was described that neutrophils can contribute with disease pathology by extruding large amounts of nuclear material through a mechanism of cell death known as Neutrophil Extracellular Traps (NETs) into the airways of patients with CF. Additionally, NETs production can contribute to airway colonization with bacteria, since they are the microorganisms most frequently found in these patients. In this review, we will discuss the implication of individual or mixed bacterial infections that most often colonize the lung of patients with CF, and the NETs role on the disease.
Collapse
Affiliation(s)
- Saira R Martínez-Alemán
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Lizbeth Campos-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - José P Palma-Nicolas
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Alejandro Sánchez-González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| |
Collapse
|
28
|
Twigg HL, Weinstock GM, Knox KS. Lung microbiome in human immunodeficiency virus infection. Transl Res 2017; 179:97-107. [PMID: 27496318 PMCID: PMC5164960 DOI: 10.1016/j.trsl.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
The lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIV.
Collapse
Affiliation(s)
- Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, Ind.
| | - George M Weinstock
- Microbial Genomics, The Jackson Laboratory for Genomic Medicine, Farmington, Conn
| | - Kenneth S Knox
- Department of Medicine, University of Arizona, Tucson, Ariz
| |
Collapse
|
29
|
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med 2016; 16:174. [PMID: 27919253 PMCID: PMC5139081 DOI: 10.1186/s12890-016-0339-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The airways of patients with cystic fibrosis (CF) are highly complex, subject to various environmental conditions as well as a distinct microbiota. Pseudomonas aeruginosa is recognized as one of the most important pulmonary pathogens and the predominant cause of morbidity and mortality in CF. A multifarious interplay between the host, pathogens, microbiota, and the environment shapes the course of the disease. There have been several excellent reviews detailing CF pathology, Pseudomonas and the role of environment in CF but only a few reviews connect these entities with regards to influence on the overall course of the disease. A holistic understanding of contributing factors is pertinent to inform new research and therapeutics. Discussion In this article, we discuss the deterministic alterations in lung physiology as a result of CF. We also revisit the impact of those changes on the microbiota, with special emphasis on P. aeruginosa and the influence of other non-genetic factors on CF. Substantial past and current research on various genetic and non-genetic aspects of cystic fibrosis has been reviewed to assess the effect of different factors on CF pulmonary infection. A thorough review of contributing factors in CF and the alterations in lung physiology indicate that CF lung infection is multi-factorial with no isolated cause that should be solely targeted to control disease progression. A combinatorial approach may be required to ensure better disease outcomes. Conclusion CF lung infection is a complex disease and requires a broad multidisciplinary approach to improve CF disease outcomes. A holistic understanding of the underlying mechanisms and non-genetic contributing factors in CF is central to development of new and targeted therapeutic strategies.
Collapse
|
30
|
Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016; 2:4. [PMID: 28649398 PMCID: PMC5460249 DOI: 10.1038/s41522-016-0002-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on other members of the community. The presence of ecological interactions between microbes can change their physiology and response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment. Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease with more predictable outcomes.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697 USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Jiangchao Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92037 USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Stefanie Widder
- CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr.14 A-1090, Vienna, Austria
- CeMM - Research Center, for Molecular Medicine of the Austrian Academy of Sciences, Lazarettg, 14, A-1090 Vienna, Austria
| |
Collapse
|
31
|
Esther CR, Turkovic L, Rosenow T, Muhlebach MS, Boucher RC, Ranganathan S, Stick SM. Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis. Eur Respir J 2016; 48:1612-1621. [PMID: 27836957 DOI: 10.1183/13993003.00524-2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/27/2016] [Indexed: 12/21/2022]
Abstract
Neutrophilic airway inflammation plays a role in early structural lung disease in cystic fibrosis, but the mechanisms underlying this pathway are incompletely understood.Metabolites associated with neutrophilic inflammation were identified by discovery metabolomics on bronchoalveolar lavage fluid supernatant from 20 preschool children (2.9±1.3 years) with cystic fibrosis. Targeted mass-spectrometric detection of relevant metabolites was then applied to 34 children (3.5±1.5 years) enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) who underwent chest computed tomography and bronchoalveolar lavage from two separate lobes during 42 visits. Relationships between metabolites and localised structural lung disease were assessed using multivariate analyses.Discovery metabolomics identified 93 metabolites associated with neutrophilic inflammation, including pathways involved in metabolism of adenyl purines, amino acids and small peptides, cellular energy and lipids. In targeted mass spectrometry, products of adenosine metabolism, protein catabolism and oxidative stress were associated with structural lung disease and predicted future bronchiectasis, and activities of enzymes associated with adenosine metabolism were elevated in the samples with early disease.Metabolomics analyses revealed metabolites and pathways altered with neutrophilic inflammation and destructive lung disease. These pathways can serve as biomarkers and potential therapeutic targets for early cystic fibrosis lung disease.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA .,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lidija Turkovic
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Tim Rosenow
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Marianne S Muhlebach
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia
| | - Stephen M Stick
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | |
Collapse
|
32
|
Xayarath B, Freitag NE. When being alone is enough: noncanonical functions of canonical bacterial quorum-sensing systems. Future Microbiol 2016; 11:1447-1459. [PMID: 27750441 DOI: 10.2217/fmb-2016-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of bacterial pathogens are capable of detecting the presence of other bacteria located within their surrounding niche through a process of bacterial signaling and cell-to-cell communication commonly referred to as quorum sensing (QS). QS systems are commonly now described in the context of collective behaviors exhibited by groups of bacteria coordinating diverse arrays of physiological functions to enhance survival of the community. However, QS systems have also been implicated in a variety of processes distinct from the measure of bacterial cell density. This review will highlight noncanonical adaptations of canonical QS systems that have evolved to enable bacteria to detect nonself individuals within a population or to detect occupation of confined spaces.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| | - Nancy E Freitag
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| |
Collapse
|
33
|
Li J, Hao C, Ren L, Xiao Y, Wang J, Qin X. Data Mining of Lung Microbiota in Cystic Fibrosis Patients. PLoS One 2016; 11:e0164510. [PMID: 27741283 PMCID: PMC5065158 DOI: 10.1371/journal.pone.0164510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic treatment. As this approach easily generates antibiotic-resistant strains of opportunistic bacteria, optimized antibiotic therapies are required to effectively control chronic and recurrent bacterial infections in CF patients. A promising future for the proper use of antibiotics is the management of lung microbiota. However, the impact of antibiotic treatments on CF microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples from 18 previous studies to identify differences between CF and uninfected lung microbiota and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A reference-based OTU (operational taxonomic unit) picking method was used to combine analyses of data generated using different protocols and platforms. Findings show that CF microbiota had greater richness and lower diversity in the community structure than uninfected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of opportunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment affected exacerbated CF microbiota notably but only transiently during the treatment period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of commensal bacteria were observed during the antibiotic treatment for CF exacerbation. Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic treatment. The inefficiency of the current antibiotic treatment against major opportunistic bacteria and the detrimental effects on commensal bacteria indicate that the current empiric antibiotic treatment on CF exacerbation should be reevaluated and optimized.
Collapse
Affiliation(s)
- Jianguo Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Chunyan Hao
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, China
| | - Lili Ren
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Xiao
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
34
|
Cummings LA, Kurosawa K, Hoogestraat DR, SenGupta DJ, Candra F, Doyle M, Thielges S, Land TA, Rosenthal CA, Hoffman NG, Salipante SJ, Cookson BT. Clinical Next Generation Sequencing Outperforms Standard Microbiological Culture for Characterizing Polymicrobial Samples. Clin Chem 2016; 62:1465-1473. [PMID: 27624135 DOI: 10.1373/clinchem.2016.258806] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Humans suffer from infections caused by single species or more complex polymicrobial communities. Identification of infectious bacteria commonly employs microbiological culture, which depends upon the in vitro propagation and isolation of viable organisms. In contrast, detection of bacterial DNA using next generation sequencing (NGS) allows culture-independent microbial profiling, potentially providing important new insights into the microbiota in clinical specimens. METHODS NGS 16S rRNA gene sequencing (NGS16S) was compared with culture using (a) synthetic polymicrobial samples for which the identity and abundance of organisms present were precisely defined and (b) primary clinical specimens. RESULTS Complex mixtures of at least 20 organisms were well resolved by NGS16S with excellent reproducibility. In mixed bacterial suspensions (107 total genomes), we observed linear detection of a target organism over a 4-log concentration range (500-3 × 106 genomes). NGS16S analysis more accurately recapitulated the known composition of synthetic samples than standard microbiological culture using nonselective media, which distorted the relative abundance of organisms and frequently failed to identify low-abundance pathogens. However, extended quantitative culture using selective media for each of the component species recovered the expected organisms at the proper abundance, validating NGS16S results. In an analysis of sputa from cystic fibrosis patients, NGS16S identified more clinically relevant pathogens than standard culture. CONCLUSIONS Biases in standard, nonselective microbiological culture lead to a distorted characterization of polymicrobial mixtures. NGS16S demonstrates enhanced reproducibility, quantification, and classification accuracy compared with standard culture, providing a more comprehensive, accurate, and culture-free analysis of clinical specimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Brad T Cookson
- Departments of Laboratory Medicine and .,Microbiology, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Öz HH, Hartl D. Innate Immunity in Cystic Fibrosis: Novel Pieces of the Puzzle. J Innate Immun 2016; 8:529-530. [PMID: 27537521 DOI: 10.1159/000448285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hasan-Halit Öz
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
36
|
Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M, Marshall BC, O’Malley C, Pattee SR, Potter-Bynoe G, Reid S, Robinson KA, Sabadosa KA, Schmidt HJ, Tullis E, Webber J, Weber DJ. Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update. Infect Control Hosp Epidemiol 2016; 35 Suppl 1:S1-S67. [DOI: 10.1086/676882] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 2013 Infection Prevention and Control (IP&C) Guideline for Cystic Fibrosis (CF) was commissioned by the CF Foundation as an update of the 2003 Infection Control Guideline for CF. During the past decade, new knowledge and new challenges provided the following rationale to develop updated IP&C strategies for this unique population:1.The need to integrate relevant recommendations from evidence-based guidelines published since 2003 into IP&C practices for CF. These included guidelines from the Centers for Disease Control and Prevention (CDC)/Healthcare Infection Control Practices Advisory Committee (HICPAC), the World Health Organization (WHO), and key professional societies, including the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). During the past decade, new evidence has led to a renewed emphasis on source containment of potential pathogens and the role played by the contaminated healthcare environment in the transmission of infectious agents. Furthermore, an increased understanding of the importance of the application of implementation science, monitoring adherence, and feedback principles has been shown to increase the effectiveness of IP&C guideline recommendations.2.Experience with emerging pathogens in the non-CF population has expanded our understanding of droplet transmission of respiratory pathogens and can inform IP&C strategies for CF. These pathogens include severe acute respiratory syndrome coronavirus and the 2009 influenza A H1N1. Lessons learned about preventing transmission of methicillin-resistantStaphylococcus aureus(MRSA) and multidrug-resistant gram-negative pathogens in non-CF patient populations also can inform IP&C strategies for CF.
Collapse
|
37
|
Banerjee G, Ray AK. The talking language in some major Gram-negative bacteria. Arch Microbiol 2016; 198:489-99. [PMID: 27062655 DOI: 10.1007/s00203-016-1220-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India
| |
Collapse
|
38
|
Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. ACTA ACUST UNITED AC 2016; 23:57-66. [PMID: 27004018 DOI: 10.1097/cpm.0000000000000108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The infections found in chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis share a number of clinical similarities, the most striking of which is bacterial persistence despite the use of antibiotics. These infections have been clinically described using culture-based methods usually performed on sputum samples, and treatment has been directed towards the bacteria found in this manner. Unfortunately the clinical response to antibiotics is frequently not predictable based on these cultures, and the role of these cultured organisms in disease progression has been debated. The past 20 years have seen a revolution in the techniques used to describe bacterial populations and their growth patterns. These techniques have revealed these persistent lung infections are vastly more complicated than described by traditional, and still widely relied upon, sputum cultures. A better understanding of the initiation and evolution of these infections, and better clinical tools to describe them, will dramatically alter the way patients are cared for. While clinical tests to more accurately describe these infections are not yet available, the better appreciation of these infections afforded by current science should enlighten practitioners as to the care of their patients with these diseases.
Collapse
|
39
|
Koppen IJN, Bosch AATM, Sanders EAM, van Houten MA, Bogaert D. The respiratory microbiota during health and disease: a paediatric perspective. Pneumonia (Nathan) 2015; 6:90-100. [PMID: 31641583 PMCID: PMC5922343 DOI: 10.15172/pneu.2015.6/656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies investigating the relationship between the microbiota and disease are demonstrating novel concepts that could significantly alter the way we treat disease and promote health in the future. It is suggested that the microbiota acquired during childhood may shape the microbial community and affect immunological responses for later life, and could therefore be important in the susceptibility towards disease. Several diseases, including asthma, pneumonia, and otitis media, are associated with changes in composition and diversity of the respiratory microbiota. This review summarises current literature, focusing on the composition and development of the respiratory microbiota in children and its relationship with respiratory diseases.
Collapse
Affiliation(s)
- Ilan J N Koppen
- 112Department of Paediatric Immunology and Infectious Diseases Wilhelmina Children Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.,212Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
| | - Astrid A T M Bosch
- 112Department of Paediatric Immunology and Infectious Diseases Wilhelmina Children Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.,212Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- 112Department of Paediatric Immunology and Infectious Diseases Wilhelmina Children Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | | | - Debby Bogaert
- 112Department of Paediatric Immunology and Infectious Diseases Wilhelmina Children Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
40
|
Ralhan A, Hartl D. Fatty Acids Secreted by Anaerobes. Fueling Inflammation in Cystic Fibrosis Lungs. Am J Respir Crit Care Med 2015; 192:1270-1. [DOI: 10.1164/rccm.201508-1556ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
41
|
Pittman JE. Assessment and Detection of Early Lung Disease in Cystic Fibrosis. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2015; 28:212-219. [DOI: 10.1089/ped.2015.0568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jessica E. Pittman
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
42
|
Ramsey KA, Schultz A, Stick SM. Biomarkers in Paediatric Cystic Fibrosis Lung Disease. Paediatr Respir Rev 2015; 16:213-8. [PMID: 26051089 DOI: 10.1016/j.prrv.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/15/2023]
Abstract
Biomarkers in cystic fibrosis are used i. for the measurement of cystic fibrosis transmembrane regulator function in order to diagnose cystic fibrosis, and ii. to assess aspects of lung disease severity (e.g. inflammation, infection). Effective biomarkers can aid disease monitoring and contribute to the development of new therapies. The tests of cystic fibrosis transmembrane regulator function each have unique strengths and weaknesses, and biomarkers of inflammation, infection and tissue destruction have the potential to enhance the management of cystic fibrosis through the early detection of disease processes. The development of biomarkers of cystic fibrosis lung disease, in particular airway inflammation and infection, is influenced by the challenges of obtaining relevant samples from infants and children for whom early detection and treatment of disease might have the greatest long term benefits.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Telethon Kids Institute, University of Western Australia, Australia; Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - André Schultz
- Telethon Kids Institute, University of Western Australia, Australia; Princess Margaret Hospital for Children, Western Australia, Australia; School of Paediatric and Child Health, University of Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Australia; Princess Margaret Hospital for Children, Western Australia, Australia; School of Paediatric and Child Health, University of Western Australia, Australia.
| |
Collapse
|
43
|
Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015. [PMID: 26217312 PMCID: PMC4499752 DOI: 10.3389/fmicb.2015.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights.
Collapse
Affiliation(s)
- Nusrat S Shommu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
44
|
Påhlman LI, Jögi A, Gram M, Mori M, Egesten A. Hypoxia down-regulates expression of secretory leukocyte protease inhibitor in bronchial epithelial cells via TGF-β1. BMC Pulm Med 2015; 15:19. [PMID: 25851169 PMCID: PMC4379733 DOI: 10.1186/s12890-015-0016-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Secretory leukocyte protease inhibitor (SLPI) is a protein with anti-protease and antimicrobial properties that is constitutively secreted from the airway epithelium. The importance of maintaining a balance between proteases and anti-proteases, and robust innate defence mechanisms in the airways, is exemplified by inflammatory lung conditions such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Both conditions present with a high protease burden in the airways which leads to tissue destruction. These patients also have an impaired innate immune system in the lungs with bacterial colonization and frequent airway infections. Moreover, both diseases are associated with airway hypoxia due to inflammation and mucus plugs. The aim of the present study was to investigate the role of hypoxia on SLPI production from the airway epithelium. Methods Primary human bronchial epithelial cells were grown in sub-immersed cultures or as differentiated epithelium in air liquid interface cultures. Cells were incubated at 21% O2 (normoxia) or 1% O2 (hypoxia), and the release of SLPI was analysed with ELISA. RT-PCR was used to study the expression of SLPI and transforming growth factor β1 (TGF-β1). Results Hypoxia decreased the constitutive production of SLPI by bronchial epithelial cells. The multifunctional cytokine TGF-β1, which is known to affect SLPI expression, showed increased expression in hypoxic bronchial epithelial cells. When bronchial epithelial cells were exposed to exogenous TGF-β1 during normoxia, the SLPI production was down-regulated. Addition of TGF-β1-neutralizing antibodies partially restored SLPI production during hypoxia, showing that TGF-β1 is an important regulator of SLPI during hypoxic conditions. Conclusions The mechanism described here adds to our knowledge of the pathogenesis of severe pulmonary diseases associated with hypoxia, e.g. COPD and CF. The hypoxic down-regulation of SLPI may help explain the protease/anti-protease imbalance associated with these conditions and vulnerability to airway infections. Furthermore, it provides an interesting target for the treatment and prevention of exacerbation in these patients. Electronic supplementary material The online version of this article (doi:10.1186/s12890-015-0016-0) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 2015; 45:1150-62. [PMID: 25700381 DOI: 10.1183/09031936.00141514] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul B McCray
- Dept of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
46
|
Chalermwatanachai T, Velásquez LC, Bachert C. The microbiome of the upper airways: focus on chronic rhinosinusitis. World Allergy Organ J 2015; 8:3. [PMID: 25624972 PMCID: PMC4306241 DOI: 10.1186/s40413-014-0048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/20/2014] [Indexed: 01/27/2023] Open
Abstract
Upper airway diseases including allergic rhinitis, chronic rhinosinusitis with or without polyps, and cystic fibrosis are characterized by substantially different inflammatory profiles. Traditionally, studies on the association of specific bacterial patterns with inflammatory profiles of diseases had been dependent on bacterial culturing. In the past 30 years, molecular biology methods have allowed bacterial culture free studies of microbial communities, revealing microbiota much more diverse than previously recognized including those found in the upper airway. At presence, the study of the pathophysiology of upper airway diseases is necessary to establish the relationship between the microbiome and inflammatory patterns to find their clinical reflections and also their possible causal relationships. Such investigations may elucidate the path to therapeutic approaches in correcting an imbalanced microbiome. In the review we summarized techniques used and the current knowledge on the microbiome of upper airway diseases, the limitations and pitfalls, and identified areas of interest for further research.
Collapse
Affiliation(s)
- Thanit Chalermwatanachai
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Department of Otolaryngology, Phramongkutklao Hospital and College of Medicine, Royal Thai Army, Bangkok, 10400 Thailand
| | - Leydi Carolina Velásquez
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Basic Biomedical Sciences Department, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claus Bachert
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Division of ENT Diseases, Clintec, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Cardenas PA, Cookson WO. The Microbiome at Other Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Rutebemberwa A, Stevens MJ, Perez MJ, Smith LP, Sanders L, Cosgrove G, Robertson CE, Tuder RM, Harris JK. Novosphingobium and its potential role in chronic obstructive pulmonary diseases: insights from microbiome studies. PLoS One 2014; 9:e111150. [PMID: 25340840 PMCID: PMC4207766 DOI: 10.1371/journal.pone.0111150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 09/29/2014] [Indexed: 02/03/2023] Open
Abstract
Bacterial infection of lung airways underlies some of the main complications of COPD, significantly impacting disease progression and outcome. Colonization by bacteria may further synergize, amplify, or trigger pathways of tissue damage started by cigarette smoke, contributing to the characteristic airway inflammation and alveolar destruction of COPD. We sought to elucidate the presence and types of lung bacterial populations in different stages of COPD, aimed at revealing important insights into the pathobiology of the disease. Sequencing of the bacterial small subunit ribosomal RNA gene in 55 well-characterized clinical lung samples, revealed the presence of Novosphingobium spp. (>2% abundance) in lungs of patients with GOLD 3-GOLD 4 COPD, cystic fibrosis and a subset of control individuals. Novosphingobium-specific quantitative PCR was concordant with the sequence data and high levels of Novosphingobium spp. were quantifiable in advanced COPD, but not from other disease stages. Using a mouse model of subacute lung injury due to inhalation of cigarette smoke, bronchoalveolar lavage neutrophil and macrophage counts were significantly higher in mice challenged intratracheally with N. panipatense compared to control mice (p<0.01). Frequencies of neutrophils and macrophages in lung tissue were increased in mice challenged with N. panipatense at room air compared to controls. However, we did not observe an interaction between N. panipatense and subacute cigarette smoke exposure in the mouse. In conclusion, Novosphingobium spp. are present in more severe COPD disease, and increase inflammation in a mouse model of smoke exposure.
Collapse
Affiliation(s)
- Alleluiah Rutebemberwa
- University of Colorado School of Medicine, Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mark J. Stevens
- University of Colorado - School of Medicine, Department of Pediatrics, Pulmonary Medicine, Mucosal and Vaccine Research Colorado, Microbiome Research Colorado, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Mario J. Perez
- University of Colorado School of Medicine, Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lynelle P. Smith
- University of Colorado School of Medicine, Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda Sanders
- University of Colorado School of Medicine, Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Gregory Cosgrove
- National Jewish Health, Department of Medicine and University of Colorado School of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Rubin M. Tuder
- University of Colorado School of Medicine, Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (JKH); (RMT)
| | - J. Kirk Harris
- University of Colorado - School of Medicine, Department of Pediatrics, Pulmonary Medicine, Mucosal and Vaccine Research Colorado, Microbiome Research Colorado, Children’s Hospital Colorado, Aurora, Colorado, United States of America
- * E-mail: (JKH); (RMT)
| |
Collapse
|
49
|
Gao Z, Kang Y, Yu J, Ren L. Human pharyngeal microbiome may play a protective role in respiratory tract infections. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:144-50. [PMID: 24953866 PMCID: PMC4411333 DOI: 10.1016/j.gpb.2014.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Abstract
The human pharyngeal microbiome, which resides at the juncture of digestive and respiratory tracts, may have an active role in the prevention of respiratory tract infections, similar to the actions of the intestinal microbiome against enteric infections. Recent studies have demonstrated that the pharyngeal microbiome comprises an abundance of bacterial species that interacts with the local epithelial and immune cells, and together, they form a unique micro-ecological system. Most of the microbial species in microbiomes are obligate symbionts constantly adapting to their unique surroundings. Indigenous commensal species are capable of both maintaining dominance and evoking host immune responses to eliminate invading species. Temporary damage to the pharyngeal microbiome due to the impaired local epithelia is also considered an important predisposing risk factor for infections. Therefore, reinforcement of microbiome homeostasis to prevent invasion of infection-prone species would provide a novel treatment strategy in addition to antibiotic treatment and vaccination. Hence continued research efforts on evaluating probiotic treatment and developing appropriate procedures are necessary to both prevent and treat respiratory infections.
Collapse
Affiliation(s)
- Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China.
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lufeng Ren
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Bar-On O, Mussaffi H, Mei-Zahav M, Prais D, Steuer G, Stafler P, Hananya S, Blau H. Increasing nontuberculous mycobacteria infection in cystic fibrosis. J Cyst Fibros 2014; 14:53-62. [PMID: 24917112 DOI: 10.1016/j.jcf.2014.05.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are emerging infections in the CF population. AIMS To assess NTM infection prevalence and associated features in our CF clinic population. METHODS Patient records, 2002-2011, were reviewed for NTM infection. FEV1, pancreatic function, sputum microbiology, and serum cytokines were compared in patients with and without NTM infection. RESULTS Incidence rate of NTM infection increased from 0 in 2002 to 8.7% in 2011 (p<0.001). NTM infection prevalence increased 3-fold from 5% (4/79) in 2003 to 14.5% (16/110) in 2011 (p=0.05). Prevalence of chronic NTM lung disease has decreased somewhat since a peak in 2009, with institution of aggressive triple therapy. Of NTM-infected compared to uninfected patients, 88.2% vs. 60.3% had a known 'severe' CFTR genotype (p=0.04), 88.2% vs. 58.9% were pancreatic insufficient (p=0.02); 70.6% vs. 43.8% had chronic Pseudomonas aeruginosa (p=0.06); 75% vs. 32% had Aspergillus infection (p=0.007) and 23.5% vs 2.7% had allergic bronchopulmonary aspergillosis (p=0.01). Patients infected with Mycobacterium abscessus had increased TGF-β, TNF-α, IL-1β, IL-2, IL-4 and IL-5 levels (p<0.05). There was no difference in cytokine levels for all NTM infected compared to uninfected patients. M. abscessus comprised 46% of all NTM infections. Comparing M. abscessus versus other NTM, duration was 10.5 (1-118) months versus 1 (1-70) month, median (range) (p=0.004); lung disease occurred in 69% versus 17% (p=0.0004), with sputum conversion in 4/11 versus 5/6, respectively (NS). CONCLUSIONS NTM incidence and prevalence have increased dramatically in our CF clinic, associated with a severe CF genotype and phenotype. M. abscessus, the most prevalent NTM, caused prolonged infection despite therapy. There has been some decrease in the prevalence of NTM lung disease since 2009.
Collapse
Affiliation(s)
- Ophir Bar-On
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel
| | - Huda Mussaffi
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Meir Mei-Zahav
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Dario Prais
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Guy Steuer
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel
| | - Patrick Stafler
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Shai Hananya
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel
| | - Hannah Blau
- Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center of Israel, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|