1
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Agibalova T, Hempel A, Maurer HC, Ragab M, Ermolova A, Wieland J, Waldherr Ávila de Melo C, Heindl F, Giller M, Fischer JC, Tschurtschenthaler M, Kohnke-Ertel B, Öllinger R, Steiger K, Demir IE, Saur D, Quante M, Schmid RM, Middelhoff M. Vasoactive intestinal peptide promotes secretory differentiation and mitigates radiation-induced intestinal injury. Stem Cell Res Ther 2024; 15:348. [PMID: 39380035 PMCID: PMC11462795 DOI: 10.1186/s13287-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Vasoactive intestinal peptide (VIP) is a neuronal peptide with prominent distribution along the enteric nervous system. While effects of VIP on intestinal motility, mucosal vasodilation, secretion, and mucosal immune cell function are well-studied, the direct impact of VIP on intestinal epithelial cell turnover and differentiation remains less understood. Intestinal stem and progenitor cells are essential for the maintenance of intestinal homeostasis and regeneration, and their functions can be modulated by factors of the stem cell niche, including neuronal mediators. Here, we investigated the role of VIP in regulating intestinal epithelial homeostasis and regeneration following irradiation-induced injury. METHODS Jejunal organoids were derived from male and female C57Bl6/J, Lgr5-EGFP-IRES-CreERT2 or Lgr5-EGFP-IRES-CreERT2/R26R-LSL-TdTomato mice and treated with VIP prior to analysis. Injury conditions were induced by exposing organoids to 6 Gy of irradiation (IR). To investigate protective effects of VIP in vivo, mice received 12 Gy of abdominal IR followed by intraperitoneal injections of VIP. RESULTS We observed that VIP promotes epithelial differentiation towards a secretory phenotype predominantly via the p38 MAPK pathway. Moreover, VIP prominently modulated epithelial proliferation as well as the number and proliferative activity of Lgr5-EGFP+ progenitor cells under homeostatic conditions. In the context of acute irradiation injury in vitro, we observed that IR injury renders Lgr5-EGFP+ progenitor cells more susceptible to VIP-induced modulations, which coincided with the strong promotion of epithelial regeneration by VIP. Finally, the observed effects translate into an in vivo model of abdominal irradiation, where VIP showed to prominently mitigate radiation-induced injury. CONCLUSIONS VIP prominently governs intestinal homeostasis by regulating epithelial progenitor cell proliferation and differentiation and promotes intestinal regeneration following acute irradiation injury.
Collapse
Affiliation(s)
- Tatiana Agibalova
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anneke Hempel
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - H Carlo Maurer
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mohab Ragab
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anastasia Ermolova
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Wieland
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Caroline Waldherr Ávila de Melo
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Fabian Heindl
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Maximilian Giller
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julius Clemens Fischer
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Markus Tschurtschenthaler
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Birgit Kohnke-Ertel
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Michael Quante
- Department of Internal Medicine II, Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Moritz Middelhoff
- Department of Internal Medicine II, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Guo S, Rasmussen RH, Hay-Schmidt A, Ashina M, Asuni AA, Jensen JM, Holm A, Lauritzen SP, Dorsam G, Hannibal J, Georg B, Kristensen DM, Olesen J, Christensen SL. VPAC1 and VPAC2 receptors mediate tactile hindpaw hypersensitivity and carotid artery dilatation induced by PACAP38 in a migraine relevant mouse model. J Headache Pain 2024; 25:126. [PMID: 39085771 PMCID: PMC11293201 DOI: 10.1186/s10194-024-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.
Collapse
MESH Headings
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Migraine Disorders/chemically induced
- Migraine Disorders/physiopathology
- Migraine Disorders/metabolism
- Mice, Knockout
- Disease Models, Animal
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Mice
- Carotid Arteries/drug effects
- Carotid Arteries/physiopathology
- Hyperalgesia/physiopathology
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Male
- Vasodilation/drug effects
- Vasodilation/physiology
- Mice, Inbred C57BL
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Hindlimb/physiopathology
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anders Hay-Schmidt
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ayodeji A Asuni
- Department of Preclinical Fluid Biomarkers and Occupancy, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jeppe Møller Jensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Experimental Clinical Research, Translational Research Centre, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Sabrina Prehn Lauritzen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Glenn Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, USA
| | - Jens Hannibal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Møbjerg Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Vu JP, Luong L, Sanford D, Oh S, Kuc A, Pisegna R, Lewis M, Pisegna JR, Germano PM. PACAP and VIP Neuropeptides' and Receptors' Effects on Appetite, Satiety and Metabolism. BIOLOGY 2023; 12:1013. [PMID: 37508442 PMCID: PMC10376325 DOI: 10.3390/biology12071013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The overwhelming increase in the prevalence of obesity and related disorders in recent years is one of the greatest threats to the global healthcare system since it generates immense healthcare costs. As the prevalence of obesity approaches epidemic proportions, the importance of elucidating the mechanisms regulating appetite, satiety, body metabolism, energy balance and adiposity has garnered significant attention. Currently, gastrointestinal (GI) bariatric surgery remains the only approach capable of achieving successful weight loss. Appetite, satiety, feeding behavior, energy intake and expenditure are regulated by central and peripheral neurohormonal mechanisms that have not been fully elucidated yet. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Polypeptide (VIP) are members of a family of regulatory peptides that are widely distributed in parallel with their specific receptors, VPAC1R, VPAC2R and PAC1R, in the central nervous system (CNS) and in the periphery, such as in the gastrointestinal tract and its associated organs and immune cells. PACAP and VIP have been reported to play an important role in the regulation of body phenotype, metabolism and homeostatic functions. The purpose of this review is to present recent data on the effects of PACAP, VIP, VPAC1R, VPAC2R and PAC1R on the modulation of appetite, satiety, metabolism, calorie intake and fat accumulation, to evaluate their potential use as therapeutic targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- John P. Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Leon Luong
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Daniel Sanford
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Alma Kuc
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
| | - Rita Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
| | - Michael Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90078, USA;
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Joseph R. Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA 90073, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Patrizia M. Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
6
|
Rao IH, Waller EK, Dhamsania RK, Chandrasekaran S. Gene Expression Analysis Links Autocrine Vasoactive Intestinal Peptide and ZEB1 in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:3284. [PMID: 37444395 DOI: 10.3390/cancers15133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
VIP (vasoactive intestinal peptide) is a 28-amino acid peptide hormone expressed by cancer and the healthy nervous system, digestive tract, cardiovascular, and immune cell tissues. Many cancers express VIP and its surface receptors VPAC1 and VPAC2, but the role of autocrine VIP signaling in cancer as a targetable prognostic and predictive biomarker remains poorly understood. Therefore, we conducted an in silico gene expression analysis to study the mechanisms of autocrine VIP signaling in cancer. VIP expression from TCGA PANCAN tissue samples was analyzed against the expression levels of 760 cancer-associated genes. Of the 760 genes, 10 (MAPK3, ZEB1, TEK, NOS2, PTCH1 EIF4G1, GMPS, CDK2, RUVBL1, and TIMELESS) showed statistically meaningful associations with the VIP (Pearson's R-coefficient > |0.3|; p < 0.05) across all cancer histologies. The strongest association with the VIP was for the epithelial-mesenchymal transition regulator ZEB1 in gastrointestinal malignancies. Similar positive correlations between the VIP and ZEB1 expression were also observed in healthy gastrointestinal tissues. Gene set analysis indicates the VIP is involved in the EMT and cell cycle pathways, and a high VIP and ZEB1 expression is associated with higher median estimate and stromal scores These findings uncover novel mechanisms for VIP- signaling in cancer and specifically suggest a role for VIP as a biomarker of ZEB1-mediated EMT. Further studies are warranted to characterize the specific mechanism of this interaction.
Collapse
Affiliation(s)
- Ishani H Rao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rohan K Dhamsania
- Philadelphia College of Osteopathic Medicine (PCOM)-Georgia Campus, Suwanee, GA 30024, USA
| | - Sanjay Chandrasekaran
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Calo G, Hauk V, Vota D, Van C, Condro M, Gallino L, Ramhorst R, Waschek J, Pérez Leirós C. VPAC1 and VPAC2 receptor deficiencies negatively influence pregnancy outcome through distinct and overlapping modulations of immune, trophoblast and vascular functions. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166593. [PMID: 36328148 PMCID: PMC9772292 DOI: 10.1016/j.bbadis.2022.166593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.
Collapse
Affiliation(s)
- Guillermina Calo
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Christina Van
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Michael Condro
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lucila Gallino
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
9
|
Tasma Z, Siow A, Harris PWR, Brimble MA, O’Carroll SJ, Hay DL, Walker CS. PAC 1, VPAC 1, and VPAC 2 Receptor Expression in Rat and Human Trigeminal Ganglia: Characterization of PACAP-Responsive Receptor Antibodies. Int J Mol Sci 2022; 23:ijms232213797. [PMID: 36430275 PMCID: PMC9697343 DOI: 10.3390/ijms232213797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland 1023, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin 9016, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
10
|
Thor D. G protein-coupled receptors as regulators of pancreatic islet functionality. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119235. [PMID: 35151663 DOI: 10.1016/j.bbamcr.2022.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
Abstract
Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.
Collapse
Affiliation(s)
- Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Sanford D, Luong L, Vu JP, Oh S, Gabalski A, Lewis M, Pisegna JR, Germano P. The VIP/VPAC1R Pathway Regulates Energy and Glucose Homeostasis by Modulating GLP-1, Glucagon, Leptin and PYY Levels in Mice. BIOLOGY 2022; 11:431. [PMID: 35336804 PMCID: PMC8945135 DOI: 10.3390/biology11030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
Vasoactive Intestinal Peptide binds with high affinity to VPAC1R and VPAC2R, thus regulating key physiologic functions. Previously, we documented in VIP-/- mice a leaner body phenotype and altered metabolic hormones. Past reports described in VPAC2-/- mice impaired circadian rhythm, reduced food intake, and altered metabolism. To better define the effects of VPAC1R on body phenotype, energy/glucose homeostasis, and metabolism, we conducted a 12-week study in a VPAC1R null model. Our results reveal that VPAC1-/- mice experienced significant metabolic alterations during the dark cycle with greater numbers of feeding bouts (p = 0.009), lower Total Energy Expenditure (p = 0.025), VO2 (p = 0.029), and VCO2 (p = 0.016); as well as during the light cycle with lower Total Energy Expenditure (p = 0.04), VO2 (p = 0.044), and VCO2 (p = 0.029). Furthermore, VPAC1-/- mice had significantly higher levels of GLP-1 and PYY during fasting, and higher levels of GLP-1, glucagon leptin and PYY during postprandial conditions. In addition, VPAC1-/- mice had lower levels of glucose at 60' and 120', as assessed by insulin tolerance test. In conclusion, this study supports a key role for VPAC1R in the regulation of body glucose/energy homeostasis and metabolism.
Collapse
Affiliation(s)
- Daniel Sanford
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
| | - Leon Luong
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
| | - John P. Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
| | - Arielle Gabalski
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
| | - Michael Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
| | - Joseph R. Pisegna
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (D.S.); (L.L.); (J.P.V.); (S.O.); (A.G.)
- Digestive Diseases Research Center (CURE), Department of Medicine, University of California, Los Angeles, CA 90073, USA;
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
12
|
Ericsson AC, Bains M, McAdams Z, Daniels J, Busi SB, Waschek JA, Dorsam GP. The G Protein-Coupled Receptor, VPAC1, Mediates Vasoactive Intestinal Peptide-Dependent Functional Homeostasis of the Gut Microbiota. GASTRO HEP ADVANCES 2022; 1:253-264. [PMID: 36910129 PMCID: PMC9997614 DOI: 10.1016/j.gastha.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Vasoactive intestinal peptide (VIP) is a neuropeptide involved in the regulation of feeding behavior and circadian rhythms, metabolism, and immunity. Previous studies revealed the homeostatic effects of VIP signaling on the gut microbiota. VIP-deficient mice demonstrate a gut microbiota dysbiosis characterized by reduced α-diversity and decreased relative abundance (RA) of Gram-positive Firmicutes. However, the mechanism by which VIP signaling affects changes in the microbiota is unknown. METHODS To investigate the role of the 2 cognate G protein-coupled receptors for VIP (VPAC1 and VPAC2) in VIP-mediated homeostasis of the microbiota, fecal samples from VPAC1- and VPAC2-deficient, heterozygous, and wild-type littermate mice were assessed via targeted amplicon sequencing. Their microbiota profiles were additionally compared with microbiota from VIP-deficient, heterozygous, and wild-type littermates, where genotype-dependent changes in the composition and predicted function of each cohort were compared. RESULTS While wild-type mice in each line differed in α-diversity and β-diversity, consistent changes in both metrics were observed in VIP-deficient and VPAC1-deficient mice. This includes a dramatic reduction in α-diversity, increased RA of Proteobacteria and Bacteroidetes, and decreased RA of Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Rikenellaceae. Specific amplicon sequence variants and predicted functions found to differ significantly based on VIP or VPAC1 genotype were concordant in their directions of change. Multiplatform predicted functional profiling suggested a defective VIP-VPAC1 axis was associated with reduced amino acid degradation along with reduced quinol and quinone biosynthesis. Furthermore, alterations in predicted functions include increased sugar degradation, nitrate reduction, and fatty acid biosynthetic pathways, among other changes. CONCLUSION We conclude that VIP signaling through VPAC1 is critical for the maintenance of normal function of the gut microbiota.
Collapse
Affiliation(s)
- Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Zachary McAdams
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Justin Daniels
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Susheel B. Busi
- Department of Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, California
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
13
|
Hou X, Yang D, Yang G, Li M, Zhang J, Zhang J, Zhang Y, Liu Y. Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:984198. [PMID: 36204104 PMCID: PMC9531956 DOI: 10.3389/fendo.2022.984198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to the increasing prevalence of type 2 diabetes, the development of novel hypoglycemic drugs has become a research hotspot, with the ultimate goal of developing therapeutic drugs that stimulate glucose-induced insulin secretion without inducing hypoglycemia. Vasoactive intestinal peptide (VIP), a 28-amino-acid peptide, can stimulate glucose-dependent insulin secretion, particularly by binding to VPAC2 receptors. VIP also promotes islet β-cell proliferation through the forkhead box M1 pathway, but the specific molecular mechanism remains to be studied. The clinical application of VIP is limited because of its short half-life and wide distribution in the human body. Based on the binding properties of VIP and VPAC2 receptors, VPAC2-selective agonists have been developed to serve as novel hypoglycemic drugs. This review summarizes the physiological significance of VIP in glucose homeostasis and the potential therapeutic value of VPAC2-selective agonists in type 2 diabetes.
Collapse
Affiliation(s)
- Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
14
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
15
|
Stangerup I, Hannibal J. Localization of Vasoactive Intestinal Polypeptide Receptor 1 (VPAC1) in Hypothalamic Neuroendocrine Oxytocin Neurons; A Potential Role in Circadian Prolactin Secretion. Front Neuroanat 2020; 14:579466. [PMID: 33192343 PMCID: PMC7658414 DOI: 10.3389/fnana.2020.579466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Prolactin (PRL) is a versatile hormone and serves a broad variety of physiological functions besides lactation. The release of PRL from lactotrophs in the pituitary has in rodents been shown to be released with a circadian pattern depending on the physiological state of the animal. The circadian release of PRL seems to be complex involving tonic inhibition by dopamine (DA) neurons on lactotrophs and one or even several releasing factors. Because of the circadian releasing pattern of PRL, neurons in the suprachiasmatic nucleus (SCN), "the brain clock," and especially the neurons expressing neuropeptide vasoactive intestinal polypeptide (VIP), have been suggested to be involved in the circadian regulation of PRL. In the present study, we used fluorescence immunohistochemistry, in situ hybridization histochemistry, confocal microscopy, three-dimensional reconstruction, and highly specific antibodies to visualize the occurrence of VIP receptors 1 and 2 (VPAC1 and VPAC2) in mouse brain hypothalamic sections stained in combination with VIP, oxytocin (OXT), arginine vasopressin (AVP), and DA (tyrosine hydroxylase, TH). We demonstrated that VIP fibers most likely originating from the ventral part of the SCN project to OXT neurons in the magnocellular part of the paraventricular nucleus (PVN). In the PVN, VIP fibers were found in close apposition to OXT neuron exclusively expressing the VPAC1 receptor. Furthermore, we demonstrate that neither OXT neurons nor TH or AVP neurons were expressing the VPAC2 receptor. VPAC1 receptor expression was also found on blood vessels but not in neurons expressing AVP or TH. These findings suggest that VIP signaling from the SCN does not directly target DA neurons involved in PRL secretion. Furthermore, the findings support the notion that VIP from neurons in the SCN could regulate circadian release of OXT in the posterior pituitary or modulate OXT neurons as a releasing factor involved in the circadian regulation of PRL from pituitary lactotrophs.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
17
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
18
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired neonatal cardiorespiratory responses to hypoxia in mice lacking PAC1 or VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2019; 316:R594-R606. [PMID: 30758978 DOI: 10.1152/ajpregu.00250.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its specific receptor PACAP type 1 receptor (PAC1) have been implicated in sudden infant death syndrome (SIDS). PACAP is also critical to the neonatal cardiorespiratory response to homeostatic stressors identified in SIDS, including hypoxia. However, which of PACAP's three receptors, PAC1, vasoactive intestinal peptide receptor type 1 (VPAC1), and/or vasoactive intestinal peptide receptor type 2 (VPAC2), are involved is unknown. In this study, we hypothesized that PAC1, but not VPAC2, is involved in mediating the cardiorespiratory response to hypoxia during neonatal development. To test this hypothesis, head-out plethysmography and surface ECG electrodes were used to assess the cardiorespiratory variables of unanesthetized postnatal day 4 PAC1 and VPAC2-knockout (KO) and wild-type (WT) mice in response to a 10% hypoxic challenge. Our results demonstrate that compared with WT pups, the early and late hypoxic rate of expired CO2 (V̇co2), V̇co2 and ventilatory responses were blunted in PAC1-KO neonates, and during the posthypoxic period, minute ventilation (V̇e), V̇co2 and heart rate were increased, while the increase in apneas normally associated with the posthypoxic period was reduced. Consistent with impaired cardiorespiratory control in these animals, the V̇e/V̇co2 slope was reduced in PAC1-KO pups, suggesting that breathing was inappropriately matched to metabolism. In contrast, VPAC2-KO pups exhibited elevated heart rate variability during hypoxia compared with WT littermates, but the effects of the VPAC2-KO genotype on breathing were minimal. These findings suggest that PAC1 plays the principal role in mediating the cardiorespiratory effects of PACAP in response to hypoxic stress during neonatal development and that defective PACAP signaling via PAC1 may contribute to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
19
|
Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J Mol Neurosci 2018; 66:102-113. [PMID: 30105629 DOI: 10.1007/s12031-018-1150-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
A bidirectional cross-talk is established between the nervous and immune systems through common mediators including neuropeptides, neurotransmitters, and cytokines. Among these, PACAP and VIP are two highly related neuropeptides widely distributed in the organism with purported immunomodulatory actions. Due to their well-known anti-inflammatory properties, administration of these peptides has proven to be beneficial in models of acute and chronic inflammatory diseases. Nevertheless, the relevance of the endogenous source of these peptides in the modulation of immune responses remains to be elucidated. The development of transgenic mice with specific deletions in the genes coding for these neuropeptides (Vip and Adcyap1) or for their G-protein-coupled receptors VPAC1, VPAC2, and PAC1 (Vipr1, Vipr2, Adcyap1r1) has allowed to address this question, underscoring the complexity of the immunoregulatory properties of PACAP and VIP. The goal of this review is to integrate the existing information on the immune phenotypes of mice deficient for PACAP, VIP, or their receptors, to provide a global view on the roles of these endogenous neuropeptides during immunological health and disease.
Collapse
|
20
|
Iyinikkel J, Murray F. GPCRs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 2018; 175:3063-3079. [PMID: 29468655 PMCID: PMC6031878 DOI: 10.1111/bph.14172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease.
Collapse
Affiliation(s)
- Jean Iyinikkel
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Fiona Murray
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
21
|
|
22
|
Abad C, Jayaram B, Becquet L, Wang Y, O’Dorisio MS, Waschek JA, Tan YV. VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. J Neuroinflammation 2016; 13:169. [PMID: 27357191 PMCID: PMC4928347 DOI: 10.1186/s12974-016-0626-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two highly homologous neuropeptides. In vitro and ex vivo experiments repeatedly demonstrate that these peptides exert pronounced immunomodulatory (primarily anti-inflammatory) actions which are mediated by common VPAC1 and VPAC2 G protein-coupled receptors. In agreement, we have shown that mice deficient in PACAP ligand or VPAC2 receptors exhibit exacerbated experimental autoimmune encephalomyelitis (EAE). However, we observed that VIP-deficient mice are unexpectedly resistant to EAE, suggesting a requirement for this peptide at some stage of disease development. Here, we investigated the involvement of VPAC1 in the development of EAE using a VPAC1-deficient mouse model. METHODS EAE was induced in wild-type (WT) and VPAC1 knockout (KO) mice using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), and clinical scores were assessed continuously over 30 days. Immune responses in the spinal cords were determined by histology, real-time PCR and immunofluorescence, and in the draining lymph nodes by antigen-recall assays. The contribution of VPAC1 expression in the immune system to the development of EAE was evaluated by means of adoptive transfer and bone marrow chimera experiments. In other experiments, VPAC1 receptor analogs were given to WT mice. RESULTS MOG35-55-induced EAE was ameliorated in VPAC1 KO mice compared to WT mice. The EAE-resistant phenotype of VPAC1 KO mice correlated with reduced central nervous system (CNS) histopathology and cytokine expression in the spinal cord. The immunization phase of EAE appeared to be unimpaired because lymph node cells from EAE-induced VPAC1 KO mice stimulated in vitro with MOG exhibited robust proliferative and Th1/Th17 responses. Moreover, lymph node and spleen cells from KO mice were fully capable of inducing EAE upon transfer to WT recipients. In contrast, WT cells from MOG-immunized mice did not transfer the disease when administered to VPAC1 KO recipients, implicating a defect in the effector phase of the disease. Bone marrow chimera studies suggested that the resistance of VPAC1-deficient mice was only minimally dependent on the expression of this receptor in the immunogenic/hematopoietic compartment. Consistent with this, impaired spinal cord inductions of several chemokine mRNAs were observed in VPAC1 KO mice. Finally, treatment of WT mice with the VPAC1 receptor antagonist PG97-269 before, but not after, EAE induction mimicked the clinical phenotype of VPAC1 KO mice. CONCLUSIONS VPAC1 gene loss impairs the development of EAE in part by preventing an upregulation of CNS chemokines and invasion of inflammatory cells into the CNS. Use of VPAC1 antagonists in WT mice prior to EAE induction also support a critical role for VPAC1 signaling for the development of EAE.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Female
- Freund's Adjuvant/toxicity
- Laminin/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- RNA, Messenger/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/deficiency
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Th17 Cells/metabolism
- Th17 Cells/pathology
- Time Factors
Collapse
Affiliation(s)
- Catalina Abad
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| | - Bhavaani Jayaram
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Laurine Becquet
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| | - Yuki Wang
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - M Sue O’Dorisio
- />Department of Pediatrics and Holden Comprehensive Cancer Center, RJ and LA Carver College of Medicine, University of Iowa, Iowa City, 52242 IA USA
| | - James A. Waschek
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Yossan-Var Tan
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| |
Collapse
|
23
|
Vu JP, Larauche M, Flores M, Luong L, Norris J, Oh S, Liang LJ, Waschek J, Pisegna JR, Germano PM. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP). J Mol Neurosci 2015; 56:377-387. [PMID: 25904310 PMCID: PMC4458420 DOI: 10.1007/s12031-015-0556-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP -/-) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP-/- mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP-/- mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat mass accumulation. Therefore, VIP signaling is critical for the modulation of appetite/satiety and body mass phenotype and is a potential target for future treatment of obesity.
Collapse
Affiliation(s)
- John P Vu
- CURE/Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, & VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, Haddox CL, Northrup E, Hodges C, Mostov KE, Hoffman MP, Knox SM. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell 2014; 30:449-62. [PMID: 25158854 DOI: 10.1016/j.devcel.2014.06.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
Abstract
A fundamental question in development is how cells assemble to form a tubular network during organ formation. In glandular organs, tubulogenesis is a multistep process requiring coordinated proliferation, polarization and reorganization of epithelial cells to form a lumen, and lumen expansion. Although it is clear that epithelial cells possess an intrinsic ability to organize into polarized structures, the mechanisms coordinating morphogenetic processes during tubulogenesis are poorly understood. Here, we demonstrate that parasympathetic nerves regulate tubulogenesis in the developing salivary gland. We show that vasoactive intestinal peptide (VIP) secreted by the innervating ganglia promotes ductal growth, leads to the formation of a contiguous lumen, and facilitates lumen expansion through a cyclic AMP/protein kinase A (cAMP/PKA)-dependent pathway. Furthermore, we provide evidence that lumen expansion is independent of apoptosis and involves the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl(-) channel. Thus, parasympathetic innervation coordinates multiple steps in tubulogenesis during organogenesis.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer K Finley
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andreas Ettinger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jan Prochazka
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Candace L Haddox
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Emily Northrup
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Craig Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew P Hoffman
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Koga M, Mizuno Y, Watanabe I, Kawakami H, Goto T. Role of VPAC2 receptor in monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol (1985) 2014; 117:383-91. [PMID: 24947028 DOI: 10.1152/japplphysiol.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is associated with significant morbidity and mortality. Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP) have pulmonary vasodilatory and positive inotropic effects via receptors VPAC1 and VPAC2, which possess a similar affinity for both peptides, and PAC1, a PACAP-preferring receptor. VIP is a promising option for PH treatment; however, various physiological effects of VIP have limited its clinical use. We investigated the effects of VPAC1 and VPAC2 selective agonists VIP and PACAP to explore more appropriate means of treatment for PH. We examined hemodynamic changes in right ventricular systolic pressure (RVSP), systemic blood pressure (SBP), total pulmonary resistance index (TPRI), total systemic resistance index, and cardiac index (CI) in response to their agonists with monocrotaline (MCT)-induced PH and explored involvement of VIP/PACAP expression and receptors in PH. Sprague-Dawley rats were divided into the MCT group (administered MCT 60 mg/kg) and control group. In MCT-induced PH, decreased VIP and PACAP were associated with upregulation of VPAC1, VPAC2, and PAC1 in lung tissues. Intravenous injection of VPAC2-selective agonist BAY 55-9837 and VIP, but not [Ala(11,22,28)]VIP, improved the CI. The decrease in SBP with VPAC2 agonist was significantly less than that in the control. Although they decreased SBP, these agonists hardly affected RVSP in the control. Activation of VPAC2 receptor with BAY 55-9837 effectively improved RVSP, TPRI, and CI in MCT-induced PH, suggesting a VPAC2 agonist as a possible promising treatment for PH.
Collapse
Affiliation(s)
- Motokazu Koga
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Mizuno
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Watanabe
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromasa Kawakami
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
26
|
Lossie AC, Muir WM, Lo CL, Timm F, Liu Y, Gray W, Zhou FC. Implications of genomic signatures in the differential vulnerability to fetal alcohol exposure in C57BL/6 and DBA/2 mice. Front Genet 2014; 5:173. [PMID: 24966868 PMCID: PMC4052096 DOI: 10.3389/fgene.2014.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Maternal alcohol consumption inflicts a multitude of phenotypic consequences that range from undetectable changes to severe dysmorphology. Using tightly controlled murine studies that deliver precise amounts of alcohol at discrete developmental stages, our group and other labs demonstrated in prior studies that the C57BL/6 and DBA/2 inbred mouse strains display differential susceptibility to the teratogenic effects of alcohol. Since the phenotypic diversity extends beyond the amount, dosage and timing of alcohol exposure, it is likely that an individual's genetic background contributes to the phenotypic spectrum. To identify the genomic signatures associated with these observed differences in alcohol-induced dysmorphology, we conducted a microarray-based transcriptome study that also interrogated the genomic signatures between these two lines based on genetic background and alcohol exposure. This approach is called a gene x environment (GxE) analysis; one example of a GxE interaction would be a gene whose expression level increases in C57BL/6, but decreases in DBA/2 embryos, following alcohol exposure. We identified 35 candidate genes exhibiting GxE interactions. To identify cis-acting factors that mediated these interactions, we interrogated the proximal promoters of these 35 candidates and found 241 single nucleotide variants (SNVs) in 16 promoters. Further investigation indicated that 186 SNVs (15 promoters) are predicted to alter transcription factor binding. In addition, 62 SNVs created, removed or altered the placement of a CpG dinucleotide in 13 of the proximal promoters, 53 of which overlapped putative transcription factor binding sites. These 53 SNVs are also our top candidates for future studies aimed at examining the effects of alcohol on epigenetic gene regulation.
Collapse
Affiliation(s)
- Amy C Lossie
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - William M Muir
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA ; Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Floyd Timm
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Molecular and Medical Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Whitney Gray
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA ; Stark Neuroscience Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
27
|
Inoue H, Shintani N, Sakurai Y, Higashi S, Hayata-Takano A, Baba A, Hashimoto H. PACAP Inhibits β-cell Mass Expansion in a Mouse Model of Type II Diabetes: Persistent Suppressive Effects on Islet Density. Front Endocrinol (Lausanne) 2013; 4:27. [PMID: 23483824 PMCID: PMC3593608 DOI: 10.3389/fendo.2013.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent insulinotropic G-protein-coupled receptor ligand, for which morphoregulative roles in pancreatic islets have recently been suggested. Here, we evaluated the effects of pancreatic overexpression of PACAP on morphometric changes of islets in a severe type II diabetes model. Following cross-breeding of obese-diabetic model KKA(y) mice with mice overexpressing PACAP in their pancreatic β-cells, the resulting KKA(y) mice with or without PACAP transgene (PACAP/+:A(y)/+ or A(y)/+ mice) were fed with a high-fat diet up to the age of 11 months. Pancreatic sections from 5- to 11-month-old littermates were examined. Histomorphometric analyses revealed significant suppression of islet mass expansion in PACAP/+:A(y)/+ mice compared with A(y)/+ mice at 11 months, but no significant difference between PACAP/+ and +/+ (wild-type) mice, as previously reported. The suppressed islet mass in PACAP/+:A(y)/+ mice was due to a decrease in islet density but not islet size. In addition, the density of tiny islets (<0.001 mm(2)) and of insulin-positive clusters in ductal structures were markedly decreased in PACAP/+:A(y)/+ mice compared with A(y)/+ mice at 5 months of age. In contrast, PACAP overexpression caused no significant effects on the level of aldehyde-fuchsin reagent staining (a measure of β-cell granulation) or the volume and localization of glucagon-positive cells in the pancreas. These results support previously reported inhibitory effects of PACAP on pancreatic islet mass expansion, and suggest it has persistent suppressive effects on pancreatic islet density which may be related with ductal cell-associated islet neogenesis in type II diabetes.
Collapse
Affiliation(s)
- Hiroaki Inoue
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Yusuke Sakurai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- Japan Society for the Promotion of ScienceTokyo, Japan
| | - Shintaro Higashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- Japan Society for the Promotion of ScienceTokyo, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- Department of Experimental Disease Model, Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuita, Osaka, Japan
| | - Akemichi Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- School of Pharmacy, Hyogo University of Health SciencesKobe, Hyogo, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- Department of Experimental Disease Model, Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuita, Osaka, Japan
- *Correspondence: Hitoshi Hashimoto, Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. e-mail:
| |
Collapse
|
28
|
Sanlioglu AD, Karacay B, Balci MK, Griffith TS, Sanlioglu S. Therapeutic potential of VIP vs PACAP in diabetes. J Mol Endocrinol 2012; 49:R157-67. [PMID: 22991228 DOI: 10.1530/jme-12-0156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is characterized by chronic insulin resistance and a progressive decline in beta-cell function. Although rigorous glucose control can reduce morbidity and mortality associated with diabetes, achieving optimal long-term glycemic control remains to be accomplished in many diabetic patients. As beta-cell mass and function inevitably decline in T2D, exogenous insulin administration is almost unavoidable as a final outcome despite the use of oral antihyperglycemic agents in many diabetic patients. Pancreatic islet cell death, but not the defect in new islet formation or beta-cell replication, has been blamed for the decrease in beta-cell mass observed in T2D patients. Thus, therapeutic approaches designed to protect islet cells from apoptosis could significantly improve the management of T2D, because of its potential to reverse diabetes not just ameliorate glycemia. Therefore, an ideal beta-cell-preserving agent is expected to protect beta cells from apoptosis and stimulate postprandial insulin secretion along with increasing beta-cell replication and/or islet neogenesis. One such potential agent, the islet endocrine neuropeptide vasoactive intestinal peptide (VIP) strongly stimulates postprandial insulin secretion. Because of its broad spectrum of biological functions such as acting as a potent anti-inflammatory factor through suppression of Th1 immune response, and induction of immune tolerance via regulatory T cells, VIP has emerged as a promising therapeutic agent for the treatment of many autoimmune diseases including diabetes.
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- Human Gene and Cell Therapy Center, Akdeniz University Hospitals and Clinics, B Block, 1st floor, Campus, Antalya 07058, Turkey
| | | | | | | | | |
Collapse
|
29
|
Yusta B, Holland D, Waschek JA, Drucker DJ. Intestinotrophic glucagon-like peptide-2 (GLP-2) activates intestinal gene expression and growth factor-dependent pathways independent of the vasoactive intestinal peptide gene in mice. Endocrinology 2012; 153:2623-32. [PMID: 22535770 PMCID: PMC3359603 DOI: 10.1210/en.2012-1069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enteroendocrine and enteric nervous systems convey signals through an overlapping network of regulatory peptides that act either as circulating hormones or as localized neurotransmitters within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip(-/-) mice. Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment, increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression of Paneth cell products in the Vip(-/-) small bowel. These abnormalities were not reproduced by antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal phenotype of Vip(-/-) mice. Exogenous administration of GLP-2 induced the expression of ErbB ligands and immediate-early genes to similar levels in Vip(+/+) vs. Vip(-/-) mice. Moreover, GLP-2 significantly increased crypt cell proliferation and small bowel growth to comparable levels in Vip(+/+) vs. Vip(-/-) mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was modestly reduced in female but not male Vip(-/-) mice. Taken together, these findings extend our understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore, although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is not required for induction of a gene expression program linked to small bowel growth after enhancement of GLP-2 receptor signaling.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
30
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 PMCID: PMC3415633 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|